7 research outputs found

    Wide-Area Time-Synchronized Closed-Loop Control of Power Systems And Decentralized Active Distribution Networks

    Get PDF
    The rapidly expanding power system grid infrastructure and the need to reduce the occurrence of major blackouts and prevention or hardening of systems against cyber-attacks, have led to increased interest in the improved resilience of the electrical grid. Distributed and decentralized control have been widely applied to computer science research. However, for power system applications, the real-time application of decentralized and distributed control algorithms introduce several challenges. In this dissertation, new algorithms and methods for decentralized control, protection and energy management of Wide Area Monitoring, Protection and Control (WAMPAC) and the Active Distribution Network (ADN) are developed to improve the resiliency of the power system. To evaluate the findings of this dissertation, a laboratory-scale integrated Wide WAMPAC and ADN control platform was designed and implemented. The developed platform consists of phasor measurement units (PMU), intelligent electronic devices (IED) and programmable logic controllers (PLC). On top of the designed hardware control platform, a multi-agent cyber-physical interoperability viii framework was developed for real-time verification of the developed decentralized and distributed algorithms using local wireless and Internet-based cloud communication. A novel real-time multiagent system interoperability testbed was developed to enable utility independent private microgrids standardized interoperability framework and define behavioral models for expandability and plug-and-play operation. The state-of-theart power system multiagent framework is improved by providing specific attributes and a deliberative behavior modeling capability. The proposed multi-agent framework is validated in a laboratory based testbed involving developed intelligent electronic device prototypes and actual microgrid setups. Experimental results are demonstrated for both decentralized and distributed control approaches. A new adaptive real-time protection and remedial action scheme (RAS) method using agent-based distributed communication was developed for autonomous hybrid AC/DC microgrids to increase resiliency and continuous operability after fault conditions. Unlike the conventional consecutive time delay-based overcurrent protection schemes, the developed technique defines a selectivity mechanism considering the RAS of the microgrid after fault instant based on feeder characteristics and the location of the IEDs. The experimental results showed a significant improvement in terms of resiliency of microgrids through protection using agent-based distributed communication

    Efficient Event Notification Middleware for Smart Microgrids over P2P Networks

    Full text link
    © 2018 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[EN] Microgrids are moving towards large-scale smart distributed networks which demand an efficient and reliable communication infrastructure to manage, control and monitor energy resources. With regard to this, publisher/subscriber eventbased middleware has become relevant for large-scale distributed time applications because it allows decouple time and space between senders and receivers. Particularly the content publish/subscribe systems over structured peer-to-peer (P2P) networks has emerged to enhance scalability and dynamism of notification middleware systems. However, this type of systems use multicast routing schemes that still generate much network traffic and as a consequence an overload of the communication channel is produced. This results in inefficient network utilization and rapid depletion of network resources leading to unreliable operations, degradation of system performance and even instability of the microgrid. In this paper, a new content-based publish/subscribe notification middleware over structured P2P systems is proposed, such that smart microgrid communication requirements are met. This proposed system organizes the publications and subscriptions in a one dimensional representation using the Hilbert space filling curve. Through this representation, an innovative routing and matching algorithms are developed. Experimental results demonstrate that the proposed publisher/subscribe system significantly enhance efficiency of the system, network performance and the use of computational resources.This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) and the European Regional Development Fund (ERDF) under Grant ENE2015- 64087- C2- 2 R. This work is supported by the Spanish Ministry of Economy and Competitiveness (MINECO) under BES- 2013- 064539.Marzal-Romeu, S.; Salas-Puente, RA.; González-Medina, R.; Garcerá, G.; Figueres Amorós, E. (2018). Efficient Event Notification Middleware for Smart Microgrids over P2P Networks. IEEE Transactions on Smart Grid. https://doi.org/10.1109/TSG.2018.2865432

    Microgrid Disaster Resiliency Analysis: Reducing Costs in Continuity of Operations (COOP) Planning

    Get PDF
    The electric grid serves a vital role in the supply chain of nearly all industrial and commercial organizations. A Microgrid infrastructure can provide this service and beneficial non-emergency services including a variety of generation/energy sources. To demonstrate the applicability of microgrids for energy resiliency, we present a microgrid resiliency case study for United Parcel Service’s (UPS) three separate shipping facilities. The goal, to enhance energy security, minimize cost and prevent cascading losses within other related business units. The impacts and consequences of which are quantified in this study using a Mean Failure Cost (MFC) risk assessment measure. MFC accounts for the potential loses to identified stakeholders that may result from a set of identified failures due to a set of identified threats. In this case, our study uses a method we call All Hazards Econometric System (AHES). AHES incorporates the cost of COOP using a strategy that considers the payback period of microgrid installation as compared to other energy delivery strategies

    Co-design of Security Aware Power System Distribution Architecture as Cyber Physical System

    Get PDF
    The modern smart grid would involve deep integration between measurement nodes, communication systems, artificial intelligence, power electronics and distributed resources. On one hand, this type of integration can dramatically improve the grid performance and efficiency, but on the other, it can also introduce new types of vulnerabilities to the grid. To obtain the best performance, while minimizing the risk of vulnerabilities, the physical power system must be designed as a security aware system. In this dissertation, an interoperability and communication framework for microgrid control and Cyber Physical system enhancements is designed and implemented taking into account cyber and physical security aspects. The proposed data-centric interoperability layer provides a common data bus and a resilient control network for seamless integration of distributed energy resources. In addition, a synchronized measurement network and advanced metering infrastructure were developed to provide real-time monitoring for active distribution networks. A hybrid hardware/software testbed environment was developed to represent the smart grid as a cyber-physical system through hardware and software in the loop simulation methods. In addition it provides a flexible interface for remote integration and experimentation of attack scenarios. The work in this dissertation utilizes communication technologies to enhance the performance of the DC microgrids and distribution networks by extending the application of the GPS synchronization to the DC Networks. GPS synchronization allows the operation of distributed DC-DC converters as an interleaved converters system. Along with the GPS synchronization, carrier extraction synchronization technique was developed to improve the system’s security and reliability in the case of GPS signal spoofing or jamming. To improve the integration of the microgrid with the utility system, new synchronization and islanding detection algorithms were developed. The developed algorithms overcome the problem of SCADA and PMU based islanding detection methods such as communication failure and frequency stability. In addition, a real-time energy management system with online optimization was developed to manage the energy resources within the microgrid. The security and privacy were also addressed in both the cyber and physical levels. For the physical design, two techniques were developed to address the physical privacy issues by changing the current and electromagnetic signature. For the cyber level, a security mechanism for IEC 61850 GOOSE messages was developed to address the security shortcomings in the standard

    Distributed Control and State Estimation of DC Microgrids Based on Constrained Communication Networks.

    Get PDF
    PhD ThesesThe intermittent nature of renewable energy sources (RES) such as wind turbines and photovoltaic panels, requires advanced control systems to provide the balance between energy supply and demand in any power system. For better management of power quality and security issues, energy storage systems (ESSs) are deployed to compensate for the temporary mismatch of supply and demand. Furthermore, in rural areas with no connection to the main grid, ESSs such as batteries are deployed in large quantities as a solution for temporary power stabilization during RES unavailability. However, the control complexity of the power system increases as more ESSs are getting installed due to the need for coordination of the power transfer among them. This thesis undertakes a thorough analysis of distributed control and state estimation designs for direct current (DC) microgrids with ESSs based on constrained communication networks. The developed distributed control and estimation strategies are designed for operation over constrained communication networks. They don't require a central coordinator for synchronization of the control tasks between the ESSs. This forms a multi-agent environment where the controllers cooperatively achieve the DC microgrid objectives, i.e. voltage stabilization, proportional power-sharing, and balancing of ESSs' energy level. To overcome the communication network constraints, event-based controllers and estimators are designed, which e ectively reduce the network tra c and as a result, provide higher throughput with reduced delays for the real-time control loops of the DC microgrids. The controllers are designed to be distributed, leading to use cases such as autonomous islanded microgrids, smart villages, and plug-and-play mobile microgrids. The feasibility and performance of the proposed control and estimation strategies are con rmed in several experimental test benches by showing the higher reliability and robustness in the delivered power quality. The results have shown considerable reduction in the network tra c, meanwhile the control system provided high performance in terms of stability, robustness, power quality and endurabilit

    Protection of Future Electricity Systems

    Get PDF
    The electrical energy industry is undergoing dramatic changes: massive deployment of renewables, increasing share of DC networks at transmission and distribution levels, and at the same time, a continuing reduction in conventional synchronous generation, all contribute to a situation where a variety of technical and economic challenges emerge. As the society’s reliance on electrical power continues to increase as a result of international decarbonisation commitments, the need for secure and uninterrupted delivery of electrical energy to all customers has never been greater. Power system protection plays an important enabling role in future decarbonized energy systems. This book includes ten papers covering a wide range of topics related to protection system problems and solutions, such as adaptive protection, protection of HVDC and LVDC systems, unconventional or enhanced protection methods, protection of superconducting transmission cables, and high voltage lightning protection. This volume has been edited by Adam Dyśko, Senior Lecturer at the University of Strathclyde, UK, and Dimitrios Tzelepis, Research Fellow at the University of Strathclyde

    Implementation of a Publish-Subscribe Protocol in Microgrid Islanding and Resynchronization With Self-Discovery

    No full text
    corecore