19,013 research outputs found

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    Improving the Power Electronics Laboratory teaching/learning process: an interactive web tool

    Get PDF
    European Higher Education Area; Power Electronics Laboratory; educational methods Resumen: The forthcoming European Higher Education Area implies an important change in the teaching/learning process: it is necessary to get students more involved as well as to promote their independence and active participation. To achieve this objective, the new teaching methodologies aimed at more effective and appropriate learning for professional practice involve the use of audiovisual, computer and multimedia tools on the part of lecturers. Therefore, a web tool, based on a content management system, has been developed for the teaching in Power Electronics Laboratory. Moreover, the use of these multimedia tools makes possible to promote the students independence. Finally, the use of this web tool results in a very significant increase in the motivation students.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Flashover performance of lightning protected buildings using scaled models and electric field analysis

    Get PDF
    In early era, Benjamin Franklin discovered that the application of Lightning Rod (also known as the Franklin Rod) method is found to be effectived as a lightning protective device for buildings. Hence, it was considered among the best solution to overcome the problems facing by publics due to lightning strikes. However, few years later it was found that the corroded Franklin Rod due to the impact of environmental contaminations tends to reduce its ability to effectively capture the lightning strikes. The directly or indirectly impacts of lightning strikes had caused owners to spend huge amount of money just to repair damages on the buildings. Nowadays, there were many professional standards and documents guiding public to properly install the building’s lightning protection system, yet the same damages problems had shown to be frequently occur that related to the strikes often bypasses the of Lightning Air Terminal (LAT) system. The main reason for this could be due to lacking ideas by learned circle of lightning experts as not to fully understand the behavior of Franklin Rods system when it interacts with the lightning leaders. Therefore, this thesis discusses the works that investigated the flashover performances occurred on the buildings with various structural geometry shapes. The case study method is using small scaled models for both laboratory and simulation works, aiming to understand the Franklin Rods performance on capturing lightning leaders. Summarizing the works, about 11 scaled-down building shape models equipped with Franklin Rods system are selected in the case studies such as follows; a conical, gable, triangular, half circle, L-shape, square, cylindrical, butterfly, pyramid, rectangular and inclined like shapes. These models were then injected with 30 lightning flashes each using the 100 kVpeak single stage impulse generator. This number of flashes is considered as total two-years lightning activity frequencies in Malaysia, which the lighting flash density is statistically recorded to be around 15 flashes / year / km2. The maximum applied voltage is about 86.5 kVpeak. The model scaling concept is based on 1:30 cm ratio for every 3 m height of building structure. Interestingly, the overall work data had shown that the pyramid-like shapes is found to be the best structure type to be used in reducing the LAT bypasses and direct strike damages. The structure’s Franklin Rod protection system captured the least number of strikes during competitive tests conducted on all of the scaled down building models. Works of electric field analysis on all building models were conducted using ANSYS Maxwell simulation tool. Utilisation of electric field plot data in this work enables the creation of likelihood factor (ranging from 0.1 to 0.9) method that so useful to capable predict the strikes pattern occurring on dedicated terminal rod. Both laboratory and simulation work also confirm that the edge shapes play crucial roles as intense electric fields is found to accumulate on the edges area when the Franklin Rod intercepts the lightning leaders. These mentioned findings lead to introducing better method of LAT placement on the top of the building, whereby the existing lightning protection system is recommended to have one of installed LAT rods elongated to act as sacrificial point to directly attract lightning strikes. All the work and key findings in this work can contribute to the science and technology field toward having a better LAT lightning protection system and also lead to better decision in selecting / designing the shapes and edges concept as to reduce likelihood of LAT bypasses and damages of the building structure

    Plastic pollution in the ocean

    Get PDF
    Plastic pollution in the ocean was first reported by scientists in the 1970s, yet in recent years it has drawn tremendous attention from the media, the public, and an increasing number of scientists spanning diverse fields, including polymer science, environmental engineering, ecology, toxicology, marine biology, and oceanography. In the oceans, the threat to marine life comes in various forms, such as overexploitation and harvesting, dumping of waste, pollution, alien species, land reclamation, dredging and global climate change. The extremely visible nature of much of this contamination is easy to convey in shocking images of piles of trash on coastlines, marine mammals entangled in fishing nets, or seabird bellies filled with bottle caps, cigarette lighters, and colourful shards of plastic. Even without these images, anyone who has visited a beach has certainly encountered discarded cigarette butts, broken beach toys left behind, or pieces of fishing gear or buoys that have washed ashore

    A Low-Cost Educational Remotely Controlled Solar Energy Laboratory

    Get PDF
    This paper proposes the hardware and software implementation of the system required to establish a low-cost educational remotely controlled solar energy laboratory. The system consists of two main parts, a Solar Energy System and a Remotely Controlled Laboratory. The Solar Energy System is a Photovoltaic system, which consists of multiple photovoltaic cells that convert solar radiation (sunlight) or normal lights into usable direct current (DC) electricity, and then it either charges a backup battery or uses an inverter circuit that changes direct current (DC) to alternating current (AC). The other part of the system is a Remotely Controlled Laboratory, aimed at enabling students to control solar energy experiments remotely

    European White Book on Real-Time Power Hardware in the Loop Testing : DERlab Report No. R- 005.0

    Get PDF
    The European White Book on Real-Time-Powerhardware-in-the-Loop testing is intended to serve as a reference document on the future of testing of electrical power equipment, with speciïŹ c focus on the emerging hardware-in-the-loop activities and application thereof within testing facilities and procedures. It will provide an outlook of how this powerful tool can be utilised to support the development, testing and validation of speciïŹ cally DER equipment. It aims to report on international experience gained thus far and provides case studies on developments and speciïŹ c technical issues, such as the hardware/software interface. This white book compliments the already existing series of DERlab European white books, covering topics such as grid-inverters and grid-connected storag

    Developing and Delivering a Remote Experiment based on the Experiential Learning framework during COVID-19 Pandemic

    Get PDF
    The students following Engineering disciplines should acquire a conceptual understanding of the concepts and the processors and attitudes. There are two recognizable learning environments for students: classroom and laboratory environments. With the COVID-19 Pandemic, both environments merged to online environments, impacting students' processes and characteristic attitudes development. This paper introduces a theoretical framework based on experiential learning to plan and deliver processes online. A case study based on the power-factor correction experiment was presented. The traditional experiment that runs for 2 hours was broken into smaller tasks such as pre-lab activity, simulation exercise, PowerPoint presentation, remote laboratory activity, and final report based on the experiential learning approach. The delivery of the lab under online mode delivery was presented. Then students' performance was compared before and after the online mode of delivery. It was found that students' performance on average has a distinct improvement. In order to obtain students' reflections about the online experiential learning approach, a questionnaire that carries close and open-ended questions was administered. The majority of the students liked the approach followed and praised for allowing them to experiment in a novel way during the COVID-19
    • 

    corecore