37,633 research outputs found

    Implementation of ultrasonic sensing for high resolution measurement of binary gas mixture fractions

    Get PDF
    We describe an ultrasonic instrument for continuous real-time analysis of the fractional mixture of a binary gas system. The instrument is particularly well suited to measurement of leaks of a high molecular weight gas into a system that is nominally composed of a single gas. Sensitivity < 5 × 10−5 is demonstrated to leaks of octaflouropropane (C3F8) coolant into nitrogen during a long duration (18 month) continuous study. The sensitivity of the described measurement system is shown to depend on the difference in molecular masses of the two gases in the mixture. The impact of temperature and pressure variances on the accuracy of the measurement is analysed. Practical considerations for the implementation and deployment of long term, in situ ultrasonic leak detection systems are also described. Although development of the described systems was motivated by the requirements of an evaporative fluorocarbon cooling system, the instrument is applicable to the detection of leaks of many other gases and to processes requiring continuous knowledge of particular binary gas mixture fractions

    Conceptual design study for heat exhaust management in the ARC fusion pilot plant

    Full text link
    The ARC pilot plant conceptual design study has been extended beyond its initial scope [B. N. Sorbom et al., FED 100 (2015) 378] to explore options for managing ~525 MW of fusion power generated in a compact, high field (B_0 = 9.2 T) tokamak that is approximately the size of JET (R_0 = 3.3 m). Taking advantage of ARC's novel design - demountable high temperature superconductor toroidal field (TF) magnets, poloidal magnetic field coils located inside the TF, and vacuum vessel (VV) immersed in molten salt FLiBe blanket - this follow-on study has identified innovative and potentially robust power exhaust management solutions.Comment: Accepted by Fusion Engineering and Desig

    Feasibility of remote sensing for detecting thermal pollution. Part 1: Feasibility study. Part 2: Implementation plan

    Get PDF
    A feasibility study for the development of a three-dimensional generalized, predictive, analytical model involving remote sensing, in-situ measurements, and an active system to remotely measure turbidity is presented. An implementation plan for the development of the three-dimensional model and for the application of remote sensing of temperature and turbidity measurements is outlined

    Process monitoring and visualization solutions for hot-melt extrusion : a review

    Get PDF
    Objectives: Hot-melt extrusion (HME) is applied as a continuous pharmaceutical manufacturing process for the production of a variety of dosage forms and formulations. To ensure the continuity of this process, the quality of the extrudates must be assessed continuously during manufacturing. The objective of this review is to provide an overview and evaluation of the available process analytical techniques which can be applied in hot-melt extrusion. Key Findings: Pharmaceutical extruders are equipped with traditional (univariate) process monitoring tools, observing barrel and die temperatures, throughput, screw speed, torque, drive amperage, melt pressure and melt temperature. The relevance of several spectroscopic process analytical techniques for monitoring and control of pharmaceutical HME has been explored recently. Nevertheless, many other sensors visualizing HME and measuring diverse critical product and process parameters with potential use in pharmaceutical extrusion are available, and were thoroughly studied in polymer extrusion. The implementation of process analytical tools in HME serves two purposes: (1) improving process understanding by monitoring and visualizing the material behaviour and (2) monitoring and analysing critical product and process parameters for process control, allowing to maintain a desired process state and guaranteeing the quality of the end product. Summary: This review is the first to provide an evaluation of the process analytical tools applied for pharmaceutical HME monitoring and control, and discusses techniques that have been used in polymer extrusion having potential for monitoring and control of pharmaceutical HME

    CO2 injection into submarine sediments: disturbing news for methane-rich hydrates

    Get PDF
    The production of natural gas via injection of fossil-fuel derived CO2 into submarine gas hydrate reservoirs can be an example of tapping a hydrocarbon energy source in a CO2-neutral manner. However, the industrial application of this method is technically challenging. Thus, prior to feasibility testing in the field, multi-scale laboratory experiments and adapted reaction-modeling are needed. To this end, high-pressure flow-through reactors of 15 and 2000 mL sample volume were constructed and tested. Process parameters (P, T, Q, fluid composition) are defined by a fluid supply and conditioning unit to enable simulation of natural fluid-flow scenarios for a broad range of sedimentary settings. Additional Raman- and NMR-spectroscopy aid in identifying the most efficient pathway for CH4 extraction from hydrates via CO2 injection on both microscopic and macroscopic level. In this study we present experimental set-up and design of the highpressure flow-through reactors as well as CH4 yields from H4-hydrate decomposition experiments using CO2-rich brines and pure liquefied CO2

    Monitoring of the primary drying of a lyophilization process in vials

    Get PDF
    An innovative and modular system (LyoMonitor) for monitoring the primary drying of a lyophilization process in vials is illustrated: it integrates some commercial devices (pressure gauges, moisture sensor and mass spectrometer), an innovative balance and a manometric temperature measurement system based on an improved algorithm (DPE) to estimate sublimating interface temperature and position, product temperature profile, heat and mass transfer coefficients. A soft-sensor using a multipoint wireless thermometer can also estimate the previous parameters in a large number of vials. The performances of the previous devices for the determination of the end of the primary drying are compared. Finally, all these sensors can be used for control purposes and for the optimization of the process recipe; the use of DPE in a control loop will be shown as an exampl

    Applications of aerospace technology in biology and medicine

    Get PDF
    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects

    Screening of energy efficient technologies for industrial buildings' retrofit

    Get PDF
    This chapter discusses screening of energy efficient technologies for industrial buildings' retrofit
    corecore