934 research outputs found

    Implementation of CAVENET and its usage for performance evaluation of AODV, OLSR and DYMO protocols in vehicular networks

    Get PDF
    Vehicle Ad-hoc Network (VANET) is a kind of Mobile Ad-hoc Network (MANET) that establishes wireless connection between cars. In VANETs and MANETs, the topology of the network changes very often, therefore implementation of efficient routing protocols is very important problem. In MANETs, the Random Waypoint (RW) model is used as a simulation model for generating node mobility pattern. On the other hand, in VANETs, the mobility patterns of nodes is restricted along the roads, and is affected by the movement of neighbour nodes. In this paper, we present a simulation system for VANET called CAVENET (Cellular Automaton based VEhicular NETwork). In CAVENET, the mobility patterns of nodes are generated by an 1-dimensional cellular automata. We improved CAVENET and implemented some routing protocols. We investigated the performance of the implemented routing protocols by CAVENET. The simulation results have shown that DYMO protocol has better performance than AODV and OLSR protocols.Peer ReviewedPostprint (published version

    Validation of Routing Protocol for Mobile Ad Hoc Networks using Colored PetriNets

    Get PDF
    In a Mobile Ad Hoc Network (MANET), mobile nodes directly send messages to each other via other nodes in a wireless environment. A node can send a message to a destination node beyond its transmission range by using other nodes as relay points, and thus a node can function as a router. With the explosive growth of the Internet and mobile communication networks, challenging requirements have been introduced into MANETs and designing routing protocols has become more complex. For a successful application of MANETS, it is very important to ensure that a routing protocol is unambiguous, complete and functionally correct. One approach to ensuring correctness of an existing routing protocol is to create a formal model for the protocol, and analyze the model to determine if needed the protocol provides the defined service correctly. Colored Petri Nets (CPNs) are a suitable modeling language for this purpose, as it can conveniently express non-determinism , concurrency and different levels of abstraction that are inherent in routing protocols. However it is not easy to build a CPN model of a MANET because a node can move in and out of its transmission range and thus the MANET’s topology dynamically changes. So a topology approximation (TA) mechanism has been proposed to address this problem of mobility and perform simulations of routing protocol called Ad Hoc On demand Distance Vector Routing (AODV) and Distance Source Routing(DSR) and to perform comparison based on the simulation results

    Neighborhood Detection in Mobile Ad-Hoc Network Using Colored Petri Net

    Get PDF
    Colored Petri Nets (CPNs) [2] is a language for the modeling and validation of systems in which concurrency, communication [6], and synchronization play a major role. Colored Petri Nets is a discrete-event modeling language combining Petri nets with the functional programming language Standard ML. Petri nets provide the foundation of the graphical notation and the basic primitives for modeling concurrency, communication, and synchronization. Standard ML provides the primitives for the definition of data types, describing data manipulation, and for creating compact and parameterizable models. A CPN model of a system is an executable model representing the states of the system and the events (transitions) that can cause the system to change state [4]. The CPN language makes it possible to organize a model as a set of modules, and it includes a time concept for representing the time taken to execute events in the modeled system. In a mobile ad-hoc network(MANET) mobile nodes directly send messages to each other via wireless transmission. A node can send a message to another node beyond its transmission range by using other nodes as relay points, and thus a node can function as a router [1]. Typical applications of MANETS include defense systems such as battlefield survivability and disaster recovery. The research on MANETs originates from part of the Advanced Research Projects Agency(ARPA) project in the 1970s [1]. With the explosive growth of the Internet and mobile communication networks, challenging requirements have been introduced into MANETs and designing routing protocols has become more complex. One approach for ensuring correctness of an existing routing protocol is to create a formal model for the protocol and analyze the model to determine if indeed the protocol provides the defined service correctly. Colored Petri Nets are a suitable modeling language for this purpose as it can conveniently express non-determinism, concurrency and different levels of abstraction that are inherent in routing protocols. However, it is not easy to build a CPN model of a MANET because a node can move in and out of its transmission range and thus the MANET‟s topology dynamically changes. In this paper we propose an algorithm for addressing such mobility problem of a MANET [1]. Using this algorithm a node can find its neighbors ,which are dynamically changing, at any instant of time

    Airborne Directional Networking: Topology Control Protocol Design

    Get PDF
    This research identifies and evaluates the impact of several architectural design choices in relation to airborne networking in contested environments related to autonomous topology control. Using simulation, we evaluate topology reconfiguration effectiveness using classical performance metrics for different point-to-point communication architectures. Our attention is focused on the design choices which have the greatest impact on reliability, scalability, and performance. In this work, we discuss the impact of several practical considerations of airborne networking in contested environments related to autonomous topology control modeling. Using simulation, we derive multiple classical performance metrics to evaluate topology reconfiguration effectiveness for different point-to-point communication architecture attributes for the purpose of qualifying protocol design elements

    Formal Verification and Validates the Mobile Nodes using NNDRP

    Get PDF
    Mobile ad-hoc networks are wireless networks and these are suitable for safety critical applications due to its adhoc behavior but attackers easily enter in to the network and they can access the network, so security is a crucial factor for any communication protocols, especially in mobile environment, so verifying the node that may be a malicious node or trustworthy node is a challenging task, but most of the researchers focused on the neighbor nodes distance only but they are not focused on security. This paper provides secure routing for MANET using NNDRP protocol, this protocol verify and validate the nodes with security measures
    corecore