4,900 research outputs found

    Frequency Management Strategies for Local Power Generation Network

    Get PDF
    This paper presents an intelligent load frequency control technique based on ANFIS controller which is capable to restore system frequency within small fraction of time. Frequency deviations in microgrid occur when the system supply is not sufficient to match the demand. Efforts are required to keep the frequency deviation within acceptable limit. Using vehicle-to-grid technology, where electric vehicles are used as energy storage elements for load frequency control in microgrid. For generating the control action to electric vehicles and energy sources in microgrid, type-2 ANFIS has been employed for quick frequency stabilization in the presence of load and source disturbances. Diesel generator and wind generator are DG sources considered in this paper and electric vehicles are used as energy storage element. Optimal power sharing among the different generating units and electric vehicles is achieved by ANFIS controller. Adaptive nature of ANFIS makes it more suitable and highly robust controller for a complex inter-connected system. Simulation results demonstrate that ANFIS controller is highly efficient as compared to PID controller, fuzzy logic controller, and interval type-2 fuzzy logic controller

    ELM-ANFIS Based Controller for Plug-In Electric Vehicle to Grid Integration

    Get PDF
    An Adaptive Neuro Fuzzy Inference System (ANFIS) based Extreme Learning Machine (ELM) theory is utilised in this research work. In particular, the proposed algorithm is applied for designing a controller for electric vehicle to grid (V2G) integration in smart grid scenario. Initially, learning speed and accuracy of this proposed approach are continuously monitored and then, the performance of ELM-ANFIS (e-ANFIS) based controller is examined for its transient response. The proposed new learning technique overcomes the slow learning speed of the conventional ANFIS algorithm without sacrificing the generalization capability. Hence, a control practice for their charge and discharge patterns can be easily calculated even with the presence of large numbers of Plug-in Hybrid Electric Vehicles (PHEV). To examine the computational performance and transient response of the e-ANFIS based controller, it is evaluated with the usual ANFIS supported controller. The IEEE 33 bus radial distribution system based approach is implemented to ensure the sturdiness of this prescribed approach

    Control and Optimization of Energy Storage in AC and DC Power Grids

    Get PDF
    Energy storage attracts attention nowadays due to the critical role it will play in the power generation and transportation sectors. Electric vehicles, as moving energy storage, are going to play a key role in the terrestrial transportation sector and help reduce greenhouse emissions. Bulk hybrid energy storage will play another critical role for feeding the new types of pulsed loads on ship power systems. However, to ensure the successful adoption of energy storage, there is a need to control and optimize the charging/discharging process, taking into consideration the customer preferences and the technical aspects. In this dissertation, novel control and optimization algorithms are developed and presented to address the various challenges that arise with the adoption of energy storage in the electricity and transportation sectors. Different decentralized control algorithms are proposed to manage the charging of a mass number of electric vehicles connected to different points of charging in the power distribution system. The different algorithms successfully satisfy the preferences of the customers without negatively impacting the technical constraints of the power grid. The developed algorithms were experimentally verified at the Energy Systems Research Laboratory at FIU. In addition to the charge control of electric vehicles, the optimal allocation and sizing of commercial parking lots are considered. A bi-layer Pareto multi-objective optimization problem is formulated to optimally allocate and size a commercial parking lot. The optimization formulation tries to maximize the profits of the parking lot investor, as well as minimize the losses and voltage deviations for the distribution system operator. Sensitivity analysis to show the effect of the different objectives on the selection of the optimal size and location is also performed. Furthermore, in this dissertation, energy management strategies of the onboard hybrid energy storage for a medium voltage direct current (MVDC) ship power system are developed. The objectives of the management strategies were to maintain the voltage of the MVDC bus, ensure proper power sharing, and ensure proper use of resources, where supercapacitors are used during the transient periods and batteries are used during the steady state periods. The management strategies were successfully validated through hardware in the loop simulation

    Active Filter Modelling To Mitigate Harmonics Generated By Electric Vehicle Chargers

    Get PDF
    The Automotive industry is going through a rapid transformation to adopt electrified technology. A major share of the electrified vehicles is going to be in the Battery electric vehicles (BEVs) and plug in hybrids segments that need to connect to the grid to recharge the batteries. For customer convenience, the time required for fully charging the battery need to be brought down significantly. EV charging stations are getting installed that could bring down the charging time to less than 30 minutes. However this pose a unique issue to the power quality of the utility grid. During charging, the EV charging unit injects harmonics to the grid. When a large number of EVs are getting charge simultaneously, which is a likely scenario in the future, the degradation in the power quality of the grid would be significant. This thesis discuss the modelling of an active filter to reduce the Total harmonic distortion (THD) generated by electric vehicle (EV) chargers. The main objective of this thesis is to determine the percentage of harmonic current injected by the EV chargers to the power grid and to model an active filter to mitigate the harmonic distortion generated by these chargers. The active filter is modelled as bidirectional three-phase pulse width modulation (PWM) rectifier. The EV in this proposed model is represented as an injected current harmonic source. Positive sequence synchronous reference frame controller (SRFC) is used to generate the reference current. The hysteresis controller is used to compare the load current and injected current, and its output is used to generate the switching pulses for Metal oxide semiconductor field effect transistor (MOSFET). The DC link voltage control is achieved by using conventional Proportional and integral controller (PI) and fuzzy logic control PI. MATLAB/Simulink simulation result shows that the proposed filter can be used to mitigate the THD of EV chargers without violating the limit set by IEEE Std. 519 - 1992

    Evaluation of HTTP/DASH Adaptation Algorithms on Vehicular Networks

    Full text link
    Video streaming currently accounts for the majority of Internet traffic. One factor that enables video streaming is HTTP Adaptive Streaming (HAS), that allows the users to stream video using a bit rate that closely matches the available bandwidth from the server to the client. MPEG Dynamic Adaptive Streaming over HTTP (DASH) is a widely used standard, that allows the clients to select the resolution to download based on their own estimations. The algorithm for determining the next segment in a DASH stream is not partof the standard, but it is an important factor in the resulting playback quality. Nowadays vehicles are increasingly equipped with mobile communication devices, and in-vehicle multimedia entertainment systems. In this paper, we evaluate the performance of various DASH adaptation algorithms over a vehicular network. We present detailed simulation results highlighting the advantages and disadvantages of various adaptation algorithms in delivering video content to vehicular users, and we show how the different adaptation algorithms perform in terms of throughput, playback interruption time, and number of interruptions

    Urban and extra-urban hybrid vehicles: a technological review

    Get PDF
    Pollution derived from transportation systems is a worldwide, timelier issue than ever. The abatement actions of harmful substances in the air are on the agenda and they are necessary today to safeguard our welfare and that of the planet. Environmental pollution in large cities is approximately 20% due to the transportation system. In addition, private traffic contributes greatly to city pollution. Further, “vehicle operating life” is most often exceeded and vehicle emissions do not comply with European antipollution standards. It becomes mandatory to find a solution that respects the environment and, realize an appropriate transportation service to the customers. New technologies related to hybrid –electric engines are making great strides in reducing emissions, and the funds allocated by public authorities should be addressed. In addition, the use (implementation) of new technologies is also convenient from an economic point of view. In fact, by implementing the use of hybrid vehicles, fuel consumption can be reduced. The different hybrid configurations presented refer to such a series architecture, developed by the researchers and Research and Development groups. Regarding energy flows, different strategy logic or vehicle management units have been illustrated. Various configurations and vehicles were studied by simulating different driving cycles, both European approval and homologation and customer ones (typically municipal and university). The simulations have provided guidance on the optimal proposed configuration and information on the component to be used

    Residential Demand Side Management model, optimization and future perspective: A review

    Get PDF
    The residential load sector plays a vital role in terms of its impact on overall power balance, stability, and efficient power management. However, the load dynamics of the energy demand of residential users are always nonlinear, uncontrollable, and inelastic concerning power grid regulation and management. The integration of distributed generations (DGs) and advancement of information and communication technology (ICT) even though handles the related issues and challenges up to some extent, till the flexibility, energy management and scheduling with better planning are necessary for the residential sector to achieve better grid stability and efficiency. To address these issues, it is indispensable to analyze the demand-side management (DSM) for the complex residential sector considering various operational constraints, objectives, identifying various factors that affect better planning, scheduling, and management, to project the key features of various approaches and possible future research directions. This review has been done based on the related literature to focus on modeling, optimization methods, major objectives, system operation constraints, dominating factors impacting overall system operation, and possible solutions enhancing residential DSM operation. Gaps in future research and possible prospects have been discussed briefly to give a proper insight into the current implementation of DSM. This extensive review of residential DSM will help all the researchers in this area to innovate better energy management strategies and reduce the effect of system uncertainties, variations, and constraints

    A Case Study on Application of Fuzzy Logic based Controller for Peak Load Shaving in a Typical Household\u27s Per Day Electricity Consumption

    Get PDF
    The cost of electricity for consumers depends on the cost of generation, transmission, and distribution of power. The electrical load consumed by consumers per day is not constant throughout the day. The utilities must be capable of meeting the load demand, which means they must have enough electricity generation potential and necessary infrastructure. This cost is significant. However, the revenue they generate will only be for the actual use of electricity by the consumers. In general, the electrical power generation is done in stages, always generating a base load. As demand changes throughout the day, additional stages of power generation are brought online to meet the changes in demand. This approach of management is known as supply-side management. Theoretically, if it is possible to manage the load such that there is lower peak demand and the difference between peak load and base load were minimized, the generation capability and grid infrastructure required to provide reliable power would be reduced resulting in lower costs for utility companies and ultimately consumers. This management strategy is referred to as demand-side management or demand response. In this research, a small-scale smart grid is modeled in Simulink to mimic the electrical grid. A Smart controller based on fuzzy logic is developed to control charging and discharging of an electric vehicle battery to provide extra power during peak times and to act as load (storing energy) during off-peak time to provide a more manageable and balanced load as seen by the grid. A comparative study is presented of electricity consumption throughout the day with or without the smart controller. The results show the significant reduction in peak demand, much smoother load curve for the grid, and a decrease in per kilowatt cost of electricity for the given day when newer pricing structures are applied
    corecore