106 research outputs found

    Studies on Implementation of . . . High Throughput and Low Power Consumption

    Get PDF
    In this thesis we discuss design and implementation of frequency selective digital filters with high throughput and low power consumption. The thesis includes proposed arithmetic transformations of lattice wave digital filters that aim at increasing the throughput and reduce the power consumption of the filter implementation. The thesis also includes two case studies where digital filters with high throughput and low power consumption are required. A method for obtaining high throughput as well as reduced power consumption of digital filters is arithmetic transformation of the filter structure. In this thesis arithmetic transformations of first- and second-order Richards’ allpass sections composed by symmetric two-port adaptors and implemented using carry-save arithmetic are proposed. Such filter sections can be used for implementation of lattice wave digital filters and bireciprocal lattice wave digital filters. The latter structures are efficient for implementation of interpolators and decimators by factors of two. Th

    Symmetry and efficiency in complex FIR filters

    Get PDF

    Parallel digital modem using multirate digital filter banks

    Get PDF
    A new class of architectures for an all-digital modem is presented in this report. This architecture, referred to as the parallel receiver (PRX), is based on employing multirate digital filter banks (DFB's) to demodulate, track, and detect the received symbol stream. The resulting architecture is derived, and specifications are outlined for designing the DFB for the PRX. The key feature of this approach is a lower processing rate then either the Nyquist rate or the symbol rate, without any degradation in the symbol error rate. Due to the freedom in choosing the processing rate, the designer is able to arbitrarily select and use digital components, independent of the speed of the integrated circuit technology. PRX architecture is particularly suited for high data rate applications, and due to the modular structure of the parallel signal path, expansion to even higher data rates is accommodated with each. Applications of the PRX would include gigabit satellite channels, multiple spacecraft, optical links, interactive cable-TV, telemedicine, code division multiple access (CDMA) communications, and others

    Real-time DSP-enabled digital subcarrier cross-connect (DSXC) for optical communication networks

    Get PDF
    Elastic optical networking (EON) is intended to offer flexible channel wavelength granularity to meet the requirement of high spectral efficiency (SE) in today’s optical networks. However, optical cross-connects (OXC) and switches based on optical wavelength division multiplexing (WDM) are not flexible enough due to the coarse bandwidth granularity imposed by optical filtering. Thus, OXC may not meet the requirements of many applications which require finer bandwidth granularities than that carried by an entire wavelength channel. In order to achieve highly flexible and fine enough bandwidth granularities, electrical digital subcarrier cross-connect (DSXC) can be utilized in EON. As presented in this dissertation, my research work focuses on the investigation and implementation of real-time digital signal processing (DSP) enabled DSXC which can dynamically assign both bandwidth and power to each individual sub-wavelength channel, known as subcarrier. This DSXC is based on digital subcarrier multiplexing (DSCM), which is a frequency division multiplexing (FDM) technique that multiplexes a large number of digitally created subcarriers on each optical wavelength. Compared with OXC based on optical WDM, DSXC based on DSCM has much finer bandwidth granularities and flexibilities for dynamic bandwidth allocation. Based on a field programmable gate array (FPGA) hardware platform, we have designed and implemented a real-time DSP-enabled DSXC which uses Nyquist FDM as the multiplexing scheme. For the first time, we demonstrated real-time DSP enabled real-time DSXC which uses resampling filters for channel selection and frequency translation. This circuit-based DSXC supports flexible and fine data-rate subcarrier channel granularities, offering a low latency data plane, transparency to modulation formats, and the capability of compensating transmission impairments in the digital domain. The experimentally demonstrated 8×8 DSXC makes use of a Virtex-7 FPGA platform, which supports any-to-any switching of eight subcarrier channels with mixed modulation formats and data rates. Digital resampling filters, which enable frequency selections and translations of multiple subcarrier channels, have much lower DSP complexity and reduced FPGA resources requirements (DSP slices used in FPGA) in comparison to the traditional technique based on I/Q mixing and filtering. We have also investigated the feasibility of using distributed arithmetic (DA) for real-time DSXC to completely eliminate the usage of DSP slices in FPGA implementation. For the first time, we experimentally demonstrated the implementation of real-time frequency translation and channel selection based on the DA architecture in the same FPGA platform. Compared with resampling filters that leverage multipliers, the DA-based approach eliminates the need of DSP slices in the FPGA implementation and significantly reduces the hardware cost. In addition, with a processing latency that equals to a few clock cycles, a DA-based resampling filter is significantly faster when compared to a conventional direct-structured FIR filter whose overall latency is proportional to the filter order. The DA-based DSXC is, therefore, able to achieve not only the improved spectral efficiency, programmability of multiple orthogonal subcarrier channels, and low hardware resources requirements, but also much reduced cross-connect switching latency when implemented in a real-time DSP hardware platform. This reduced latency can be critically important for time-sensitive applications such as 5G mobile fronthaul, cloud radio access network (C-RAN), cloud-based robot control, tele-surgery and network gaming

    Practical Non-Uniform Channelization for Multistandard Base Stations

    Get PDF
    A Multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation

    Efficient Multiband Algorithms for Blind Source Separation

    Get PDF
    The problem of blind separation refers to recovering original signals, called source signals, from the mixed signals, called observation signals, in a reverberant environment. The mixture is a function of a sequence of original speech signals mixed in a reverberant room. The objective is to separate mixed signals to obtain the original signals without degradation and without prior information of the features of the sources. The strategy used to achieve this objective is to use multiple bands that work at a lower rate, have less computational cost and a quicker convergence than the conventional scheme. Our motivation is the competitive results of unequal-passbands scheme applications, in terms of the convergence speed. The objective of this research is to improve unequal-passbands schemes by improving the speed of convergence and reducing the computational cost. The first proposed work is a novel maximally decimated unequal-passbands scheme.This scheme uses multiple bands that make it work at a reduced sampling rate, and low computational cost. An adaptation approach is derived with an adaptation step that improved the convergence speed. The performance of the proposed scheme was measured in different ways. First, the mean square errors of various bands are measured and the results are compared to a maximally decimated equal-passbands scheme, which is currently the best performing method. The results show that the proposed scheme has a faster convergence rate than the maximally decimated equal-passbands scheme. Second, when the scheme is tested for white and coloured inputs using a low number of bands, it does not yield good results; but when the number of bands is increased, the speed of convergence is enhanced. Third, the scheme is tested for quick changes. It is shown that the performance of the proposed scheme is similar to that of the equal-passbands scheme. Fourth, the scheme is also tested in a stationary state. The experimental results confirm the theoretical work. For more challenging scenarios, an unequal-passbands scheme with over-sampled decimation is proposed; the greater number of bands, the more efficient the separation. The results are compared to the currently best performing method. Second, an experimental comparison is made between the proposed multiband scheme and the conventional scheme. The results show that the convergence speed and the signal-to-interference ratio of the proposed scheme are higher than that of the conventional scheme, and the computation cost is lower than that of the conventional scheme

    Practical Non-Uniform Channelization for Multistandard Base Stations

    Get PDF
    A Multistandard software-defined radio base station must perform non-uniform channelization of multiplexed frequency bands. Non-uniform channelization accounts for a significant portion of the digital signal processing workload in the base station receiver and can be difficult to realize in a physical implementation. In non-uniform channelization methods based on generalized DFT filter banks, large prototype filter orders are a significant issue for implementation. In this paper, a multistage filter design is applied to two different non-uniform generalized DFT-based channelizers in order to reduce their filter orders. To evaluate the approach, a TETRA and TEDS base station is used. Experimental results show that the new multistage design reduces both the number of coefficients and operations and leads to a more feasible design and practical physical implementation

    Filter Bank Multicarrier Modulation for Spectrally Agile Waveform Design

    Get PDF
    In recent years the demand for spectrum has been steadily growing. With the limited amount of spectrum available, Spectrum Pooling has gained immense popularity. As a result of various studies, it has been established that most of the licensed spectrum remains underutilized. Spectrum Pooling or spectrum sharing concentrates on making the most of these whitespaces in the licensed spectrum. These unused parts of the spectrum are usually available in chunks. A secondary user looking to utilize these chunks needs a device capable of transmitting over distributed frequencies, while not interfering with the primary user. Such a process is known as Dynamic Spectrum Access (DSA) and a device capable of it is known as Cognitive Radio. In such a scenario, multicarrier communication that transmits data across the channel in several frequency subcarriers at a lower data rate has gained prominence. Its appeal lies in the fact that it combats frequency selective fading. Two methods for implementing multicarrier modulation are non-contiguous orthogonal frequency division multiplexing (NCOFDM)and filter bank multicarrier modulation (FBMC). This thesis aims to implement a novel FBMC transmitter using software defined radio (SDR) with modulated filters based on a lowpass prototype. FBMCs employ two sets of bandpass filters called analysis and synthesis filters, one at the transmitter and the other at the receiver, in order to filter the collection of subcarriers being transmitted simultaneously in parallel frequencies. The novel aspect of this research is that a wireless transmitter based on non-contiguous FBMC is being used to design spectrally agile waveforms for dynamic spectrum access as opposed to the more popular NC-OFDM. Better spectral containment and bandwidth efficiency, combined with lack of cyclic prefix processing, makes it a viable alternative for NC-OFDM. The main aim of this thesis is to prove that FBMC can be practically implemented for wireless communications. The practicality of the method is tested by transmitting the FBMC signals real time by using the Simulink environment and USRP2 hardware modules
    • …
    corecore