1,403 research outputs found

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Precision medicine and artificial intelligence : a pilot study on deep learning for hypoglycemic events detection based on ECG

    Get PDF
    Tracking the fluctuations in blood glucose levels is important for healthy subjects and crucial diabetic patients. Tight glucose monitoring reduces the risk of hypoglycemia, which can result in a series of complications, especially in diabetic patients, such as confusion, irritability, seizure and can even be fatal in specific conditions. Hypoglycemia affects the electrophysiology of the heart. However, due to strong inter-subject heterogeneity, previous studies based on a cohort of subjects failed to deploy electrocardiogram (ECG)-based hypoglycemic detection systems reliably. The current study used personalised medicine approach and Artificial Intelligence (AI) to automatically detect nocturnal hypoglycemia using a few heartbeats of raw ECG signal recorded with non-invasive, wearable devices, in healthy individuals, monitored 24 hours for 14 consecutive days. Additionally, we present a visualisation method enabling clinicians to visualise which part of the ECG signal (e.g., T-wave, ST-interval) is significantly associated with the hypoglycemic event in each subject, overcoming the intelligibility problem of deep-learning methods. These results advance the feasibility of a real-time, non-invasive hypoglycemia alarming system using short excerpts of ECG signal

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Wearable Wireless Devices

    Get PDF
    No abstract available

    Hardware/Software Co-Design of Ultra-Low Power Biomedical Monitors

    Get PDF
    Ongoing changes in world demographics and the prevalence of unhealthy lifestyles are imposing a paradigm shift in healthcare delivery. Nowadays, chronic ailments such as cardiovascular diseases, hypertension and diabetes, represent the most common causes of death according to the World Health Organization. It is estimated that 63% of deaths worldwide are directly or indirectly related to these non-communicable diseases (NCDs), and by 2030 it is predicted that the health delivery cost will reach an amount comparable to 75% of the current GDP. In this context, technologies based on Wireless Sensor Nodes (WSNs) effectively alleviate this burden enabling the conception of wearable biomedical monitors composed of one or several devices connected through a Wireless Body Sensor Network (WBSN). Energy efficiency is of paramount importance for these devices, which must operate for prolonged periods of time with a single battery charge. In this thesis I propose a set of hardware/software co-design techniques to drastically increase the energy efficiency of bio-medical monitors. To this end, I jointly explore different alternatives to reduce the required computational effort at the software level while optimizing the power consumption of the processing hardware by employing ultra-low power multi-core architectures that exploit DSP application characteristics. First, at the sensor level, I study the utilization of a heartbeat classifier to perform selective advanced DSP on state-of-the-art ECG bio-medical monitors. To this end, I developed a framework to design and train real-time, lightweight heartbeat neuro-fuzzy classifiers, detail- ing the required optimizations to efficiently execute them on a resource-constrained platform. Then, at the network level I propose a more complex transmission-aware WBSN for activity monitoring that provides different tradeoffs between classification accuracy and transmission volume. In this work, I study the combination of a minimal set of WSNs with a smartphone, and propose two classification schemes that trade accuracy for transmission volume. The proposed method can achieve accuracies ranging from 88% to 97% and can save up to 86% of wireless transmissions, outperforming the state-of-the-art alternatives. Second, I propose a synchronization-based low-power multi-core architecture for bio-signal processing. I introduce a hardware/software synchronization mechanism that allows to achieve high energy efficiency while parallelizing the execution of multi-channel DSP applications. Then, I generalize the methodology to support bio-signal processing applications with an arbitrarily high degree of parallelism. Due to the benefits of SIMD execution and software pipelining, the architecture can reduce its power consumption by up 38% when compared to an equivalent low-power single-core alternative. Finally, I focused on the optimization of the multi-core memory subsystem, which is the major contributor to the overall system power consumption. First I considered a hybrid memory subsystem featuring a small reliable partition that can operate at ultra-low voltage enabling low-power buffering of data and obtaining up to 50% energy savings. Second, I explore a two-level memory hierarchy based on non-volatile memories (NVM) that allows for aggressive fine-grained power gating enabled by emerging low-power NVM technologies and monolithic 3D integration. Experimental results show that, by adopting this memory hierarchy, power consumption can be reduced by 5.42x in the DSP stage

    Towards end-to-end security in internet of things based healthcare

    Get PDF
    Healthcare IoT systems are distinguished in that they are designed to serve human beings, which primarily raises the requirements of security, privacy, and reliability. Such systems have to provide real-time notifications and responses concerning the status of patients. Physicians, patients, and other caregivers demand a reliable system in which the results are accurate and timely, and the service is reliable and secure. To guarantee these requirements, the smart components in the system require a secure and efficient end-to-end communication method between the end-points (e.g., patients, caregivers, and medical sensors) of a healthcare IoT system. The main challenge faced by the existing security solutions is a lack of secure end-to-end communication. This thesis addresses this challenge by presenting a novel end-to-end security solution enabling end-points to securely and efficiently communicate with each other. The proposed solution meets the security requirements of a wide range of healthcare IoT systems while minimizing the overall hardware overhead of end-to-end communication. End-to-end communication is enabled by the holistic integration of the following contributions. The first contribution is the implementation of two architectures for remote monitoring of bio-signals. The first architecture is based on a low power IEEE 802.15.4 protocol known as ZigBee. It consists of a set of sensor nodes to read data from various medical sensors, process the data, and send them wirelessly over ZigBee to a server node. The second architecture implements on an IP-based wireless sensor network, using IEEE 802.11 Wireless Local Area Network (WLAN). The system consists of a IEEE 802.11 based sensor module to access bio-signals from patients and send them over to a remote server. In both architectures, the server node collects the health data from several client nodes and updates a remote database. The remote webserver accesses the database and updates the webpage in real-time, which can be accessed remotely. The second contribution is a novel secure mutual authentication scheme for Radio Frequency Identification (RFID) implant systems. The proposed scheme relies on the elliptic curve cryptography and the D-Quark lightweight hash design. The scheme consists of three main phases: (1) reader authentication and verification, (2) tag identification, and (3) tag verification. We show that among the existing public-key crypto-systems, elliptic curve is the optimal choice due to its small key size as well as its efficiency in computations. The D-Quark lightweight hash design has been tailored for resource-constrained devices. The third contribution is proposing a low-latency and secure cryptographic keys generation approach based on Electrocardiogram (ECG) features. This is performed by taking advantage of the uniqueness and randomness properties of ECG's main features comprising of PR, RR, PP, QT, and ST intervals. This approach achieves low latency due to its reliance on reference-free ECG's main features that can be acquired in a short time. The approach is called Several ECG Features (SEF)-based cryptographic key generation. The fourth contribution is devising a novel secure and efficient end-to-end security scheme for mobility enabled healthcare IoT. The proposed scheme consists of: (1) a secure and efficient end-user authentication and authorization architecture based on the certificate based Datagram Transport Layer Security (DTLS) handshake protocol, (2) a secure end-to-end communication method based on DTLS session resumption, and (3) support for robust mobility based on interconnected smart gateways in the fog layer. Finally, the fifth and the last contribution is the analysis of the performance of the state-of-the-art end-to-end security solutions in healthcare IoT systems including our end-to-end security solution. In this regard, we first identify and present the essential requirements of robust security solutions for healthcare IoT systems. We then analyze the performance of the state-of-the-art end-to-end security solutions (including our scheme) by developing a prototype healthcare IoT system

    Classification techniques for arrhythmia patterns using convolutional neural networks and Internet of Things (IoT) devices

    Get PDF
    The rise of Telemedicine has revolutionized how patients are being treated, leading to several advantages such as enhanced health analysis tools, accessible remote healthcare, basic diagnostic of health parameters, etc. The advent of the Internet of Things (IoT), Artificial Intelligence (AI) and their incorporation into Telemedicine extends the potential of health benefits of Telemedicine even further. Therefore, the synergy between AI, IoT, and Telemedicine creates diverse innovative scenarios for integrating cyber-physical systems into medical health to provide remote monitoring and interactive assistance to patients. Data from World Health Organization reports that 7.4 million people died because of Atrial Fibrillation (AF), recognizing the most common arrhythmia associated with human heart rate. Causes like unhealthy diet, smoking, poor resources to go to the doctor and based on research studies, about 12 and 17.9 million of people will be suffering the AF in the USA and Europe, in 2050 and 2060, respectively. The AF as a cardiovascular disease is becoming an important public health issue to tackle. By using a systematic approach, this paper reviews recent contributions related to the acquisition of heart beats, arrhythmia detection, IoT, and visualization. In particular, by analysing the most closely related papers on Convolutional Neural Network (CNN) and IoT devices in heart disease diagnostics, we present a summary of the main research gaps with suggested directions for future research

    Advanced Signal Processing in Wearable Sensors for Health Monitoring

    Get PDF
    Smart, wearables devices on a miniature scale are becoming increasingly widely available, typically in the form of smart watches and other connected devices. Consequently, devices to assist in measurements such as electroencephalography (EEG), electrocardiogram (ECG), electromyography (EMG), blood pressure (BP), photoplethysmography (PPG), heart rhythm, respiration rate, apnoea, and motion detection are becoming more available, and play a significant role in healthcare monitoring. The industry is placing great emphasis on making these devices and technologies available on smart devices such as phones and watches. Such measurements are clinically and scientifically useful for real-time monitoring, long-term care, and diagnosis and therapeutic techniques. However, a pertaining issue is that recorded data are usually noisy, contain many artefacts, and are affected by external factors such as movements and physical conditions. In order to obtain accurate and meaningful indicators, the signal has to be processed and conditioned such that the measurements are accurate and free from noise and disturbances. In this context, many researchers have utilized recent technological advances in wearable sensors and signal processing to develop smart and accurate wearable devices for clinical applications. The processing and analysis of physiological signals is a key issue for these smart wearable devices. Consequently, ongoing work in this field of study includes research on filtration, quality checking, signal transformation and decomposition, feature extraction and, most recently, machine learning-based methods
    • …
    corecore