4,244 research outputs found

    From SpaceStat to CyberGIS: Twenty Years of Spatial Data Analysis Software

    Get PDF
    This essay assesses the evolution of the way in which spatial data analytical methods have been incorporated into software tools over the past two decades. It is part retrospective and prospective, going beyond a historical review to outline some ideas about important factors that drove the software development, such as methodological advances, the open source movement and the advent of the internet and cyberinfrastructure. The review highlights activities carried out by the author and his collaborators and uses SpaceStat, GeoDa, PySAL and recent spatial analytical web services developed at the ASU GeoDa Center as illustrative examples. It outlines a vision for a spatial econometrics workbench as an example of the incorporation of spatial analytical functionality in a cyberGIS.

    Geospatial information infrastructures

    Get PDF
    Manual of Digital Earth / Editors: Huadong Guo, Michael F. Goodchild, Alessandro Annoni .- Springer, 2020 .- ISBN: 978-981-32-9915-3Geospatial information infrastructures (GIIs) provide the technological, semantic,organizationalandlegalstructurethatallowforthediscovery,sharing,and use of geospatial information (GI). In this chapter, we introduce the overall concept and surrounding notions such as geographic information systems (GIS) and spatial datainfrastructures(SDI).WeoutlinethehistoryofGIIsintermsoftheorganizational andtechnologicaldevelopmentsaswellasthecurrentstate-of-art,andreflectonsome of the central challenges and possible future trajectories. We focus on the tension betweenincreasedneedsforstandardizationandtheever-acceleratingtechnological changes. We conclude that GIIs evolved as a strong underpinning contribution to implementation of the Digital Earth vision. In the future, these infrastructures are challengedtobecomeflexibleandrobustenoughtoabsorbandembracetechnological transformationsandtheaccompanyingsocietalandorganizationalimplications.With this contribution, we present the reader a comprehensive overview of the field and a solid basis for reflections about future developments

    GRIDA3—a shared resources manager for environmental data analysis and applications

    Get PDF
    GRIDA3 (Shared Resources Manager for Environmental Data Analysis and Applications) is a multidisciplinary project designed to deliver an integrated system to forge solutions to some environmental challenges such as the constant increase of polluted sites, the sustainability of natural resources usage and the forecast of extreme meteorological events. The GRIDA3 portal is mainly based on Web 2.0 technologies and EnginFrame framework. The portal, now at an advanced stage of development, provides end-users with intuitive Web-interfaces and tools that simplify job submission to the underneath computing resources. The framework manages the user authentication and authorization, then controls the action and job execution into the grid computing environment, collects the results and transforms them into an useful format on the client side. The GRIDA3 Portal framework will provide a problem-solving platform allowing, through appropriate access policies, the integration and the sharing of skills, resources and tools located at multiple sites across federated domains

    The application of data mining techniques to interrogate Western Australian water catchment data sets

    Get PDF
    Current environmental challenges such as increasing dry land salinity, waterlogging, eutrophication and high nutrient runoff in south western regions of Western Australia may have both cultural and environmental implications in the near future. Advances in computer science disciplines, more specifically, data mining techniques and geographic information services provide the means to be able to conduct longitudinal climate studies to predict changes in the Water catchment areas of Western Australia. The research proposes to utilise existing spatial data mining techniques in conjunction of modern open-source geospatial tools to interpret trends in Western Australian water catchment land use. This will be achieved through the development of a innovative data mining interrogation tool that measures and validates the effectiveness of data mining methods on a sample water catchment data set from the Peel Harvey region of WA. In doing so, the current and future statistical evaluation on potential dry land salinity trends can be eluded. The interrogation tool will incorporate different modern geospatial data mining techniques to discover meaningful and useful patterns specific to current agricultural problem domain of dry land salinity. Large GIS data sets of the water catchments on Peel-Harvey region have been collected by the state government Shared Land Information Platform in conjunction with the LandGate agency. The proposed tool will provide an interface for data analysis of water catchment data sets by benchmarking measures using the chosen data mining techniques, such as: classical statistical methods, cluster analysis and principal component analysis.The outcome of research will be to establish an innovative data mining instrument tool for interrogating salinity issues in water catchment in Western Australia, which provides a user friendly interface for use by government agencies, such as Department of Agriculture and Food of Western Australia researchers and other agricultural industry stakeholders
    corecore