5 research outputs found

    Co-simulation of self-adjusting fuzzy PI controller for the robot with two-axes system

    Get PDF
    This paper presents the co-simulation of the self-adjusting fuzzy PI controller to control a two-axes system. Each axis was driven by a permanent magnet linear synchronous motor (PMLSM). The position and speed controller used the fuzzy PI algorithm with parameters adjusted by a radial basis function neural network (RBFNN). The vector control was applied to the decoupled effect of the PMLSM. The field programmable gate array (FPGA) was used to control both axes of the system. The very high-speed integrated circuit-hardware description language (VHDL) was developed in the Quartus II software environment, provided by Altera, to analyze and synthesize designs. Firstly, the mathematical model of PMLSM and fuzzy PI was introduced. Secondly, the RBFNN adjusted the knowledge base of the fuzzy PI. Thirdly, the motion trajectory was introduced for testing the control algorithm. Fourthly, the implementation of the controller based on FPGA with the FSM method and the structure of co-simulation between Matlab/Simulink and ModelSim were set up. Finally, discussion about the results proved the effectiveness of the control system, determining the exact position and trajectory of the XY axis system. This research was successful in implementing a two-motor controller within one chip

    Anomaly Detection Based on Zone Partition for Security Protection of Industrial Cyber-Physical Systems

    Get PDF
    © 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.A developing trend of traditional industrial systems is the integration of the cyber and physical domain to improve flexibility and the efficiency of supervision, management and control. But, the deep integration of these Industrial Cyber-Physical Systems (ICPSs), increases the potential for security threats. Attack detection, which forms initial protective barrier, plays an important role in overall security protection. However, most traditional methods focused on cyber information and ignored any limitations that might arise from the characteristics of the physical domain. In this paper, an anomaly detection approach based on zone partition is designed for ICPSs. In detail, initially an automated zone partition method ensuring crucial system states can be observed in more than one zone is designed. Then, methods of building zone function model which do not require any prior knowledge of the physical system are presented before analyzing the anomaly based on zone information. Finally, an experimental rig is constructed to verify the effectiveness of the proposed approach. The results demonstrate that the approach presents a high accuracy solution which also performs effectively in realtime

    Computational models and approaches for lung cancer diagnosis

    Full text link
    The success of treatment of patients with cancer depends on establishing an accurate diagnosis. To this end, the aim of this study is to developed novel lung cancer diagnostic models. New algorithms are proposed to analyse the biological data and extract knowledge that assists in achieving accurate diagnosis results

    Run-time reconfiguration for efficient tracking of implanted magnets with a myokinetic control interface applied to robotic hands

    Get PDF
    Tese (doutorado)—Universidade de Brasília, Faculdade de Tecnologia, Departamento de Engenharia Mecânica, 2021.Este trabalho introduz a aplicação de soluções de aprendizagem de máquinas visado ao problema do rastreamento de posição do antebraço baseado em sensores magnéticos. Especi ficamente, emprega-se uma estratégia baseada em dados para criar modelos matemáticos que possam traduzir as informações magnéticas medidas em entradas utilizáveis para dispositivos protéticos. Estes modelos são implementados em FPGAs usando operadores customizados de ponto flutuante para otimizar o consumo de hardware e energia, que são importantes em dispositivos embarcados. A arquitetura de hardware é proposta para ser implementada como um sistema com reconfiguração dinâmica parcial, reduzindo potencialmente a utilização de recursos e o consumo de energia da FPGA. A estratégia de dados proposta e sua implemen tação de hardware pode alcançar uma latência na ordem de microssegundos e baixo consumo de energia, o que encoraja mais pesquisas para melhorar os métodos aqui desenvolvidos para outras aplicações.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).This work introduces the application of embedded machine learning solutions for the problem of magnetic sensors-based limb tracking. Namely, we employ a data-driven strat egy to create mathematical models that can translate the magnetic information measured to usable inputs for prosthetic devices. These models are implemented in FPGAs using cus tomized floating-point operations to optimize hardware and energy consumption, which are important in wearable devices. The hardware architecture is proposed to be implemented as a dynamically partial reconfigured system, potentially reducing resource utilization and power consumption of the FPGA. The proposed data-driven strategy and its hardware implementa tion can achieve a latency in the order of microseconds and low energy consumption, which encourages further research on improving the methods herein devised for other application
    corecore