9 research outputs found

    Device discovery and context registration in static context header compression networks

    Get PDF
    Due to the limited bandwidth of Low-Power Wide-Area Networks (LPWAN), the application layer is currently often tied straight above the link layer, limiting the evolution of sensor networks distributed over a large area. Consequently, the highly efficient Static Context Header Compression (SCHC) standard was introduced, where devices can compress the IPv6 and upper layer protocols down to a single byte. This approach, however, assumes that every compression context is distributed before deployment, again limiting the evolution of such networks. Therefore, this paper presents two context registration mechanisms leveraging on the SCHC adaptation layer. This is done by analyzing current registration solutions in order to find limitations and optimizations with regard to very constrained networks. Both solutions and the current State-of-The-Art (SoTA) are evaluated in a Lightweight Machine to Machine (LwM2M) environment. In such situation, both developed solutions decrease the energy consumption already after 25 transmissions, compared with the current SoTA. Furthermore, simulations show that Long Range (LoRa) devices still have a 80% chance to successfully complete the registration flow in a network with a 50% Packet Error Ratio. Briefly, the work presented in this paper delivers bootstrapping tools to constrained, SCHC-enabled networks while still being able to reduce energy consumption

    Securing name resolution in the IoT: DNS over CoAP

    Full text link
    In this paper, we present the design, implementation, and analysis of DNS over CoAP (DoC), a new proposal for secure and privacy-friendly name resolution of constrained IoT devices. We implement different design choices of DoC in RIOT, an open-source operating system for the IoT, evaluate performance measures in a testbed, compare with DNS over UDP and DNS over DTLS, and validate our protocol design based on empirical DNS IoT data. Our findings indicate that plain DoC is on par with common DNS solutions for the constrained IoT but significantly outperforms when additional, CoAP standard features are used such as block-wise transfer or caching. With OSCORE for end-to-end security, we can save more than 10 kBytes of code memory compared to DTLS while enabling group communication without compromising the trust chain when using intermediate proxies or caches. We also discuss a scheme for very restricted links that compresses redundant or excessive information by up to 70%.Comment: 12 pages, 13 figures, 4 table

    Improving efficiency, usability and scalability in a secure, resource-constrained web of things

    Get PDF

    Enabling wireless closed loop communication : optimal scheduling over IEEE 802.11ah networks

    Get PDF
    Industry 4.0 is being enabled by a number of new wireless technologies that emerged in the last decade, aiming to ultimately alleviate the need for wires in industrial use cases. However, wireless solutions are still neither as reliable nor as fast as their wired counterparts. Closed loop communication, a representative industrial communication scenario, requires high reliability (over 99%) and hard real-time operation, having very little tolerance for delays. Additionally, connectivity must be provided over an entire industrial side extending across hundreds of meters. IEEE 802.11ah fits this puzzle in terms of data rates and range, but it does not guarantee deterministic communication by default. Its Restricted Access Window (RAW), a new configurable medium access feature, enables flexible scheduling in dense, large-scale networks. However, the standard does not define how to configure RAW. The existing RAW configuration strategies assume uplink traffic only and are dedicated exclusively to sensors nodes. In this article, we present an integer nonlinear programming problem formulation for optimizing RAW configuration in terms of latency in closed loop communication between sensors and actuators, taking into account both uplink and downlink traffic. The model results in less than 1% of missed deadlines without any prior knowledge of the network parameters in heterogeneous time-changing networks

    Energy aware optimization for low power radio technologies

    Get PDF
    The explosive growth of IoT is pushing the market towards cheap, very low power devices with a strong focus on miniaturization, for applications such as in-body sensors, personal health monitoring and microrobots. Proposing procedures for energy efficiency in IoT is a difficult task, as it is a rapidly growing market comprised of many and very diverse product categories using technologies that are not stable, evolving at a high pace. The research in this field proposes solutions that go from physical layer optimization up to the network layer, and the sensor network designer has to select the techniques that are best for its application specific architecture and radio technology used. This work is focused on exploring new techniques for enhancing the energy efficiency and user experience of IoT networks. We divide the proposed techniques in frame and chip level optimization techniques, respectively. While the frame level techniques are meant to improve the performance of existing radio technologies, the chip level techniques aim at replacing them with crystal-free architectures. The identified frame level techniques are the use of preamble authentication and packet fragmentation, advisable for Low Power Wide Area Networks (LPWANs), a technology that offers the lowest energy consumption per provided service, but is vulnerable in front of energy exhaustion attacks and does not perform well in dense networks. The use of authenticated preambles between the sensors and gateways becomes a defence mechanism against the battery draining intended by attackers. We show experimentally that this approach is able to reduce with 91% the effect of an exhaustion attack, increasing the device's lifetime from less than 0.24 years to 2.6 years. The experiments were conducted using Loadsensing sensor nodes, commercially used for critical infrastructure control and monitoring. Even if exemplified on LoRaWAN, the use of preamble authentication is extensible to any wireless protocol. The use of packet fragmentation despite the packet fits the frame, is shown to reduce the probability of collisions while the number of users in the duty-cycle restricted network increases. Using custom-made Matlab simulations, important goodput improvement was obtained with fragmentation, with higher impact in slower and denser networks. Using NS3 simulations, we showed that combining packet fragmentation with group NACK can increase the network reliability, while reducing the energy consumed for retransmissions, at the cost of adding small headers to each fragment. It is a strategy that proves to be effective in dense duty-cycle restricted networks only, where the headers overhead is negligible compared to the network traffic. As a chip level technique, we consider using radios for communication that do not use external frequency references such as crystal oscillators. This would enable having all sensor's elements on a single piece of silicon, rendering it even ten times more energy efficient due to the compactness of the chip. The immediate consequence is the loss of communication accuracy and ability to easily switch communication channels. In this sense, we propose a sequence of frequency synchronization algorithms and phases that have to be respected by a crystal-free device so that it can be able to join a network by finding the beacon channel, synthesize all communication channels and then maintain their accuracy against temperature change. The proposed algorithms need no additional network overhead, as they are using the existing network signaling. The evaluation is made in simulations and experimentally on a prototype implementation of an IEEE802.15.4 crystal-free radio. While in simulations we are able to change to another communication channel with very good frequency accuracy, the results obtained experimentally show an initial accuracy slightly above 40ppm, which will be later corrected by the chip to be below 40 ppm.El crecimiento significativo de la IoT está empujando al mercado hacia el desarrollo de dispositivos de bajo coste, de muy bajo consumo energético y con un fuerte enfoque en la miniaturización, para aplicaciones que requieran sensores corporales, monitoreo de salud personal y micro-robots. La investigación en el campo de la eficiencia energética en la IoT propone soluciones que van desde la optimización de la capa física hasta la capa de red. Este trabajo se centra en explorar nuevas técnicas para mejorar la eficiencia energética y la experiencia del usuario de las redes IoT. Dividimos las técnicas propuestas en técnicas de optimización de nivel de trama de red y chip, respectivamente. Si bien las técnicas de nivel de trama están destinadas a mejorar el rendimiento de las tecnologías de radio existentes, las técnicas de nivel de chip tienen como objetivo reemplazarlas por arquitecturas que no requieren de cristales. Las técnicas de nivel de trama desarrolladas en este trabajo son el uso de autenticación de preámbulos y fragmentación de paquetes, aconsejables para redes LPWAN, una tecnología que ofrece un menor consumo de energía por servicio prestado, pero es vulnerable frente a los ataques de agotamiento de energía y no escalan frente la densificación. El uso de preámbulos autenticados entre los sensores y las pasarelas de enlace se convierte en un mecanismo de defensa contra el agotamiento del batería previsto por los atacantes. Demostramos experimentalmente que este enfoque puede reducir con un 91% el efecto de un ataque de agotamiento, aumentando la vida útil del dispositivo de menos de 0.24 años a 2.6 años. Los experimentos se llevaron a cabo utilizando nodos sensores de detección de carga, utilizados comercialmente para el control y monitoreo de infrastructura crítica. Aunque la técnica se ejemplifica en el estándar LoRaWAN, el uso de autenticación de preámbulo es extensible a cualquier protocolo inalámbrico. En esta tesis se muestra también que el uso de la fragmentación de paquetes a pesar de que el paquete se ajuste a la trama, reduce la probabilidad de colisiones mientras aumenta el número de usuarios en una red con restricciones de ciclos de transmisión. Mediante el uso de simulaciones en Matlab, se obtiene una mejora importante en el rendimiento de la red con la fragmentación, con un mayor impacto en redes más lentas y densas. Usando simulaciones NS3, demostramos que combinar la fragmentación de paquetes con el NACK en grupo se puede aumentar la confiabilidad de la red, al tiempo que se reduce la energía consumida para las retransmisiones, a costa de agregar pequeños encabezados a cada fragmento. Como técnica de nivel de chip, consideramos el uso de radios para la comunicación que no usan referencias de frecuencia externas como los osciladores basados en un cristal. Esto permitiría tener todos los elementos del sensor en una sola pieza de silicio, lo que lo hace incluso diez veces más eficiente energéticamente debido a la integración del chip. La consecuencia inmediata, en el uso de osciladores digitales en vez de cristales, es la pérdida de precisión de la comunicación y la capacidad de cambiar fácilmente los canales de comunicación. En este sentido, proponemos una secuencia de algoritmos y fases de sincronización de frecuencia que deben ser respetados por un dispositivo sin cristales para que pueda unirse a una red al encontrar el canal de baliza, sintetizar todos los canales de comunicación y luego mantener su precisión contra el cambio de temperatura. Los algoritmos propuestos no necesitan una sobrecarga de red adicional, ya que están utilizando la señalización de red existente. La evaluación se realiza en simulaciones y experimentalmente en una implementación prototipo de una radio sin cristal IEEE802.15.4. Los resultados obtenidos experimentalmente muestran una precisión inicial ligeramente superior a 40 ppm, que luego será corregida por el chip para que sea inferior a 40 ppm.Postprint (published version

    Implementation of SCHC in NS-3 and Comparison with 6LoWPAN

    No full text
    International audienc

    Implementation of SCHC in NS-3 Simulator and Comparison with 6LoWPAN

    No full text
    International audienceThe rapid growth of IoT applications usage enables the Internet connectivity of a massive number of devices using different technologies. Most of these technologies, such as Low Power Wide Area Networks (LPWANs), are non-IP due to the difficulties of using IP on constrained devices. These nodes are characterized by more constraints with respect to other IoT technologies. According to [1], IPv6 offers many benefits for IoT, which motivated the IETF to form a Working Group (WG) to study and propose new solutions to run IPv6 on the new technologies of IoT [2], [3]. The key to solving this issue is the header compression mechanisms. In this paper, we analyze the two IETF standardized solutions, SCHC and 6LoWPAN, to compress IPv6 over constrained nodes within LPWAN. Based on [3], we implement the SCHC mechanism [4] in the network simulator NS3 [5]. We also show that SCHC protocol solution as an adaptation layer between the network layer and the link layer is better in term of header compression by providing a smaller header size compared to 6LoWPAN

    Implementation of SCHC in NS-3 Simulator and Comparison with 6LoWPAN

    No full text
    International audienceThe rapid growth of IoT applications usage enables the Internet connectivity of a massive number of devices using different technologies. Most of these technologies, such as Low Power Wide Area Networks (LPWANs), are non-IP due to the difficulties of using IP on constrained devices. These nodes are characterized by more constraints with respect to other IoT technologies. According to [1], IPv6 offers many benefits for IoT, which motivated the IETF to form a Working Group (WG) to study and propose new solutions to run IPv6 on the new technologies of IoT [2], [3]. The key to solving this issue is the header compression mechanisms. In this paper, we analyze the two IETF standardized solutions, SCHC and 6LoWPAN, to compress IPv6 over constrained nodes within LPWAN. Based on [3], we implement the SCHC mechanism [4] in the network simulator NS3 [5]. We also show that SCHC protocol solution as an adaptation layer between the network layer and the link layer is better in term of header compression by providing a smaller header size compared to 6LoWPAN

    Implementation of SCHC in NS-3 Simulator and Comparison with 6LoWPAN

    No full text
    International audienceThe rapid growth of IoT applications usage enables the Internet connectivity of a massive number of devices using different technologies. Most of these technologies, such as Low Power Wide Area Networks (LPWANs), are non-IP due to the difficulties of using IP on constrained devices. These nodes are characterized by more constraints with respect to other IoT technologies. According to [1], IPv6 offers many benefits for IoT, which motivated the IETF to form a Working Group (WG) to study and propose new solutions to run IPv6 on the new technologies of IoT [2], [3]. The key to solving this issue is the header compression mechanisms. In this paper, we analyze the two IETF standardized solutions, SCHC and 6LoWPAN, to compress IPv6 over constrained nodes within LPWAN. Based on [3], we implement the SCHC mechanism [4] in the network simulator NS3 [5]. We also show that SCHC protocol solution as an adaptation layer between the network layer and the link layer is better in term of header compression by providing a smaller header size compared to 6LoWPAN
    corecore