
Citation: Antelmi, A.; Cordasco, G.;

D’Ambrosio, G.; De Vinco, D.;

Spagnuolo, C. Experimenting with

Agent-Based Model Simulation Tools.

Appl. Sci. 2022, 13, 13. https://

doi.org/10.3390/app13010013

Academic Editor: Vincent A. Cicirello

Received: 28 October 2022

Revised: 13 December 2022

Accepted: 16 December 2022

Published: 20 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Review

Experimenting with Agent-Based Model Simulation Tools
Alessia Antelmi 1 , Gennaro Cordasco 2 , Giuseppe D’Ambrosio 1,* , Daniele De Vinco 1

and Carmine Spagnuolo 1

1 Dipartimento di Informatica, Università degli Studi di Salerno, 84084 Fisciano, Italy
2 Dipartimento di Psicologia, Università degli Studi della Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
* Correspondence: gdambrosio@unisa.it

Abstract: Agent-based models (ABMs) are one of the most effective and successful methods for
analyzing real-world complex systems by investigating how modeling interactions on the individual
level (i.e., micro-level) leads to the understanding of emergent phenomena on the system level (i.e.,
macro-level). ABMs represent an interdisciplinary approach to examining complex systems, and
the heterogeneous background of ABM users demands comprehensive, easy-to-use, and efficient
environments to develop ABM simulations. Currently, many tools, frameworks, and libraries exist,
each with its characteristics and objectives. This article aims to guide newcomers in the jungle of
ABM tools toward choosing the right tool for their skills and needs. This work proposes a thorough
overview of open-source general-purpose ABM tools and offers a comparison from a two-fold
perspective. We first describe an off-the-shelf evaluation by considering each ABM tool’s features,
ease of use, and efficiency according to its authors. Then, we provide a hands-on evaluation of some
ABM tools by judging the effort required in developing and running four ABM models and the
obtained performance.

Keywords: agent-based model; agent-based simulations; agent-based tools; open-source software

1. Introduction

Simulation models are one of the most effective and successful methods for studying
real-world phenomena [1]. The term model refers to an abstract and simplified represen-
tation of the object of study that only considers the aspects relevant to the investigation;
the concept of simulation indicates a model’s manifestation realized through software for
reproducing its dynamics and providing analyzable results. Among simulation models,
agent-based models (ABMs) are one of the most adopted techniques for representing reality
using a bottom-up approach [2]. Starting from a simple independent entity called an agent,
the modeler can shape the global behavior of a complex system. An agent is an autonomous,
independent entity that acts within an environment and interacts with it as well as with
other agents, according to a set of rules the modeler defines. The combination of these
interactions creates a reproduction of the reality under investigation that the modeler can
evaluate to extract valuable data and meaningful information from its emergent behaviors.
The resulting model will exhibit patterns, structures, and behaviors that were not explicitly
programmed but arise through agents’ interactions [3]. For these reasons, ABMs turn
out to be a valuable tool for studying, explaining, and predicting complex phenomena,
supporting researchers in investigating how the macroscopic behavior of a system depends
on the micro-level properties, constraints, and rules [3–5].

ABMs are extremely powerful for studying problems centered on an individual’s
interactions with other individuals or the surrounding environment [4]. This intrinsic
characteristic makes ABMs particularly suited to being applied in diverse research fields.
Nowadays, ABMs are widely used by researchers in various disciplines, allowing them
to test and assess new theories and observe and notice mechanisms never considered

Appl. Sci. 2022, 13, 13. https://doi.org/10.3390/app13010013 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13010013
https://doi.org/10.3390/app13010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6366-0546
https://orcid.org/0000-0001-9148-9769
https://orcid.org/0000-0002-9102-2525
https://orcid.org/0000-0003-0781-3744
https://orcid.org/0000-0002-8267-9808
https://doi.org/10.3390/app13010013
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13010013?type=check_update&version=2

Appl. Sci. 2022, 13, 13 2 of 22

before. Applications domains for ABMs include social science [6], economics [7,8], cli-
mate change [9,10], epidemiology [11,12], transportation and logistics [13,14], and many
others [2,5,15]. The widespread use of ABMs in these various application fields created
the need for tools to easily and quickly develop simulations without requiring significant
coding skills. Several ABM tools and platforms have been introduced to overcome this
requirement by abstracting the complexity of the simulation implementation, allowing
modelers to focus on the reality under investigation rather than the coding component.

Existing ABMs reviews. The plethora of existing tools, frameworks, and libraries for
developing ABM simulations makes it difficult for modelers to choose the right tool. Over
the years, several works analyzed and compared the available ABM software to identify
their pros and cons from different perspectives and support modelers towards the right
choice for their needs.

The first review about general-purpose ABM software dates back to 2006 when
Railsback et al. [16] compared the execution speed and the functionalities offered by some
pillar ABM platforms, including MASON, NetLogo, Repast, and Swarm, and identified
development priorities for future ABM platforms. In 2010, Allan et al. [15] provided a
comprehensive exploration of all the ABM software packages available then, describing
the usage of ABMs in different domains and exploring some of the most meaningful works.
Five years later, Kravari et al. [17] supplied a comparative review of ABM platforms based
on given evaluation criteria to classify ABM software and characterize their ideal usage
situation. In 2016, Rousset et al. [18] proposed a detailed description of ABM platforms
running simulations on high-performance architectures; specifically, the authors focused
on parallel/distributed multi-agent simulation tools and a performance assessment of the
HPC-compliant platforms. A year later, Abar et al. [5] presented a concise characterization
of all the ABM frameworks and tools existing back then, providing a valuable reference
for researchers and developers, and identified future priorities around adopting ABMS
platforms. In 2020, Pal et al. [19] recently presented a review of the existing ABM platforms,
including active platforms and those no longer under development or unclear status, pro-
viding a historical perspective of this domain area. Table 1 compares the existing reviews
about ABM tools with our article.

Table 1. Comparison of the existing ABMs reviews. The symbol "-" means that the authors did not
explicitly state any constraints on the ABM tools considered in their review.

Reference Year Selection Criteria
Number

of
Tools

Comparison Criteria Benchmark Hands-on
Experience

Railsback et al. [16] 2006 Publicly released ABM tools 4
Agent-related functionalities
(e.g., movement, scheduling),
scalability, reproducibility

X X

Allan et al. [15] 2010 Authors’ curated list 31 test test test
test

Kravari et al. [17] 2015 Actively supported ABM tools 24 Security, performance, user support,
scalability, license, learning curve

Rousset et al. [18] 2016 Parallel and distributed ABM
computing tools 10

Agent-related functionalities (e.g.,
movement, scheduling), scalability,
reproducibility

X X

Abar et al. [5] 2017 - 85
Programming language, GUI, OS
Support, ease of use, scalability,
license

Pal et al. [19] 2020 - 134 test test test
test

Ours 2022
Open-source actively supported
ABM tools, associated with
peer-reviewed articles

23
Available features (e.g., visual
programming, HPC-related), ease of
use, efficiency

X X

Contribution. This paper proposes an overview of the open-source general-purpose ABM
tools from the two-fold perspective of their available features and the perceived program-

Appl. Sci. 2022, 13, 13 3 of 22

ming experience. Specifically, we first compare the existing ABM tools based on their
characteristics (e.g., programming model, analytical features), ease of use, and efficiency ac-
cording to their authors and based on the referring peer-reviewed articles, documentation,
and websites. Then, we assess the experience of developing and running four ABM models
with some available ABM tools. We finally report the obtained performance. Although
several works examine existing ABM tools, this article reviews the state of the art from
the novel perspective of standing as a guide for newcomers in the world of ABM tools.
With this work, we aim to provide the reader with a clear perspective of what each tool can
offer, how fast it can be, and the skills required to build and run simulation models. The
contributions of our paper can be summarized as follows:

• A discussion about what can be considered an ABM developing tool and which
desiderata each tool should meet;

• A description of the existing open-source general-purpose ABM tools and their com-
parison under the perspectives of their intrinsic characteristics (e.g., programming
language, simulation space), functionalities offered to the user (e.g., GUI, analysis),
and scaling capabilities (e.g., parallel/distributed execution);

• A comparison of ABM tools based on their efficiency and ease of use according to
their authors’ statements;

• A hands-on comparison of ABM tools by empirically evaluating their ease of installa-
tion and setup, the extensiveness of their documentation, and the effort to implement
and run some example models;

• A suite of experiments to analytically evaluate each tool’s efficiency and scalability.

Outline. The remainder of this article is organized as follows. Section 2 introduces the
main concepts related to agent-based models and discusses what ABM tools are and which
desiderata each tool should offer. Section 3 overviews the existing general-purpose, open-
source ABM simulation tools. Section 4 compares the collected tools from the two-fold
perspective of the available features and the trade-off between ease of use and efficiency.
Section 5 describes the developing experience in using each tool and its actual performance.
Finally, Section 6 concludes this work.

2. Agent-Based Models and Simulations

In this section, we introduce the reader to the main concepts underpinning this work.
First, we characterize ABMs through their key components; then, we focus on ABM tools,
overviewing their main features and the desiderata each tool should have.

2.1. What Is an ABM?

Although no single formal definition of ABM exists in literature, we can easily identify
some key components that ABMs share: agents, environment, and rules [2]. Agents model
the living population, the environment determines the setting where the agents act, and
the rules define the potential agent-to-agent and agent-to-environment interactions [20].

The main aspect of an agent is its ability to act autonomously in response to the sur-
rounding environment while making decisions to achieve its internal goals. The modeler
must define this decision-making process and compose the agent’s behavior, which deter-
mines how the agent relates to other agents and environmental factors [21]. The agent’s
behavior includes simple actions such as moving and communicating, but also more com-
plex operations allowing the population to evolve. Each agent maintains its attributes and
the information acquired during the simulation within its state, which may vary during
its life cycle. Agents live and act within an environment defining how agents can move
and are connected to other agents. An environment has a well-defined topology defined
by fields such as spatial grids, continuous spaces, and networks. When the simulation
environment must reproduce real-world places, ABMs can exploit Geographic Information
System (GIS) data to replicate existing locations like buildings or towns [3,21,22]. All other
information related to fields and other non-active objects is included in the environment

Appl. Sci. 2022, 13, 13 4 of 22

state. The collection of all agents’ and environment’s states represents the simulation state,
which holds all the information about the model delineating its status at a specific time of
the simulation.

The modeler must be able to identify, model, and code agents, environment, and
behavioral rules to realize an ABM.

2.2. What Is an ABM Tool?

The effectiveness of ABMs collides with the difficulty of developing a model for re-
searchers with low expertise in computer science. Therefore, the ABM community made a
considerable effort to provide standardized software platforms to design, build, and exe-
cute ABMs. ABM tools take away many of the complexities of the model implementation,
allowing the user to focus on the simulation outcomes rather than the development pro-
cess [20,23,24]. ABM tools usually come in the form of frameworks and libraries, providing
developers with (i) a framework consisting of a set of standard concepts for designing and
describing a model and (ii) a library for implementing the framework, containing tools for
the execution and the analysis of the simulation [15,16].

Over the years, numerous ABM platforms have been developed with different objec-
tives and targets. The first discriminant factor is identifiable in the platform’s purpose. A
tool can be either general or special-purpose [17,19]. In the former case, this characteristic
denotes the user can use the ABM platform to model any system of interest. In the latter
case, the term special purpose implies that the system is oriented to a specific domain, thus
including functionalities to address peculiar situations of a given research field. A further
differentiation concerns the main development objective of the tool, usually identifiable
in better ease of use or improved efficiency. Some ABM platforms emphasize easy-to-use
interfaces with a reasonable learning curve that allows non-experienced programmers
to produce models quickly [5,18,25]. The drawback of this approach is low scalability
since graphical tools and domain-specific programming languages are not focused on
performance. Several ABM toolkits for mainstream programming languages also exist. In
this case, they offer high-performance capabilities but require technical skills to use them
appropriately [20,23].

2.3. What Are the Desiderata of an ABM Tool?

Although there is a lack of standardized criteria to analyze ABM tools, we can enu-
merate a series of desiderata deriving from existing work. In the following, we discuss
the desirable requirements either explicitly mentioned in the literature by previous ABM-
related articles or implicitly addressed and implemented by current ABM tools.

Researchers use ABMs to investigate and analyze complex phenomena to understand
how each component and the interaction with other elements affect their emerging behav-
ior [5]. Conducting this kind of experiment often demands building elaborated models in
terms of the number of agents and the parameters regulating their interactions. The need
for implementing and running such models implies the first two fundamentals desiderata
of an ABM tool: efficiency and ease of use [5,17,20,26,27]. These two aspects are heavily in-
fluenced by the design of the ABM platform and its programming model and are often two
conflicting objectives. Some ABM tools expose their functionalities via a GUI (Graphical
User Interface) to enhance user experience and grant high ease of use while limiting the
achievable model complexity by preventing the user from personalizing and/or adding
more complex dynamics. Conversely, frameworks and libraries based on standard pro-
gramming languages give room for developing complex ABM by offering generic facilities.
As a downside, these tools demand adequate technical knowledge, which may result in a
higher perceived difficulty [16], usually mitigated via proper documentation, examples,
and tutorials [20,25,28].

Developing an ABM means defining different common patterns involving agents’
behavior, environment, and interactions. ABM tools should provide ready-to-use meth-
ods and interface covering those patterns, allowing the modeler to easily and quickly

Appl. Sci. 2022, 13, 13 5 of 22

implement standard actions such as movement and communication, agents’ lifecycle and
internal state management, environments creation using grids, continuous spaces, and
networks, and interaction with the environment [20,29]. Defining a realistic simulation
field is a critical feature to accommodate since the simulation environment may provide
a rich set of information influencing the agents’ behavior. As 80% of the data have a spa-
tial/geographical nature or a geographical component, the ability to work with Geographic
Information Systems (GIS) data becomes a fundamental requirement for any ABM tool.
GIS-based systems use multiple spatial data models for representing and storing informa-
tion about phenomena with spatial location and extent [21,22]. In the ABM context, GIS
data are particularly crucial, especially for the extensive use of simulation in transportation,
urban mobility [30,31], epidemic, and pandemic models [32,33] that incorporate spatial
and network topologies to model, for instance, people’s realistic activity [34]. Additionally,
ABM should transparently handle multiple types of agents and fields within the same
simulation without the developer’s involvement.

Other desiderata relating to the analysis of simulations include facilities for creating
a graphical model visualization, tools for statistical and non-statistical analysis, real-time
monitoring, and data visualization [3,5,16,20,23,29]. Among tools for statistical analysis,
random number generation assumes tremendous importance since ABMs usually include
stochastic processes [3,16,35,36], i.e., processes influenced by a specific random component
causing the simulation results to be volatile. Researchers need to handle this stochasticity
through random number generators that enable them to reliably reproduce a model’s be-
havior and investigate how random distributions affect it [16,20,37]. The intrinsic stochastic
nature of most ABMs also affects the reproducibility of such models. In this context, the
automated validation process becomes a critical step in ABM development as simulations
must be run several times and their results aggregated [36,38,39].

As the last desideratum, we include model exploration and optimization capabilities
since modelers need to explore the model’s parameter space experimenting with how the
simulation behaves when given parameters vary [20,23,36,38].

3. ABM Tools Overview

The increasing adoption of ABMs in various research fields led to the emergence of
numerous platforms to guide and facilitate the design and development of ABMs. In this
section, we describe the process we adopted to select the final set of ABM tools to include
in our review. A concise description of each tool follows.

3.1. Methodology

In this work, we focus our analysis on open-source general-purpose platforms sup-
ported by peer-reviewed academic works that are still actively supported. To compile an
initial list of candidates, we gathered data from the bibliographic database Scopus since
it represents a comprehensive yet accurate database of peer-reviewed research papers on
ABM-related topics. From this source, we collected all articles describing ABM frameworks,
platforms, or tools. We then filtered out from this list all articles related to commercial
or proprietary platforms or discussing domain-specific ABM tools. We finally included
additional ABM frameworks collected from the code hosting service GitHub to consider
other free, open-source works described in peer-reviewed articles not indexed in Scopus.
In Section 4, we compare the main characteristics of each framework by exploiting the
information gathered from each platform’s related article(s), website, and documentation.

3.2. ABM Tools Description

ActressMAS [40] is an agent-based framework written in .NET with the primary objective
of being simple to learn and easy to use. ActressMAS is designed to allow the user to
focus on the model logic rather than learning the framework, enhancing its accessibility
at the expense of performance. According to its developers, ActressMAS should be used

Appl. Sci. 2022, 13, 13 6 of 22

for applications that do not require fast execution speed or do not include a considerable
number of agents.

AgentPy [41] is an open-source Python library for developing and analyzing ABMs inte-
grated with IPython and Jupyter Notebooks, a web-based interactive development envi-
ronment. AgentPy is designed for scientific applications and provides features for model
exploration, numeric experiments, and advanced data analysis. The library offers func-
tionalities to easily create models and their visualization that can be embedded within
Jupyter notebooks. Moreover, AgentPy allows the modeler to run simulations in a parallel
environment without writing parallel code.

Agents.jl [42] is a recent framework for agent-based simulations for implementing, running,
and visualizing models exploiting the Julia programming language. This framework is
mainly centered on granting efficiency and ease of use by exposing methods that allow
the user to develop models with few lines of code. Agents.jl is available as a Julia library
and is easily usable with the plethora of analytical tools of the Julia ecosystem. It offers the
most common ABM-related features, including different environments, support for GIS
data, and model exploration capabilities. Agents.jl also supports parallel and distributed
computing to empower simulation execution.

Care HPS [43] is a C++ tool for modeling and executing ABMs on high-performance archi-
tectures while hiding the complexity of parallel and distributed programming. The tool
abstracts the modeler from crucial and tricky tasks such as agent distribution, load balanc-
ing, and synchronization. Still, Care HPS remains easily extensible by expert developers.

Cormas (Common-Pool Resources and Multi-Agent Systems) [44] is a simulation platform
based on the VisualWorks programming environment and the Smalltalk language. This
platform is mainly dedicated to non-computer scientists and offers facilities to build,
design, and analyze ABMs; however, it exchanges this ease of use with limited efficiency
and scalability. Cormas editor allows the user to define agent behaviors through activity
diagrams without including sophisticated features to keep its interface as simple as possible.

CppyABM [45] is a library for ABM development that combines the efficiency of C++ with
the availability of Python libraries and exploits CMake to be platform-free. CppyABM offers
all functionalities in both languages, enabling users to choose their preferred programming
language. CppyABM relies on third-party packages to provide additional functionality
while remaining a lightweight library. Other Python or C++ libraries can be installed
separately and integrated into CppyABM.

EcoLab [46] is a framework for developing ABMs in C++ and executing them using
TCL (Tool Command Language). This tool provides a GUI through the Tk toolkit and sup-
ports parallel and distributed processing by exposing utilities to manage communication.
The user has to handle synchronization and partitioning manually.

Evoplex [47] is a platform for developing ABM based on C++, using CMake scripts to
facilitate compilation and setup, thus making it cross-platform. Evoplex adopts a fully
modular approach that separates the core library from the GUI and visualization tools. The
APIs exposed by the core library allow the user to develop the model. At the same time,
additional components are available to improve ease of use with an interactive GUI and a
web visualization tool.

FLAME (FLexible Agent Modeling Environment) [48] is an agent-based modeling system
for creating models runnable on most computing systems, ranging from laptops to HPC
supercomputers. FLAME provides a formal framework for creating models based on the
XXML language, a dialect of XML, that it uses to generate the source code for the simulation
in C automatically. The FLAME engine automatically generates parallel code without any
effort by the modeler by adopting a new programming language easy to understand.

FLAME GPU [49] is an extended version of the FLAME framework to write ABMs for
Graphics Processing Units (GPUs) using the FLAME standard formal XXML language.

Appl. Sci. 2022, 13, 13 7 of 22

Thanks to FLAME GPU, the user does not need to explicitly understand GPU programming
languages or optimization strategies since the API available uses the FLAME template
to generate the simulation program in CUDA for target GPU devices. Visualization of
the simulation is available even for a massive agent population without suffering perfor-
mance loss.

GAMA (Gis & Agent-based Modelling Architecture) [22] is an agent-oriented generic mod-
eling and simulation platform. GAMA grants high ease of use by providing a simple
agent-based programming language called GAML that offers a simple formalism to de-
scribe all the characteristics of the entities of an ABM. Moreover, the platform can manage
simulations with hundreds of thousands of agents with good performance. The modular
architecture, separating each aspect of the model into a specific component, and the facili-
ties provided makes GAMA an accessible tool for non-expert developers with minimum
learning requirements. This characteristic is enhanced by the full integration of GAMA
with the Eclipse IDE, which provides convenient features such as auto-compilation, auto-
completion, and the use of templates. Finally, the platform supports the integration of
external modules to introduce additional functionalities, such as GAMAR [50], that enable
the analysis of simulation results with R.

Insight Maker [51] is a graphical modeling and simulation tool focused on accessibility and
availability of features rather than performance. This tool is a web application accessible
through a standard web browser and includes features specific to a web environment,
like user management and model searching and sharing. The main advantage of Insight
Maker resides in its VPL (Visual Programming Language), which offers access to all its
functionalities, including tools for data analysis and model exploration and validation. The
simulator also includes API to build models and analyze their results programmatically.

JADE (Java Agent Development Framework) [52] is an industry-driven Java FIPA-compliant
framework aiming to simplify the implementation of multi-agent systems. Thanks to its
features, this tool has established itself as one of the most popular platforms in academic
and industrial communities [17]. JADE provides a powerful and useful GUI enabling
the user to control and configure the simulation during its execution and also supports
debugging and development tasks. Moreover, this tool is designed to work on distributed
systems abstracting most of the inherent complexities to the modeler. The core characteris-
tics of JADE make the tool highly scalable, robust, easy to learn, and compatible with most
Java-based platforms. Moreover, its popularity grants high user support, with complete
documentation and many tutorials and examples available.

JAS-mine (Java Agent-based Simulation library—Modelling In a Networked Environ-
ment) [53] is a Java-based toolkit for discrete-event simulations designed to aid ABM
development. Specifically, this platform aims to speed up model development, facilitate
model documentation, and foster model testing and sharing. The core capabilities of JAS-
mine reside in integrating I/O communication functionalities in the form of embedded
relational database management systems tools and automatic CSV table creation. The
database explorer included in the platform enables the user to inspect the database through
Structured Query Language (SQL) style commands.

krABMaga [54] is a fast, reliable, discrete-event multi-agent simulation toolkit based on
the Rust language for developing ABMs. Designed to be a ready-to-use tool for the ABM
community, krABMaga embraces the architectural concepts of the well-adopted MASON
simulation library to provide modelers with a familiar programming environment and
decrease the learning curve of the framework. However, krABMaga re-engineered some
aspects of the MASON architecture to exploit Rust’s peculiarities and programming model.
This framework comprises all functionalities required for developing and executing a
model, including a visualization component and a convenient UI. Additional functionalities
relate to running model exploration jobs on parallel, distributed, and cloud architectures.

Appl. Sci. 2022, 13, 13 8 of 22

MaDKit (Multi-agent Development Kit) [55] is a lightweight Java library for designing
and simulating agent systems. The tool follows an organization-centered rather than an
agent-centered approach based on the AGR (Agent/Group/Role) model. MaDKit provides
several functionalities via APIs, including agents’ lifecycle management and distribution,
being mainly designed to be used by users with some programming knowledge.

MASON [56] is a discrete-event simulation toolkit written in Java for designing, executing,
and visualizing ABMs. MASON provides functionalities and API supporting the most
common needs of a modeler, including common agents’ behavior, environment creation,
and scheduling management. One of the main advantages of MASON is its snapshot system
enabling the user to stop and save a simulation and resume it in another machine thanks to
the compatibility provided by the Java Virtual Machine. Moreover, thanks to the existing
extensions, additional features are available, including GIS data with GeoMASON [57],
model exploration with ECJ [58], or the possibility of executing a simulation on distributed
systems and Cloud Computing with DistributedMASON [59]. Further, MASON is well-
suited to computationally intensive models or long-running simulations.

MASS (Multi-Agent Spatial Simulation) [60] is a multi-agent and spatial simulation li-
brary designed to address the need for parallel ABMs. The architecture is based on the
coordinator–worker approach, where the coordinator process spawns workers at different
computing nodes to run parallel simulations. MASS automatically manages agent execu-
tion and migration as well as the simulation space through several APIs, which facilitate
the model development (if the user has some basic knowledge of Java).

Mesa [61] is a Python-based ABM framework providing built-in core components to easily
create, visualize, and analyze simulations. Mesa is one of the most used and actively
supported ABM libraries, which exploits Python’s popularity to provide ease of use and
accessibility. One of the main advantages of Mesa is its extensibility allowing users to
develop and share their components through an open-source ecosystem. This approach
created a rich community providing extensions for any need, including the possibility to
exploit a multi-processor system, support for GIS data, and advanced analysis.

NetLogo [62] is an agent-based modeling environment implemented in Java and Scala,
and it is considered the standard platform for developing ABMs. The importance and
popularity of NetLogo rose to prominence thanks to its community, which is continuously
providing extensions such as GIS data usage, 3D visualization, and integration with other
languages, such as Python with PyNetLogo [63] or Pylogo [64], or R with RNetLogo [65].
Other relevant extensions worth to be mentioned are HubNet [66] for creating participatory
simulations and BehaviorSpace [67] for providing parameter-sweeping capabilities using
distributed and parallel techniques. NetLogo allows modelers to develop their models
through a simple-to-use dedicated modeling language while offering a VPL to create and
edit components to realize any simulation. However, its accessibility leads to significant
limitations regarding model complexity.

Pandora [68] is an ABM framework for large-scale distributed simulation providing two
identical programming interfaces exposing the same functionalities in two different pro-
gramming languages. pyPandora allows non-expert developers to develop models using
Python quickly. C++ Pandora offers a more efficient interface in C++ to implement complex
models, including the automatic generation of parallel and distributed code. Pandora
includes Cassandra, a GUI tool with functionalities to design and analyze a single model
execution or to set up a model exploration process. This tool can run large-scale ABMs, and
deal with thousands of agents with complex behavior.

Repast (REcursive Porous Agent Simulation Toolkit) [69] is a family of agent-based model-
ing and simulation platforms available in several programming languages. Repast Sim-
phony [70] is a Java-based modeling system that provides automated methods to perform
all the common tasks required in a simulation and supports several crucial additional
functionalities. The Simphony platform is based on a modular architecture adopting a

Appl. Sci. 2022, 13, 13 9 of 22

plugin system that enables adding a wide range of external tools. Any other Repast ver-
sion implements the core features of Repast Simphony. Repast4Py [71] is a Python-based
framework that includes functionalities to develop distributed ABMs.

RepastHPC (Repast for High-Performance Computing) [72] is another member of the Repast
suite; specifically, it is a C++-based modeling system designed for running on large comput-
ing clusters and supercomputers. This toolkit enables the execution of massive simulations
containing hundreds of thousands of agents of very complex behavior whose execution
requires high computational power. Although some built-in functions are available for
developing a model, RepastHPC still requires users to have good programming experience
since they have to manage different aspects of the parallel execution.

4. ABM Tools Comparison

The plethora of ABMS tools available in the literature can easily overwhelm any
scientists interested in adopting a platform to develop ABMs with less effort. In this
section, we compare the leading open-source general-purpose platforms (see Section 3)
from the two-fold perspective of the available features and the trade-off between their
declared ease of use and efficiency. It is worth noting that (as previously mentioned)
we impartially gathered all information from each platform’s related article(s), website,
and documentation.

4.1. Available Features

Every ABM tool should offer some fundamental features to assist the user in creating
their model [16]. Table 2 lists these properties, which are based on the desiderata discussed
in Section 2.3 and includes facilities to write, run, analyze, and optimize ABMs. Tables 3
and 4 compare the tools according to whether they support each desirable feature.

Table 2. Description of the desirable features for ABM platforms.

Feature Description

Programming Language Programming language adopted for model development.

GUI Availability of a Graphical User Interface (GUI) to control the
simulation execution.

Visual programming Use of a Visual Programming Language (VSL) to support the model
development phase.

Simulation environment Fields and topologies available to create the simulation environment,
including GIS data.

Visualization Possibility to graphically visualize the model.

Snapshot and checkpoint Presence of functionalities to pause and save the simulation state and
resume it later.

Modularity and reusability ? Adoption of a modular design supporting the reuse of portions of
simulation code that can be combined to realize other simulations.

Inspector Facilities for retrieving the model’s information during its execution.

Analysis tools ? Presence of tools for statistical and non-statistical analysis, creation of
charts and plots.

Random number generator ? Support for the custom generation of random numbers.

Batch runner ? Facilities to automatically perform multiple runs of the same simu-
lation to assess whether stochastic processes influence the model’s
output.

Continuous Integration (CI)/
Continuous Development (CD)

Facilities to let developers automate code continuous integration and
delivery while keeping track of the simulation versions.

Model exploration and optimiza-
tion ? (MEO)

Facilities for exploring the model’s behavior when its input param-
eters vary and optimizing its outcomes. This feature also includes
automated testing.

HPC Exploitation of parallel and distributed computing as well as integra-
tion with cloud platforms for in-model execution or optimization.

? We only report whether the given feature is available without considering its comprehensiveness.

Appl. Sci. 2022, 13, 13 10 of 22

We do not explicitly report the feature “Modularity and reusability” as a column since
all frameworks support this property to some extent, primarily thanks to their model devel-
opment language. In particular, most of the tools exploit an object-oriented programming
(OOP) approach, natively benefiting from the concepts of inheritance and polymorphism.
Further, OO programming languages, such as Java and Scala, represent the building blocks
for domain-specific languages (like NetLogo and GAML), which directly inherit their
OO characteristics. In this context, it is worth mentioning how GAMA is the first (and
unique) tool introducing the concept of modularity by design thanks to the co-modeling
mechanism [22], which enables users to incorporate previously defined agents or models
inside new models to create more complicated simulations.

Table 3. Comparison of ABM tools based on their features.

↓ Tool/Feature→ Programming Language GUI VSL Simulation Environment Visualization Snapshot and
Checkpoint Code

ActressMAS C# X Generic [73]

AgentPy Python X Grid, continuous, network 2D [74]

Agents.jl Julia X Grid, continuous, network,
GIS 2D, 3D [75]

Care HPS C++ [43]

Cormas VisualWorks X X Generic 2D X
[76]

CppyABM C++ and Python Generic 2D, 3D [77]

EcoLab C++ and TCL X Grid, continuous, network 2D X
[78]

EvoPlex C++ X Grid, continuous, network 2D [79]

FLAME C++ and XXML Generic [80]

FLAME GPU C++ and Python Generic 3D [81]

GAMA GAML X X Grid, continuous, network,
GIS 2D, 3D X

[82]

Insight Maker JavaScript X X Grid, network [83]

Jade Java X Generic X
[84]

JAS-mine Java X Grid [85]

krABMaga Rust X Grid, continuous, network 2D [86]

MADKIT Java X X
[87]

MASON Java X Grid, continuous, network,
GIS with GeoMASON [57] 2D, 3D X

[88]

MASS Three versions available: Java,
C++, CUDA X X Grid, network 2D [89]

Mesa Python X Grid, continuous, network,
GIS with Mesa-Geo [90]

2D, 3D with
Mesa 3D [91]

[92]

NetLogo NetLogo, Python [93,94] and
R [95] with extension X X Grid, continuous, network,

GIS with extension [96]
2D, 3D with

extension [97] X
[98]

Pandora C++ and Python X Generic, GIS X
[99]

Repast Three version available: C++,
Java, Python X Grid, continuous, network,

GIS 2D, 3D X
[100]

RepastHPC XXML Generic 3D X [101]

Table 4. Comparison of ABM tools based on their features.

↓ Tool/Feature→ Inspector Analysis Random Number Batch CI/CD MEO HPC
Tools Generator Runner In-Model MEO

ActressMAS X X X Parallel,
distributed

test

AgentPy X X X With exten-
sion [102] X Parallel

t

Agents.jl X X X X With exten-
sion [103] X

Distributed via
the Distributed

module [104]

t

Care HPS X Parallel,
distributed

t

Appl. Sci. 2022, 13, 13 11 of 22

Table 4. Cont.

↓ Tool/Feature→ Inspector Analysis Random Number Batch CI/CD MEO HPC
Tools Generator Runner In-Model MEO

Cormas X X With exten-
sion [105] X

t

CppyABM X X X Parallel
t

EcoLab X X X With exten-
sion [106] X Parallel,

distributed
t

EvoPlex X X X X With exten-
sion [107] Parallel

t

FLAME X X Parallel,
distributed

t

FLAME GPU X X With exten-
sion [108]

Parallel,
distributed

t

GAMA X With
gamar [50] X X X X Parallel Parallel

t

Insight Maker X X X X X
t

Jade X X X[109] Parallel,
distributed

t

JAS-mine X X X X X
t

krABMaga X X X With exten-
sion [110] X Parallel,

distributed, cloud
t

MADKIT X X With exten-
sion [111] Distributed

t

MASON X X X X With
ECJ [112]

Distributed
With

Distributed
MA-

SON [113]

Parallel,
distributed

t

MASS X X X X With exten-
sion [114]

Parallel,
distributed,

cloud

t

Mesa X X X With exten-
sion [115] X Parallel

t

NetLogo X
With

extension
[116]

With
BehaviorSpace

[117]

With exten-
sion [118]

With exten-
sion [119]

With Behav-
iorSpace

[117]
Parallel

t

Pandora X X X X X Parallel,
distributed

t

Repast X X X X With
EMEWS [120]

Parallel,
distributed Distributed

t

RepastHPC X X X Parallel
t

4.2. Declared Ease of Use vs. Efficiency

Ease of use and efficiency are two essential and often conflicting criteria commonly
employed to assess software platforms, and ABM tools are no exception [51]. In this work,
the term “ease of use” refers to the effort required for installation and setup procedures, the
presence of examples, and the clarity of the documentation provided. The term “efficiency”
refers to the capability of the ABM tool to handle large and complex models granting low
execution time.

We evaluated the ease of use of each ABM platform by adopting a five-level Likert
scale. The scale is based on the criteria included in the work of Macal et al. [2], and
it considers the programming model adopted by each ABM tool and the (number of)
available functionalities as reported in the corresponding documentation, websites, and
article (declared ease of use). A description of the scale follows.

• Very low: poor modeling/execution APIs are provided by the tool, and the developer
is also responsible for many execution/technology-related tasks.

• Low: good modeling, but poor execution APIs are provided by the tool.
• Medium: comprehensive modeling/execution APIs.
• High: improves the previous level by adopting a well-known programming language,

such as Python or Java, which widens the number of developers ready to use the tool.
• Very high: tools that offer the previous level by using a Domain-specific Language or a

Visual Programming Language specifically developed for ABM.

Appl. Sci. 2022, 13, 13 12 of 22

Broadly stated, the ease of use of a tool strictly depends on the programming language
used (higher-level languages are generally easier to approach), the number of available
functionalities (the higher, the better), and the availability of a dedicated GUI or a VSL
(which can further reduce the need for coding).

The classification of ABM tools according to their efficiency is based on how the
authors position themselves within the state-of-the-art regarding the potential to handle
large-scale models and the efficiency in executing them. In this case, we used a five-level
Likert scale, ranging from Very low to Very high, to evaluate the efficiency of each tool as a
function of its underlying technology and HPC capabilities. Table 5 classifies all ABM tools
based on their ease of use and efficiency.

Table 5. Trade-off between the declared ease of use and efficiency of the ABM platforms.

DECLARED EASE OF USE

Very low Low Medium High Very high

D
E
C
L
A
R
E
D

E
F
F
I
C
I
E
N
C
Y

Very low Cormas
Mesa

Insight Maker
NetLogo
GAMA

Low AgentPy

Medium FLAME
MADKIT

Repast

ActressMAS
Evoplex

High EcoLab

Agents.jl
JADE

krABMaga
MASON

MASS
Pandora

CppyABM
JAS-mine

Very high Care HPS
FLAMEGPU

RepastHPC

5. ABM Tools Evaluation

Part of the remarkable popularity of ABM tools comes from the improved developer
experience that allows non-expert programmers and lay users to design and (possibly
efficiently) run a simulation model. In this section, we analyze the collected ABM tools from
the developer’s perspective, assessing each tool’s experienced support and performance.

5.1. Hands-on Developer Experience

A critical quality of each ABM tool is the perceived hands-on experience. To evaluate
this characteristic, we considered the following elements.

Installation and setup. Perceived difficulty in installing and configuring the tool.

• N/A: installation guide not available.
• Easy: an installation script or installer is provided, or the tool can be used as a

standard library.
• Hard: information about the installation procedure is vague or it requires techni-

cal expertise.

Appl. Sci. 2022, 13, 13 13 of 22

Documentation and examples. Extensiveness of the documentation and presence of examples
and tutorials.

• N/A: no documentation and/or tutorials are available.
• Basic: most functionalities are not documented or only essential information is

provided; few or no examples are given.
• Good: all functionalities are documented; some examples are given.
• Extensive: all functionalities are extensively documented; several comprehensive

examples exist.

Effort. Effort required to implement a model, measured in hours.

Problems. Errors and issues that prevented the tool’s installation or usage.

Hands-on evaluation process. The hands-on programming experience was evaluated by
two developers with a strong background in computer science, relevant expertise in the
ABM field, and some experience with most of the ABM tools considered. Both developers
independently installed each ABM tool reviewed in this work and tried to solve any arisen
problems before moving on to the model development phase. At the end of this process,
both developers rated each tool according to (i) its installation and setup procedures, (ii) the
comprehensiveness of its documentation and examples, (iii) the effort required to develop
a single model, and (iv) documented whether they encountered any issues in the process
(as detailed above). Finally, both developers filled in Table 6, discussing any discrepancy
until agreement. The upper part of the Table includes all tools correctly installed and
used; the lower part lists the remaining tools, clarifying the problems encountered in
the installation phase or when running examples. The number of hours describing the
effort required refers to the average time needed to develop a single model since each has
different peculiarities. In the case of ready-to-use ABM models (e.g., Flockers in NetLogo),
the developers estimated the effort required to adapt them to the experiment’s requirements
(see Section 5.2).

Table 6. Evaluation of ABM tools based on the perceived easiness in installing and using each tool.
N/V stands for Not Verifiable due to the inability to install or use the corresponding tool.

Tool Installation and
Setup

Documentation
and Examples Effort Problems

ActressMAS N/A Basic ∼4 h No installation information provided; only works with
VisualStudio.

test

AgentPy Easy Good ∼2 h
t

Agents.jl Easy Extensive ∼2 h
test

CppyABM Easy Basic ∼4 h
t

GAMA Easy Extensive ∼2 h
test

krABMaga Easy Good ∼3 h
t

MASON Easy Extensive ∼3 h
test

Mesa Easy Extensive ∼2 h
t

NetLogo Easy Extensive ∼3 h without
VSL

test

Repast Easy Good ∼4 h
t

Appl. Sci. 2022, 13, 13 14 of 22

Table 6. Cont.

Tool Installation and
Setup

Documentation
and Examples Effort Problems

Care HPS N/A N/A N/V Only documented within the article.
test

Cormas Easy N/A N/V The application crashes after few operations.
t

EcoLab Easy Basic N/V The installation script does not work.
test

EvoPlex Easy Basic N/V All the examples do not run; no usage information provided.
t

FLAME Easy Basic N/V The installation script requires fixes to work properly; no more
supported.

test

FLAME GPU Easy Good N/V Not included because of the GPG involvement.
t

Insight
Maker Easy Extensive N/V The web application cannot handle huge workloads.

test

Jade Easy Extensive N/V Not included due to the different programming model
t

JAS-mine Easy Basic N/V Installation fails due to configuration errors.
test

MADKIT Easy Basic N/V Installation fails due to the JAR file.
t

MASS Easy Basic N/V The building process fails.
test

Pandora Easy Basic N/V No more supported.
t

RepastHPC Hard Good N/V The installation script provided does not work.
test

5.2. Performance Evaluation

To evaluate the efficiency and scalability of each ABM tool, we exploited four ABM
models with different characteristics regarding data structures, agents’ behaviors, and
environment type. A brief description of each model follows:

• Flockers. Developed by Craig Reynolds, this is one of the most famous ABM simulating
a flock’s flying behavior. In this model, the agents move within a continuous toroidal
space according to a simple set of rules.

• Schelling. This is a simple segregation model based on a 2D grid in which agents
decide whether to move into a new cell based on the status of their neighbors.

• Wolf, Sheep, and Grass. This multi-agent model simulates the population dynamics of
predators and prey coexisting in a shared environment.

• ForestFire. This stochastic spreading model is realized as a cellular automaton to
reproduce the fire diffusion in a forest.

To perform a fair comparison, we conceived a meta-model for each of the above mod-
els based on their NetLogo implementation, describing the agents’ behavior, the simulation
environment, and the possible interactions happening among agents and between the
agents and the environment. We used these meta-models to ensure that a specific model
simulation would expose the same behavior in all tested platforms. Specifically, in the
case we had to implement a given model for a specific platform from scratch, we followed
the tool’s suggested modeling choices and the guidelines imposed by the meta-model to
guarantee the expected behavior. Conversely, if the model was already available from
the platform’s repository, we verified its behavior and applied small changes in its imple-
mentation to match the meta-model if needed. Still, despite our effort to reproduce the
same model for each ABM tool, some differences could exist due to the variance in the
frameworks, mainly because of the different architectures and programming languages
involved. It is important to notice that in all the evaluated platforms, it is possible to reuse
code portions, such as agent definitions and behavior, in other models (see Section 4.1).
For instance, by incrementally adapting its behavior, we included the Flocker agent model

Appl. Sci. 2022, 13, 13 15 of 22

in the Wolf, Sheep, and Grass simulation. Specifically, we expanded a Flocker agent’s
basic movement behavior within a two-dimensional environment to a Wolf agent’s more
complex behavior, which also includes eating and reproducing.

Table 7 reports whether a given model was already available as an example on each
functioning platform (see Section 5). The implementations of all models and the benchmark
are freely available on the following GitHub repository: https://github.com/isislab-unisa/
ABM_Comparison (accessed on 15 December 2022).

Table 7. Summary of whether each model was available for a given platform (○) or has been
developed from scratch (A). We only considered the ABM tools that could be installed and used.

↓ Tool/Model→ Flockers Schelling Wolf, Sheep,
and Grass ForestFire

ActressMAS A ○ A A
test

AgentPy ○ A ○ ○
t

Agents.jl ○ ○ ○ ○
test

CppyABM A ○ A A
t

GAMA ○ A ○ A
test

krABMaga ○ ○ ○ ○
t

MASON ○ ○ A A
test

Mesa ○ ○ ○ ○
t

NetLogo ○ ○ ○ ○
test

Repast ○ ○ ○ A
t

Benchmark configurations. All experiments were performed on the same Ubuntu 22.04
LTS x86_64 machine with kernel version 5.15.0-48-generic and equipped with an Intel
i7-8700T (12) @ 4.000 GHz CPU, an NVIDIA GeForce GTX 1050 Mobile GPU, and 16GB
RAM. The performance of each framework was tested with different models configurations,
starting with a field of size 100× 100, 1000 agents, and 200 steps, while maintaining an
agent density of ∼= 10%, calculated as width×height

number of agents . We obtained the other configurations
by doubling the number of agents and changing the field dimension to preserve the agent
density. Table 8 lists all experiment configurations.

Table 8. Experiment configurations for evaluating ABM tools’ performance.

Agents Field Size # Agents Field Size

1 1000 100× 100 5 16,000 400× 400
2 2000 141× 141 6 32,000 565× 565
3 4000 200× 200 7 64,000 800× 800
4 8000 282× 282 8 128,000 1131× 1131

Results. Figure 1 depicts the running times of all the benchmarked ABM tools varying the
computational load over the four models. The missing data in the graphs means that the
specific tool failed in performing the simulation with the given configuration.

Generally, most tools achieve the same performance stated in the referring articles.
Nevertheless, we can note a few exceptions. Better-than-expected results come from
ActressMAS, reaching execution times comparable with tools specifically designed for

https://github.com/isislab-unisa/ABM_Comparison
https://github.com/isislab-unisa/ABM_Comparison

Appl. Sci. 2022, 13, 13 16 of 22

obtaining high performance. This outcome probably derives from the efficiency of C# in
managing the simple data structures required to manage the simulation. The platform only
struggles with the WSG model, which includes more complex data structures and requires
multi-agent management. Likewise, NetLogo performs better than expected in all models,
providing good efficiency and scalability. Despite not being designed for simulating
complex models, NetLogo grants medium to low execution times and handles intensive
workloads. Conversely, CppyABM struggled with huge workloads, incurring execution
failures or delivering high execution times. This behavior led to higher computational
times than awaited in all models but Flockers. The reasons for these results must be further
investigated and may also be influenced by our inexperience with the platform and the
need for more documentation and examples.

ActressMAS AgentPy Agents.jl CppyABM GAMA
krABMaga MASON Mesa NetLogo Repast

1,000 10,000 100,000

1

10

100

1,000

10,000

100,000

Ti
m

e
(s

)

Number of agents

(a) Flockers.

1,000 10,000 100,000

0.001

0.01

0.1

1

10

100

1,000
ti

m
e

Number of agents

(b) ForestFire.

0.1

1

10

100

1,000

10,000

100,000

Ti
m

e
(s

)

(c) Schelling.

1

10

100

1,000

10,000

100,000

(d) Wolf, Sheep and Grass.

Figure 1. Running times of each framework on the four ABMs, varying the computational load by
increasing the number of agents while preserving the agent density.

Appl. Sci. 2022, 13, 13 17 of 22

6. Conclusions

ABMs are an effective technique for studying complex systems via a bottom-up ap-
proach as, through ABM simulations, researchers from different fields can investigate
phenomena that are too difficult to understand using traditional methods. ABMs represent
an interdisciplinary approach to examining complex systems, and the heterogeneous back-
ground of ABM users demands comprehensive, easy-to-use, and efficient environments
to develop ABM simulations. Over the years, many tools, frameworks, and libraries have
been developed, each with its characteristics and objectives.

This article aims to guide scientists in choosing the proper ABM tool according to their
needs and skills. Specifically, we propose a thorough overview of open-source general-
purpose ABM tools and offer a comparison from a two-fold perspective. We first describe an
off-the-shelf evaluation by considering each ABM tool’s features, ease of use, and efficiency
according to its authors. Then, we provide a hands-on evaluation of some ABM tools by
judging the experience in developing and running four ABM models and the obtained
performance. In particular, this work empirically demonstrates that most platforms meet
the goals and priorities set by their authors. Extreme ease of use characterizes tools such
as GAMA and NetLogo, which represent the optimal choice for lay users as they do not
require any technical skill to be used effectively and provide a VSL along with extensive
documentation. MASON and krABMaga offer a variety of convenient features and solid
documentation, enabling modelers with some coding experience to easily develop and
even run complex simulations. Moreover, they also provide a good trade-off between ease
of use and efficiency. When performance is critical and HPC systems are available, FLAME
GPU, RepastHPC, and MASON (using its distributed extension) embody the best choices,
even though these platforms require extended training and expertise. In this context, we
must emphasize that ABM applications and domains span profoundly diverse disciplines;
therefore, the choice of the right ABM tool is often strongly influenced by the features
needed for the specific use case. For instance, modelers that need deeper insights into the
simulations’ behavior will find Agents.jl and Mesa as their best options thanks to their
functionalities and a programming language ideal for data analysis.

This review points out that there is no perfect ABM platform, but modelers must
choose the right tool primarily based on their technical skills and application requirements
(e.g., elevated computational loads, GIS data management, visualization). Specifically,
modelers must evaluate their confidence in coding in a specific programming language,
the amount of advanced and non-advanced functionalities required, and the scale and
complexity of the models. Based on these parameters, it is possible to identify the tool
that best suits the user’s needs, finding the right compromise between ease of use and
efficiency. Given their inherent distributed nature, ABMs lend themselves well to analyzing
phenomena from the ever more attractive distributed computing domains such as federated
learning [121–124] and blockchain systems [125–128]. An interesting perspective worth
exploring in future work could be assessing the current ABM tool landscape’s availability
and suitability in such domains to inform possible feature development in this context.

Author Contributions: Conceptualization, G.D. and C.S.; methodology, G.D. and D.D.V. and C.S.;
software, D.D.V.; validation, A.A. and C.S.; formal analysis, C.S. and G.C.; investigation, G.D. and
D.D.V.; data curation, A.A. and G.D. and D.D.V.; writing—original draft preparation, G.D.; writing—
review and editing, A.A. and G.D. and C.S.; visualization, A.A. and G.D.; supervision, A.A. and C.S.
and G.C.; project administration, C.S. and G.C. All authors have read and agreed to the published
version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

Appl. Sci. 2022, 13, 13 18 of 22

References
1. Donkin, E.; Dennis, P.; Ustalakov, A.; Warren, J.; Clare, A. Replicating complex agent based models, a formidable task. Environ.

Model. Softw. 2017, 92, 142–151. [CrossRef]
2. Macal, C.M. Everything you need to know about agent-based modelling and simulation. J. Simul. 2016, 10, 144–156. [CrossRef]
3. Macal, C.M.; North, M.J. Tutorial on agent-based modelling and simulation. J. Simul. 2010, 4, 151–162. [CrossRef]
4. Siebers, P.O.; Macal, C.M.; Garnett, J.; Buxton, D.; Pidd, M. Discrete-event simulation is dead, long live agent-based simulation!

J. Simul. 2010, 4, 204–210. [CrossRef]
5. Abar, S.; Theodoropoulos, G.K.; Lemarinier, P.; O’Hare, G.M. Agent Based Modelling and Simulation tools: A review of the

state-of-art software. Comput. Sci. Rev. 2017, 24, 13–33. [CrossRef]
6. García-Magariño, I.; Lombas, A.S.; Plaza, I.; Medrano, C. ABS-SOCI: An Agent-Based Simulator of Student Sociograms. Appl. Sci.

2017, 7, 1126. [CrossRef]
7. Farmer, J.D.; Foley, D. The economy needs agent-based modelling. Nature 2009, 460, 685–686. [CrossRef] [PubMed]
8. Bert, F.; North, M.; Rovere, S.; Tatara, E.; Macal, C.; Podestá, G. Simulating agricultural land rental markets by combining

agent-based models with traditional economics concepts: The case of the Argentine Pampas. Environ. Model. Softw. 2015,
71, 97–110. [CrossRef]

9. Farmer, J.D.; Hepburn, C.; Mealy, P.; Teytelboym, A. A Third Wave in the Economics of Climate Change. Environ. Resour. Econ.
2015, 62, 329–357. [CrossRef]

10. Hailegiorgis, A.; Crooks, A.; Cioffi-Revilla, C. An Agent-Based Model of Rural Households’ Adaptation to Climate Change.
J. Artif. Soc. Soc. Simul. 2018, 21, 4. [CrossRef]

11. Waleed, M.; Um, T.W.; Kamal, T.; Khan, A.; Zahid, Z.U. SIM-D: An Agent-Based Simulator for Modeling Contagion in Population.
Appl. Sci. 2020, 10, 7745. [CrossRef]

12. Antelmi, A.; Cordasco, G.; Spagnuolo, C.; Scarano, V. A Design-Methodology for Epidemic Dynamics via Time-Varying
Hypergraphs. In Proceedings of the 19th International Conference on Autonomous Agents and MultiAgent Systems, Auckland,
New Zealand, 9–13 May 2020; International Foundation for Autonomous Agents and Multiagent Systems: Richland, SC, USA,
2020; pp. 61–69. [CrossRef]

13. Kato, T.; Kamoshida, R. Multi-Agent Simulation Environment for Logistics Warehouse Design Based on Self-Contained Agents.
Appl. Sci. 2020, 10, 7552. [CrossRef]

14. Serrano-Hernandez, A.; Faulin, J.; Hirsch, P.; Fikar, C. Agent-based simulation for horizontal cooperation in logistics and
transportation: From the individual to the grand coalition. Simul. Model. Pract. Theory 2018, 85, 47–59. [CrossRef]

15. Allan, R.J. Survey of Agent Based Modelling and Simulation Tools; Science & Technology Facilities Council: New York, NY, USA, 2010.
16. Railsback, S.F.; Lytinen, S.L.; Jackson, S.K. Agent-based Simulation Platforms: Review and Development Recommendations.

Simulation 2006, 82, 609–623. [CrossRef]
17. Kravari, K.; Bassiliades, N. A Survey of Agent Platforms. J. Artif. Soc. Soc. Simul. 2015, 18, 11. [CrossRef]
18. Rousset, A.; Herrmann, B.; Lang, C.; Philippe, L. A survey on parallel and distributed multi-agent systems for high performance

computing simulations. Comput. Sci. Rev. 2016, 22, 27–46. [CrossRef]
19. Pal, C.; Leon, F.; Paprzycki, M.; Ganzha, M. A Review of Platforms for the Development of Agent Systems. arXiv 2020,

arXiv:2007.08961.
20. Castle, C.; Crooks, A. Principles and Concepts of Agent-Based Modelling for Developing Geospatial Simulations; Working Paper. CASA

Working Papers (110); Centre for Advanced Spatial Analysis (UCL): London, UK, 2006; Volume 110.
21. Brown, D.G.; Riolo, R.; Robinson, D.T.; North, M.; Rand, W. Spatial process and data models: Toward integration of agent-based

models and GIS. J. Geogr. Syst. 2005, 7, 25–47. [CrossRef]
22. Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. Building, composing

and experimenting complex spatial models with the GAMA platform. GeoInformatica 2019, 23, 299–322. [CrossRef]
23. Gilbert, N.; Bankes, S. Platforms and methods for agent-based modeling. Proc. Natl. Acad. Sci. USA 2002, 99, 7197–7198.

[CrossRef]
24. Bordini, R.H.; Braubach, L.; Dastani, M.; Fallah-Seghrouchni, A.E.; Gómez-Sanz, J.J.; Leite, J.; O’Hare, G.M.P.; Pokahr, A.; Ricci, A.

A Survey of Programming Languages and Platforms for Multi-Agent Systems. Informatica 2006, 30, 33–44.
25. Nikolai, C.; Madey, G. Tools of the Trade: A Survey of Various Agent Based Modeling Platforms. J. Artif. Soc. Soc. Simul. 2009,

12, 1–2.
26. Theodoropoulos, G.; Minson, R.; Ewald, R.; Lees, M.; Uhrmacher, A.; Weyns, D., Simulation Engines for Multi-Agent Systems. In

Multi-Agent Systems: Simulation and Applications; Taylor & Francis: Abingdon, UK, 2009; Chapter 3.
27. Suryanarayanan, V.; Theodoropoulos, G.; Lees, M. PDES-MAS: Distributed Simulation of Multi-agent Systems. Procedia Comput.

Sci. 2013, 18, 671–681. [CrossRef]
28. Tobias, R.; Hofmann, C. Evaluation of free Java-libraries for social-scientific agent based simulation. J. Artif. Soc. Soc. Simul. 2004,

7, 1–6.
29. Gupta, R.; Kansal, G. A Survey on Comparative Study of Mobile Agent Platforms. Int. J. Eng. Sci. Technol. 2011, 3, 1943–1948.
30. Bartley, B. Mobility impacts, reactions and opinions: Traffic demand management options in Europe: The MIRO Project. Traffic

Eng. Control 1995, 36, 596–602.

http://doi.org/10.1016/j.envsoft.2017.01.020
http://dx.doi.org/10.1057/jos.2016.7
http://dx.doi.org/10.1057/jos.2010.3
http://dx.doi.org/10.1057/jos.2010.14
http://dx.doi.org/10.1016/j.cosrev.2017.03.001
http://dx.doi.org/10.3390/app7111126
http://dx.doi.org/10.1038/460685a
http://www.ncbi.nlm.nih.gov/pubmed/19661896
http://dx.doi.org/10.1016/j.envsoft.2015.05.005
http://dx.doi.org/10.1007/s10640-015-9965-2
http://dx.doi.org/10.18564/jasss.3812
http://dx.doi.org/10.3390/app10217745
http://dx.doi.org/10.5555/3398761.3398774
http://dx.doi.org/10.3390/app10217552
http://dx.doi.org/10.1016/j.simpat.2018.04.002
http://dx.doi.org/10.1177/0037549706073695
http://dx.doi.org/10.18564/jasss.2661
http://dx.doi.org/10.1016/j.cosrev.2016.08.001
http://dx.doi.org/10.1007/s10109-005-0148-5
http://dx.doi.org/10.1007/s10707-018-00339-6
http://dx.doi.org/10.1073/pnas.072079499
http://dx.doi.org/10.1016/j.procs.2013.05.231

Appl. Sci. 2022, 13, 13 19 of 22

31. Zia, K.; Farrahi, K.; Riener, A.; Ferscha, A. An agent-based parallel geo-simulation of urban mobility during city-scale evacuation.
Simulation 2013, 89, 1184–1214. [CrossRef]

32. Carley, K.; Fridsma, D.; Casman, E.; Yahja, A.; Altman, N.; Chen, L.C.; Kaminsky, B.; Nave, D. BioWar: Scalable agent-based
model of bioattacks. IEEE Trans. Syst. Man Cybern. Part Syst. Hum. 2006, 36, 252–265. [CrossRef]

33. Epstein, J.M.; Goedecke, D.M.; Yu, F.; Morris, R.J.; Wagener, D.K.; Bobashev, G.V. Controlling Pandemic Flu: The Value of
International Air Travel Restrictions. PLoS ONE 2007, 2, e401. [CrossRef]

34. Zhuge, C.; Shao, C.; Wang, S.; Hu, Y. An agent- and GIS-based virtual city creator: A case study of Beijing, China. J. Transp. Land
Use 2018, 11, 1231–1256. [CrossRef]

35. Axelrod, R. Advancing the Art of Simulation in the Social Sciences. In Proceedings of the Simulating Social Phenomena; Conte, R.,
Hegselmann, R., Terna, P., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 21–40.

36. Axtell, R.; Axelrod, R.; Epstein, J.M.; Cohen, M.D. Aligning simulation models: A case study and results. Comput. Math. Organ.
Theory 1996, 1, 123–141. [CrossRef]

37. Heath, B.; Hill, R.; Ciarallo, F. A Survey of Agent-Based Modeling Practices (January 1998 to July 2008). J. Artif. Soc. Soc. Simul.
2009, 12, 9.

38. Bankes, S.C. Agent-based modeling: A revolution? Proc. Natl. Acad. Sci. USA 2002, 99, 7199–7200. [CrossRef]
39. Brown, D.; Page, S.; Riolo, R.; Zellner, M.; Rand, W. Path dependence and the validation of agent-based spatial models of land

use. Int. J. Geogr. Inf. Sci. 2005, 19, 153–174. [CrossRef]
40. Leon, F. ActressMAS, a .NET Multi-Agent Framework Inspired by the Actor Model. Mathematics 2022, 10, 382. [CrossRef]
41. Foramitti, J. AgentPy: A package for agent-based modeling in Python. J. Open Source Softw. 2021, 6, 3065. [CrossRef]
42. Datseris, G.; Vahdati, A.R.; DuBois, T.C. Agents.jl: A performant and feature-full agent-based modeling software of minimal code

complexity. Simulation 2022, 003754972110688. [CrossRef]
43. Borges, F.; Gutierrez-Milla, A.; Luque, E.; Suppi, R. Care HPS: A high performance simulation tool for parallel and distributed

agent-based modeling. Future Gener. Comput. Syst. 2017, 68, 59–73. [CrossRef]
44. Bommel, P.; Becu, N.; Le Page, C.; Bousquet, F. Cormas: An Agent-Based Simulation Platform for Coupling Human Decisions

with Computerized Dynamics. In Proceedings of the Simulation and Gaming in the Network Society; Springer: Singapore, 2016;
pp. 387–410. [CrossRef]

45. Nourisa, J.; Zeller-Plumhoff, B.; Willumeit-Römer, R. CppyABM: An open-source agent-based modeling library to integrate C++
and Python. Softw. Pract. Exp. 2022, 52, 1337–1351. [CrossRef]

46. Standish, R.K.; Leow, R. EcoLab: Agent Based Modeling for C++ programmers. arXiv 2004, ARXIV.CS/0401026. [CrossRef]
47. Cardinot, M.; O’Riordan, C.; Griffith, J.; Perc, M. Evoplex: A platform for agent-based modeling on networks. SoftwareX 2019,

9, 199–204. [CrossRef]
48. Holcombe, M.; Coakley, S.; Smallwood, R. A general framework for agent-based modelling of complex systems. In Proceedings

of the 2006 European Conference Complex Systems, Paris, France, 25–29 September 2006.
49. Coakley, S.; Gheorghe, M.; Holcombe, M.; Chin, S.; Worth, D.; Greenough, C. Exploitation of High Performance Computing

in the FLAME Agent-Based Simulation Framework. In Proceedings of the 2012 IEEE 14th International Conference on High
Performance Computing and Communication & 2012 IEEE 9th International Conference on Embedded Software and Systems,
Liverpool, UK, 25–27 June 2012; pp. 538–545. [CrossRef]

50. Hai, H.B.; Contamin, L.; Choisy, M.; Brugière, A. Gamar: An R Interface to the GAMA Platform. Available online: https:
//github.com/r-and-gama/gamar (accessed on 31 October 2022).

51. Fortmann-Roe, S. Insight Maker: A general-purpose tool for web-based modeling & simulation. Simul. Model. Pract. Theory 2014,
47, 28–45. [CrossRef]

52. Bellifemine, F.; Poggi, A.; Rimassa, G. Developing multi-agent systems with a FIPA-compliant agent framework. Softw. Pract.
Exp. 2001, 31, 103–128. [CrossRef]

53. Richiardi, M.G.; Richardson, R.E. JAS-mine: A new platform for microsimulation and agent-based modelling. Int. J.
Microsimulation 2017, 10, 106–134. [CrossRef]

54. Antelmi, A.; Cordasco, G.; D’Auria, M.; De Vinco, D.; Negro, A.; Spagnuolo, C. On Evaluating Rust as a Programming Language
for the Future of Massive Agent-Based Simulations. In Proceedings of the Methods and Applications for Modeling and Simulation of
Complex Systems; Springer: Singapore, 2019; pp. 15–28.

55. Gutknecht, O.; Ferber, J. The MadKit Agent Platform Architecture. In Proceedings of the Infrastructure for Agents, Multi-Agent
Systems, and Scalable Multi-Agent Systems; Wagner, T., Rana, O.F., Eds. Springer: Berlin/Heidelberg, Germany, 2001; pp. 48–55.

56. Luke, S.; Cioffi-Revilla, C.; Panait, L.; Sullivan, K.; Balan, G. MASON: A Multiagent Simulation Environment. Simulation 2005,
81, 517–527. [CrossRef]

57. Sullivan, K.; Coletti, M.; Luke, S.; Crooks, A. GeoMason: Geospatial Support for MASON. 2010. Available online: https:
//cs.gmu.edu/~eclab/projects/mason/extensions/geomason/ (accessed on 31 October 2022).

58. White, D.R. Software review: The ECJ toolkit. Genet. Program. Evolvable Mach. 2012, 13, 65–67. [CrossRef]
59. Cordasco, G.; Scarano, V.; Spagnuolo, C. Distributed MASON: A scalable distributed multi-agent simulation environment. Simul.

Model. Pract. Theory 2018, 89, 15–34. [CrossRef]

http://dx.doi.org/10.1177/0037549713485468
http://dx.doi.org/10.1109/TSMCA.2005.851291
http://dx.doi.org/10.1371/journal.pone.0000401
http://dx.doi.org/10.5198/jtlu.2018.1270
http://dx.doi.org/10.1007/BF01299065
http://dx.doi.org/10.1073/pnas.072081299
http://dx.doi.org/10.1080/13658810410001713399
http://dx.doi.org/10.3390/math10030382
http://dx.doi.org/10.21105/joss.03065
http://dx.doi.org/10.1177/00375497211068820
http://dx.doi.org/10.1016/j.future.2016.08.015
http://dx.doi.org/10.1007/978-981-10-0575-6_27
http://dx.doi.org/10.1002/spe.3067
http://dx.doi.org/10.48550/ ARXIV.CS/0401026
http://dx.doi.org/10.1016/j.softx.2019.02.009
http://dx.doi.org/10.1109/HPCC.2012.79
https://github.com/r-and-gama/gamar
https://github.com/r-and-gama/gamar
http://dx.doi.org/10.1016/j.simpat.2014.03.013
http://dx.doi.org/10.1002/1097-024X(200102)31:2<103::AID-SPE358>3.0.CO;2-O
http://dx.doi.org/10.34196/ijm.00151
http://dx.doi.org/10.1177/0037549705058073
https://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/
https://cs.gmu.edu/~eclab/projects/mason/extensions/geomason/
http://dx.doi.org/10.1007/s10710-011-9148-z
http://dx.doi.org/10.1016/j.simpat.2018.09.002

Appl. Sci. 2022, 13, 13 20 of 22

60. Chuang, T.; Fukuda, M. A Parallel Multi-agent Spatial Simulation Environment for Cluster Systems. In Proceedings of the
2013 IEEE 16th International Conference on Computational Science and Engineering, Sydney, Australia, 3–5 December 2013;
pp. 143–150. [CrossRef]

61. Kazil, J.; Masad, D.; Crooks, A. Utilizing Python for Agent-Based Modeling: The Mesa Framework. In Proceedings of the Social,
Cultural, and Behavioral Modeling; Springer International Publishing: Berlin/Heidelberg, Germany, 2020; pp. 308–317.

62. Uri, W. Modeling nature’s emergent patterns with multi-agent languages. In Proceedings of the EuroLogo 2001, Linz, Austria,
21–25 August 2001.

63. Jaxa-Rozen, M.; Kwakkel, J.H. PyNetLogo: Linking NetLogo with Python. J. Artif. Soc. Soc. Simul. 2018, 21, 4. [CrossRef]
64. Abbott, R.; Lim, J. PyLogo: A Python Reimplementation of (Much of) NetLogo. In Proceedings of the 11th International

Conference on Simulation and Modeling Methodologies, Technologies and Applications—SIMULTECH, INSTICC, SciTePress,
Online, 7–9 July 2021; pp. 199–206. [CrossRef]

65. Thiele, J.C. R Marries NetLogo: Introduction to the RNetLogo Package. J. Stat. Softw. 2014, 58, 1–41. [CrossRef]
66. Jiang, L.; Zhao, C. The Netlogo-Based Dynamic Model for the Teaching. In Proceedings of the 2009 Ninth International Conference

on Hybrid Intelligent Systems, Shenyang, China, 12–14 August 2009; Volume 2, pp. 49–53. [CrossRef]
67. Railsback, S.F.; Ayllón, D.; Berger, U.; Grimm, V.; Lytinen, S.; Sheppard, C.; Thiele, J. Improving Execution Speed of Models

Implemented in NetLogo. J. Artif. Soc. Soc. Simul. 2017, 20, 3. [CrossRef]
68. Rubio-Campillo, X. Pandora: A Versatile Agent-Based Modelling Platform for Social Simulation. In Proceedings of the SIMUL

2014, The Sixth International Conference on Advances in System Simulation, Nice, France, 12–16 October 2014; pp. 29–34.
[CrossRef]

69. North, M.J.; Collier, N.T.; Vos, J.R. Experiences creating three implementations of the repast agent modeling toolkit. ACM Trans.
Model. Comput. Simul. 2006, 16, 1–25. [CrossRef]

70. North, M.J.; Collier, N.T.; Ozik, J.; Tatara, E.R.; Macal, C.M.; Bragen, M.; Sydelko, P. Complex adaptive systems modeling with
Repast Simphony. Complex Adapt. Syst. Model. 2013, 1, 1–26. [CrossRef]

71. Collier, N.T.; Ozik, J.; Tatara, E.R. Experiences in Developing a Distributed Agent-based Modeling Toolkit with Python. In
Proceedings of the 2020 IEEE/ACM 9th Workshop on Python for High-Performance and Scientific Computing (PyHPC), Atlanta,
GA, USA, 13 November 2020; pp. 1–12. [CrossRef]

72. Collier, N.; North, M. Parallel agent-based simulation with Repast for High Performance Computing. Simulation 2013, 89,
1215–1235. [CrossRef]

73. Florin, L. ActressMas. Available online: https://github.com/florinleon/ActressMas (accessed on 31 October 2022).
74. Foramitti, J. AgentPy—Agent-Based Modeling in Python. Available online: https://agentpy.readthedocs.io/en/latest/ (accessed

on 31 October 2022).
75. Datseris, G.; Vahdati, A.R.; DuBois, T.C. Agents.jl. Available online: https://juliadynamics.github.io/Agents.jl/ (accessed on

31 October 2022).
76. Bommel, P.; Becu, N.; Le Page, C.; Bousquet, F. CORMAS: COmmon-Pool Resources and Multi-Agent Simulations. Available

online: http://cormas.cirad.fr/indexeng.html (accessed on 31 October 2022).
77. Nourisa, J. CppyABM. Available online: https://pypi.org/project/cppyabm/ (accessed on 31 October 2022).
78. Standish, R.K.; Leow, R. EcoLab. Available online: https://ecolab.sourceforge.net/ (accessed on 31 October 2022).
79. Cardinot, M.; O’Riordan, C.; Griffith, J.; Perc, M. Evoplex–Agent-Based Modeling on Networks. Available online: https:

//evoplex.org/ (accessed on 31 October 2022).
80. Laboratory, S.R.A. FLAME. Available online: http://flame.ac.uk/ (accessed on 31 October 2022).
81. Richmond, P. FLAME GPU. Available online: https://flamegpu.com/ (accessed on 31 October 2022).
82. Taillandier, P.; Gaudou, B.; Grignard, A.; Huynh, Q.N.; Marilleau, N.; Caillou, P.; Philippon, D.; Drogoul, A. GAMA Platform.

Available online: https://gama-platform.org/ (accessed on 31 October 2022).
83. Fortmann-Roe, S. Insight Maker. Available online: https://insightmaker.com/ (accessed on 31 October 2022).
84. Bellifemine, F.; Caire, G.; Rimassa, G.; Poggi, A.; Bergenti, F.; Trucco, T.; Gotta, D.; Cortese, E.; Quarta, F.; Vitaglione, G. JADE

Site|Java Agent Development Framework. Available online: https://jade.tilab.com/ (accessed on 31 October 2022).
85. Richiardi, M.G.; Richardson, R.E. JAS-Mine. Available online: http://jas-mine.net/ (accessed on 31 October 2022).
86. Spagnuolo, C.; D’Ambrosio, G.; De Vinco, D.; Postiglione, L.; Foglia, F.; Caramante, P. krABMaga. Available online: https:

//krabmaga.github.io/ (accessed on 31 October 2022).
87. Gutknecht, O.; Ferber, J. MaDKit. Available online: https://www.madkit.net/madkit/ (accessed on 31 October 2022).
88. Sean, L.; Catalin Balan, G.; Sullivan, K.; Panait, L. MASON Multiagent Simulation Toolkit. Available online: https://cs.gmu.edu/

~eclab/projects/mason/ (accessed on 31 October 2022).
89. Munehiro, F.; Freksa, C.; Salathe, E.; Wooyoung, K.; Yasushi, K. MASS: A Parallelizing Library for Multi-Agent Spatial Simulation.

Available online: https://depts.washington.edu/dslab/MASS/ (accessed on 31 October 2022).
90. Boyu, W.; Kazil, J. Mesa-Geo: GIS Extension for Mesa Agent-Based Modeling. Available online: https://github.com/projectmesa/

mesa-geo (accessed on 31 October 2022).
91. Mesa Community. Mesa 3D Graphics Library. Available online: https://github.com/Mesa3D/mesa (accessed on

31 October 2022).

http://dx.doi.org/10.1109/CSE.2013.32
http://dx.doi.org/10.18564/jasss.3668
http://dx.doi.org/10.5220/0010466401990206
http://dx.doi.org/10.18637/jss.v058.i02
http://dx.doi.org/10.1109/HIS.2009.121
http://dx.doi.org/10.18564/jasss.3282
http://dx.doi.org/10.13140/2.1.5149.4086
http://dx.doi.org/10.1145/1122012.1122013
http://dx.doi.org/10.1186/2194-3206-1-3
http://dx.doi.org/10.1109/PyHPC51966.2020.00006
http://dx.doi.org/10.1177/0037549712462620
https://github.com/florinleon/ActressMas
https://agentpy.readthedocs.io/en/latest/
https://juliadynamics.github.io/Agents.jl/
http://cormas.cirad.fr/indexeng.html
https://pypi.org/project/cppyabm/
https://ecolab.sourceforge.net/
https://evoplex.org/
https://evoplex.org/
http://flame.ac.uk/
https://flamegpu.com/
https://gama-platform.org/
https://insightmaker.com/
https://jade.tilab.com/
http://jas-mine.net/
https://krabmaga.github.io/
https://krabmaga.github.io/
https://www.madkit.net/madkit/
https://cs.gmu.edu/~eclab/projects/mason/
https://cs.gmu.edu/~eclab/projects/mason/
https://depts.washington.edu/dslab/MASS/
https://github.com/projectmesa/mesa-geo
https://github.com/projectmesa/mesa-geo
https://github.com/Mesa3D/mesa

Appl. Sci. 2022, 13, 13 21 of 22

92. Kazil, J.; Masad, D.; Crooks, A. Mesa: Agent-Based Modeling in Python 3+. Available online: https://mesa.readthedocs.io/en/
latest/ (accessed on 31 October 2022).

93. Abbott, R.; Lim, J. PyLogo. Available online: https://pylogo.sourceforge.net/ (accessed on 31 October 2022).
94. Jaxa-Rozen, M.; Kwakkel, J.H. pyNetLogo. Available online: https://pynetlogo.readthedocs.io/en/latest/ (accessed on 31

October 2022).
95. Thiele, J.C. RNetLogo. Available online: http://rnetlogo.r-forge.r-project.org/ (accessed on 31 October 2022).
96. Russell, E.; Hovet, J. NetLogo Gis Extension. Available online: https://ccl.northwestern.edu/netlogo/docs/gis.html (accessed

on 31 October 2022).
97. Brady, C.; Jeremy; Grider, R.; Brandes, A. NetLogo View2.5D Extension. Available online: https://github.com/NetLogo/View2

.5D (accessed on 31 October 2022).
98. Uri, W.; Hjorth, A.; Bain, C.; Payette, N.; Head, B.; Bertsche, J. NetLogo. Available online: https://ccl.northwestern.edu/netlogo

(accessed on 31 October 2022).
99. Rubio-Campillo, X. Pandora. Available online: http://xrubio.github.io/pandora/ (accessed on 31 October 2022).
100. Collier, N.; Murphy, J.T.; Ozik, J.; Rimer, S.; Sheeler, D.; Tatara, E. Repast Suite. Available online: https://repast.github.io/

(accessed on 31 October 2022).
101. Collier, N.; Murphy, J.T.; Ozik, J.; Rimer, S.; Sheeler, D.; Tatara, E. Repast HPC. Available online: https://repast.github.io/repast_

hpc.html (accessed on 31 October 2022).
102. Foramitti, J. AgentPy CI/CD. Available online: https://github.com/JoelForamitti/agentpy/blob/master/.github/workflows/

test.yml (accessed on 9 December 2022).
103. Datseris, G.; Vahdati, A.R.; DuBois, T.C. Agents.jl CI/CD. Available online: https://github.com/JuliaDynamics/Agents.jl/blob/

main/.github/workflows/ci.yml (accessed on 9 December 2022).
104. Datseris, G.; Vahdati, A.R.; DuBois, T.C. Distributed Computing—The Julia Language. Available online: https://docs.julialang.

org/en/v1/stdlib/Distributed/ (accessed on 31 October 2022).
105. Bommel, P.; Becu, N.; Le Page, C.; Bousquet, F. CORMAS CI/CD. Available online: https://github.com/cormas/cormas/blob/

master/.github/workflows/test.yml (accessed on 9 December 2022).
106. Standish, R.K.; Leow, R. EcoLab CI/CD. Available online: https://github.com/highperformancecoder/ecolab/blob/master/

.github/workflows/main.yml (accessed on 9 December 2022).
107. Cardinot, M.; O’Riordan, C.; Griffith, J.; Perc, M. Evoplex—CI/CD. Available online: https://github.com/evoplex/evoplex/

blob/master/.travis.yml (accessed on 9 December 2022).
108. Richmond, P. FLAME GPU CI/CD. Available online: https://github.com/FLAMEGPU/FLAMEGPU2/blob/master/.github/

workflows/Draft-Release.yml (accessed on 9 December 2022).
109. Bellifemine, F.; Caire, G.; Rimassa, G.; Poggi, A.; Bergenti, F.; Trucco, T.; Gotta, D.; Cortese, E.; Quarta, F.; Vitaglione, G. JADE

CI/CD. Available online: https://jade-project.gitlab.io/docs/add-on/JADE_TestSuite.pdf (accessed on 9 December 2022).
110. Spagnuolo, C.; D’Ambrosio, G.; De Vinco, D.; Postiglione, L.; Foglia, F.; Caramante, P. krABMaga CI/CD. Available online:

https://github.com/krABMaga/krABMaga/blob/main/.github/workflows/rust-ci.yml (accessed on 9 December 2022).
111. Gutknecht, O.; Ferber, J. MaDKit CI/CD. Available online: https://github.com/fmichel/MaDKit/blob/master/.travis.yml

(accessed on 9 December 2022).
112. George Mason University’s ECLab Evolutionary Computation Laboratory. ECJ A Java-Based Evolutionary Computation

Research System. Available online: https://cs.gmu.edu/~eclab/projects/ecj/ (accessed on 31 October 2022).
113. Wang, C.H.; Wei, E.; Lather, R.S.; Patel, R.; Dinh, L.; D’Auria, M.; D’Ambrosio, G.; Vinco, D.D.; Moffatt, R.; Osman, Z.; et al.

Distributed MASON. Available online: https://cs.gmu.edu/~eclab/projects/mason/extensions/distributed/ (accessed on
31 October 2022).

114. Munehiro, F.; Freksa, C.; Salathe, E.; Wooyoung, K.; Yasushi, K. MASS CI/CD. Available online: https://bitbucket.org/mass_
library_developers/mass_java_core/src/master/bitbucket-pipelines.yml (accessed on 9 December 2022).

115. Kazil, J.; Masad, D.; Crooks, A. Mesa CI/CD. Available online: https://github.com/projectmesa/mesa/blob/main/.github/
workflows/build_lint.yml (accessed on 9 December 2022).

116. Staelin, C. NetLogo Stats Extension. Available online: https://github.com/cstaelin/Stats-Extension (accessed on 31 October 2022).
117. Tisue, S.; Wilensky, U. BehaviorSpace. Available online: https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html

(accessed on 31 October 2022).
118. Rngs—Random Number Generator extension for NetLogo. Available online: https://github.com/AFMac/rngs (accessed on

31 October 2022).
119. Uri, W.; Hjorth, A.; Bain, C.; Payette, N.; Head, B.; Bertsche, J. NetLogo CI/CD. Available online: https://github.com/NetLogo/

NetLogo/blob/hexy/.github/workflows/main.yml (accessed on 9 December 2022).
120. Ozik, J.; Collier, N.; Wozniak, J.; Spagnuolo, C.; An, G. EMEWS: Extreme-Scale Model Exploration with Swift. Available online:

https://emews.github.io/ (accessed on 31 October 2022).
121. McMahan, H.B.; Moore, E.; Ramage, D.; Hampson, S.; y Arcas, B.A. Communication-Efficient Learning of Deep Networks

from Decentralized Data. In Proceedings of the International Conference on Artificial Intelligence and Statistics, Cadiz, Spain,
9–11 May 2016.

https://mesa.readthedocs.io/en/latest/
https://mesa.readthedocs.io/en/latest/
https://pylogo.sourceforge.net/
https://pynetlogo.readthedocs.io/en/latest/
http://rnetlogo.r-forge.r-project.org/
https://ccl.northwestern.edu/netlogo/docs/gis.html
https://github.com/NetLogo/View2.5D
https://github.com/NetLogo/View2.5D
https://ccl.northwestern.edu/netlogo
http://xrubio.github.io/pandora/
https://repast.github.io/
https://repast.github.io/repast_hpc.html
https://repast.github.io/repast_hpc.html
https://github.com/JoelForamitti/agentpy/blob/master/.github/workflows/test.yml
https://github.com/JoelForamitti/agentpy/blob/master/.github/workflows/test.yml
https://github.com/JuliaDynamics/Agents.jl/blob/main/.github/workflows/ci.yml
https://github.com/JuliaDynamics/Agents.jl/blob/main/.github/workflows/ci.yml
https://docs.julialang.org/en/v1/stdlib/Distributed/
https://docs.julialang.org/en/v1/stdlib/Distributed/
https://github.com/cormas/cormas/blob/master/.github/workflows/test.yml
https://github.com/cormas/cormas/blob/master/.github/workflows/test.yml
https://github.com/highperformancecoder/ecolab/blob/master/.github/workflows/main.yml
https://github.com/highperformancecoder/ecolab/blob/master/.github/workflows/main.yml
https://github.com/evoplex/evoplex/blob/master/.travis.yml
https://github.com/evoplex/evoplex/blob/master/.travis.yml
https://github.com/FLAMEGPU/FLAMEGPU2/blob/master/.github/workflows/Draft-Release.yml
https://github.com/FLAMEGPU/FLAMEGPU2/blob/master/.github/workflows/Draft-Release.yml
https://jade-project.gitlab.io/docs/add-on/JADE_TestSuite.pdf
https://github.com/krABMaga/krABMaga/blob/main/.github/workflows/rust-ci.yml
https://github.com/fmichel/MaDKit/blob/master/.travis.yml
https://cs.gmu.edu/~eclab/projects/ecj/
https://cs.gmu.edu/~eclab/projects/mason/extensions/distributed/
https://bitbucket.org/mass_library_developers/mass_java_core/src/master/bitbucket-pipelines.yml
https://bitbucket.org/mass_library_developers/mass_java_core/src/master/bitbucket-pipelines.yml
https://github.com/projectmesa/mesa/blob/main/.github/workflows/build_lint.yml
https://github.com/projectmesa/mesa/blob/main/.github/workflows/build_lint.yml
https://github.com/cstaelin/Stats-Extension
https://ccl.northwestern.edu/netlogo/docs/behaviorspace.html
https://github.com/AFMac/rngs
https://github.com/NetLogo/NetLogo/blob/hexy/.github/workflows/main.yml
https://github.com/NetLogo/NetLogo/blob/hexy/.github/workflows/main.yml
https://emews.github.io/

Appl. Sci. 2022, 13, 13 22 of 22

122. Polato, M. Federated Variational Autoencoder for Collaborative Filtering. In Proceedings of the 2021 International Joint
Conference on Neural Networks (IJCNN), Shenzhen, China, 18–22 July 2021; pp. 1–8. [CrossRef]

123. Ghimire, B.; Rawat, D.B. Recent Advances on Federated Learning for Cybersecurity and Cybersecurity for Federated Learning
for Internet of Things. IEEE Internet Things J. 2022, 9, 8229–8249. [CrossRef]

124. Imteaj, A.; Amini, M.H. Leveraging asynchronous federated learning to predict customers financial distress. Intell. Syst. Appl.
2022, 14, 200064. [CrossRef]

125. Roesch, M.; Linder, C.; Zimmermann, R.; Rudolf, A.; Hohmann, A.; Reinhart, G. Smart Grid for Industry Using Multi-Agent
Reinforcement Learning. Appl. Sci. 2020, 10, 6900. [CrossRef]

126. Zhang, Z.; Yang, T.; Liu, Y. SABlockFL: A blockchain-based smart agent system architecture and its application in federated
learning. Int. J. Crowd Sci. 2020, 4, 133–147. [CrossRef]

127. Połap, D.; Srivastava, G.; Yu, K. Agent architecture of an intelligent medical system based on federated learning and blockchain
technology. J. Inf. Secur. Appl. 2021, 58, 102748. [CrossRef]

128. Rincon, J.; Julian, V.; Carrascosa, C. FLaMAS: Federated Learning Based on a SPADE MAS. Appl. Sci. 2022, 12, 3701. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/IJCNN52387.2021.9533358
http://dx.doi.org/10.1109/JIOT.2022.3150363
http://dx.doi.org/10.1016/j.iswa.2022.200064
http://dx.doi.org/10.3390/app10196900
http://dx.doi.org/10.1108/IJCS-12-2019-0037
http://dx.doi.org/10.1016/j.jisa.2021.102748
http://dx.doi.org/10.3390/app12073701

	Introduction
	Agent-Based Models and Simulations
	What Is an ABM?
	What Is an ABM Tool?
	What Are the Desiderata of an ABM Tool?

	ABM Tools Overview
	Methodology
	ABM Tools Description

	ABM Tools Comparison
	Available Features
	Declared Ease of Use vs. Efficiency

	ABM Tools Evaluation
	Hands-on Developer Experience
	Performance Evaluation

	Conclusions
	References

