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Preface

Summary

Symmetry and Efficiency in Complex FIR Filters

The main contribution of this thesis is a series of novel methods for the design of sym-
metric and efficient complex FIR filters, including: i) the reduction over complex inte-
ger coefficients of generalized-Hermitian-symmetric filters to Hermitian-symmetric fil-
ters, ii) the introduction of alternative structures for complex filters, and iii) a general
applicable recipe for the restoration of symmetry in multirate polyphase filter structures.

Chapter 1: Introduction In the field of Digital Signal Processing (DSP) filters play an
important role. For instance, digital filters used in radio transmitters and receivers operat-
ing at a high sampling rate, form an interesting class. For these filters, efficiency is crucial.
Application of filters with a different behaviour for positive and negative frequencies is
beneficial in many cases such as in multirate systems. In suchfilters some coefficients
will be complex. This thesis focuses on methods for improving the efficiency of symmet-
ric filters. Finite Impulse Response (FIR) filters with a symmetric impulse response show
a linear phase frequency response.

This introductory chapter gives the story behind the title of this thesis, and sketches the
field of DSP in general and of digital-filter design in particular. Next, the value of complex
filters is explained.

The inspiration for writing this thesis arises from the experiences with the development
and use of the DESFIL software package for filter design, fromwhich some background
information will be presented. Many of the results presented in this thesis can be used
in future versions of filter-design tools like DESFIL. Next,the background of the three
main research questions that are treated in this thesis are explained. These questions are
the following.

Is it relevant to design generalized-Hermitian-symmetricfilters?
What structures implement generalized-Hermitian-symmetric filters?
Is it possible to restore the symmetry in polyphase filter structures?

Subsequently the outline of the thesis is presented. Finally, the notational aspects as they
appear in this thesis will be introduced.
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Chapter 2: Symmetric filters Because of their linear-phase property, symmetric filters
form an interesting class of FIR filters. Moreover, symmetric FIR filters allow for an ef-
ficient implementation. Non-symmetric FIR filters are briefly addressed in Chapter 4 and
Chapter 5. In this chapter the classical definition of Hermitian symmetry is extended to
a more general definition that is also applicable to complex filters, generalized-Hermitian
or (σ, µ)-symmetry, whereσ is theshape of symmetryandµ thecenter of symmetry, with
|σ| = 1, σ ∈ C andµ ∈ Z/2. The usefulness of this novel definition that allows for a
unified treatment of even- and odd-length filters is shown extensively. Also a number of
interesting properties that are used in the following chapters, are presented and derived.
Special attention is also paid to symmetric filters with finite precision coefficients. For
these filters, new theorems on reducing any(σ, µ)-symmetric FIR filter to a(1, µ)- or
(j, µ)-symmetric filter are presented. Based on these theorems, a procedure is designed
that can be used to reduce such(σ, µ)-symmetric filters. An example showing the possible
savings in arithmetic costs by applying the reduction procedure is discussed in detail.

Chapter 3: First- and second-order filters Examples of simple filters are the low-
order FIR filters. For the first- and second-order FIR filters the possibilities to position
their transmission zeros in thez-plane for a limited range of coefficient values, are studied.
In addition it is shown that the newly defined(j, µ)-symmetric complex filters may be
beneficial over the(1, µ)-symmetric complex filters depending on the given specification.

Chapter 4: Transversal and complex structures The transversal filter structure is one
of many possible structures for both symmetric and non-symmetric FIR filters. Important
properties of this structure are: i) coefficients are identical to the samples of the impulse
response, ii) the coefficients are invariant under the polyphase decomposition for multirate
filters, and iii) pipelining can be incorporated in a trivialway. Moreover the transversal
structure itself may also be part of a composed filter structure.
For the purpose of making filter structures more efficient in terms of costs, this chapter
shows how(σ, µ)-symmetry can appear in the transversal structure and how itcan be
exploited. It gives an overview of known structures and structures inspired by the novel
definition of symmetry. When two filters have inputs or outputs in common, interesting
structures exist. Various alternatives to decompose complex filters or coefficients into
their individual real and imaginary parts are discussed, and compared in detail. Also new
structures for efficiently combining conjugate coefficients have been found and subse-
quently involved in a detailed comparison of computationalcosts of filters.

Chapter 5: Polyphase structures One of the most important concepts in multirate
filtering is the polyphase decomposition and the closely related polyphase filter structure.
This concept allows for efficient implementations of interpolating and decimating filters.
However, application of this decomposition to linear-phase filters, in many cases destroys
the symmetry that could have been exploited to reduce computational costs, as elaborated
in the previous chapter.
Central to this chapter is the restoration of the symmetry inpolyphase structures. A new
theorem states that any real or complex multirate(σ, µ)-symmetric filter with integer or
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rational interpolation or decimation factors can be constructed from symmetric filters in a
polyphase structure. An example procedure for restoring the symmetry is presented and
applied to several examples to show its value.

Chapter 6: Conclusions This final chapter provides the answers to the three main re-
search questions treated in this thesis, and lists a number of possible interesting topics for
future research.

Appendices A variety of appendices support the discussions and analyses in the main
part of this thesis. First there is a collection of identities for multirate and complex systems
including their proofs, followed by brief introductions into pipelining, analog polyphase
filters and Euclid’s algorithms. Next, interesting alternative constructions to implement
multiplications with integer and complex-integer coefficients are discussed and many ex-
amples are presented. Finally the complex-base numbers andcomplex primes are briefly
introduced.

History of this thesis

In 1986, I moved to research in the field of DSP in general and filter design in particular,
where Ad van den Enden played an important role, first as my tutor and later as sparring
partner. I have participated, as a core member or consultant, in many research projects
where, in one way or another, digital filters were needed.
First ideas for filterbanks in audio coding resulted in for that time too costly or infeasible
structures. Together with others, more efficient alternative structures have been derived
and analyzed. As a by-product, new networks for perfect inversion and perfect recon-
struction were developed: the ladder networks. In another project, new digital radio and
television receiver structures were designed. An analog todigital converter placed close
to the receiving antenna, operating at a very high sampling rate, produces heavily over-
sampled signals. Application of simple decimating filters with complex-valued coeffi-
cients enabled a significant reduction of implementation costs. Before these filters were
accepted, lengthy and intensive discussions were needed.
Although literature at that time provided us with many filterdesign methods, it was key to
have the relevant algorithms available ”under the keyboard”. In a step-by-step approach I
have developed the DESFIL software package. Quantized coefficients could be designed
for real or complex FIR filters, stand-alone or in cascade or parallel, mono- or multirate,
in a way that an exhaustive search was still efficient. Many colleagues within Philips,
active in the field of research, development and training, have used DESFIL and provided
me with valuable feedback. Due to a shift of my interest towards new research topics like
lossless coding and watermarking, I did not continue the extension of DESFIL with the
many ideas and requests that had accumulated.
Except for the ladder networks [22], it was decided not to go for publications on filter
design, but to write internal reports, e.g., [15] [21] [25] [28]. However, for a number of
filter design and filter application ideas, we have applied for patents, and so far8 of them
have been granted as US patent, viz., [16] [19] [30] [118] [119] [121] [124] [134]. Also,
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in several chapters of his PhD thesis [135], Ad van den Enden has described some of the
results of our cooperation.
My thesis can be seen as a consolidation of the many unpublished and unimplemented
ideas. Issues like symmetry, low-order filters, transversal and complex structures, poly-
phase structures, and coefficients are discussed in separate chapters of this thesis. While
writing, some of the concepts were improved by means of a moreformal approach, using
lemmas and theorems. I believe that the material provided inthis thesis, the examples,
theorems and identities, is of value to those who want to extent their toolbox for the design
and analysis of symmetric and efficient complex FIR filters.
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CÂ(X,ÂC)(sa) < CÂ(X,ÂC)(a) andX = {A, B, C, D, E}, are ploted.. . . 152
E.6 Transversal structure with shared and scaled multiplications. . . . . . . . 154

F.1 Set of10 bit complex integers in base-p = −1 + j and base-2. . . . . . . 167
F.2 Required number of bits, and the difference, to represent anya ∈ CZ with

‖a‖∞ ≤ Ξ in base-p = −1 + j and base-2. . . . . . . . . . . . . . . . . 167
F.3 Example structure of a base-2 complex adder forΞ = 3. . . . . . . . . . 168
F.4 Example structure of a base-p adder forΞ = 3. . . . . . . . . . . . . . . 169
F.5 Ratio of costs,ROC: base-p versus base-2. . . . . . . . . . . . . . . . . 170
F.6 Example structure of a base-p subtractor forΞ = 3. . . . . . . . . . . . . 171



xxiv List of Figures



List of Tables

2.1 Some typical symmetric filters.. . . . . . . . . . . . . . . . . . . . . . . 21
2.2 Some typical mirroring operations.. . . . . . . . . . . . . . . . . . . . . 25
2.3 Example 2: Coefficients of the filtersH ′(z), G′β(z), G′α(z). . . . . . . . . 44

4.1 Number of real multiplications and additions for filters of lengthL. . . . . 78
4.2 Example schemes related to Table 4.1.. . . . . . . . . . . . . . . . . . . 78

5.1 Filter coefficients and their required number of additions for the schemes
in Figure 5.9 and Figure 5.10. . . . . . . . . . . . . . . . . . . . . . . . 105

E.1 Examples showing relevance of global constructionsA throughE. . . . . 148
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Chapter 1

Introduction

This first chapter provides an introduction to the topic of this thesis, namely, symmetry
and efficiency in complex FIR filters. After discussing the title in Section 1.1, a general
overview of digital signal processing is given in Section 1.2. In Section 1.3, the focus is
directed towards the design of digital filters in general, and, in Section 1.4, the relevance
of complex filters is addressed in particular.
The most important sources of inspiration for the issues treated in this thesis are the de-
velopment and the extensive use of the filter-design tool: DESFIL. Also, results from
this thesis can be exploited in future versions of DESFIL. Therefore Section 1.5 presents
a flavour of what can be done with DESFIL, and Section 1.6 explains how DESFIL is
organized.
The research questions that are addressed in this thesis areformulated in Section 1.7 and
the outline of the thesis is given in Section 1.8. Finally, Section 1.9 treats the special
notations and definitions that are used throughout the thesis.

1.1 About the title

The first impression of the title may be a bit confusing, because of the words ”Efficiency”
and ”Complex”, that may express opposite properties.
Basically this thesis is about the design and analysis of Finite Impulse Response (FIR)
Filters that form an interesting component, or functionality, in the field of digital signal
processing. The focus is mainly on the design and analysis ofFIR filters that are somehow
optimised to operate at high frequencies, have little dissipation or result in smaller chips.
One way to express all this in the title, for instance, could have been by using the words
”Low Power” and ”Small”, giving for instance: ”Design and Analysis of Low Power
Small FIR Filters”.
Throughout this thesis, many concepts are described that enable the design of low cost
FIR filters, a prominent one of which is the use of complex-valued coefficients and sig-
nals. ”Complex valued” implies that the value has both a realand imaginary part, and,
in signal processing terminology, this means that frequency responses are not necessarily

1
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symmetric. Much attention will be paid to the design of FIR filters with complex-valued
coefficients. A title also comprising this complex-valued work could for instance be: ”De-
sign and Analysis of Low Power Small FIR Filters with Complex-Valued Coefficients and
Signals”.
Another important concept is the symmetry in FIR filters. This symmetry gives the filter a
linear-phase frequency response, and may be exploited to improve the efficiency in filters.
To cover this also, the word ”Symmetry” could be added to the title.
Personally I prefer a more compact version of the title with the word ”Efficiency” repre-
senting ”Low Power” and ”Small”, and ”Complex” representing ”Complex-Valued Co-
efficients and Signals”, resulting in: ”Symmetry and Efficiency in Complex FIR Filters”.
The apparent contradiction in terms may fascinate and hopefully invites to read this thesis.

1.2 Digital signal processing

About four decades ago digital signal processing came to life. At that time both the
discrete-time signal processing theory and the digital technology were ready to be com-
bined and used. Theory enabled the design and the analysis ofdiscrete-time systems,
whereas digital hardware in general, but digital computersin particular, made it possible
to actually run experiments.
A clear advantage of digital signal processing is that, in principle, any specification can be
met, if the effort is just large enough. By increasing the sampling frequency, the accuracy
of the signal representation and the number of operations, basically any function can be
realized since both the signal bandwidth and the signal-to-noise ratio are increased.
At any moment in time, there is an upper limit to the sampling frequency, the accuracy of
the signal representation and the number of operations thatcan be used in a digital system.
The limit is strongly determined by the field of application.For professional applications
like military equipment, space exploration and the oil industry, price is hardly an issue,
only performance counts. In the field of consumer lifestyle and healthcare applications,
next to the signal processing performance also the price is important. This is one of the
reasons why digital signal processing appeared much later in consumer applications than
in professional applications.
A wide range of discrete-time signal processing algorithmsis needed to make systems
such as CD-players or MPEG-coders: correlation, transformation, filtering, error cor-
rection, channel coding, entropy coding, signal decomposition, ..... To the user, these
algorithms are mostly hidden and the user even does not care about these details as long
as the ”black” box operates satisfactory. Only in exceptional cases are individual algo-
rithms presented to the user. In general, a user is only interested in derived properties,
such as: performance, price, size, weight and battery lifetime. In research, however, a lot
of attention is paid to the improvement of the many digital signal-processing algorithms,
where many alternatives and new concepts are studied.
In this thesis, the focus is on the design of the frequently used discrete-time or digital
FIR filters, with an emphasis on the reduction of computational cost. This type of filter
has already been used for some decades, and many methods for their design are known.
Also, the chip technology, often used to implement digital filters, is developing at an enor-
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mous pace. In1965, Gordon Moore [93] made the observation, known as Moore’s law,
that since1959, the complexity for minimum component costs has increased at a rate of
roughly a factor two per year, and he believed that the rate would be constant for at least
another 10 years. Since then the rate has decreased only a bitand today millions of com-
ponents can be placed at a chip. Nevertheless, it is important to optimise the complexity
of digital filters since they are applied in areas where the limits are met. No matter how
high the system clock frequency may be, some filters have to operate close to that, as in
communication transmitters and receivers. Also, the powerdissipation of a chip is im-
portant. Clearly, the less energy is used in a system the better the environmental values
are preserved, but functionality can be improved too. In mobile applications especially,
where the energy has to come from a battery, a reduction of thedissipation is an increase
in operation time. In the context of mass production, also referred to as high volume
electronics, aspects like chip area are important too, since chip area is directly related to
price.
In this thesis, it will be shown that alternative filter structures can result in a significant
reduction of the number of operations, and how these filter structures can be designed.
As a consequence, more functionality, or the same functionality on a smaller chip, or the
same functionality with less dissipation, can be implemented in current state technology.

1.3 Digital-filter design

The field of digital-filter design is not new, and many of its aspects are described abun-
dantly. In this section, a brief anthology is presented to sketch the field of filter design. In
the following chapters, more references are made to relevant literature.
The area of filter design is extremely wide. Structures and specifications range from
very basic tapped delay lines for a low-pass filter, to compositions of adaptive recursive
structures for sound equalizers and multirate perfect-reconstruction filterbanks in signal
coding schemes.
In the process of elaborating a filter design problem, a number of steps can be identified.
An early step is the analysis of the problem at hand, and subsequent steps include the
generation of (preferably many) alternative solutions to choose from. Also, the platform
for implementing the final solution is important. Software or hardware implementations
have their typical properties that may impose particular filter design constraints.
When analyzing a filter problem and searching for alternatives, it is a great advantage
when many different strategies can be followed and evaluated. The more methods one
knows the better the final solution can be. In literature manyfilter design techniques are
described and some of them may apply to the filter problem at hand.
Even for the limited class of linear-phase FIR filters many methods are available. The
most popular one is perhaps the method from Parks and McClellan [111] presented in
1972, and [89] that is based on the Remez algorithm. Quadratic minimization in [61] is a
rather straightforward method while simulated annealing [117], genetic-algorithms [109],
neural networks [7] or tabu search algorithms [71] can be used for exotic structures and
specifications. Background information about these optimization algorithms can be found
in [1].
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Compositions of filters can be found in [55] and [69], for instance. Here, the concept of
post-processing to improve filter performance is introduced and elaborated upon. In [98]
Neuvo introduced the Interpolated FIR (IFIR) filters, and in[83], Lim introduced the
concept of frequency masking. Another example is the control of derivatives in frequency
responses, as described in [70].
In practice, it often appears to be a non-trivial step to movefrom a theoretical descrip-
tion of a filter design method to, for instance, a signal-flow graph and practical values for
coefficients. Also, many papers describe a method to obtain unquantized values for coef-
ficients, while quantized coefficients are needed. Therefore, the availability of computer
tools to support the work is of great importance for a designer.
Today, filter design tools can be purchased as a stand-alone function or as part of a com-
plete design environment. Also via the Internet a lot of filter design functionality is of-
fered, often for free, but accompanied with many disclaimers. In these tools, exotic design
methods are found, as well as the popular straightforward ones. In most cases, only un-
quantized coefficients are derived, and the, for many applications important, quantized
coefficients are best obtained by rounding the unquantized values.....

1.4 Relevance of complex filtering

The attention in literature for complex filters is very limited compared to real filters. Com-
plex filters, with linear and non-linear phase, can be designed using several algorithms,
e.g., [31] and [81]. The practical value of complex filters inmultirate systems was not
recognized until2001 [135]. In the remainder of this section it is explained how com-
plex filters relate to the given specification, and how complex filters may contribute to the
design of efficient multirate filters.

1.4.1 Specification

Fundamental for complex filters is their property to have different frequency responses
for positive and negative frequencies: the frequency response is non-symmetric around
relative frequencyθ = 0. Some complex filters may be designed by starting with a
real filter as follows. In case the filter specification is non-symmetric aroundθ = 0,
but is symmetric aroundθ = θc, the desired impulse responseh[n] can be designed
by first designing a real impulse responseg[n] satisfying a modified specification that
is symmetric aroundθ = 0, and subsequently modulating this impulse response like
h[n] = g[n]ejθcn. If the desired filter should have quantized coefficients, the previous
approach is generally unsuitable. In cases where a filter specification has no symmetry
around any frequency, the modulation method cannot be applied either. These filters have
to be designed directly as complex filters.

1.4.2 Multirate

In the front-end of digital communication receivers there is typically a signal band that
is relatively narrow compared to the sampling frequency. For improving the efficiency
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of the signal processing, a first step is to reduce the sampling frequency, by applying a
decimating filter. It is well known that, as a first-order approximation, it can be assumed
that the filter length of a band-pass filter is inversely proportional to the transition band-
width [56] [60] [70]. This implies that a filtering scheme in which the transition band can
be wider, the resulting filter lengths will be shorter. Complex filters can successfully be
used here. Selecting only part of the narrow-band real inputsignal, such as the positive
frequencies only, allows the decimating filters to have a very wide transition band. One
consequence of introducing complex filters is that subsequent processing is on complex
signals, which, as such, will increase costs. However the savings in the first stages of the
receivers are huge, and in many receiver structures, parts of the traditional processing is
already complex.

1.5 DESFIL

About15 years ago, our attention in signal-processing research wasdirected to the design
of decimating filters needed in digital radio and televisionreceivers [15] [16] [20] [24]
[51] [124] [134]. Characteristic of this kind of application is that the sampling rate is
very close to the maximum system-clock frequency, and that the filters are consequently
implemented in dedicated hardware. Low power dissipation is crucial for mobile commu-
nication equipment especially, and low-power design of thecomplete system is essential.
No appropriate tools were available at that time, to design suitable filters, so the tools had
to be user-built. Step by step, a filter-design tool has been developed that is suited for
the design of linear-phase multirate FIR filters of relatively short length, with optimally
quantized (and possibly complex) coefficients, to obtain efficient solutions.
Many known methods have been be combined and extended with new insights. The tool
is called DESFIL, which is short for Design and Evaluation Software for FILters, and
consists of many programs with clearly defined tasks [28]. Next to the programs for de-
signing a filter, some supporting programs are desired for displaying results and some
elementary manipulations on filters. What initially was meant to be a tool supporting own
research only, gradually became a tool used within many Philips research and develop-
ment laboratories [105]. Today, DESFIL is still in use even outside Philips.
The inspiration for this thesis mainly originates from the development and usage of DES-
FIL. In addition, results presented in this thesis can be used in new versions of DESFIL.
Therefore this section will briefly touch upon various aspects of DESFIL, and section 1.6
will discuss in more detail, the two-step approach that is used.

1.5.1 Alternative tools

As already mentioned in Section 1.3, much theory on filter design is available, but, if
there is no operational tool that exploits a particular theory, it is still a long way to an
effective filter solution. Of course, there was the very popular Parks-McClellan tool [111],
based on the Remez-exchange algorithm, made freely available by the IEEE [89], ideal
for very long linear-phase FIR filters, but not suited for complex coefficients, nor for the
quantization of coefficients. MATLAB was already available, and supported, along with
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some filter design algorithms and data plotting software. However, also these did not, and
today still do not, support the optimal quantization of possibly complex coefficients.

1.5.2 Possibilities for specifying filters

The specification of a filter-design tool generally comprises multiple aspects, like the
specifications that a filter should satisfy, the user interface, and the output data format.
Here the focus is on the possibility of specifying filters that can be designed using DES-
FIL. The design process will eventually result in the impulse response of a symmetric FIR
filter that satisfies the specifications. These specifications basically consist of2 interde-
pendent parts viz.: the time and frequency domains. Next these parts of the specification
will be described and discussed briefly. In addition, the option to design a filter in a cas-
cade connection, and the possibility of determining an optimal scale factor are discussed.

Time domain

The dominant part of the specification of the time domain consists of the direct specifi-
cation of the impulse response itself, namely:length, real or complex valuedand type
of symmetry. These three parameters determine the number of degrees of freedom in the
design process, and the existence of structural transmission zeros, for instance.
In addition, some indirect specifications can be given. For designing cascades of multirate
filters or Interpolated FIR (IFIR) filters [27] [98],combfilters are essential. AlsoM -band
filters [133] have, like the comb filters, specific zero-valued coefficients which imply
particular frequency-domain relations. A special part of the specification is the level of
coefficient quantization: what is the size of the quantization step. Finally, for example, in
video processing filters, it is important to control thestep response.

Frequency domain

Thesampling frequencyis used in the many specifications of the frequency-domain, like
the desired gains or attenuations in particular bands, as a reference only. A band may be
a passbandor astopband, for instance. Opposite to these bands where the ideal gain is
constant, the gain can be set tovary linearly. A special specification applies to theNyquist
edge. Such an edge in particular fits in the transition between a passband and a stopband,
and is within given tolerances point symmetric. When a filterhas multiple passbands the
sign of the gainmay be chosen per band, which can result in more efficient filters [23].

Cascades of filters

Often, a filter under construction will be used in a cascade connection with known filters.
In such a case, the specifications can relate to the filter under construction as well as to
the complete cascade of filters, depending on the application at hand. A typical case is the
design of a cascade of decimating filters. As an example, firstthe filterH(z) with deci-
mation factor2 is designed. To obtain a total decimation factor of6, next the second filter
G(z) is designed with decimation factor3. The used time domain specification relates
to G(z): e.g., length and symmetry. However, in the frequency domain, the specification
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relates to the cascade connectionH(z)G(z2) and is such that this cascade connection is
suited for the total decimation factor of6. A similar approach can be used for interpolat-
ing filters. If the step response of such a cascade is relevant, this part of the time domain
specification relates to the cascade and not only to the filterunder constructionG(z).

Scaling

In many applications it is not important what the exact passband gain is. More important
may be the ratio between the passband gain and the maximum stopband ripple. In that
case not onlyH(z) can define the optimal filter, but also the scaled filtersH(z) with scale
factors ∈ R. For filters with unquantized coefficients this is a trivial approach. However
if the filter coefficients are being quantized, this scaling introduces freedom that leads to
more efficient solutions in many cases.

1.5.3 Special versions

In general, all possible specifications can be combined. However, the possibility to inde-
pendently provide time and frequency domain specificationsmay result in inconsistencies.
As a consequence, the resulting filter cannot satisfy all specifications. Some inconsisten-
cies are easily detected during input, whereas others are more difficult to find. It is up to
the user to ensure that meaningfull input is provided.
A few users had special filter design constraints that could not easily be integrated with
existing features. For these users, special versions of DESFIL have been devised, which
provide the special features, but not all of the standard ones. The first case is the design
of Variable Phase Delay (VPD) filters [29] [101] [102] [103] [104]. VPD filters typically
consist of3 (simultaneously designed) parallel branches, where each branch is a cascade
connection of a known filter and the filter under construction. The second case [62] is the
design of a real multirate filter. In general the polyphase components of this filter have
a non-linear phase response. The additional requirement inthis version is that the phase
non-linearity of the polyphase components is controllableduring design [28].

1.6 Two-phase approach: Design & Evaluate

Powerful general-purpose optimization tools in principleallow the design of a filter satis-
fying all requirements, like time and frequency-domain specifications, and efficiency. For
common specifications, the design of linear-phase real and complex FIR filters with un-
quantized coefficients can be formulated as a set of constraints that are linear in the filter
coefficients. A technique perfectly suited for this class ofproblems is Linear Program-
ming, or LP (Section 1.6.1). The requirement to design a filter with quantized coefficients
can be implemented using the Mixed Integer Linear Programming or MILP technique. By
applying LP in combination with the Branch and Bound or B&B method (Section 1.6.2),
MILP can design a filter with quantized coefficients that meets the specifications. Alter-
natively, MILP can generateall filters with quantized coefficients that meet the specifica-
tions.
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In DESFIL the two-phase approach is as follows. First in the design phase the program
DESIGN generates a list of all filters with quantized coefficients, using MILP, where each
filter in the list meets the specifications.
In the second phase (evaluation), every filter in the list is inspected and analyzed in terms
of costs, and the filter with the minimal costs is selected. Different definitions for costs
may be used, depending on the application, and, as a consequence different optimal fil-
ters can result from the same list of filters. A typical case isthat of a filter of transversal
structure, and where the coefficients are represented as Canonical Signed Digit (CSD),
for minimal arithmetic costs. The DESFIL program to evaluate all filters from the list in
this way is called EVALT (EVALuate Transversal). An alternative approach is that the
polynomials with integer coefficients, that describe the filters with quantized coefficients,
are factorized over the integers. Unlike the factorizationover the real numbers, this fac-
torization over the integers is not always possible. In fact, for each filter from the list, all
possible cascade connections of smaller transversal filters are evaluated in terms of costs.
The DESFIL program to evaluate all filters from the list in this way is called EVALC
(EVALuate Cascades).
This two-phase Design & Evaluate approach is special in the sense that no matter what
filter is selected in the evaluation phase, it meets the specifications. In addition to evaluat-
ing the transversal filters or the cascades of transversal filters, alternative structures can be
imposed and the related optimal filter can be selected. In thenext part, some background
information is presented on LP, B&B and CSDs.

1.6.1 Linear Programming (LP)

LP is the optimization of a linear cost function, subject to linear inequality constraints.
Probably the first of many papers that describe the application of LP for the design of
digital filters is from Cavin in1969 [34]. Often, this LP is used to deal with frequency
domain specifications, but it is one of a few methods that can incorporate time domain
specifications as well, like the step response [106] [115].
Besides the linear-phase FIR filters, non-linear-phase FIRfilters [76] [130], complex fil-
ters [31], or 2-D filters [32] [58] can be designed with LP techniques. In some cases,
the design problem is transformed to enable filters of a higher order to be designed, or to
improve the efficiency of the design algorithm itself. The disadvantage of such a trans-
form may be that the B&B method to obtain quantized coefficients cannot be applied.
Like FIR-filter designs that fit directly to LP techniques, IIR filters can be designed by
applying LP iteratively [37] [38] [131].
In 1992, the year that the development of DESFIL started, the program METEOR was
presented [128]. METEOR is, like DESIGN, LP based, but is notdealing with coefficient
quantization or complex-valued coefficients. Much attention is directed to improving the
arithmetic efficiency of the design method.

1.6.2 Branch and Bound (B&B)

In principle, the solutions obtained from an LP optimization are non-quantized. The B&B
method can be used in conjunction with LP to generate integeror quantized solutions, if



1.7. Research questions 9

these exist. Since part of a solution can be integer and part non-integer, this approach is
called Mixed Integer Linear Programming or MILP. The LP problem is split (Branched)
into 2 new LP problems, each with an additional constraint (Bound)on the allowed values
of one of the variables. This process is repeated until the specified variables are integer or
until it is clear that no solution exists.
In 1979 Lim [84] shows how to design linear-phase filters with coefficients that are powers
of 2, using B&B, and in1980 Kodek [75] uses B&B to design FIR filters with quantized
coefficients. The large computational complexity of this design method is mentioned, and
many subsequent papers pay attention to the possible reduction of this complexity [68]
[97] for 1-D and [35] for2-D filters. As an example, [40] considers similarities between
the several sub problems as produced by B&B, to reduce the number of LP constraints.
Since an LP problem results in2 new LP problems, it has to be decided which to put on
stack, and which to continue with. Depending on the application, the depth-first search or
the breadth-first search strategy [125] can be used.
When the filter coefficients have to be powers of two, a specialversion of B&B is de-
scribed in [126]. If the filter coefficients have to be represented as CSD with a limited
number of additions or subtractions, special versions of B&B [2] [107] can be used. Here,
the values are quantized without an intermediate conversion to the CSD notation. A com-
plicating factor is that the maximum numbers of non-zero elements in the coefficients
have to be specified a priori. A special application of the B&Bmethod is found in the
design of sparse or thinned filters. In these filters some coefficients are set to zero, so
saving on multiplications, whereas the other coefficients are not quantized [127].

1.6.3 Canonical Signed Digits (CSDs)

In 1960, Reitwiesner [120] introduced the CSDs that require the minimal number of non-
zeros (1 and−1) to represent an integer. These CSDs directly lead to an implementation
of a coefficient with the minimal number of adders and subtractors. Especially for digital
filters, the CSD representation of the coefficients can reduce the arithmetic complexity
significantly.
The coefficients that can be realized as CSD with a limited number of additions or sub-
tractions are distributed non-uniformly. In [77], filter specifications are adapted in such
a way that the resulting infinite precision coefficients can be mapped onto the allowable
CSD values, with minimal error. An other approach is to startwith expensive CSDs and
subsequently reduce the cost per coefficient while preserving the original specification as
much as possible [57]. The approach followed in DESFIL, i.e., a designed filter meets the
specification and subsequent steps do not violate the original specification, but are used
to reduce the costs only, is not found.

1.7 Research questions

After several decades, the field of filter design is still verychallenging. This thesis will
focus on three main questions that result from topical research on designing symmetric
and efficient complex FIR filters, as will be explained next.
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The symmetric complex filters with possibly quantized coefficients as designed with DES-
FIL, for instance, are Hermitian-symmetric filters. Use of areal scale factor,s ∈ R, may
be beneficial in reducing implementation costs, as already supported by DESFIL (Sec-
tion 1.5.2). In principle, the scale factor may be complex,s ∈ C, resulting in generalized-
Hermitian-symmetric filters.

• Is it relevant to design generalized-Hermitian-symmetricfilters?

• What structures implement generalized-Hermitian-symmetric filters?

A popular application of FIR filters is as decimating or interpolating filter with integer or
rational decimation or interpolation factors. The polyphase decomposition and the related
polyphase structures are very powerful means to reduce the costs of such multirate filters.
However, symmetry present in linear-phase filters may be destroyed by the polyphase
decomposition and hence can no longer be exploited as a second means to reduce costs.

• Is it possible to restore the symmetry in polyphase filter structures?

These three questions will be treated extensively in the main part of this thesis.

1.8 Outline of this thesis

This thesis is organized around the three research questions as follows.

• Is it relevant to design generalized-Hermitian-symmetricfilters?

This question is addressed in Chapter 2 and Chapter 3.
Chapter 2:Symmetric filters, extends the classical definition of Hermitian symmetry to
a more general definition that is also applicable to complex filters, generalized-Hermitian
or (σ, µ)-symmetry, whereσ is the shape of symmetry andµ the center of symmetry, with
|σ| = 1, σ ∈ C andµ ∈ Z/2. Next to the(σ, µ)-symmetry, the(σ, µ)-mirroring operator
is defined. Both definitions enable a unified treatment of even- and odd-length real and
complex filters. Among other interesting properties, the transformation of mirrored filters
into symmetric filters is discussed extensively, since it serves as a basis for the restoration
of symmetry in polyphase structures in Chapter 5. The focus in this chapter is on(σ, µ)-
symmetric filters with finite precision coefficients. For these filters, new theorems and
a procedure are presented on the reduction of(σ, µ)-symmetric FIR filters to(1, µ)- or
(j, µ)-symmetric filters. To show the possible savings in arithmetic costs by applying the
reduction procedure, an example is discussed in detail.
Chapter 3:First- and second-order filters, shows that special instances of generalized-
Hermitian symmetry, and specifically(jk, µ)-symmetry, are interesting. Depending on
the given specification,(j, µ)-symmetric complex filters may be beneficial over the(1, µ)-
symmetric complex filters.
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• What structures implement generalized-Hermitian-symmetric filters?

This question is addressed in Chapter 4.
Chapter 4:Transversal and complex structures, shows how(σ, µ)-symmetry may ap-
pear in the transversal structure and how it can be exploitedto realize structures that are
more efficient in terms of computational costs. The fact thattwo filters have inputs or
outputs in common, as typically occurs in the polyphase structure (Chapter 5), can be
exploited too. Various alternatives to decompose complex filters or coefficients into their
individual real and imaginary parts are discussed and compared in detail. Also, new struc-
tures for efficiently combining conjugate coefficients willbe presented. Finally a detailed
comparison of computational costs of transversal filters ispresented.

• Is it possible to restore the symmetry in polyphase filter structures?

This question is addressed in Chapter 5.
Chapter 5:Polyphase structures, elaborates on the concept of the polyphase decompo-
sition and the closely related polyphase structure, to obtain efficient implementations of
interpolating and decimating filters with integer or rational interpolation or decimation
factors. In particular, the restoration of symmetry in polyphase structures is discussed. A
new theorem and a related procedure on the restoration of symmetry are presented in de-
tail, including an example. Results from Chapter 2 and Chapter 4 are used in this chapter.

Chapter 6:Conclusions, presents the main results from this thesis, and will also list
some interesting topics for future research.

To make this thesis to a great extent self-supporting, a variety of appendices is added
to serve the discussions and analyses in the main part of thisthesis.
Appendix A: Some common identities, presents a collection of identities for multirate
and complex systems, including their proofs. It supports many of the previous chapters.
Appendix B: Introduction to pipelining , relates in particular to Chapter 4, that shows
structures that deal differently with respect to pipelining.
Appendix C:Introduction to analog polyphase filters, in principle does not support any
of the chapters. It is only because of the termpolyphase filtersthat relates to Chapter 5,
and the termanalog polyphasethat relates to complex filters.
Appendix D:Introduction to Euclid’s algorithm , is needed in the proofs and procedure
as discussed in Chapter 5 and Appendix A.
Appendix E:Alternatives for coefficients, presents alternatives for the Canonical Signed
Digits (CSDs) that require few additions or subtractions. These alternative constructions
apply to both the integers and the complex integers.
Appendix F:Complex-base numbers: introduction and evaluation, discusses a known
alternative representation for the complex numbers. In addition, this alternative is evalu-
ated with respect to implementation costs.
Appendix G:Introduction to complex primes, describes how to test whether a complex
integer is prime or not. Also, a procedure for the factorization of a complex number in
complex primes is shown. This appendix mainly supports Appendix E.
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1.9 Notation

Throughout this thesis some special notational conventions and definitions are used. These
will be explained here first.

1.9.1 System function

The expression〈h[0], · · · , h[i]〉 in casei > 0, or 〈h[0]〉 in casei = 0, denotes the causal
system function or filterH(z) =

∑i
n=0 h[n]z−n.

1.9.2 Schemes
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(e) subtractor (f) modulator (g) multiplication with coefficient

(h) delay (i) Sampling Rate Decreaser (j) Sampling Rate Increaser
(SRD) (SRI)

Figure 1.1: Frequently used elements in the schemes.

A number of elements is used frequently in this thesis to construct schemes. In abrancher,
Figure 1.1(a) and Figure 1.1(b), the input signal is sent to multiple destinations, and
in a non-node, Figure 1.1(c), two signals pass without any interaction. An adder, Fig-
ure 1.1(d), andsubtractor, Figure 1.1(e), produce signals that are respectively the sum
and difference of the input signals. The subtrahend of the subtractor is identified with
the minus-sign. The complexity of a filter is often expressedin the number of adders or
additions, where the subtractors or subtractions are counted as adders or additions. This
is possible since the costs of an adder and a subtractor, or anaddition and a subtraction,
are practically equal. Amodulator, Figure 1.1(f), multiplies an input signal together with
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a carrier,c[n], that can be real, e.g.c[n] = sin(θcn), or complex, e.g.c[n] = ejθcn.
When an input signal is multiplied by a constant, this constant is called thecoefficient,
Figure 1.1(g). In many cases a multiplication with a coefficient is called a coefficient for
short. A signal can bedelayedoverd samples, Figure 1.1(h), whered ∈ Z. Ford < 0,
the signal is advanced over−d samples. The elements for changing the sampling rate, the
Sampling Rate Decreaseror SRD, Figure 1.1(i), and theSampling Rate Increaseror SRI,
Figure 1.1(j), are described in Section A.1.
Besides these elements, some schemes contain rectangular boxes in which a particular
function is indicated, likeH(z) for a complete filter in Figure 2.1. Inputs and outputs
may assumed to be complex unless indicated otherwise, like in Figure 2.3.

1.9.3 Syntax

A traditional way to present signal processing systems is bymeans of drawings. Besides
this method also an alternative description is used in this thesis depending on what is
most convenient in a particular case. The semicolon (;) is used asconnectorand denotes
that in A; B the output ofA is connected to the input ofB. AlthoughA; B andB; A
are two different systems their behaviour may be identical,for instance when bothA and
B are single input, single output, linear and time-invariant. Note that ifA andB can
be described by the matricesA andB respectively, the behaviour ofA; B is equal to the
behaviour of the matrix productBA. The use of the semicolon as connector in this thesis,
resembles its application in computer programming languages as separator or terminator.

Example 1.1. Consider the following examples:

� The decimating filter, filterH(z) followed by the SRD with factor 3, can be de-
scribed withH(z); ↓ 3.

� The interpolating filter, filterH(z) preceeded by the SRI with factor I, can be de-
scribed with↑ I; H(z).

� Using the first noble identity, Lemma A.3, gives the following equality:
H(z); ↓ 2; G(z); ↓ 3 = H(z); G(z2); ↓ 6.

This syntax is easily extendable to matrices for describingmultiple input and output
schemes.
End of example

1.9.4 Sets of scalars

Next to the standard sets of scalarsN, N+, Z, Q, R andC, some special sets like the scaled
integers, the complex integers, the scaled complex integers, and the complex rationals, are
used abundantly in thesis. Their definitions follow here.

Definition 1.1 (Scaled integers). The set of scaled integers:

Z/2i , {a2−i|a ∈ Z},

with i ∈ Z.
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Definition 1.2 (Complex integers). The set of complex integers, also called the Gaussian
integers:

CZ , {ar + jai|ar, ai ∈ Z}.

Definition 1.3 (Scaled complex integers). The set of scaled complex integers:

CZ/2i , {ar + jai|ar, ai ∈ Z/2i},

with i ∈ Z.

Definition 1.4 (Complex rationals). The set of quotients of complex integers:

CZ/CZ , {a
b |a, b ∈ CZ ∧ b 6= 0}.

The z-transform is a powerful way to describe finite-length filters in terms of their im-
pulse response. To define the set from which the FIR filter coefficients are selected, the
following notation is used.

Definition 1.5. The set of allz-transformsH(z) =
∑

n h[n]z−n with the FIR filter
coefficientsh[n] ∈ C, is denoted asC(z), so:

H(z) ∈ C(z).

Similarly forR(z), Z(z), Z/2i(z), CZ(z) andCZ/2i(z).

When all coefficientsh[n] are conjugated, the relatedz-transform is denoted asH∗(z).

Definition 1.6. LetH(z) =
∑

n h[n]z−n with h[n] ∈ C, then:

H∗(z) ,
∑

n

h∗[n]z−n.

Note that this definition differs from conjugation of thez-transform denoted asH∗(z)
which is(H(z))∗.

1.9.5 Remainder of integer division

In some of the proofs and procedures, the remainder of an integer division is needed. In
this section the notation is introduced, and also for the complex integers the remainder is
defined. Any integerx can be written asx = qM + r, whereq denotes the quotient, and
r denotes the remainder of the integer division.

Definition 1.7. Anyx ∈ Z can be written as:

x = qM + r,

wherex ∈ Z, M ∈ N+ andr ∈ N with r < M . Now the remainder is:

x|M , r.
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For the complex integers the remainder is determined for thereal and imaginary parts
individually.

Definition 1.8. For x ∈ CZ andM ∈ N+, the remainder is denoted asx|M and applied
to the individual parts, like:

x|M , xr|M + j(xi|M ).

If integerx is evenit means thatx is a multiple of2. If a complex integerx is evenit means
that bothxr andxi are a multiple of2. In case of a complex-integer filterH(z) ∈ CZ(z)
the remainder applies to the individual coefficients.

Definition 1.9. LetH(z) =
∑

n h[n]z−n with h[n] ∈ CZ, then:

H |M (z) ,
∑

n

h[n]|Mz−n.

Some illustrative examples for the remainder of complex integers are presented next.

Example 1.2. For anyx ∈ CZ:

(3− j7)|2 = 1 + j (3 + j7)|5 = (3− j3)|5
(−x)|2 = x|2 (2x)|2 = 0

x∗|2 = x|2
1

j
|2 = j

End of example

1.9.6 Norms

To describe two important parameters of filters, the range ofallowed coefficient values
and the maximum possible value of the output signal, two norms are used. The required
definition differs from the traditionally one where theLp-norm of the finite-length vector
a is defined as:

‖a‖p ,

(∑

n

|an|p
) 1

p

,

with the interesting cases:

‖a‖1 =
∑

n

|an| and‖a‖∞ = max
n
|an|.

In casean ∈ C, this definition considers the modulus ofan. However, in this thesis, the
norms are defined over the individual real and imaginary parts of the coefficients. This
can be interpreted as if a complex polynomial is representedas a2 × m matrix of real
numbers, and subsequently considering the traditionalLp-norm of that real matrix. To
distinguish from theLp-norm, that is not used in this thesis, this alternative normis called
thep-norm and is defined next.
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Definition 1.10(p-norm). Thep-norm ofA(z) ∈ C(z) is:

‖A(z)‖p ,

(∑

n

|ar[n]|p + |ai[n]|p
) 1

p

.

Note that this definition satisfies all standard conditions for norms over the real vector
space. Two interesting cases are the1-norm ofA(z) ∈ C(z):

‖A(z)‖1 =
∑

n

|ar[n]|+ |ai[n]|,

and the∞-norm ofA(z) ∈ C(z):

‖A(z)‖∞ = max
n

(|ar[n]|, |ai[n]|) .

In some of the analyses the∞-norms of the filters, and hence the allowed coefficient
values, are limited to a given value. This value, thecoefficient range, Ξ, will be used such
that‖H(z)‖∞ ≤ Ξ. Also, in Appendix A, a number of interesting inequalities regarding
the norms are presented.
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Symmetric filters

Symmetric filters are very popular, because their phase response is linear, which is ben-
eficial in many applications. Design methods for these filters have been available since
the early days of digital signal processing [111] [115]. Many alternative design methods,
e.g., [128] [139], and alternative structures, e.g., [85],have been under development ever
since.
In case a filter should be implemented in dedicated hardware,for instance when the sam-
pling frequency is high, the quantization of the filter coefficients is an efficient way to
reduce the costs of the implementation. Many methods can be found in the literature [36]
[86] [122].
Application of complex-valuedcoefficients, instead of real-valued coefficients, enable fre-
quency responses to be different for positive and negative frequencies. Design methods
for such filters can be found in, e.g., [33] [49] [99]. In [135]it is described how complex
filters can be applied to efficient multirate filtering. For causal filters with filter lengthL,
0 ≤ n < L, and real-valued coefficients, the symmetric caseh[n] = h[L − 1 − n], e.g.,
〈a, b, c, b, a〉, or the anti-symmetric caseh[n] = −h[L−1−n], e.g.,〈a, b, c,−c,−b,−a〉,
guarantee a linear-phase frequency response. Commonly forlinear-phase filters with
complex-valued coefficients, the real part is taken symmetric and the imaginary part is
taken anti-symmetric, i.e.,h[n] = h∗[L − 1 − n], e.g.,〈a, b, c, c∗, b∗, a∗〉. This type of
symmetry is referred to asconjugate symmetry[64] or Hermitian symmetry[133]. Also
in non-filter applications these definitions for symmetry are used [96].
The linear-phase frequency response of the symmetric or anti-symmetric real filters, or
the Hermitian-symmetric complex filters, relies on simple relations between coefficients.
Coefficients are either equal or opposite in the real case, orconjugate (equal real part
and opposite imaginary part) in the complex case. To expressthis special property, the
linear phase is said to be simple-structurally guaranteed.These simple relations reduce
implementation costs of a linear-phase filter for two reasons: i) the simple relations are
invariant under coefficient quantization, and ii) two equalor opposite coefficients may
be combined to a single coefficient using the distributive property, therebye saving in the
number of multiplications.
In [64] [65] [123] [133] and [135] it is recognized that if filter H(z) has a linear phase,

17
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also the filteraH(z), with a ∈ C, has a linear phase. In [133] the related symmetry is
calledgeneralized-Hermitian symmetry. For arbitrary values ofa, the real and imaginary
part ofaH(z) are neither symmetric nor anti-symmetric, and therefore the linear-phase
property is not simple-structurally guaranteed. When the coefficients are quantized the
phase response will be non-linear, and it is difficult to combine coefficients to reduce
cost. However, for special values ofa, the resulting filteraH(z) will simple-structurally
guarantee the linear-phase response.
Central in this chapter are three theorems aboutreducinggeneralized-Hermitian-sym-
metric filters to Hermitian-symmetric filters. This chapterstarts with a definition for
symmetry that is discussed in great detail in Section 2.1. This (σ, µ)-symmetry, with
shape of symmetryσ, σ ∈ C, |σ| = 1, and thecenter of symmetryµ, µ ∈ Z/2, is
applicable to filters with real-valued and complex-valued coefficients, and treats even-
and odd-length filters in a unified manner. In close relation to symmetry, the concept
of mirroring is introduced in Section 2.2, and for two mutually mirrored filters with a
common input or output it is shown in Section 2.3 how they can be replaced by symmetric
filters. This result is important for the restoration of symmetry in polyphase structures
that will be treated in Chapter 5. Section 2.4 describes the consequences in the frequency
domain when a filter is symmetric. The traditional list of4 types of symmetric real filters
is extended in Section 2.5 with5 types of(σ, µ)-symmetric complex filters. The new
type 5 through8 filters exhibit simple relations between the coefficients, whereas the
type 9 filter does not. It is shown how the coefficients may be quantized to preserve
symmetry in Section 2.6, and how the shape of symmetry may be changed in Section 2.7.
In Section 2.8 the main theorem is presented about the possibility of reducing type9
filters to type5, 6, 7 or 8 filters, even in case the individual real and imaginary parts
of the filter coefficients are integer. Application of this reduction theorem is illustrated
extensively in Section 2.9 by means of a typical example, also showing the possibility to
save in arithmetic costs. Section 2.10 will show that the type 6, 7, 8 and9 integer filters,
can be designed by first designing a type5 filter. Finally, in Section 2.11, it is shown
that the structural transmission zeros known from the real symmetric filters do not exist
in complex symmetric filters.

2.1 Symmetry

To support the discussion about many types of symmetric filters, where the filters may be
non-causal and complex, filter symmetry is defined in Definition 2.1. In this definition
neither the filter length nor the causality of the impulse response are relevant. These as-
pects are covered by thecenter of symmetryµ, with µ ∈ Z/2. Also, in complex filters
there are more possibilities than equal or opposite, symmetric or anti-symmetric respec-
tively. This aspect is covered byshape of symmetryσ, with σ ∈ C and|σ| = 1.
The center of symmetry,µ ∈ Z/2, is either an integer value,µ ∈ Z, or an integer value
plus a half,µ ∈ Z + 1

2 , so distinguishing implicitly between the sets of odd- and even-
length filters respectively. In the causal case where the length equalsL and the indicesn
range from0 throughL− 1, the center of symmetry is:µ = L−1

2 . The(σ, µ)-symmetry
for complex filtersH(z) ∈ C(z) is defined next.
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Definition 2.1 (Symmetry). Filter H(z) ∈ C(z) is (σ, µ)-symmetric iff:

H(z) = σz−2µH∗(z−1),

with σ ∈ C, |σ| = 1 andµ ∈ Z/2.

Throughout this thesis it may be assumed thatσ ∈ C, |σ| = 1 andµ ∈ Z/2, unless stated
otherwise. The definition for(σ, µ)-symmetry is suitable in the proofs of the various
lemmas that will follow, whereas the formulation in the nextlemma, in terms of impulse
responseh, is more intuitive.

Lemma 2.1. Filter H(z) ∈ C(z) is (σ, µ)-symmetric iff:

h[n] = σh∗[2µ− n] for all n.

Proof. For the first part of the proof the impulse response is transformed into thez-
domain as follows:

H(z) =
∑

n

h[n]z−n

=
∑

n

σh∗[2µ− n]z−n

= σ
∑

m

h∗[m]zm−2µ

= σz−2µ
∑

m

h∗[m](z−1)−m

= σz−2µH∗(z−1),

with m = 2µ − n. For the second part of the proof the inverse of the transformis used,
along the same line but in the reverse order.

Only in caseµ ∈ Z (odd-length filter) the central coefficienth[µ] exists and satisfies a
special condition.

Lemma 2.2. If filter H(z) ∈ C(z) is (σ, µ)-symmetric withµ ∈ Z, thenh[µ] = c
√

σ
with c ∈ R.

Proof. By Lemma 2.1,h[µ] = σh∗[2µ−µ] = σh∗[µ], which impliesP(h[µ]) = P(σ)−
P(h[µ]), orP(h[µ]) = P(σ)

2 . Thereforeh[µ] = c
√

σ with c ∈ R.

From the definition for symmetry a number of interesting lemmas can be derived. These
are presented in Lemma 2.3 through Lemma 2.6. First, the cascade connection, or prod-
uct, of two symmetric filters is also symmetric.

Lemma 2.3. If filter G(z) ∈ C(z) is (σG, µG)-symmetric and filterH(z) ∈ C(z) is
(σH , µH)-symmetric, then the cascade connection:

G(z)H(z) is (σGσH , µG + µH)-symmetric.
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Proof. DefineF (z) = G(z)H(z), then:

F (z) = σGz−2µGG∗(z−1)σHz−2µH H∗(z−1)

= σGσHz−2µGz−2µH G∗(z−1)H∗(z−1)

= σGσHz−2(µG+µH )F ∗(z−1).

The parallel connection, or sum, of two filters that have identical shapes and centers of
symmetry, is also symmetric.

Lemma 2.4. If the filtersG(z), H(z) ∈ C(z) are (σ, µ)-symmetric, then the parallel
connection:

G(z) + H(z) is (σ, µ)-symmetric.

Proof. DefineF (z) = G(z) + H(z), so:

F (z) = σz−2µG∗(z−1) + σz−2µH∗(z−1)

= σz−2µ
(
G∗(z−1) + H∗(z−1)

)

= σz−2µF ∗(z−1).

Given the symmetric filterH(z), then the scaled versionaH(z) and also the delayed
versionz−nH(z) are symmetric. The frequency response of a filterH(z) can be shifted
overθc by modulating its coefficientsh[n] with the complex sequenceejθcn, so obtaining
the coefficientsh[n]ejθcn. If the filter H(z) is symmetric, the resulting modulated filter is
also symmetric. These properties are presented in the following lemma.

Lemma 2.5. If complex filterH(z) ∈ C(z) is (σ, µ)-symmetric, then fora ∈ C and
n ∈ Z, the filter:

az−nH(ze−jθc) is
(
σ

a

a∗
e2jθcµ, (µ + n)

)
-symmetric.

Proof. Repeated application of Definition 2.1, and some calculus gives:

G(z) = az−nH(ze−jθc)

= az−nσ(ze−jθc)−2µH∗
(
z−1(e−jθc)∗

)

=
a

a∗
z−2nσz−2µe2jθcµa∗znH∗(z−1ejθc)

= σ
a

a∗
e2jθcµz−2(µ+n)G∗(z−1).

Conjugation of the coefficients of a symmetric filter resultsin a symmetric filter.

Lemma 2.6. If filter H(z) ∈ C(z) is (σ, µ)-symmetric, then conjugation of the coeffi-
cients gives:

H∗(z) is (σ−1, µ)-symmetric.
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Proof. The Definition 2.1 for symmetry is used twice:

H(z) = σz−2µH∗(z−1),

F (z) = H∗(z)

= σ∗z−2µH(z−1)

= σ−1z−2µF ∗(z−1).

For a list of simple filters, Table 2.1, the shape of symmetryσ, and center of symmetryµ,
are given assuminga, b ∈ C, n ∈ Z and|b| = 1.

H(z) σ µ
±1 1 0
±j −1 0

az−n a
a∗ n

1 ± bz−n ±b n
2

a ± a∗z−n ±1 n
2

a ± ja∗z−n ±j n
2

a ± az−n ± a
a∗

n
2

a ± jaz−n ±j a
a∗

n
2

Table 2.1: Some typical symmetric filters.

In the remainder of this chapter a special instance of Lemma 2.5 is used frequently, viz:
the scaled version of a(σ, µ)-symmetric filter can obtain any shape of symmetry depend-
ing on the scale factor. Alternatively, a given(σ, µ)-symmetric filter can be factorized
into a scale factor and another symmetric filter. The following theorem states that every
(σ, µ)-symmetric complex filter is reducible to a(1, µ)-symmetric complex filter, where
the filter coefficients are elements ofC.

Theorem 2.1 (Reduction overC). Let H(z) ∈ C(z) be a complex(σ, µ)-symmetric
filter, then there is a(1, µ)-symmetric complex filterG(z) ∈ C(z) and a complex number
a ∈ C, such thatH(z) = aG(z). This is called,H(z) is reducible to a type(1, µ) filter
overC.

Proof. Let a =
√

σ and defineG(z) = H(z)
a . Application of Lemma 2.5 gives the

required result.

A direct consequence of this theorem is that every(σ, µ)-symmetric filterH(z) ∈ C(z),
can be designed by first designing a(1, µ)-symmetric complex filterG(z) ∈ C(z), and
secondly multiplying all coefficients ofG(z) with the scale factora =

√
σ. Directly de-

signing the(σ, µ)-symmetric filter does not provide additional solutions. InSection 2.8,
Theorem 2.2 shows the surprising result that, also for complex filters with integer coeffi-
cients, it is in principle sufficient to design a(1, µ)-symmetric complex filter.
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2.2 Mirroring

A real (1, 0)-symmetric filter is trivially invariant under reversal of the coefficient order.
In case of a real(−1, 0)-symmetric filter the same is true except for a minus-sign. In
Definition 2.1 the symmetry for complex filters,H(z) ∈ C(z), is formulated in terms of
the center of symmetry,µ, and the shape of symmetry,σ. Based on the same parameters,
the order-reversing or ”mirroring”-operatorM is defined.

Definition 2.2 (Mirroring). For the filter H(z) ∈ C(z), the (σ, µ)-mirroring operator
Mσ,µ is defined as:

Mσ,µ

(
H(z)

)
, σz−2µH∗(z−1),

with σ ∈ C, |σ| = 1 andµ ∈ Z/2.

The two definitions for symmetry and mirroring are strongly related, see the following
lemma.

Lemma 2.7. Filter H(z) ∈ C(z) is (σ, µ)-symmetric iff:

H(z) =Mσ,µ

(
H(z)

)
.

Proof. The proof follows directly from Definition 2.1 and Definition2.2.

More in general, any mirroring of a symmetric filter results in another symmetric filter.

Lemma 2.8. If filter H(z) ∈ C(z) is (σ, µ)-symmetric, then the(σ0, µ0)-mirrored ver-
sion:

Mσ0,µ0

(
H(z)

)
is

(σ2
0

σ
, 2µ0 − µ

)
-symmetric.

Proof. First Definition 2.2 for mirroring, and Definition 2.1 for symmetry are used. Defin-
ing F (z) =Mσ0,µ0

(H(z)) gives:

F (z) = σ0z
−2µ0H∗(z−1),

H(z) = σz−2µH∗(z−1),

F (z) =
σ0

σ

z−2µ0

z−2µ
H(z),

whereσ0

σ
z−2µ0

z−2µ has((σ0

σ )2, 2(µ0 − µ))-symmetry. Application of Lemma 2.3 now con-
cludes the proof.

Application of two general mirroring operations in succession on a filter, is equivalent to
a scaling and delay of the original filter.

Lemma 2.9. For any filterH(z) ∈ C(z):

Mσ1,µ1

(
Mσ0,µ0

(
H(z)

))
= σz−2µH(z),

with σ = σ1

σ0
andµ = µ1 − µ0.
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Proof. Definition 2.2 is used repeatedly.

Mσ1,µ1

(
Mσ0,µ0

(
H(z)

))
=Mσ1,µ1

(
σ0z
−2µ0H∗(z−1)

)

= σ1z
−2µ1

((
σ0z
−2µ0H∗(z−1)

)∗)∣∣∣
z←z−1

= σ1z
−2µ1σ∗0z2µ0H(z)

=
σ1

σ0
z−2(µ1−µ0)H(z).

The mirroring operation is an involution, i.e., applying two identical mirror operations in
succession on a filter, results in the original filter.

Lemma 2.10. For any filterH(z) ∈ C(z):

Mσ,µ

(
Mσ,µ

(
H(z)

))
= H(z).

Proof. Follows directly from Lemma 2.9.

Givenz−n0Mσ,µ(H(z)), the delayed mirrored version of a filterH(z), can be expressed
in mirroring the same filter with a different center of symmetry. Also, mirroring a delayed
filter z−n1H(z),Mσ,µ(z−n1H(z)), can be expressed in mirroring the non-delayed filter
with a different center of symmetry. Both properties are described in the following lemma.

Lemma 2.11. For any filterH(z) ∈ C(z), mirror operationMσ,µ andn0, n1 ∈ Z:

z−n0Mσ,µ

(
z−n1H(z)

)
=M

σ,µ+
n0−n1

2

(
H(z)

)
.

Proof. By Definition 2.2:

z−n0Mσ,µ

(
z−n1H(z)

)
= z−n0σz−2µ

((
z−n1H(z)

)∗)∣∣∣
z←z−1

= z−n0σz−2µzn1H∗(z−1)

= σz−2(µ+
n0−n1

2
)H∗(z−1)

=M
σ,µ+

n0−n1
2

(
H(z)

)
.

Similarly, aMσ,µ(H(z)), the scaled mirrored version of a filterH(z), can be expressed
in mirroring the same filter with a different shape of symmetry. Also,Mσ,µ(bH(z)), the
mirrored scaled filterbH(z), can be expressed in mirroring the non-scaled filter with a
different shape of symmetry. Both properties are describedin the following lemma.

Lemma 2.12. For any filter H(z) ∈ C(z), mirror operationMσ,µ anda, b ∈ C with
|ab| = 1:

aMσ,µ

(
bH(z)

)
=Mab∗σ,µ

(
H(z)

)
.
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Proof. By Definition 2.2:

aMσ,µ

(
bH(z)

)
= aσz−2µ

((
bH(z)

)∗)∣∣∣
z←z−1

= ab∗σz−2µH∗(z−1)

=Mab∗σ,µ

(
H(z)

)
.

Related to Lemma 2.12 is the scaling of a mirrored version of filter H(z), or the mirroring
of a scaled filterH(z), without affecting the shape of symmetry of the mirroring operator.

Lemma 2.13. For any filterH(z) ∈ C(z), mirror operationMσ,µ anda, b ∈ C:

aMσ,µ

(
bH(z)

)
= b∗Mσ,µ

(
a∗H(z)

)
.

Proof. By Definition 2.2:

aMσ,µ

(
bH(z)

)
= aσz−2µ

((
bH(z)

)∗)∣∣∣
z←z−1

= b∗σz−2µ
((

a∗H(z)
)∗)∣∣∣

z←z−1

= b∗Mσ,µ

(
a∗H(z)

)
.

Mirroring a cascade connection, or product, of the two filtersG(z) andH(z), is identical
to the cascade connection of individually mirrored versions of both filters. In this process
there is freedom in distributing the shape of symmetry and the center of symmetry over
both filters.

Lemma 2.14. For any pair of filtersG(z), H(z) ∈ C(z):

MσGσH ,µG+µH

(
G(z)H(z)

)
=MσG,µG

(
G(z)

)
MσH ,µH

(
H(z)

)
.

Proof. By Definition 2.2:

MσGσH ,µG+µH

(
G(z)H(z)

)
= σGσHz−2(µG+µH )

((
G(z)H(z)

)∗)∣∣∣
z←z−1

= σGσHz−2(µG+µH )G∗(z−1)H∗(z−1)

= σGz−2µGG∗(z−1)σHz−2µH H∗(z−1)

=MσG,µG

(
G(z)

)
MσH ,µH

(
H(z)

)
.

Mirroring a parallel connection, or sum, of the two filtersG(z) andH(z), is identical to
the parallel connection of the individually mirrored versions of both filters. Opposite to
the cascade connection, now both filters are mirrored with identical parameters.

Lemma 2.15. For any pair of filtersG(z), H(z) ∈ C(z):

Mσ,µ

(
G(z) + H(z)

)
=Mσ,µ

(
G(z)

)
+Mσ,µ

(
H(z)

)
.
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Proof. By Definition 2.2:

Mσ,µ

(
G(z) + H(z)

)
= σz−2µ

((
G(z) + H(z)

)∗)∣∣∣
z←z−1

= σz−2µ
(
G∗(z−1) + H∗(z−1)

)

= σz−2µG∗(z−1) + σz−2µH∗(z−1)

=Mσ,µ

(
G(z)

)
+Mσ,µ

(
H(z)

)
.

The cascade connection of a filter and its mirrored version issymmetric.

Lemma 2.16. For any filterH(z) ∈ C(z) the cascade connection:

H(z)Mσ,µ

(
H(z)

)
is (σ2, 2µ)-symmetric.

Proof. After applying Lemma 2.7 the following equality has to hold.

H(z)Mσ,µ

(
H(z)

)
=Mσ2,2µ

(
H(z)Mσ,µ

(
H(z)

))
,

⇔

σz−2µH(z)H∗(z−1) = σ2z−4µ
((

σz−2µH(z)H∗(z)
)∗)∣∣∣

z←z−1

= σ2z−4µσ∗z2µH(z)H∗(z),

which is true sinceσ∗ = 1
σ .

In Table 2.2 a list of typical mirroring operations with shape of symmetry,σ, and center
of symmetry,µ, are given fora, b ∈ C andn ∈ Z.

Example
M1,0(1) = 1
M1,0(a) = a∗

Mj,0(1) = j
Mj,0(a) = ja∗

M1,n(z−n) = z−n

Mσ, n
2
(1) = σz−n

Mσ,0(a + bz−n) = σb∗zn + σa∗

M1, n
2
(a + bz−n) = b∗ + a∗z−n

Table 2.2: Some typical mirroring operations.

2.3 Mirrored and symmetric pairs of filters

For any filter and its mirrored version, with a common input oroutput, it is possible to
obtain an alternative structure with two symmetric filters,each with an opposite shape of
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symmetry. This is called the mirrored-pair identity. The inverse procedure is referred to
as the symmetric-pair identity. The mirrored-pair identity will be used in combination
with complex filters or polyphase structures. In Figure 2.1 and Figure 2.2 the schemes
corresponding to these possibilities are presented.

2.3.1 Mirrored-pairs

In the next two lemmas it is shown how mirroring can lead to symmetry.

Lemma 2.17. For any filterH(z) ∈ C(z):

H(z) +Mσ,µ

(
H(z)

)
is (σ, µ)-symmetric.

Proof. G(z) is defined asG(z) = H(z) +Mσ,µ

(
H(z)

)
, so:

Mσ,µ

(
G(z)

)
=Mσ,µ

(
H(z) +Mσ,µ

(
H(z)

))

=Mσ,µ

(
H(z)

)
+Mσ,µ

(
Mσ,µ

(
H(z)

))

=Mσ,µ

(
H(z)

)
+ H(z)

= G(z).

In this proof Lemma 2.15 and Lemma 2.10 are used.

Two mutually mirrored filters that have a common input or output, see Figure 2.1, can be
replaced by two symmetric filters with opposite shapes of symmetry, and a combination
network.

- Mσ,µ

(
H(z)

)

- H(z)

6
?- =

- σ0 -z−a

-
�

N -

-

G1(z)

G0(z)

6
?-

−

Figure 2.1: Mirrored-pair identity in case of a common output.

Lemma 2.18(Mirrored-pair identity). Assume filterH(z) ∈ C(z) anda ∈ Z, then for a
common input:

[
H(z)

Mσ,µ

(
H(z)

)
]

=

[
1 0
0 σ0z

−a

] [
1 1
1 −1

] [
G0(z)
G1(z)

]
,

and for a common output:

[
H(z) Mσ,µ

(
H(z)

)]
=

[
G0(z) G1(z)

] [
1 1
1 −1

] [
1 0
0 σ0z

−a

]
,
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with:

G0(z) = 1
2

(
H(z) +M σ

σ0
,µ− a

2

(
H(z)

))
is

( σ

σ0
, µ− a

2

)
-symmetric,

G1(z) = 1
2

(
H(z)−M σ

σ0
,µ− a

2

(
H(z)

))
is

(
− σ

σ0
, µ− a

2

)
-symmetric.

Proof. The two filters with a common input can be represented by the vector:
[

H(z)
Mσ,µ

(
H(z)

)
]

=

[
1 0
0 σ0z

−a

] [
H(z)

M σ
σ0

,µ− a
2

(
H(z)

)
]

= 1
2

[
1 0
0 σ0z

−a

] [
1 1
1 −1

] [
H(z) +M σ

σ0
,µ− a

2

(
H(z)

)

H(z)−M σ
σ0

,µ− a
2

(
H(z)

)
]

=

[
1 0
0 σ0z

−a

] [
1 1
1 −1

] [
G0(z)
G1(z)

]
.

Lemma 2.11, Lemma 2.12 and Lemma 2.17 were used. The second matrix equation from
the lemma can be obtained by transposing the first equation.

2.3.2 Symmetric-pairs

In the next two lemmas it is shown how symmetry can lead to mirroring.

Lemma 2.19.For the pair of filtersG0(z), G1(z) ∈ C(z), withG0(z) is (σ, µ)-symmetric
andG1(z) is (−σ, µ)-symmetric:

G0(z) + G1(z) =Mσ,µ

(
G0(z)−G1(z)

)
.

Proof. By Lemma 2.7, Lemma 2.12 and Lemma 2.15:

G0(z) + G1(z) =Mσ,µ

(
G0(z)

)
+M−σ,µ

(
G1(z)

)

=Mσ,µ

(
G0(z)

)
+Mσ,µ

(
−G1(z)

)

=Mσ,µ

(
G0(z)−G1(z)

)
.

Two symmetric filters that have opposite shapes of symmetry and a common input or
output, see Figure 2.2, can be replaced by two mutually mirrored filters and a combination
network.

- G1(z)

- G0(z)

6
?- =

- -σ0 z−a

-
�

N-

-

M σ
σ0

,µ−
a
2

(
H(z)

)

H(z)

6
?-

−

Figure 2.2: Symmetric-pair identity in case of a common output.



28 Chapter 2. Symmetric filters

Lemma 2.20(Symmetric-pair identity). Assume filterG0(z) ∈ C(z) is (σ, µ)-symmetric,
filter G1(z) ∈ C(z) is (−σ, µ)-symmetric anda ∈ Z, then for a common input:

[
G0(z)
G1(z)

]
=

[
1 1
1 −1

] [
1 0
0 σ0z

−a

] [
H(z)

M σ
σ0

,µ− a
2

(
H(z)

)
]

,

and for a common output:

[
G0(z) G1(z)

]
=

[
H(z) M σ

σ0
,µ− a

2

(
H(z)

)] [
1 0
0 σ0z

−a

] [
1 1
1 −1

]
,

with:

H(z) = 1
2

(
G0(z) + G1(z)

)
,

Mσ,µ

(
H(z)

)
= 1

2

(
G0(z)−G1(z)

)
.

Proof. The two filters with a common input can be represented with thevector:
[
G0(z)
G1(z)

]
= 1

2

[
1 1
1 −1

] [
G0(z) + G1(z)
G0(z)−G1(z)

]

=

[
1 1
1 −1

] [
H(z)

Mσ,µ

(
H(z)

)
]

=

[
1 1
1 −1

] [
1 0
0 σ0z

−a

] [
H(z)

M σ
σ0

,µ− a
2

(
H(z)

)
]

.

Lemma 2.11, Lemma 2.12 and Lemma 2.19 were used. The second matrix equation from
the lemma can be obtained by transposing the first equation.

2.4 Frequency domain

The effect of a filter being symmetric, on the frequency response of that filter, is illus-
trated with a number of lemmas. The linear-phase conditionsfor real FIR filters are well
understood and described many times in literature, for instance [116] [133] and [136]. In
case of complex FIR filters more can be said about the conditions for obtaining a linear
phase, [64] [65] [133] [135].
Strictly speaking, linear phase means that the phase response has the formP(H(ejθ)) =
aθ. It is common practice that any phase response of the formP(H(ejθ)) = aθ + b is
called linear (a, b ∈ R). In [64] this type of phase response is called generalized-linear or
affine.
In this section it will be shown that(σ, µ)-symmetry implies linear phase. First it is shown
that(σ, µ)-symmetry is equivalent to a special frequency domain relation.

Lemma 2.21. Filter H(z) ∈ C(z) is (σ, µ)-symmetric iff:

H(ejθ) = σe−j2µθH∗(e−jθ).
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Proof. The proof from left to right is obtained by substitutingz ← ejθ, so:

H(ejθ) = H(z)|z←ejθ

= σz−2µH∗(z−1)
∣∣
z←ejθ

= σe−j2µθH∗(e−jθ),

and the proof from right to left is based on the fact that a finite-length filter is determined
completely by the Fourier transform on the unit circle.

Now the frequency response of a(σ, µ)-symmetric filter can be written as a real-valued
function multiplied by a complex quantity that only affectsthe phase.

Lemma 2.22. The filterH(z) ∈ C(z) is (σ, µ)-symmetric iff:

H(ejθ) =
√

σe−jµθHzp(θ),

with zero-phase frequency responseHzp(θ) ∈ R of the form:

Hzp(θ) =
∑

n

h[n]√
σ

e−j(n−µ)θ,

and the period ofHzp(θ) is 2π in caseµ ∈ Z or 4π in caseµ ∈ Z + 1
2 .

Proof. Define the zero-phase frequency responseHzp(θ), or for the reverse of the proof
H(ejθ), through the following equality:

Hzp(θ) =
1√
σ

ejµθH(ejθ).

By Lemma 2.21:

H(ejθ) = σe−j2µθH∗(e−jθ)

⇔
1√
σ

ejµθH(ejθ) =
( 1√

σ
ejµθH(ejθ)

)∗

⇔
Hzp(θ) ∈ R.

The form ofHzp(θ) follows from its definition, and:

H(ejθ) = H(z)|z←ejθ =
∑

n

h[n]z−n
∣∣
z←ejθ

.

Since the period ofH(ejθ) is 2π andµ ∈ Z/2, the period ofHzp(θ) is 2π or 4π.

The next lemma shows that the phase of a(σ, µ)-symmetric filter is linear.
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Lemma 2.23. For any(σ, µ)-symmetric filterH(z) ∈ C(z) the phase response is:

P
(
H(ejθ)

)
=
P(σ)

2
− µθ + P

(
Hzp(θ)

)
.

Proof. The proof follows directly by taking the phase of the equation in Lemma 2.22.

Finally, the effect on the frequency response, by mirroringfilter H(z) is given in the
following lemma.

Lemma 2.24. For any filterH(z) ∈ C(z):
∣∣Mσ,µ

(
H(ejθ)

)∣∣ =
∣∣H(ejθ)

∣∣,

and:

P
(
Mσ,µ

(
H(ejθ)

))
= P(σ)− 2µθ − P

(
H(ejθ)

)
.

The phaseP is considered modulo2π.

Proof. DefineG(z) =Mσ,µ(H(z)), then:

G(z) = σz−2µH∗(z−1),

G(ejθ) = σz−2µH∗(z−1)
∣∣
z←ejθ

= σe−j2µθH∗(e−jθ)

= σe−j2µθH∗(ejθ),
∣∣G(ejθ)

∣∣ =
∣∣H(ejθ)

∣∣,
P

(
G(ejθ)

)
= P(σ)− 2µθ − P

(
H(ejθ)

)
.

2.5 Types of symmetry

In the first part of this chapter the shape of symmetry was allowed to have any value
provided thatσ ∈ C and |σ| = 1. For real filters not every value ofσ is allowed,
and for complex filters, special values ofσ imply special simple relations between the
coefficients.

2.5.1 Real filters

For real(σ, µ)-symmetric filtersH(z) ∈ R(z) the possible values for the shape of sym-
metry are limited to two possibilities.

Lemma 2.25. If filter H(z) ∈ R(z) is (σ, µ)-symmetric, thenσ ∈ {−1, 1}.
Proof. By Definition 2.1 for symmetry and the fact that:

H(z) ∈ R(z)⇒ H∗(z−1) ∈ R(z),

it follows thatσ ∈ R, and since|σ| = 1 this results inσ ∈ {−1, 1}.
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The real symmetric filters are special instances of the(σ, µ)-symmetric filters. In [116]
[133] and [136], the labels type1 and2 are used to identify the symmetric filters, and the
labels type3 and4 are used to identify the anti-symmetric filters.

Definition 2.3. Let the filterH(z) ∈ R(z) be(σ, µ)-symmetric and the coefficientsh[n]
be defined for0 ≤ n < L. The4 traditional types are:

type L symmetry σ µ
1 odd symmetric 1 Z

2 even symmetric 1 Z + 1
2

3 odd anti-symmetric −1 Z

4 even anti-symmetric −1 Z + 1
2

with µ =
L− 1

2
.

The frequency responses and zero-phase responses of the4 possible types are given next.

Lemma 2.26. The filters type1, 2, 3 and4 have the following frequency responses and
zero-phase responses:

type1: H(ejθ) = e−jµθHzp(θ) with Hzp(θ) =h[µ]+2
∑

n<µ

h[n] cos(θ(µ − n)),

type2: H(ejθ) = e−jµθHzp(θ) with Hzp(θ) = 2
∑

n<µ

h[n] cos(θ(µ − n)),

type3: H(ejθ) =je−jµθHzp(θ) with Hzp(θ) = 2
∑

n<µ

h[n] sin(θ(µ− n)),

type4: H(ejθ) =je−jµθHzp(θ) with Hzp(θ) = 2
∑

n<µ

h[n] sin(θ(µ− n)).

Proof. The proof is well-known and straightforward: substitutingz ← ejθ in H(z), use
Lemma 2.1 and Lemma 2.22, Definition 2.3, and finally use one ofEuler’s identities
ejx + e−jx = 2 cos(x) or ejx − e−jx = 2j sin(x).

2.5.2 Complex filters

For H(z) ∈ R(z) only two possible values for the shape of symmetry exist, viz. 1 and
−1, see Lemma 2.25. ForH(z) ∈ C(z), however, anyσ with |σ| = 1 is possible. The
values ofσ ∈ CZ, i.e., σ ∈ {1,−1, j,−j}, receive special attention since the relations
between the filter coefficients are simple.
In addition to the4 types of linear-phase real filters, five additional types of linear-phase
complex filters are defined. These new types relate to specialvalues for the shape of
symmetry,σ, as defined in Definition 2.4. The center of symmetry,µ, is not used here.
Note that the complex filters include the real filters and thattype1 and2 are covered by
type5, and that type3 and4 are covered by type6.
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Definition 2.4. If filter H(z) ∈ C(z) is (σ, µ)-symmetric andµ ∈ Z/2, then:

type σ
5 1
6 −1
7 j
8 −j
9 6∈ {1,−1, j,−j}

The simple relations between the coefficients, that relate to the special values ofσ as
defined before, are specified in Lemma 2.27.

Lemma 2.27. If filter H(z) ∈ C(z) is (σ, µ)-symmetric, then the type5, 6, 7 and8 filters
have the following properties:

type Hr(z) Hi(z)
5 (1, µ)-symm. (−1, µ)-symm.
6 (−1, µ)-symm. (1, µ)-symm.
7 M1,µ

(
Hi(z)

)
M1,µ

(
Hr(z)

)

8 M−1,µ

(
Hi(z)

)
M−1,µ

(
Hr(z)

)

with H(z) = Hr(z) + jHi(z) andHr(z), Hi(z) ∈ R(z).

Proof. Let σ = σr + jσi, then:

H(z) = σz−2µH∗(z−1),

Hr(z) + jHi(z) = z−2µ(σr + jσi)
(
Hr(z

−1)− jHi(z
−1)

)
,

Hr(z) = z−2µ
(
σrHr(z

−1) + σiHi(z
−1)

)
,

Hi(z) = z−2µ
(
σiHr(z

−1)− σrHi(z
−1)

)
.

In the following table, the properties of the filtersHr(z) andHi(z) are given for special
values ofσ, see Definition 2.4.

type σ σr σi Hr(z) Hi(z)
5 1 1 0 z−2µHr(z

−1) −z−2µHi(z
−1)

6 −1 −1 0 −z−2µHr(z
−1) z−2µHi(z

−1)
7 j 0 1 z−2µHi(z

−1) z−2µHr(z
−1)

8 −j 0 −1 −z−2µHi(z
−1) −z−2µHr(z

−1)

The proof is concluded by using Definition 2.1 and Definition 2.2.

Complex coefficients consist of individual real and imaginary parts, the parts. For a type9
filter theL complex coefficients in general require2L different parts. For type5, 6, 7 and8
filters theL complex coefficients in general require onlyL different parts, because most
values are used twice. In Chapter 4 it is discussed extensively how multiplications may
be shared in case of symmetry.
For type5 and6 filters the individual real and imaginary parts of the filtersare symmetric
too, see Lemma 2.27. As a consequence the zero-phase response of the type5 and6 filters
can be expressed in the zero-phase responses of the individual real and imaginary parts of
the filters.
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Lemma 2.28. If the filterH(z) ∈ C(z) is (±1, µ)-symmetric, thenHzp(θ) = Hr,zp(θ)∓
Hi,zp(θ).

Proof. SinceH(z) = Hr(z) + jHi(z), filter Hr(z) is (±1, µ)-symmetric andHi(z) is
(∓1, µ)-symmetric, see Lemma 2.27. Now:

H(ejθ) = Hr(e
jθ) + jHi(e

jθ),
√
±1e−jµθHzp(θ) =

√
±1e−jµθHr,zp(θ) + j

√
∓1e−jµθHi,zp(θ),

Hzp(θ) = Hr,zp(θ) ∓Hi,zp(θ).

Up to here, the(σ, µ)-symmetry and its equivalence to the linear-phase propertyof filters,
are discussed in detail for filters with complex coefficients, i.e., H(z) ∈ C(z). In the
remaining part of this chapter the focus will be on(σ, µ)-symmetric filters with complex-
integer coefficients, i.e.,H(z) ∈ CZ(z). It will be shown how symmetry of these filters
can be preserved under quantization of the coefficients. Also, conversion of the shape of
symmetry while the coefficients remain complex integer is discussed. Special focus is
on the theorem stating that any complex-integer type9 filter can be composed of a filter
of one of the other types and a complex-integer scale factor,while the filter coefficients
remain complex integer.

2.6 Quantizing coefficients

The quantization of filter coefficients in general will affect all kinds of filter properties,
like the magnitude and phase response. Simple relations between coefficients, like equal
and opposite, as in type5, 6, 7 and8, are invariant under quantization, and therefore
symmetry and linear phase are preserved.
In general, the quantization of the coefficients of a type9 filter results in a non-symmetric
filter. The relations between the coefficients,h[n] = σh∗[2µ−n] for all n, see Lemma 2.1,
will be lost. In this section it is shown how the coefficients of a type9 filter may be
quantized in a way that preserves the symmetry and hence the linear phase.
First, the quantizationQ of a filter H(z) is defined as the quantization of the individual
real and imaginary parts of the coefficients.

Definition 2.5. For the filterH(z) ∈ C(z) the quantization functionQi(H(z)) is:

Qi

(
H(z)

)
,

∑

n

(
Qi

(
hr[n]

)
+ jQi

(
hi[n]

))
z−n,

with Qi(x), for x ∈ R andi ∈ Z, is a function fromR to Z/2i.

The value ofi in Qi(H(z)) should be sufficiently large to have an appropriate approxi-
mation of the filterH(z).
For the type5, 6, 7 and8 symmetric filters, the symmetry may be preserved under quan-
tization when satisfying a mild condition only. Note that other filter properties like the
magnitude response, may be affected severely.
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Lemma 2.29.For any quantization functionQi(x) fromR to Z/2i with x ∈ R andi ∈ Z:

� the symmetry of a type7 filter is preserved,

� the symmetry of a type5, 6 and 8 filter is preserved if the quantization itself is
anti-symmetric, i.e.,Qi(x) = −Qi(−x).

Proof. By Lemma 2.27, the real and imaginary parts of all pairs of coefficients of type5,
6 and8 filters, (h[n], h[2µ − n]), are either equal or opposite. The conditionQi(x) =
−Qi(−x) for anyx ∈ R is sufficient to preserve these relations. Since for type7 filters
the parts are all equal, the extra condition is not required.

In [136] a few popular quantization characteristics are presented, from which it follows
that the propertyQi(x) = −Qi(−x) is not satisfied in some cases.
For type9 filters quantization is possible at the cost of an approximation of the shape of
symmetry. The next lemma describes the alternative quantization procedure. Basically,
the type9 filter H(z) is first reduced overC by the complex scale factora, such that the
resulting filter is of type5, 6, 7 or 8. Second, both the resulting filter and the scale factor
are quantized. According to Lemma 2.29 the symmetry of any ofthese filters is invariant
under quantization. Finally, the quantized filter is multiplied by the quantized version of
scale factora.

Lemma 2.30. If filter H(z) ∈ C(z) is (σ, µ)-symmetric, then a filterH ′(z) ∈ CZ/2i(z)
that is(σ′, µ)-symmetric can be constructed as:

H ′(z) = Qi

(H(z)

a

)
Q0(a),

for a ∈ {b√σ, b
√−σ, b

√
σ
j , b

√
−σ

j }, b ∈ R andQi(x) = −Qi(−x). The new shape of

symmetryσ′ is respectively:

Q0(a)

Q∗0(a)
,−Q0(a)

Q∗0(a)
, j
Q0(a)

Q∗0(a)
and − j

Q0(a)

Q∗0(a)
.

In casea = b
√

σ
j , the extra requirement of anti-symmetry for the quantizer is not needed.

Proof. By Lemma 2.5 and Lemma 2.29 it can be verified that filterG(z) = Qi

(H(z)
a

)

is type5, 6, 7 or 8 respectively. Again, by Lemma 2.5 it can be verified that the filter
H ′(z) = G(z)Q0(a) is (σ′, µ)-symmetric.

2.7 Shape of symmetry conversion

A number of transformations of a symmetric filterH(z) ∈ C(z), result in the symmetric
filter G(z) ∈ C(z) with a different shape of symmetry. Many of these transformations are
introduced earlier as a lemma. In general, any shape of symmetry can be transformed into
any other shape of symmetry, by applying one or more transformations. As a consequence
the type of filter may change.
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Changing the shape of symmetry may be a way to reduce the costsof a filter, since special
relations between coefficients can be exploited. A transformation in general may affect the
frequency response of the filter, and it depends on the context whether such transformation
is allowed or not.
In case the quantization of coefficients should be unaffected by a transformation, i.e., if
both filtersH(z), G(z) ∈ CZ/2i(z), not every shape of symmetry, and hence not every
transformation, is possible. Also, when filterG(z) should be of type5, 6, 7 or 8, in case
filter H(z) is of type5, 6, 7 or 8, the possibilities for transformations are limited.
In this section some transformations are discussed in more detail. In Section 2.8, type9
filters with quantized coefficients will be discussed extensively.

2.7.1 Complex scaling

From Lemma 2.5 it follows directly that the shape of symmetryof any(σ, µ)-symmetric
filter H(z) ∈ C(z) can be changed by multiplication with the scale factora ∈ C. The
filter G(z) = aH(z) is (σ0σ, µ)-symmetric, withσ0 = a

a∗ , and its frequency response is
similar: change of gain by|a| and an offset in the phase byP(a). An interesting set of
values fora is a ∈ CZ, because quantization is not affected.
Conversion between the type5, 6, 7 and8 filters requiresσ, σ0 ∈ {1,−1, j,−j}, that can
be made, e.g., bya ∈ {1, j, 1+j, 1− j}. Note thata = 1+j anda = 1− j, both introduce
a gain of

√
2.

2.7.2 Complex modulation

Another approach to change the shape of symmetry of a filter isby complex modulation.
This modulation has as primary effect that the frequency response of the filter will be
shifted, see Section A.6. This shift can be anticipated for in the filter design process. As
secondary effect the shape of symmetry of the filter may change. Now let the coefficients
of filter H(z) ∈ C(z) that is (σ, µ)-symmetric, be modulated by the complex carrier
c[n] = ejθcn, then the resulting filterG(z) = H(ze−jθc) is (σ0σ, µ)-symmetric with
σ0 = ej2θcµ, see Lemma 2.5. The new shape of symmetry is affected by the frequency
of the complex carrier and the original center of symmetry. Interesting instances of the
carrierc[n] arec[n] = ejθcn = jkn with k ∈ Z because quantization of the coefficients is
not affected.
To convert between the type5, 6, 7 and8 filters, here too it is necessary thatσ, σ0 ∈
{1,−1, j,−j}. If ejθc = jk andµ ∈ Z/2, a suited frequency implies(2µk)|4 = m|4 for
σ0 = jm with m ∈ Z. The valuesσ0 = ±j can only be obtained forµ ∈ Z + 1

2 .
Compared to complex scaling, the complex modulation can realize σ0 = ±j without a
gain of

√
2, in caseµ ∈ Z + 1

2 .

2.7.3 Conjugation

Conjugation of the coefficients of the(σ, µ)-symmetric filterH(z) ∈ C(z), leaves the
quantization unaffected,G(z) = H∗(z). FilterG(z) is ( 1

σ , µ)-symmetric, see Lemma 2.6.
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So, under conjugation type5 and6 filters remain type5 and6 filters respectively, whereas
the type7 and8 filters swap roles.
The effect on the frequency response isG(ejθ) = H∗(ejθ) = H∗(e−jθ), showing that the
role of positive and negative frequencies are interchangedand that the phase is opposite.

2.8 Reduction of(σ, µ)-symmetric filters over CZ

Theorem 2.1 states that all symmetric complex filters essentially have shape of symmetry
equal to1. This is an important result as it allows efficient design of symmetric filters. In
many cases, however, the coefficients of the filterH(z) are highly restricted. For example,
the coefficients ofH(z) might be complex integers. Within this restricted class of filters
it is not obvious at all that a similar result holds. In particular, whenH(z) ∈ CZ(z), by
choosinga =

√
σ as in the proof of Theorem 2.1, thenG(z) does not necessarily have

complex-integer coefficients. Consider the following example.

Example 2.1. Given the(j, 1
2 )-symmetric filterH(z) = j + z−1. ReducingH(z) to the

type(1, 1
2 ) filter G(z) = c + c∗z−1, would mean the existence of complex integersc and

λ such thatj = λc and1 = λc∗. Using some simple calculus, it is easy to show that
suchλ andc cannot exist and therefore thatH(z) cannot be reduced to a type(1, 1

2 ) filter.
However, note that:

2H(z) = (1 + j)
(
(1 + j) + (1− j)z−1

)
,

and therefore that2H(z) can be reduced to a type(1, 1
2 ) complex filter overCZ.

End of example

In the previous section it has been shown how the shape of symmetry of a type5, 6, 7 or
8 filter with quantized coefficients can be changed, while the type of symmetry remains
type5, 6, 7 or 8, and the coefficients are still quantized.
As a surprising result, it is proven in the remainder of this section that the concept of
reduction can be generalized to arbitrary symmetric complex-integer filters. In particular,
it is proven that an arbitrary symmetric filterH(z) ∈ CZ(z) can be reduced overCZ to a
filter G(z) with shape of symmetry equal to1 or j.
In caseH(z) ∈ CZ/2i(z), the reduction of filter2iH(z) ∈ CZ(z) can be considered
instead. As a post-processing step, the scale factorλ and the filterG(z) can be divided
by 2i−j and2j to restore the original scaling.

Theorem 2.2(Reduction overCZ). Let H(z) ∈ CZ(z) be a complex(σ, µ)-symmetric
filter, then there is a(1, µ) or a (j, µ)-symmetric complex filterG(z) ∈ CZ(z) and a
complex numbera ∈ CZ, such thatH(z) = aG(z). Moreover, ifH(z) ∈ C2Z(z), then
G(z) may be chosen to have shape of symmetry equal to1 or j.

Proof. The proof of this theorem is presented in Section 2.8.1.

From this theorem it follows directly that the design of(σ, µ)-symmetric filtersH(z) ∈
CZ(z), does not give an additional degree of freedom, compared to the design of(1, µ)-
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or (j, µ)-symmetric filters inCZ(z) and a scale factor inCZ. It is also clear that reduction
of a filter H(z) ∈ CZ(z) to (1, µ)-symmetry, in the worst case requires the use of the
scaled complex integersCZ/2.
Alternatively, every(σ, µ)-symmetric filterH(z) ∈ CZ(z), can be designed by first de-
signing a(1, µ)-symmetric complex filterG(z) ∈ CZ/2(z), and second multiplying all
coefficients ofG(z) with an appropriate complex-integer scale factor. Directly designing
the(σ, µ)-symmetric filter does not provide additional solutions.
In Section 2.8.2, a possible procedure for reducing complexfilters is presented and in
Section 2.8.3 the possibilities for reduction are elaborated. To show the application of the
reduction procedure, an example is presented in Section 2.9.

2.8.1 Proof of reduction theorem

To reduce the filterH(z) ∈ CZ(z) overCZ, the scale factorλ ∈ CZ should be a complex-
integer divisor of each coefficient ofH(z). Such a scale factor is called a divisor of
the filter. To reduce the(σ, µ)-symmetric filter to a(1, µ)-symmetric filter, the shape of
symmetry ofλ should beσ. Thereforeσ = λ

λ∗ . Note that a scale factor is a rudimental
filter of length1, e.g., see Table 2.1 line3 for n = 0. Similarly to reduce the(σ, µ)-
symmetric filter to a(j, µ)-symmetric filter, the shape of symmetry ofλ should beσ

j .

Thereforeσ
j = λ

λ∗ . First a kind of minimal form for the complex-integer scale factorλ,
theminimal factor, is defined and its existence and uniqueness are proven in Lemma 2.31.
To illustrate the concept of the minimal factor consider thefollowing. According to
Lemma 2.1, for any(σ, µ)-symmetric filterH(z) ∈ C(z) holds: h[n] = σh∗[2µ − n]

for all n, or σ = h[n]
h∗[2µ−n] . So,σ is an arbitrary complex valueσ ∈ C with |σ| = 1. Now

it is straightforward to determine a scale factorλ ∈ C such that, e.g.,λλ∗ = σ or λ
λ∗ = σ

j ,

viz., λ = c
√

σ or λ = c
√−jσ respectively, withc ∈ R\{0}. See Example 2.2.

Example 2.2. Consider the(σ, 0)-symmetric filterH(z) ∈ C(z) with, for a specificn:
h[n] = 1 + j2 andh[−n] =

√
5. For the shape of symmetryσ = 1

5

√
5(1 + j2) the

solutions for λ
λ∗ = σ and λ

λ∗ = σ
j can be derived, viz.,λ = c

√
σ = c′

√
1 + j2 and

λ = c
√−jσ = c′

√
2− j respectively, withc, c′ ∈ R\{0}.

End of example

In caseH(z) ∈ CZ(z), the existence of a scale factorλ ∈ CZ such that, e.g.,λλ∗ = σ or
λ
λ∗ = σ

j , is not obvious. However, Example 2.3 shows that suchλ can exist.

Example 2.3. Consider the(σ, 0)-symmetric filterH(z) ∈ CZ(z) with, for a specificn:
h[n] = −57− j41 andh[−n] = 21 − j67. For the shape of symmetryσ = 1

5 (−4 + j3)

it can be checked that forλλ∗ = σ and λ
λ∗ = σ

j , the following scale factors are solutions,
λ = c(1 + j3) andλ = c(2 + j) respectively, withc ∈ Z\{0}.
End of example

The minimal factor used in this proof is suchλ ∈ CZ with the additional constraints
thatgcd(λr, λi) = 1 andλr ≥ 0. The minimal factor to reduce filterH(z) to a (1, µ)-
symmetric filter is called a minimal factor of the first kind, and the minimal factor to
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reduce filterH(z) to a(j, µ)-symmetric filter is called a minimal factor of the second kind.
In Lemma 2.32, Lemma 2.33 and Lemma 2.34 it will be shown that the minimal factor of
the first kind may be a divisor of filterH(z). Similarly in Lemma 2.35, Lemma 2.36 and
Lemma 2.37 it will be shown that the minimal factor of the second kind may be a divisor
of filter H(z). In Lemma 2.38 it is shown that at least one of these minimal factors is a
divisor. Finally the proof of Theorem 2.2 is presented.

Definition 2.6 (Minimal factor). For every complex rationalν ∈ CZ/CZ with |ν| = 1, a
minimal factorα = αr + jαi with α ∈ CZ\{0}, is defined:α = j if ν = −1, andν = α

α∗

with gcd(αr, αi) = 1, αr ≥ 0 if ν 6= −1.

Next an important property of the minimal factor will be shown.

Lemma 2.31. For everyν ∈ CZ/CZ with |ν| = 1, a minimal factor exists and is unique.

Proof. The lemma is proven in a number of steps:

1. First it is shown thatν can be written asν = h
h∗ for some complex integerh. To

prove this use thatν is a complex rational and writeν asν = f
g∗ with f, g ∈ CZ.

As |ν| = 1, it follows that|f | = |g|. If f + g 6= 0 it can be verified forh = f + g
thatν = h

h∗ . In casef + g = 0 it can be verified forh = jf thatν = h
h∗ .

2. Now takingα asα = h
gcd(hr,hi)

, in caseαr < 0 substituteα ← −α, and in case
αr = 0 takingα = j, proves the existence of a minimal factor.

3. Takeλ ∈ CZ such thatν = λ
λ∗ , thenαλ∗ = α∗λ impliesαλ∗ ∈ Z. As a con-

sequence the imaginary partℑ(αλ∗) = αiλr − λiαr = 0. By definitionαr and
αi have no common factor, so there exists a uniquek ∈ Z for everyλ such that
λr = kαr andλi = kαi, which proves the uniqueness of the minimal factor.

In the following definition the roles of the minimal factors of both kinds are presented.
In the remainder of this thesis we will useα andβ as minimal factor of the first kind
and minimal factor of the second kind respectively. Note that for both kinds of minimal
factors holds:α, β ∈ CZ. At this point no special properties ofG(z) are claimed, i.e.,
G(z) ∈ C(z). At the end of the proof it will be clear under which conditions G(z) ∈
CZ(z) will hold.

Definition 2.7 (Minimal factors of first and second kind). Let H(z) ∈ CZ(z) be any
(σ, µ)-symmetric complex filter: for the minimal factor of the firstkind,α, holdsH(z) =
αG(z) with G(z) being(1, µ)-symmetric, and for the minimal factor of the second kind,
β, holdsH(z) = βG(z) with G(z) being(j, µ)-symmetric.

Now it will be shown which conditions on the minimal factorsα andβ make them a
divisor of filter H(z). In the following three lemmas it is shown that ifαr + αi is odd,
thenα is a divisor ofH(z).

Lemma 2.32. Let α be the minimal factor ofσ = f
g∗ with f, g ∈ CZ. If αr + αi is odd,

thenf + g is even.
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Proof. This proof considers the remainder in case of an integer division by2:

f

g∗
=

α

α∗
,

(α∗f − αg∗)|2 = 0,

(α∗|2f + α|2g∗)|2 = 0.

The assumption thatαr + αi is odd, implies two cases:

� αr is odd andαi is even, gives(f + g∗)|2 = (f + g)|2 = 0, and

� αr is even andαi is odd, gives(jf + jg∗)|2 = 0 which implies(f + g)|2 = 0.

The next lemma shows that iff + g is even,α is a divisor of bothf andg.

Lemma 2.33. Letα be the minimal factor ofσ = f
g∗ with f, g ∈ CZ andf + g is even,

then there is anh ∈ CZ such thatf = αh andg = αh∗.

Proof. Defineh0 = f+g
2 andh1 = −jf−g

2 , then by assumptionhℓ ∈ CZ, with ℓ ∈ {0, 1}.
Now there is a uniquekℓ ∈ Z such thathℓ = kℓα. This follows from Lemma 2.31 when
takingσ = hℓ

h∗
ℓ

with hℓ 6= 0. If hℓ = 0 takekℓ = 0. Now definingh = k0 + jk1 gives

αh = k0α + jk1α = f+g
2 + f−g

2 = f andαh∗ = k0α− jk1α = f+g
2 −

f−g
2 = g.

On basis of the two previous lemmas it is shown thatα is a divisor of the filterH(z).

Lemma 2.34. Let H(z) ∈ CZ(z) be a(σ, µ)-symmetric filter, and letα be the minimal
factor ofσ. If αr + αi is odd, there is a(1, µ)-symmetric filterG(z) ∈ CZ(z) such that
H(z) = αG(z).

Proof. Consider the pair of coefficients(f, g) of H(z) with f = h[n] andg = h[2µ −
n] for index n. Type (σ, µ)-symmetry implies thatσ = f

g∗ and by Lemma 2.32 and
Lemma 2.33 that there is ap ∈ CZ such thatf = αp andg = αp∗. This is applicable
to all pairs(f, g), and thereforeH(z) is divisible byα and by application of Lemma 2.5
G(z) is of type(1, µ).

Similarly, in the following three lemmas it is shown that ifβr + βi is odd, then minimal
factorβ is a divisor ofH(z).

Lemma 2.35. Let β be the minimal factor ofσj = f
(−jg)∗ with f, g ∈ CZ. If βr + βi is

odd, thenf − jg is even.

Proof. For this proof use the proof of Lemma 2.32 and substituteg ← −jg.

The next lemma shows that iff − jg is even,β is a divisor of bothf andg.

Lemma 2.36. Let β be the minimal factor ofσj = f
(−jg)∗ with f, g ∈ CZ andf − jg is

even, then there is anh ∈ CZ such thatf = βh andg = jβh∗.

Proof. For this proof use the proof of Lemma 2.33 and substituteg ← −jg.
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On basis of the two previous lemmas it is shown thatβ is a divisor of the filterH(z).

Lemma 2.37. Let H(z) ∈ CZ(z) be a(σ, µ)-symmetric filter, and letβ be the minimal
factor of σ

j . If βr + βi is odd, there is a(j, µ)-symmetric filterG(z) ∈ CZ(z) such that
H(z) = βG(z).

Proof. Consider the pair of coefficients(f, g) of H(z) with f = h[n] andg = h[2µ− n]
for indexn. Type(σ, µ) implies thatσ = f

g∗ and by Lemma 2.35 and Lemma 2.36 that
there is ap ∈ CZ such thatf = βp andg = βjp∗. This is applicable to all pairs(f, g),
and thereforeH(z) is divisible byβ and by application of Lemma 2.5G(z) is of type
(j, µ).

The next lemma shows that at least one minimal factor,α or β, is a divisor of filterH(z).
In Example 2.5 it will be shown that a minimal factor that doesnot satisfy the parity
condition can be a divisor.

Lemma 2.38. If α is the minimal factor ofσ, and β is the minimal factor ofσj , then
αr + αi is odd orβr + βi is odd.

Proof. It is proven that ifαr +αi is even, the alternativeβr +βi is odd. From the minimal
factor, Definition 2.6, it follows that, even parity ofαr + αi implies that bothαr andαi

are odd. From the definition of both minimal factors it follows β
β∗ = 1

j
α
α∗ = 1−j

1+j
α
α∗ .

Considerβ′ = (1− j)α. It is easy to verify that bothβ′r andβ′i are even, soβ′′ = 1−j
2 α ∈

CZ. Also gcd(β′′r , β′′i ) = 1 becauseα = (1 + j)β′′ and a common factor ofβ′′ is a
common factor ofα. Thereforeβ′′ = β is the minimal factor. Usingβ = 1−j

2 α directly
gives:βr + βi = αi is odd.

The proof of Theorem 2.2 on page 36 now is as follows.

Proof. By Lemma 2.38, eitherαr + αi is odd orβr + βi is odd. Therefore all possible
values ofσ ∈ CZ/CZ are covered by Lemma 2.34 and Lemma 2.37, and filterG(z) is
either of(1, µ)-symmetric forλ = α, or of (j, µ)-symmetric forλ = β.
Part 2 of the proof is: dividing(j, µ)-symmetric filterG(z) ∈ C(z) by (1 + j) gives a
(1, µ)-symmetric filter. ReducingG(z) overCZ is trivially possible ifG(z) ∈ C2Z(z),
what is implied by assumingH(z) ∈ C2Z(z).

The proof of the theorem is constructive and a procedure for filter reduction along the
lines of this proof will be discussed in the following section.

2.8.2 Reduction procedure

First the candidate filter for reduction is verified to be(σ, µ)-symmetric (Step1). From
this the minimal factors of the first and second kind,α andβ, are determined (Step2 and
Step3 respectively). The conditions of the minimal factors are verified and if found to be
satisfied, the reduction is performed (Step4 or Step5).

Step 1: Check thatH(z) is (σ, µ)-symmetric by determiningσn = h[n]
h∗[2µ−n] = σ for all

n, and choosep, q ∈ CZ such thatσ = p
q∗ .
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Step 2: Determine the minimal factor of the first kind,α:
if p + q 6= 0 takeh = p + q, otherwise takeh = jp. Now α = h

gcd(hr,hi)
.

In caseαr < 0 substituteα← −α, and in caseαr = 0 takeα = j.

Step 3: Determine the minimal factor of the second kind,β:
if p− jq 6= 0 takeh = p− jq, otherwise takeh = −jp. Now β = h

gcd(hr,hi)
.

In caseβr < 0 substituteβ ← −β, and in caseβr = 0 takeβ = j.

Step 4: If αr + αi is odd thenG(z) = H(z)
α is (1, µ)-symmetric (type5).

Step 5: If βr + βi is odd thenG(z) = H(z)
β is (j, µ)-symmetric (type7).

Although Theorem 2.2 is about reducing filtersH(z) ∈ CZ(z), it is trivially applicable to
filtersH(z) ∈ CZ/2i(z).

2.8.3 Reduction possibilities

Theorem 2.2 states that reduction of a(σ, µ)-symmetric filter to a(1, µ)- or (j, µ)-sym-
metric filter, is always possible. This is equivalent to the statement that at least one of
the minimal factors,α or β, is a divisor ofH(z). It is remarkable to see that properties
of the filtersHr|2(z) andHi|2(z), completely determine the reducibility of filterH(z) to
(1, µ)-symmetry, to(j, µ)-symmetry or to both types of symmetry.

Theorem 2.3(Reduction possibilities). LetH(z) ∈ CZ(z) have(σ, µ)-symmetry:

� if Hr|2(z) andHi|2(z) both have(1, µ)-symmetry, thenH(z) can be reduced with
a minimal factor of the first kind,

� if Hr|2(z) = z−2µHi|2(z−1), thenH(z) can be reduced with a minimal factor of
the second kind.

Proof. If (h[n] + h[2µ − n])|2 = 0 holds for alln, then according to Lemma 2.33 the
minimal factor of the first kind is a divisor ofH(z). This condition is equivalent to:
h[n]|2 = h[2µ − n]|2 holds for alln, which is equivalent toHr|2(z) andHi|2(z) both
have(1, µ)-symmetry. Similarly, if(h[n] − jh[2µ − n])|2 = 0 holds for all n, then
according to Lemma 2.36 the minimal factor of the second kindis a divisor ofH(z). This
condition is equivalent to:h[n]|2 = jh∗[2µ − n]|2 holds for alln, which is equivalent to
Hr|2(z) = z−2µHi|2(z−1).

2.8.4 Norms after reduction

In case a filter is reduced over the complex integers, the norms of the resulting filter and
its output signal may have become smaller. As a consequence the required number of bits
to represent the filter coefficients and the output signal maybe less.
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Theorem 2.4(Norms after reduction). If the (σ, µ)-symmetric filterH(z) ∈ CZ(z) is
reduced overCZ to H(z) = aG(z), and the input signal is given byX(z) ∈ C(z), then:

� the maximum absolute coefficient value of filterG(z) is at most the maximum ab-
solute coefficient value of filterH(z), i.e. ‖G(z)‖∞ ≤ ‖H(z)‖∞,

� the maximum absolute value of the output signalX(z)G(z) is at most the maximum
absolute value of the output signalX(z)H(z), i.e. ‖G(z)‖1 ≤ ‖H(z)‖1.

Proof. Since filterG(z) can be written asG(z) = 1
aH(z), Lemma A.14 and Lemma A.15

apply. By Lemma A.16, the1-norm of 1
a is at most1. The excluded case in Lemma A.16,

a = 0, relates to an unpractical case and therefore needs no consideration.

2.9 Examples

In this section two typical symmetric filters are discussed in more detail. Example 1
elaborates on the simplest possible non-trivial filter, andExample 2 discusses in detail the
reduction of a(σ, µ)-symmetric filter.

2.9.1 Example 1

Example 2.4. By means of two filters of length2, it is shown that a type7 filter may be
simpler than a type5 filter, while their frequency responses are similar.
A very simple(1, 1

2 )-symmetric filterH(z) ∈ CZ(z) is H(z) = (1 − j) + (1 + j)z−1,
and another very simple, perhaps the simplest possible non-trivial, (j, 1

2 )-symmetric filter
G(z) ∈ CZ(z) is G(z) = 1 + jz−1. For real-valued input signals, filterH(z) requires a
single delay element and two real additions, whereas filterG(z) requires a single delay
element and no addition, see Figure 2.3(a) and Figure 2.3(b)respectively.

z−1

?

6
- -

- -
−

Xr(z)

Yr(z)

Yi(z)

z−1

-

-

Xr(z)

Yr(z)

Yi(z)
(a) (b)

Figure 2.3: Example 1:(1, 1
2 )-symmetric filterH(z) (a) and(j, 1

2 )-symmetric
filter G(z) (b).

It follows directly thatH(z) = (1− j)G(z) and that their frequency responses are similar.
Both filters have their zero atz0 = −j. In Figure 2.4 the amplitude- and phase responses
of both filters,H(z) (dashed line) andG(z) (solid line), are shown. The magnitude
responses differ,|1− j| =

√
2 ≈ 3 dB, and from the phase response plots, the phase shift

P(1− j) = −π
4 is clearly visible.
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−π 0 π
θ →

20|H(ejθ)| ↑
|G(ejθ)|

[dB]

0

−20

−40

(a)

−π 0 π
θ →

0

πP
(
H(ejθ)

)
↑

P
(
G(ejθ)

)

[rad]

−π

(b)

Figure 2.4: Example 1: Frequency responses of filtersH(z) (dashed line) and
G(z) (solid line).

Whether filterG(z) may be used depends on its application: are the differences in gain
and phase acceptable or not.
End of example

2.9.2 Example 2

Example 2.5. In this example the reduction of a(σ, µ)-symmetric filterH(z) ∈ CZ/2i(z)
to a(1, µ)- or a(j, µ)-symmetric filter is illustrated according to the proceduredescribed
in Section 2.8. The arithmetic costs of the original and alternative filters are compared and
it is found that the alternative filters require significantly less additions than the original
filter.

Filter specification Consider the following filter specification. The non-causalcomplex
filter H(z) should have(−4+j3

5 , 0)-symmetry, a passband gain of0 dB, a passband ripple
of 1 dB and a stopband gain of−50 dB. The passband ranges fromθ = −0.2π through
θ = 0.4π and the stopband ranges fromθ = 0.6π throughθ = 1.6π. The lengthL =
17 filter H(z) ∈ CZ/213(z), with the scaled coefficients listed in Table 2.3, meets the
specification.
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n h′r[n] h′i[n] g′β,r[n] g′β,i[n] g′α,r[n] g′α,i[n]

-8 21 -67 -5 -31 -18 -13
-7 82 -114 10 -62 -26 -36
-6 28 -16 8 -12 -2 -10
-5 -315 115 -103 109 3 106
-4 -648 16 -256 136 -60 196
-3 -312 -86 -142 28 -57 85
-2 704 512 384 64 224 -160
-1 1377 1871 925 473 699 -226
0 944 2832 944 944 944 0
1 21 2323 473 925 699 226
2 -256 832 64 384 224 160
3 198 -256 28 -142 -57 -85
4 528 -376 136 -256 -60 -196
5 321 -97 109 -103 3 -106
6 -32 4 -12 8 -2 10
7 -134 -42 -62 10 -26 36
8 -57 -41 -31 -5 -18 13

Table 2.3: Example 2: Coefficients of the filtersH ′(z), G′β(z), G′α(z).

The magnitude- and phase responses of filterH(z) are presented in Figure 2.5. Clearly
the magnitude response is non-symmetric aroundθ = 0, implying the complex filter
coefficients. The phase response toggles between the valuesP(σ)

2 andP(σ)
2 − π which is

consistent with Lemma 2.23 forσ = −4+j3
5 andµ = 0.

Filter reduction Because Theorem 2.2 applies to filters with complex-integercoeffi-
cients only, a scaled version of the filterH(z) will be used:H ′(z) = 213H(z) ∈ CZ(z).
After completion of the reduction process the original scaling can be restored trivially.
The17 coefficientsh′[n] = h′r[n] + jh′i[n] ∈ CZ of filter H ′(z) are listed in Table 2.3
column2 and3. It can be verified (Step1) that the shape of symmetry isσ = −4+j3

5 ,
the minimal factor of the first kindα = 1 + j3 (Step2), with αr + αi is even, and that
minimal factor of the second kindβ = 2 + j (Step3), with βr + βi is odd. According to
Step5 of the reduction procedure, the filterG′β(z) = H′(z)

β ∈ CZ(z) has(j, 0)-symmetry,

which also follows from Theorem 2.3 sinceH ′r|2(z) = H ′i |2(z−1). The coefficients
g′β[n] = g′β,r[n] + jg′β,i[n] ∈ CZ of filter G′β(z) are listed in Table 2.3 column4 and5.

The procedure does not indicate that reduction to(1, 0)-symmetry is also possible (Step4).
However it is straightforward to check that the filtersH ′r|2(z) andH ′i |2(z) both have
(1, 0)-symmetry, so that also minimal factor of the first kindα is a divisor of filterH ′(z),

see Theorem 2.3. The coefficients of filterG′α(z) = H′(z)
α ∈ CZ(z) are listed in Table 2.3

column6 and7.
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−π 0 π
θ →

0
|H(ejθ)| ↑

[dB]

−50

(a)

−π 0 π
θ →

πP
(
H(ejθ)

)
↑

[rad]

0

−π

← P(σ)
2

← P(σ)
2
− π

(b)

Figure 2.5: Example 2: Frequency response of filterH(z).

Cost comparison In general it depends on the filter application whether the filter is
best implemented on a general purpose processor or in dedicated hardware. Here it is
assumed that the costs of the individual multiplications for the real and imaginary parts
of the complex coefficients should be minimized, by using shift-and-add operations only,
i.e., the Canonical Signed Digits or CSDs, see [86] [120]. InAppendix E alternatives for
the CSDs are discussed in detail.
It can be checked that the17 complex-integer coefficients of the filtersH ′(z), G′β(z) and
G′α(z) require63, 50 and56 integer additions respectively (not exploiting symmetry).
The additions that are part of the transversal filter structure are not counted for. The
symmetry in the filtersG′β(z) andG′α(z) can be used to reduce the required number of
additions for these sets of coefficients to25 and29 respectively. Note that in case the
input to the filters is complex, every coefficient has to be used twice. The comparison
of costs is not affected by this. The number of additions required for the scale factorsβ
andα, are2 and4 respectively.
Besides the application of the reduction procedure, this example also shows that(1, µ)-
and (j, µ)-symmetric filters can save in the arithmetic complexity compared to(σ, µ)-
symmetric filters, even when symmetry is not exploited. It isalso clear that(j, µ)-
symmetric filters may be more efficient than(1, µ)-symmetric filters, and therefore are
worthwhile to consider when designing filters.
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Norms Inspection of Table 2.3 gives:

‖H ′(z)‖1 = ‖H ′r(z)‖1 + ‖H ′i (z)‖1 = 5978 + 9600 = 15578,

‖G′β(z)‖1 = ‖G′β,r(z)‖1 + ‖G′β,i(z)‖1 = 3692 + 3692 = 7384,

‖G′α(z)‖1 = ‖G′α,r(z)‖1 + ‖G′α,i(z)‖1 = 3122 + 1664 = 4786,

‖H ′(z)‖∞ = max (‖H ′r(z)‖∞, ‖H ′i (z)‖∞) = max(1377, 2832) = 2832,

‖G′β(z)‖∞ = max
(
‖G′β,r(z)‖∞, ‖G′β,i(z)‖∞

)
= max(944, 944) = 944,

‖G′α(z)‖∞ = max
(
‖G′α,r(z)‖∞, ‖G′α,i(z)‖∞

)
= max(944, 226) = 944.

It can be checked that
∥∥ 1

α

∥∥
1

= 0.4 and
∥∥∥ 1

β

∥∥∥
1

= 0.6 and that the results are consistent

with Theorem 2.4, and also with Lemma A.14 and Lemma A.15. Thenumber of bits
needed for a2-complement representation of the coefficients of the filtersH ′(z), G′β and
G′α are13, 11 and11 respectively.
End of example

2.10 Filter design

According to [64] only type5 filters need to be designed, since any other type can be
obtained by proper scaling of a type5 filter, i.e.,(1, µ)-symmetric, see also Theorem 2.1.
This is stated for symmetric filters with unquantized coefficients,H(z) ∈ C(z). In this
section it will be shown by using results of the previous sections, that the same is true for
symmetric filters with quantized coefficients,H(z) ∈ CZ/2i(z).

Definition 2.8 (Filter design specification). S is the set of all allowed magnitude re-
sponses of a filter that has to be designed.

Next, it is shown how a type6, 7, 8 or 9 filter H(z), with quantized coefficients and
|H(z)| ∈ S, can be designed.

type 6: Design filterH(z) ∈ CZ/2i(z) to be type6, i.e.,(−1, µ)-symmetric. First design
type5 filter G(z) ∈ CZ/2i(z) with |G(z)| ∈ S, and then takeH(z) = jG(z).

type 7: Design filterH(z) ∈ CZ/2i(z) to be type7, i.e., (j, µ)-symmetric. First design
type5 filter G(z) ∈ CZ/2i(z) with |G(z)| ∈ S√

2
, and then takeH(z) = (1+j)G(z).

type 8: Design filterH(z) ∈ CZ/2i(z) to be type8, i.e.,(−j, µ)-symmetric. First design
type5 filter G(z) ∈ CZ/2i(z) with |G(z)| ∈ S√

2
, and then takeH(z) = (1−j)G(z).

type 9: Design filterH(z) ∈ CZ/2i(z) to be type9, i.e.,(σ, µ)-symmetric. According to
Theorem 2.2, any filterH(z) can be obtained from either a type5 or a type7 filter.
And a type7 filter can be obtained from a type5 filter.

The first possibility is to design a type5 filter G(z) ∈ CZ/2i(z) for use with the
minimal factorα ∈ CZ, as|G(z)| ∈ S

|α| . Finally takeH(z) = αG(z).
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The second possibility is to design a type5 filter G(z) ∈ CZ/2i(z) for conversion
to a type7 filter and minimal factorβ ∈ CZ, as |G(z)| ∈ S√

2|β| . Finally take

H(z) = (1 + j)βG(z).

A consequence of scaling a type5 complex-integer filter with a scale factor like(1 + j),
(1 − j), α or (1 + j)β, is that some of the resulting coefficients may have less resolution
than allowed. This may be prevented by designing the original type 5 complex-integer
filter with increased resolution, then perform the scaling,and finally check the resulting
resolution.

2.11 Structural-transmission-zero identities

For real symmetric filters it is well-known that, except for type 1, all other types have
transmission zeros, independent of the actual value of the coefficients, they are simple-
structural. In this section it is shown that complex symmetric filters have no simple-
structural transmission zeros.

Definition 2.9. z0 is a transmission zeroof filter H(z) ∈ C(z) iff H(z0) = 0 and
|z0| = 1.

Definition 2.10. z0 is a simple-structural zeroof filter H(z) ∈ C(z) iff H(z0) = 0 and
z0 depends only on simple relations (equal or opposite) between the coefficients ofH(z).

2.11.1 Real filters

In this section the presence of simple-structural transmission zeros and the possibility to
factorize any type2, 3 or 4 filter in a cascade connection of a type1 filter and a filter
representing the simple-structural transmission zeros only, will be shown by using Defi-
nition 2.1 for symmetry and Definition 2.3 for the types of filters.

Lemma 2.39. If filter H(z) is a type1 filter, then filterH(z) has no simple-structural
transmission zero.

Proof. From Lemma 2.26 it is known thatHzp(θ) = h[µ] + 2
∑

n<µ h[n] cos(θ(µ −
n)). Sinceµ ∈ Z the termh[µ] exists. Leth[µ] > 2

∑
n<µ |h[n]| thenH(z) has no

transmission zeros and thereforeH(z) has no simple-structural transmission zeros.

Lemma 2.40. If filter H(z) is a type2 filter, then:

H(z) = (1 + z−1)G(z) and filterG(z) is a type1 filter.

If filter H(z) is a type4 filter, then:

H(z) = (1− z−1)G(z) and filterG(z) is a type1 filter.
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Proof. Filter H(z) is (±1, µ)-symmetric withµ ∈ Z + 1
2 andH(z) ∈ R(z). Defin-

ing µ = k + 1
2 with k ∈ Z and using the Definition 2.1 for symmetry, givesH(z) =

±z−2k−1H(z−1). Forz = ∓1 this results inH(∓1) = −H(∓1) implying H(∓1) = 0.
Now H(z) can be factorized asH(z) = (1± z−1)G(z), with filter (1± z−1) is (±1, 1

2 )-
symmetric, filterG(z) is (1, µG)-symmetric,µG = µ − 1

2 ∈ Z, see Lemma 2.3, and
G(z) ∈ R(z). From this it follows thatG(z) is a type1 filter.

Lemma 2.41. If filter H(z) is a type3 filter, then:

H(z) = (1 + z−1)(1 − z−1)G(z) = (1− z−2)G(z) and filterG(z) is a type1 filter.

Proof. Filter H(z) is (−1, µ)-symmetric withµ ∈ Z and H(z) ∈ R(z). Using the
Definition 2.1 for symmetry, givesH(z) = −z−2µH(z−1). For z = −1 this results in
H(−1) = −H(−1) implying H(−1) = 0 and forz = 1 this results inH(1) = −H(1)
implying H(1) = 0. Now H(z) can be factorized as:H(z) = (1 + z−1)(1− z−1)G(z),
with filter (1 + z−1) is (1, 1

2 )-symmetric, filter(1 − z−1) is (−1, 1
2 )-symmetric, filter

G(z) is (1, µG)-symmetric,µG = µ − 1 ∈ Z, see Lemma 2.3, andG(z) ∈ R(z). From
this it follows thatG(z) is a type1 filter.

In Figure 2.6 the corresponding cascade connections of filters are shown. The coefficients
of filter Gi(z) differ from the coefficients of filterHi(z) what can be beneficial when cost
have to be minimized.

- H4(z) - = - G4(z) - 1− z−1 -

- H3(z) - = - G3(z) - 1− z−2 -

- H2(z) - = - G2(z) - 1 + z−1 -

- H1(z) -

type4:

type3:

type2:

type1:

Figure 2.6: Possible factorization in case of type1, 2, 3 and4 real linear-phase
filters, applying the structural-transmission-zero identities.

2.11.2 Complex filters

It is shown that symmetric complex filters have no simple-structural zeros, although the
constituting real filters may have.

Lemma 2.42. Let filter H(z) ∈ C(z) be a (σ, µ)-symmetric filter thenH(z) has no
structural transmission zero.
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Proof. Consider filterG(z) = H(z)√
σ

that is(1, µ)-symmetric. BothG(z) andH(z) have

the same zeros since|√σ| = 1. Therefore proving thatG(z) has no structural trans-
mission zeros is sufficient to proof thatH(z) has no structural transmission zeros. By
Lemma 2.27,G(z) = Gr(z) + jGi(z) with Gr(z) is (1, µ)-symmetric andGi(z) is
(−1, µ)-symmetric. In caseµ ∈ Z, the filtersGr(z) andGi(z) are type1 and type3
respectively. Type1 filters have no structural transmission zeros, Lemma 2.39, and there-
fore filterG(z) has no structural transmission zeros. In caseµ ∈ Z + 1

2 , the filtersGr(z)
andGi(z) are type2 and type4 respectively. Type2 filters have a structural transmis-
sion zero atz = −1 and type4 filters have a structural transmission zero atz = 1,
Lemma 2.40. Both zeros are different and therefore filterG(z) has no structural transmis-
sion zeros.

Of course a complex symmetric filter can have transmission zeros but these are fully
determined by the values of the coefficients and not by possible shape of symmetry or
center of symmetry.

2.12 Conclusion

A generalized definition of symmetry for FIR filters, with real or complex-valued coeffi-
cients, has been presented and discussed abundantly. This(σ, µ)-symmetry, with shape of
symmetryσ, σ ∈ C and|σ| = 1, and center of symmetryµ, µ ∈ Z/2, is applicable to the
4 well-known types of linear-phase filters with real-valued coefficients, and treats even-
and odd-length filters in a unified manner. With respect to thefilters with complex-valued
coefficients,5 new types have been defined. The type5, 6, 7 and8 symmetric filters, with
σ = 1, σ = −1, σ = j andσ = −j respectively, exhibit simple relations between the
individual real and imaginary parts of the complex coefficients, such that the symmetry
and therefore the linear-phase property are simple structurally guaranteed. These simple
relations are invariant under quantization and as a consequence implementations can be
made simpler. In Chapter 4, the transversal structures thatexploit symmetry are addressed
in detail.
In close relation to symmetry the concept of mirroring is introduced. It is shown that two
mutually mirrored filters with a common input or output can bereplaced by two symmet-
ric filters and a combination network, and vice versa. This isan important property that
is key in the process of restoring symmetry in polyphase structures as treated in Chap-
ter 5. Furthermore a new theorem is presented that states that any type9 symmetric filter
with complex-integer-valued coefficients, can be reduced over the complex integers into
a type5, 6, 7 or 8 symmetric filter. Based on this property it is also shown thatany type6,
7, 8 or 9 symmetric filter, with complex-integer-valued coefficients, can be designed by
first designing a type5 filter with complex-integer-valued coefficients, and an appropriate
complex-integer scale factor. Finally it is shown that complex (σ, µ)-symmetric filters do
not have simple-structural transmission-zeros, unlike the real symmetric filters.
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Chapter 3

First- and second-order filters

Complex filters in general,H(z) ∈ C(z), have the possibility to position their zeros
independently at any place in thez-plane. In case the filter coefficients are quantized like
H(z) ∈ CZ(z), and limited in magnitude like‖H(z)‖∞ ≤ Ξ, the possible zero-locations
are limited too.
This chapter discusses the possibilities of first- and second-order complex filters, to place
their zeros in thez-plane, under the restrictions as mentioned before, in moredetail.
In addition it is shown that the newly defined(j, µ)-symmetric complex filters, may be
beneficial over the(1, µ)-symmetric complex filters depending on the given specification.
The first- and second-order filters are treated in Section 3.1and Section 3.2 respectively.

3.1 First order

In general, the system function of a first-order complex FIR filter H(z) ∈ C(z) is
given by:

H(z) = h[0] + h[1]z−1.

The location of the single zero can be anywhere in thez-plane, and is given by:z0 =

−h[1]
h[0] . For H(z) ∈ CZ/2i(z), and a givencoefficient rangeΞ, so‖H(z)‖∞ ≤ Ξ, the

possible zero-locations,z0, are limited. In Figure 3.1 the possible locations are shown
for the filterH(z) ∈ CZ(z) and a set of coefficient ranges, viz.,Ξ ∈ {1, 2, 4, 8}. Only
the zero-locations in the first quadrant of thez-plane and not outside the unit circle are
shown, since the other are similar, see Lemma 3.1.

Lemma 3.1. If z0 is a zero from the filterH(z) ∈ CZ(z), then: z∗0 is a zero from
filter H∗(z), −z0 is a zero from filterH(−z) and z−1

0 is a zero from filterH(z−1),
with ‖H(z)‖∞ = ‖H∗(z)‖∞ = ‖H(−z)‖∞ = ‖H(z−1)‖∞ and H∗(z), H(−z),
H(z−1) ∈ CZ(z).

Proof. The effect of the various operations on the zero-locations can be easily veri-
fied. The operations also leave the∞-norm invariant, and map the coefficients from
CZ into CZ.
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0 1
ℜ →

0

1ℑ ↑

(a) Ξ = 1

0 1
ℜ →

0

1ℑ ↑

(b) Ξ = 2

0 1
ℜ →

0

1ℑ ↑

(c) Ξ = 4

0 1
ℜ →

0

1ℑ ↑

(d) Ξ = 8

Figure 3.1: Possible zero-locations of first-order filterH(z) ∈ CZ(z) with
‖H(z)‖∞ ≤ Ξ for Ξ ∈ {1, 2, 4, 8}.

From these examples it follows that if the values of the individual real and imaginary parts
of the coefficients are limited tohr[0], hi[0], hr[1], hi[1] ∈ {0,−1, 1,−j, j}, i.e.,Ξ = 1,
the zeros are positioned atθ = 0 and π

2 on the unit circle or atθ = π
4 inside the unit

circle. For larger values ofΞ more zero-locations are found, but at a relatively large
distance from zero-locations found for small values ofΞ. This behaviour is similar for
zerosz0 both inside and on the unit circle.
Of particular interest are the zeros located on the unit circle, since these introduce a large
attenuation in their vicinity and therefore are of value when designing low cost filters.
First, a lemma about the symmetry of first-order filters with their zero on the unit circle is
presented.

Lemma 3.2. The filterH(z) = h[0] + h[1]z−1 with H(z) ∈ C(z) has its zero,z0, on the
unit circle iff that filterH(z) is (σ, 1

2 )-symmetric, withσ = h[1]
h∗[0] and|σ| = 1.

Proof. The proof follows directly from the fact that for a zero to be on the unit circle
holds:|z0| = 1 or |h[0]| = |h[1]|, and from the definition for symmetry.

The position of that single zero,z0, on the unit circle, i.e., the angle or relative frequency
θ0, is given in the next lemma.
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Lemma 3.3. The(σ, 1
2 )-symmetric filterH(z) = h[0] + σh∗[0]z−1 has its zero at:

θ0 = P(σ) + 2 arctan
(hr[0]

hi[0]

)
.

Proof. For the zeroz0 = −σh∗[0]
h[0] the relative frequency is:

θ0 = P(z0),

= π + P(σh∗[0])− P(h[0])

= π + P(σ)− 2 arctan
(hi[0]

hr[0]

)

= P(σ) + 2 arctan
(hr[0]

hi[0]

)
.

For the type5 filter H(z) ∈ CZ(z), H(z) = h[0] + h∗[0]z−1, the possible relative
frequenciesθ0 of the zeroz0 are determined for a range of coefficient rangesΞ, such
that‖H(z)‖∞ ≤ Ξ, see Figure 3.2(a). Only the relative frequencies in the first quadrant,
0 ≤ θ0 ≤ π

2 , are shown, since the other are similar, see Lemma 3.1.
It is trivial that if a particularθ0 is possible for a particular coefficient rangeΞ0, the same
θ0 is also possible for any coefficient rangeΞ ≥ Ξ0. This explains the vertical lines in the
plot. From this plot it can in principle be derived what the minimal∞-norm of a filter is,
if a zero should be located at a particular relative frequency.
From this plot it is also clear that the value ofΞ has to be increased significantly to obtain
a relative frequency close to one obtained for a small value of Ξ. Note that an increased
range or resolution generally implies an increased cost of the implementation.
In the plot of Figure 3.2(a), clear envelopes are recognized, some of these are presented
with dashed lines. Envelopes that relate toh[0] ∈ {j, 1+j, 1+j2, 1+j3, 2+j3, 1+j4, 3+j4}
are plotted. The plot in Figure 3.2(a), clearly shows thatθ0 = π

2 can be approached
better for a particular maximum coefficient range thanθ0 = 0. An expression for these
envelopes is given in Lemma 3.5, but first an extra lemma is introduced.

Lemma 3.4. For the given ratioy0

x0
, the error of the approximation ratioyx 6=

y0

x0
, is

bounded by:
∣∣∣
y

x
− y0

x0

∣∣∣ ≥ 1

Ξx0
,

assuming that:y0, y ∈ Z, x0, x ∈ N+ andx0, |y0|, x, |y| ≤ Ξ.

Proof. Sincex0y − xy0 ∈ Z\{0}, for the error holds:
∣∣ y
x −

y0

x0

∣∣ = |x0y−xy0|
xx0

≥ 1
xx0
≥

1
Ξx0

. In casegcd(x0, y0) = 1 there existx andy such that|x0y− xy0| = 1 (Euclid).

The envelopes are described in the next lemma.

Lemma 3.5. The envelopes for the type5 filter around θ0 = 2 arctan
(hr[0]

hi[0]

)
with

gcd(hr[0], hi[0]) = 1, are:

Ξ(θ) =
∣∣hi[0] tan( θ

2 )− hr[0]
∣∣−1

.
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0 π
4

π
2

θ →

1
4

8

16

32Ξ ↑

(a)

0 π
4

π
2

θ →

1
4

8

16

32Ξ ↑

(b)

Figure 3.2: Possible relative frequencies of the zeros on the unit circle of first-
order complexH(z), shown for type5 filters in (a) and type5, 6, 7
and8 filters in (b).

Proof. Since thearctan-function is monotonic, and based on Lemma 3.3 and Lemma 3.4,
the two bounds can be described with:

θ = 2 arctan
(hr[0]

hi[0]
± 1

hi[0]Ξ

)
,

what is equivalent to the expression in the lemma usingΞ ≥ 0.

It is easy to see that the plots for type5 and6 filters are identical, use the substitution
H(z) ← jH(z). Similarly, the plots for the type7 and8 filters are identical and can be
obtained from the plot for type5 by mirroring aroundθ = π

4 .
The zeros on the unit circle that can be realized with a particular value ofΞ, with either
a type5, 6, 7 or 8 filter, are depicted in Figure 3.2(b). The envelopes forθ0 = 0 in case
of type5 (6) and type7 (8) filters are plotted too. This plot now clearly shows that for
zero locations close toθ0 = 0, type7 filters can deal with a smaller coefficient range
than type5 filters can. This is another example that shows the relevanceof type7 (and8)
filters. From Theorem 2.2 and Theorem 2.4, it follows that therequired coefficient range
for a type9 filter is at least the coefficient range of a type5, 6, 7 or a type8 filter. As a
consequence the type9 filters are not relevant to consider here.
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The amplitude responses of all first-order type5 filters are identical except for a scale
factor and a frequency shift, where the frequency shift is determined by the location of
the zero. For a given application it may be necessary to realize a particular attenuation
at a particular frequency. As illustrated in Figure 3.1 and Figure 3.2, the possibilities to
locate zeros on the unit circle strongly depend on the allowed coefficient range. As a con-
sequence, the maximum attenuation that can be realized at a particular frequency depends
on the allowed coefficient range. This all is illustrated fora type5 filter in Figure 3.3.
Consider the complex-integer, first-order(1, µ)-symmetric filteri, with coefficient range
Ξ, i.e.,HΞ,i(e

jθ) ∈ CZ(z) and‖HΞ,i(z)‖∞ ≤ Ξ. First all filters are normalized to have a
maximum gain equal to 1 (0 dB), to enable comparison:

HΞ,i(e
jθ) =

HΞ,i(e
jθ)

maxθ

∣∣HΞ,i(ejθ)
∣∣ .

Finally, the minimal possible gain, or the maximal possibleattenuation, over all filtersi
is determined as:

ĤΞ(ejθ) = min
i

∣∣HΞ,i(e
jθ)

∣∣.

Now, for a set of coefficient ranges the minimal possible gains are depicted in Figure 3.3.
From this all it is immediately clear that for a desired attenuation the required coefficient
range strongly depends on the frequency for which that attenuation has to be realized.

0 π
4

π
2

θ →

0
ĤΞ(ejθ) ↑

[dB]

−20

−40

−60

Figure 3.3: Minimal possible gain for the first-order type5 filter H(z) ∈ CZ(z)
with Ξ ∈ {1, 2, 4, 8, 16, 32}. A darker area relates to a largerΞ.

3.2 Second order

Similarly as for the first-order case, second-order FIR filters with both zeros on the unit
circle are considered. For a given maximum coefficient range, the possibilities to locate
zeros on the unit circle are evaluated. In general the systemfunction of a second-order
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complex FIR filterH(z) ∈ C(z) is given by:

H(z) = h[0] + h[1]z−1 + h[2]z−2.

The location of the zero-pairs can be anywhere in thez-plane, and is given by:

(z0, z1) =
−h[1]±

√
h2[1]− 4h[0]h[2]

2h[0]
.

ForH(z) ∈ CZ/2i(z), and a givenΞ for the coefficient range, the possible zero-locations,
(z0, z1), are limited.
By the fact that a first-order filter with its zero located on the unit circle is(σ0,

1
2 )-

symmetric, see Lemma 3.2 and Lemma 2.3, any second-order FIRfilter with both zeros
on the unit circle is(σ, 1)-symmetric.
The type6 and8 filters can be obtained by multiplying type5 and7 filters respectively,
with the factorj, that does not change the possible zero-pairs nor the coefficient range.
Similarly as for the first-order filters, by Theorem 2.2 and Theorem 2.4 the coefficient
range of type9 filters is at least the coefficient range of the type5, 6, 7 or a type8 filters.
As a consequence the type9 filters are not relevant in this case.

Lemma 3.6. Let H(z) = h[0] + h[1]z−1 + h[2]z−2 ∈ C(z) be (σ, 1)-symmetric and
(θ0, θ1) be the relative frequencies of the zero-pair(z0, z1) on the unit circle, then:

θ0 + θ1 = arctan
(σi

σr

)
− 2 arctan

(hi[0]

hr[0]

)
,

θ0 − θ1 = 2 arccos
( h[1]

2
√

σ|h[0]|
)

note that
h[1]√

σ
∈ R.

Proof. SinceH(z) is (σ, 1)-symmetric introducea = h[0] andb = h[1]√
σ

with a ∈ C and

b ∈ R, see Lemma 2.1 and Lemma 2.2, giving:H(z) = a + b
√

σz−1 + a∗σz−2. Now
the general expression for(z0, z1) can be rewritten as:

(z0, z1) =

√
σ

2a

(
−b± j

√
4|a|2 − b2

)
,

with 4|a|2 ≥ b2 placing both zeros on the unit circle. The related relative frequencies are:

(θ0, θ1) =
1

2
arctan

(σi

σr

)
− arctan

( ai

ar

)
∓ arctan

(√
4|a|2 − b2

b

)
.

Using the identitycos(x) = 1√
1+tan2(x)

, and the expressions fora andb, concludes the

proof.

In Figure 3.4 the possible pairs of frequencies where the zeros can be located on the unit
circle, (θ0, θ1), are shown forH(z) ∈ CZ(z) andΞ ∈ {1, 2, 4}. The left column relates
to type5 and6 filters, and the right column to type7 and8 filters. From this plots it can be
observed that for the sameΞ-value, type5 and7 filters can have different pairs(θ0, θ1).
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−π 0 π
θ0 →

−π

0

πθ1 ↑

(a) Ξ = 1

−π 0 π
θ0 →

−π

0

πθ1 ↑

(b) Ξ = 1

−π 0 π
θ0 →

−π

0

πθ1 ↑

(c) Ξ = 2

−π 0 π
θ0 →

−π

0

πθ1 ↑

(d) Ξ = 2

−π 0 π
θ0 →

−π

0

πθ1 ↑

(e) Ξ = 4

−π 0 π
θ0 →

−π

0

πθ1 ↑

(f) Ξ = 4

Figure 3.4: Possible zero locations(θ0, θ1) on the unit circle for a second-
order filter with complex-integer coefficients, type5 and 6 (left),
and type7 and8 (right).

Also, the patterns for type5 and type7 are not mirrored versions as in the first-order case.
The values ofθ0 + θ1, however, are shifted overπ4 (evaluate Lemma 3.6 forσ = 1 and
σ = j).

From comparing Figure 3.2 and Figure 3.4 it is clear that for the sameΞ-value, a second-
order filter has more possibilities to place zeros on the unitcircle than a cascade of two
first-order filters.
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To make filters with wider stopbands the zeros should be close, i.e., small values for
|θ0 − θ1|. Except for a limited number of double zeros,θ0 = θ1, the minimum distance
between zeros,|θ0 − θ1|, is relatively large. In Figure 3.5 these minimum distancesare
plotted for a range ofΞ.

12 4 8 16 32
Ξ→

0

π
2

π|θ0 − θ1| ↑

Figure 3.5: Minimum distance between zeros on the unit circle for a second-
order filter, except double zeros, for type5 and6 (solid line), and
type7 and8 (dashed line) filters.

From the plot it follows that for type5 and6 filters the coefficient range should be about
twice the coefficient range for type7 and8 filters, when two zeros should be placed at the
same distance.

3.3 Conclusion

In this chapter the possibilities of first-order and second-order symmetric filters with quan-
tized coefficients, to position their zeros on the unit circle, have been elaborated. It has
been shown that for a given coefficient range, the type7 and8 filters can place their zeros
at different locations than the type5 and6 filters can. Also for the second-order filters,
the type7 and8 filters can place their zeros closer to each other than the type 5 and6
filters can.



Chapter 4

Transversal and complex
structures

Among the various FIR filter structures like the lattices andladders, the transversal struc-
ture is popular for many reasons, e.g.:

� The coefficients are identical to the elements of the impulseresponse, which is
an important issue in the filter design process, and also can simply guarantee the
linear-phase property, see Chapter 2.

� The coefficients are invariant under the polyphase decomposition for multirate fil-
ters, see Chapter 5. The subfilters or polyphase components (PPCs) resulting from
this conversion, again can be transversal filters.

� In case of high speed applications, i.e., a high sampling rate, the transversal filter is
very suitable, since the method of pipelining can be incorporated in a straightfor-
ward way, see Appendix B.

Of course, the transversal filter can also be used as a building block in composed fil-
ter structures, e.g., cascades of filters [43], Interpolated FIR (IFIR) structures [98] and
frequency masking structures [83].
For the purpose of making filter structures more efficient in terms of costs, this chapter
shows how(σ, µ)-symmetry can appear in the transversal structure, and how it can be
exploited. This is an overview of known structures and structures inspired by the novel
definition for symmetry. The fact that two filters have inputsor outputs in common can
be exploited too, and various alternatives to decompose complex filters or coefficients
into their individual real and imaginary parts, are discussed and compared in detail. Also
new structures for efficiently combining conjugate coefficients have been found and sub-
sequently involved in a detailed comparison of computational costs of filters.
In this chapter, first the two well-known transversal structures are presented in Section 4.1.
In these structures both the signals and the filter components, i.e., the delay elements,
adders and multipliers, are considered to be complex. Basedon these two structures some
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special structures are treated in case a filter is complex or real (σ, µ)-symmetric, or two
filters have a common input or output, see Section 4.2, Section 4.3 and Section 4.4 re-
spectively. Although the filters and their input and output signals may be assumed to be
complex, for an actual implementation of such filter structure somehow a translation has
to be made to real components. In the remainder of this chapter two possible approaches
are supported. The first approach is presented in Section 4.5, where the complex filters
and signals are decomposed into their individual real and imaginary parts. The result-
ing subfilters (their constituting components) and their signals are now assumed to be
real. Also some alternative decompositions are discussed.Some alternative structures
for (σ, µ)-symmetric filters are discussed in Section 4.6. The second approach is that the
complex components of the filters are decomposed into their individual real and imagi-
nary parts. The resulting subcomponents and their signals are now assumed to be real.
Complex additions, subtractions and delays are trivially constructed of2 real additions,
subtractions and delays of the real and imaginary signal parts respectively. For the com-
plex coefficients, the notion is used that the complex scale factors form a subset from the
complex filters, and hence the alternative structures for complex filters, as discussed be-
fore, can be used for the complex scale factors too. This notion is also used in Appendix E
to find low cost constructions for coefficients. In Section 4.7, new efficient structures for
complex conjugated coefficients with a common input or output are presented for use
with symmetric filters. The several methods to implement a complex, possibly symmet-
ric, transversal filter structure as discussed in this chapter, are compared in Section 4.8
with respect to the required number of real multiplicationsand real additions.
In this chapter many filter structures are presented by meansof an example scheme that
by its nature is just one of the many possibilities. However from these examples it is clear
how the structure can be adapted to the problem at hand.

4.1 Transversal structures

Thez-domain description or system function of a FIR filterH(z) ∈ C(z), is a polynomial
in z−1, like:

H(z) =
∑

n

h[n]z−n,

with h[n] ∈ C for all n. For the filterH(z) with all its coefficients outside the range
0 ≤ n < L equal to zero, the polynomial can be rewritten as:

H(z) =

L−1∑

n=0

h[n]z−n

= h[0] + z−1
(
h[1] + z−1

(
h[2] + z−1

(
· · ·+ z−1h[L− 1]

)))
,

which is an efficient form for evaluating polynomials according to Horner’s scheme [138].
From this scheme it is known that it requires the minimal number of multiplications with
z−1, which corresponds to a minimal number of delay elements. Two differenttransversal
filter structures can be derived. In the first structure the output signal of the transversal
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filter can be seen as the weighted sum of delayed versions of the input signal. In the
second structure the output signal can be seen as the delayedsum of weighted versions of
the input signal. The weighting factors are the filter coefficients. For a further explanation
consider the following example.

Example 4.1. Assume the filterH(z) ∈ C(z) to be:

H(z) = 〈a, b, c, d, e〉
= a + z−1(b + z−1(c + z−1(d + z−1e))).

It is easy to check that the structures from Figure 4.1(a) andFigure 4.1(b) implement filter
H(z). Note that the signals as well as the components (delays, adders and multipliers)
may be complex.

- - - - -? ? ? ?

? ? ? ? ?
z−1 z−1 z−1 z−1

a b c d e

- - - - -? ? ? ?

? ? ? ? ?

z−1 z−1 z−1 z−1

e d c b a(a) (b)

Figure 4.1: Two alternative transversal filter structures: tapped delay line (a)
and adding delay line (b).

End of example

The delay line as used in Figure 4.1(a) is called atapped delay line, whereas the delay
line as used in Figure 4.1(b) is called anadding delay line. An advantage in case of a
hardware implementation of the adding delay line, is the so called free pipelining. See
Appendix B for a brief introduction to the concept of pipelining.
In general, the complex transversal filter, with a tapped or adding delay line, requires per
input sampleL complex multiplications of complex data with a complex coefficient,L−1
complex additions andL − 1 complex delay elements. In case of symmetry, combining
coefficients may reduce arithmetic costs, which will be discussed in the next two sections.

4.2 Complex(σ, µ)-symmetric transversal

Any FIR filter H(z) ∈ C(z), can be implemented by means of the transversal structures
as shown in Figure 4.1. In case of a(σ, µ)-symmetric filter however, some special con-
structions are possible. In this section these constructions are discussed and explained by
means of some examples.
From Lemma 2.5 it follows that any(σ, µ)-symmetric filterH(z) can be factorized in the
factor

√
σ and a(1, µ)-symmetric filter. In the following example this is illustrated for an

L = 5 filter.

Example 4.2. By Lemma 2.5 any(σ, µ)-symmetric filterH(z) can be factorized as:

H(z) =
√

σG(z) and filterG(z) is (1, µ)-symmetric,
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with H(z), G(z) ∈ C(z). As an example, takeH(z) = 〈p, q, r, s, t〉 with p, q, r, s, t ∈ C.
Now H(z) =

√
σ〈a, b, c, b∗, a∗〉 with a, b ∈ C, c ∈ R and:

p =
√

σa, q =
√

σb, r =
√

σc, s =
√

σb∗, t =
√

σa∗.

In Figure 4.2 this factorization is illustrated using the transversal structure with a tapped
delay line. Like in Example 4.1, an adding delay line can be used to obtain free pipelining
(not shown).

- - - - -? ? ? ?

? ? ? ? ?
- z−1 z−1 z−1 z−1
√

σ

a b c b∗ a∗

Figure 4.2: Factorization of the(σ, µ)-symmetric filterH(z) in scale factor
√

σ
and(1, µ)-symmetric filterG(z).

End of example

Lemma 2.1 about the impulse response of a(σ, µ)-symmetric filterH(z), inspires an
alternative transversal-like filter structure. In this structure, that is illustrated in Exam-
ple 4.3, the coefficients appear in conjugated pairs and the shape of symmetry,σ, is incor-
porated in the delay line, or alternatively in the taps.

Example 4.3. For the(σ, µ)-symmetric filterH(z) ∈ C(z), with H(z) = 〈a, b,
√

σc,
σb∗, σa∗〉, wherea, b ∈ C and c ∈ R, Figure 4.3(a) shows the transversal-like struc-
ture with the extra multipliers in the delay line, and Figure4.3(b) shows the transversal-
like structure with the extra multipliers in the taps. Both schemes have a tapped delay
line. Like in Example 4.1 an adding delay line can be used to obtain free pipelining (not
shown).

- - - - -? ? ? ?

? ? ? ? ?
z−1 z−1 z−1 z−1

a b

√
σ

c

√
σ

b∗ a∗

- - - - -? ? ? ?

? ? ? ? ?

? ? ?
z−1 z−1 z−1 z−1

√
σ σ σ

a b c b∗ a∗(a) (b)

Figure 4.3: Transversal-like structures for(σ, µ)-symmetric filters.

End of example

The structures for other values ofL, can easily be derived from these examples. For even-
length filters,µ ∈ Z, the central multiplier,c, and one of its neighboring delay elements,
are absent. The extra multipliers,σ or

√
σ, make this structure different from a traditional

transversal structure.
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In case two coefficients in the transversal structure, both the tapped and adding delay line,
are equal or opposite, the two related multipliers can be combined into a single multiplier,
on basis of the distributive property, so reducing arithmetic costs, e.g., [116].

From the schemes in Figure 4.2 and Figure 4.3 it follows that in general coefficients ap-
pear in conjugated pairs. As will be explained in Section 4.7, it is also possible to combine
these conjugated multiplications into a single structure that has costs comparable to the
costs of a single complex multiplier. In Figure 4.4 the new symbols for the combined con-
jugated pairs of coefficients, are introduced. The∗ denotes the terminal that is associated
with the conjugated version of the coefficient.

-

-
?
6

-
a∗

a

= --∗ -a

-

-

-

-a∗

a

= - ∗
--a

(b)

(a)

Figure 4.4: Conjugated pairs of coefficients with common outputs (a) andcom-
mon inputs (b).

Example 4.4. The same filter as in Example 4.3 is used, i.e., the(σ, µ)-symmetric filter
H(z) ∈ C(z) with H(z) = 〈a, b,

√
σc, σb∗, σa∗〉, wherea, b ∈ C andc ∈ R. The two

pairs of conjugated coefficients(a, a∗) and(b, b∗) are combined. The resulting scheme is
presented for a tapped delay line Figure 4.5(a), and for an adding delay line Figure 4.5(b).
Note the special component for multiplication with two combined conjugated coefficients.
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σ
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z−1 z−1 z−1 z−1

(a) (b)

Figure 4.5: Transversal-like structures for(σ, µ)-symmetric filters with com-
bined conjugated coefficient.

End of example
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4.3 Real(σ, µ)-symmetric transversal

For the real(σ, µ)-symmetric filtersH(z) ∈ R(z), Lemma 2.25 gives that the shape of
symmetry is limited toσ ∈ {−1, 1}. Also, by Lemma 2.1 the relationh[n] = σh[2µ−n]
holds. This allows for an efficient implementation by means of a transversal structure
where multiplications of signals with coefficients are combined. The savings can be up to
half the number of multiplications. For a lengthL, (σ, µ)-symmetric filterH(z) ∈ R(z),
and input signalX(z) ∈ R(z), the number of real multiplications is approximatelyL

2 . In
Example 4.5 this concept is illustrated for two(σ, µ)-symmetric real filters.

Example 4.5. Consider the twoL = 5 filters H(z), G(z) ∈ R(z) that are(−1, 2) and
(1, 2)-symmetric respectively. So, witha, b, c ∈ R:

H(z) = 〈a, b, 0,−b,−a〉,
G(z) = 〈a, b, c, b, a〉.

In Figure 4.6(a) the scheme related toH(z) is shown with a tapped delay line, and in
Figure 4.6(b) the scheme forG(z) is shown with an adding delay line. It is easy to verify
that these structures implement the filtersH(z) andG(z) respectively.

?
?

- -
-- a

b

?--

z−1 z−1 z−1 z−1

−
− ? ? ? ?

-
-
- c

b

a

- - - --
z−1 z−1 z−1 z−1

(a) (b)

Figure 4.6: Transversal structures with combined coefficients.

End of example

4.4 Multiple input or output transversal structures

In many cases, in which the same signal is fed intoN transversal filters, or where the
outputs ofN transversal filters are added, schemes can be implemented more efficiently
than takingN of the systems from Figure 4.1. These configurations occur assubsystems
in complex filters, for instance, see Section 4.5 where the individual real and imaginary
parts of the complex filter may have a common input or output. Also in multirate filters,
see Chapter 5, subfilters in the polyphase structure may havecommon inputs or outputs.
In this section it is illustrated by means of some typical examples, how transversal filters
may be combined. From these examples the structures for different filter lengths can be
derived easily. Choosing tapped or adding delay lines can have consequences, and also
issues like the possible sharing of multiplications or delay lines and free pipelining, are
addressed.



4.4. Multiple input or output transversal structures 65

4.4.1 General filters

Two filtersH(z), G(z) ∈ C(z) with a common input or output, can be described in vector
notation as:

[
H(z)
G(z)

]
or

[
H(z) G(z)

]
respectively.

For a common input, and both filters implemented with a tappeddelay line, the two delay
lines can be combined. With an adding delay line such combination is not possible. In
case of a common output, and both filters implemented with a tapped delay line, the two
delay lines cannot be combined. With an adding delay line however, such combination is
possible and the pipelining is free. In Example 4.6 this is illustrated. From the example it
directly follows how more than 2 filters can be combined.

Example 4.6. To illustrate the alternatives for combining two filtersH(z), G(z) ∈ C(z)
with a common input or output, these filters are chosen as:

H(z) = 〈a, b, c, d, e〉,
G(z) = 〈p, q, r, s, t〉.

In Figure 4.7(a), for a common input, two tapped delay lines are combined and in Fig-
ure 4.7(b) the adding delay lines cannot be combined.
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? ? ? ? ?
p q r s t

z−1 z−1 z−1 z−1

a b c d e

6 6 6 6 6

6 6 6 6
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t s r q p

z−1 z−1 z−1 z−1

z−1 z−1 z−1 z−1

e d c b a

6 6 6 6 6

6 6 6 6
- - - - -

(a) (b)

Figure 4.7: Single input, dual output transversal structures.
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- - - - -z−1 z−1 z−1 z−1? ? ? ? ?
e d c b a

? ? ? ? ?

6 6 6 6 6
t s r q p

6 6 6 6 6(a) (b)

Figure 4.8: Dual input, single output transversal structures.

In Figure 4.8(a), for a common output, two tapped delay linescannot be combined and in
Figure 4.8(b) the adding delay lines, with free pipelining,are combined.
End of example
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4.4.2 Complex(σ, µ)-symmetric filters

Similar as the general filters, also symmetric filters with possibly different shapes and
centers of symmetry, can be combined to share delay lines or to obtain free pipelining.
Several instances of the schemes from Figure 4.5, where the symmetry is exploited, can
be combined in a similar way as the general filters in Figure 4.7 and Figure 4.8.

Example 4.7. To illustrate the alternatives for combining the(σH , 2)-symmetric filter
H(z) ∈ C(z) and the(σG, 2)-symmetric filterG(z) ∈ C(z), with a common input or
output, these filters are chosen as:

H(z) = 〈a, b,
√

σHc, σHb∗, σHa∗〉,
G(z) = 〈p, q,

√
σGr, σGq∗, σGp∗〉.
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Figure 4.9: Single input, dual output symmetric transversal structures.
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Figure 4.10: Dual input, single output symmetric transversal structures.

In Figure 4.9(a) and Figure 4.10(b) the delay lines are combined, and ifσH = σG also the
multiplications with the shapes of symmetry may be combined. Note that in Figure 4.9(b)
and Figure 4.10(a), except the input and output, nothing canbe combined.
End of example
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4.4.3 Complex mutually(σ, µ)-mirrored filters

Another special situation occurs when two mutually(σ, µ)-mirrored filters have a com-
mon input or common output. This may result from the polyphase decomposition of a
(σ, µ)-symmetric filter, see Chapter 5, e.g., Example 5.3. Depending on the type of delay
line and the inputs or outputs being common, the pairs of multiplications with conjugated
coefficients of the filtersH(z), G(z) ∈ C(z) may be combined. In the scheme with com-
mon input and a tapped delay line, and in the scheme with common output and an adding
delay line, it is not possible to combine multiplications ofboth filters. These pairs of mul-
tiplications with conjugated coefficients have no common input nor a common output.

Example 4.8. For illustrating the possibilities for sharing multiplications of two mutually
mirrored filters, two filters are chosen as:

H(z) = 〈a, b, c, d, e〉 =Mσ,2

(
G(z)

)
,

G(z) = 〈σe∗, σd∗, σc∗, σb∗, σa∗〉 =Mσ,2

(
H(z)

)
.

In Figure 4.11 and Figure 4.12 the possible structures are shown.
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Figure 4.11: Single input, dual output mutually mirrored transversal structures.

z−1 z−1 z−1 z−1

- σ

z−1 z−1 z−1 z−1

∗
∗
∗
∗
∗

a

b

c

d

e

6
-6
--
-

?
?

--
--
--
--
--

- - - - -z−1 z−1 z−1 z−1? ? ? ? ?
e d c b a

? ? ? ? ?

- σ 6 6 6 6 6
a∗ b∗ c∗ d∗ e∗

6 6 6 6 6

(a) (b)

Figure 4.12: Dual input, single output mutually mirrored transversal structures.

End of example

In Lemma 2.18 it is shown how two mutually mirrored filters with a common input or
output can be converted into two symmetric filters and a combination network. These
symmetric filters may be combined according to one of the schemes in Figure 4.9 or
Figure 4.10.
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4.5 Complex filter and coefficient structures

In the preceding sections, several types of complex components (delays, adder, subtractors
and multipliers) were used. In this section the complex filter will be decomposed into its
individual real and imaginary parts first, so requiring realcomponents only. In principle
it is also possible to represent a complex quantity in its polar form. This polar form,
however, requires costly transformations in case of addition, making this form unattractive
for use in transversal filters. Besides the basic structure,also some interesting alternatives
are discussed.
Since complex scale factors are special instances of complex filters with L = 1, the
complex filter structures as discussed in this section, can also be used to construct complex
scale factors in Section 4.7 and Appendix E.

4.5.1 Basic structure

The multiplication of two complex quantities can be expressed in its individual real and
imaginary parts. So for any input signalX(z) ∈ C(z), and filterH(z) ∈ C(z), the output
signalY (z) ∈ C(z) is:

Y (z) = X(z)H(z),

Yr(z) + jYi(z) =
(
Xr(z) + jXi(z)

)(
Hr(z) + jHi(z)

)

=
(
Xr(z)Hr(z)−Xi(z)Hi(z)

)
+ j

(
Xr(z)Hi(z) + Xi(z)Hr(z)

)
.

The related matrix equation is:

Y(z) = H(z)X(z),

with:

Y(z) =

[
Yr(z)
Yi(z)

]
, H(z) =

[
Hr(z) −Hi(z)
Hi(z) Hr(z)

]
andX(z) =

[
Xr(z)
Xi(z)

]
. (4.1)

This matrix equation shows how a complex filter can be constructed from its individual
real and complex parts. The resulting basic structure, StructureA, is presented in Fig-
ure 4.13. Note that the transposed matrix,H

T (z), is the matrix forH∗(z).
If the input signal is real or imaginary, StructureA from Figure 4.13, boils down to the
structures from Figure 4.14(a) and Figure 4.14(b) respectively. Similarly, Figure 4.15(a)
and Figure 4.15(b) show the structures in case only the real or only the imaginary part of
the output signal are used. In the sequel only the full structure, like Figure 4.13, will be
used. The schemes for special input or output signals can then be obtained easily. Also
the case where the filter is real or imaginary, the corresponding structure can be derived
easily.
In general, for a lengthL filter H(z) ∈ C(z), and input signalX(z) ∈ C(z), StructureA
requires4L real multiplications and4L−2 real additions per input sample. In the remain-
ing part of this section some alternative structures are considered that in general require
less multiplications per input sample.
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Figure 4.13: Basic structure, StructureA (Equation 4.1).
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Figure 4.14: StructureA for real (a) or imaginary (b) input signals.
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Figure 4.15: StructureA for real (a) or imaginary (b) output signals.

4.5.2 Alternative structures

The reason to look for alternative structures is the possible reduction of arithmetic costs.
In general it may be assumed that the costs of a multiplication are significantly higher
than the costs of an addition. In case multiplications are implemented by shift-and-add
operations, different coefficients may have different costs as will be discussed extensively
in Appendix E. Therefore it may be beneficial to have alternative sets of coefficients to
choose from.
The matrixH(z), describing the complex filter operation in its individual real and imag-
inary parts, Equation 4.1, can be factorized in many ways. Inthis section a number of
factorizations are collected that are found in literature.Each factorization gives a diagonal
matrix containing three subfilters, and two combination matrices. The four factorizations
differ in the sense that each alternative contains a different set of subfilters. From these
alternatives many trivial variants can be derived by movingthe minus-sign around (not
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shown). The four factorizations are:

H(z) =

[
1 −1 0
0 1 1

] 


Hr(z) + Hi(z) 0 0

0 Hi(z) 0
0 0 Hr(z)−Hi(z)








1 0
1 1
0 1



 (4.2)

=

[
0 1 −1
−1 1 0

] 


Hr(z)−Hi(z) 0 0

0 Hr(z) 0
0 0 Hr(z) + Hi(z)








1 0
1 1
0 1



 (4.3)

=

[
1 1 0
0 1 1

]


Hr(z) 0 0

0 Hr(z)−Hi(z) 0
0 0 Hi(z)








1 −1
0 1
1 1



 (4.4)

=

[
1 0 1
−1 1 1

] 


Hr(z) 0 0

0 Hr(z) + Hi(z) 0
0 0 −Hi(z)








1 0
1 1
0 1



 . (4.5)

The first factorization, Equation 4.2, relates to StructureB in Figure 4.16 and is also
found in, e.g., [110] [135] for scale factors instead of filters. The factorizations in Equa-
tion 4.3 ([5] Equation 9a), Equation 4.4 and Equation 4.5 ([5] Equation 9b and [114]
Equation 5.4.2 for scale factors), relate to StructureC, StructureD and StructureE in
Figure 4.17, Figure 4.18 and Figure 4.19 respectively. Withrespect to Equation 4.4 no
reference is found.
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Figure 4.16: Alternative structure, StructureB (Equation 4.2).
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Figure 4.17: Alternative structure, StructureC (Equation 4.3).
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Figure 4.18: Alternative structure, StructureD (Equation 4.4).
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Figure 4.19: Alternative structure, StructureE (Equation 4.5).

In general, for a lengthL filter H(z) ∈ C(z), and input signalX(z) ∈ C(z), StructureB
through StructureE, require3L real multiplications per input sample. This is less than for
StructureA in Figure 4.13, where4L real multiplications per input sample are required.
Similarly, StructureB and StructureC require3L real additions per input sample, whereas
StructureD and StructureE require3L + 1 real additions per input sample. ForL > 2
andL > 3 respectively, this too is less than the4L− 2 real additions per input sample in
the basic structure, StructureA.
Which of the structures are best chosen depends on many aspects. For instance the dif-
ference between StructureB and StructureC may be significant in case of differences in
lengths,Lr of filter Hr(z) andLi of filter Hi(z). It may be beneficial to select the shortest
filter for the central branch, i.e., StructureB if Lr > Li and StructureC if Lr < Li.
Also, in case of finite precision coefficients, where multiplications can be implemented as
shift-and-add operations, one scheme may be more efficient to implement than the other.

4.6 Complex symmetric filter structures

In this section the basic structure, StructureA, and the alternative structures, StructureB
through StructureE, are considered in case the complex filter has symmetry type5, 6, 7
or 8. The subfilters in all cases are real filters and satisfy the properties as described in
Lemma 2.27.
For ease of comparison, it is assumed that a lengthL real symmetric filter requires only
L
2 real multiplications per input sample, using the schemes asshown in Figure 4.5 and
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Figure 4.6. The facts thatL may be odd, or that a central coefficient may be zero, are
ignored.

4.6.1 Basic structure for type 5 and 6 filters

By Lemma 2.27, the individual real and imaginary parts of a type5 and6 filter are sym-
metric filters. Therefore, each subfilter of the lengthL filter H(z) ∈ C(z) and input
signalX(z) ∈ C(z), requiresL

2 real multiplications per input sample. The total filter
now requires2L real multiplications per input sample. The number of additions has not
changed and is4L− 2.
Although complex filters have no structural transmission zeros, see Lemma 2.42, the in-
dividual real and imaginary parts may have these zeros, Lemma 2.40 and Lemma 2.41.
Depending on the filter length and the type, structural transmission zeros can be iden-
tified and used to split the subfilter. In Figure 4.20 the resulting structure is shown for
an odd-length type5 filter with Hi(z) = H ′i (z)(1 − z−2). In Figure 4.21 the resulting
structure is shown for an even-length type5 filter with Hr(z) = H ′r(z)(1 + z−1) and
Hi(z) = H ′i (z)(1 − z−1). Note that all subfilters in Figure 4.20 and Figure 4.21 are
type1 filters. A similar approach is possible for type6 filters (not shown).
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Figure 4.20: Structural transmission zeros in an odd-length type5 filter.
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Figure 4.21: Structural transmission zeros in an even-length type5 filter.
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4.6.2 Basic structure for type 7 and 8 filters

By Lemma 2.27 the individual real and imaginary parts of a type7 and8 filter are mutually
mirrored. The subfilters in general cannot assumed to be symmetric. As a consequence,
each subfilter of the lengthL filter H(z) ∈ C(z) and input signalX(z) ∈ C(z), requires
L real multiplications per input sample. The total filter now requires4L real multiplica-
tions per input sample.
Similarly as shown in Figure 4.11(b) and Figure 4.12(a), it is possible to combine the
four subfilters in pairs, so reducing the required number of real multiplications per input
sample to2L. Also, from Figure 4.13 it is clear that the mutually mirrored subfilters have
common inputs or common outputs. By Lemma 2.18 all four mutually mirrored subfilters
can be converted into four symmetric subfilters. Also now, the total filter requires2L real
multiplications per input sample. The number of real additions has increased to4L + 2.
For the type7 filter H(z), the subfiltersA(z) andB(z), in Figure 4.22, are(1, µ) and
(−1, µ)-symmetric respectively. Both filters are:

A(z) = 1
2

(
Hr(z) + Hi(z)

)
= 1

2

(
Hr(z) +M1,µ

(
Hr(z)

))
,

B(z) = 1
2

(
Hr(z)−Hi(z)

)
= 1

2

(
Hr(z)−M1,µ

(
Hr(z)

))
.

For the type8 filter H(z), the subfiltersA(z) andB(z), in Figure 4.22, are(−1, µ) and
(1, µ)-symmetric respectively. Both filters are:

A(z) = 1
2

(
Hr(z) + Hi(z)

)
= 1

2

(
Hr(z) +M−1,µ

(
Hr(z)

))
,

B(z) = 1
2

(
Hr(z)−Hi(z)

)
= 1

2

(
Hr(z)−M−1,µ

(
Hr(z)

))
.
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Figure 4.22: Alternative structure, StructureF, restoring the symmetry of a
type7 or 8 filter.

To obtain the structure of Figure 4.22, StructureF, Lemma 2.18 was applied to the filter
pairs with a common input. The same is possible for the filter pairs with a common output.
The preference for the one or other may depend on the application. In a similar way as for
the type5 and6 filters, it is possible to exploit structural transmission zeros in the scheme
of Figure 4.22 (not shown).
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4.6.3 Alternative structures for type 5, 6, 7 and 8 filters

The symmetry of the subfiltersHr(z) andHi(z), in case of type5 and6 filter H(z), can
also be found in one or two branches of the alternative structures, StructureB through
StructureE. By Lemma 2.19, the real filters in the upper and lower branches of Struc-
tureB and StructureC are mutually mirrored. The total filter now requires5

2L real mul-
tiplications per input sample for StructureB and StructureC, and2L real multiplications
per input sample for StructureD and StructureE.
In case of type7 and8 filters H(z), the Hr(z) andHi(z) are mutually mirrored. By
Lemma 2.17, the real filters in the upper and lower branches ofStructureB and Struc-
tureC and in the central branches of StructureD and StructureE, are symmetric. The
total filter now requires2L real multiplications per input sample for StructureB and Struc-
tureC, and5

2L real multiplications per input sample for StructureD and StructureE.
Similarly as for the filter structures in Section 4.5 it may bepossible to apply Lemma 2.40
and Lemma 2.41 about structural transmission zeros, for thesymmetric subfilters.

4.7 Conjugated pairs

As found in Section 4.2, coefficients often appear in conjugated pairs. In Figure 4.4
the new symbols are introduced already. In this section it isshown how such pairs of
coefficients can be combined efficiently. A pair of conjugated coefficients,(a, a∗), with a
common output is described by:

Y (z) = aX0(z) + a∗X1(z),

and a pair of conjugated coefficients,(a, a∗), with a common input is described by:

Y0(z) = aX(z) andY1(z) = a∗X(z).

In matrix notation this respectively gives:

Y(z) =
[
A AT

] [
X0(z)
X1(z)

]
and

[
Y0(z)
Y1(z)

]
=

[
A

A
T

]
X(z),

with:

A =

[
ar −ai

ai ar

]
.

Note that the transposed matrix,A
T , is the matrix fora∗.

Similarly as for the alternative complex filter structures in Section 4.5, the approach is
to factorize the matrices[ A A

T ] and
[

A

A
T

]
. Although many factorizations are possible

here too, only the results as found in Section 4.5 and Section4.6 are used. It appears
that the factorization based on StructureA, and the factorization based on StructureB
and StructureC, give different sets of scale factors, whereas the factorization based on
StructureD and StructureE, gives the same set of scale factors as the factorization based
on StructureB and StructureC, at the cost of more additions. On basis of StructureF, a
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factorization with yet another set of scale factors is found, however, at the cost of many
more additions. Perhaps a more efficient factorization is possible.
The four schemes for the conjugated coefficients with a common output are shown in
Figure 4.23 through Figure 4.26. The four schemes for the conjugated coefficients with a
common input are shown in Figure 4.27 through Figure 4.30.
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Figure 4.23: Conjugated pair with common output, based on StructureA.
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Figure 4.24: Conjugated pair with common output, based on StructureB and
StructureC.
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Figure 4.25: Conjugated pair with common output, based on StructureD and
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Figure 4.26: Conjugated pair with common output, based on StructureF.
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Figure 4.27: Conjugated pair with common input, based on StructureA.
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Figure 4.28: Conjugated pair with common input, based on StructureB and
StructureC.
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Figure 4.29: Conjugated pair with common input, based on StructureD and
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Figure 4.30: Conjugated pair with common input, based on StructureF.

4.8 Résuḿe

In the previous sections of this chapter, a series of alternatives for constructing possibly
complex transversal filters are presented. Many of these alternatives have to be combined
with others to obtain a final structure.

Section 4.1, Section 4.2 and Section 4.3 describe transversal structures with possibly com-
plex components, and available symmetry is exploited for reducing arithmetic complexity.
In Section 4.4 multiple transversal filter structures with common inputs or outputs are ef-
ficiently combined, also exploiting symmetry when possible.

Section 4.5 and Section 4.6 describe how a complex filter can be decomposed into real
subfilters. These subfilters can be constructed from one of the transversal structures with
real components. In total six alternative structures, StructureA through StructureF, are
discussed. These alternative structures are also applicable to complex coefficients such
that complex coefficients can be decomposed into real subcoefficients. In Section 4.7 two
conjugated coefficients with a common input or output are efficiently combined again
using the alternative structures found earlier.

Now the arithmetic complexity of the transversal filter structures in terms of the number
of real multiplications per input sample#mul, and the number of real additions per input
sample#add, for lengthL filters are collected. The facts thatL may be odd, or that a
central coefficient may be zero, are ignored.

First, the alternatives StructureA through StructureF are used to decompose the complex
filter into real subfilters with real components. The arithmetic costs are listed for: ”any
type” (the non-symmetric and the type9 symmetric filters), type5 or 6, and type7 or 8,
symmetric complex filters. The results are listed in the upper part of Table 4.1. Secondly,
the alternatives StructureA through StructureF are used to decompose the complex co-
efficients into real subcoefficients. The results are listedin the lower part of Table 4.1.

In each case a possible composition of the filter is indicatedwith a note (a through t). For
each note in Table 4.1, an example scheme is given in Table 4.2. Both, a global structure
and a local structure are indicated. The local structure is to be used within the global
structure.
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filter any type type5 or 6 type7 or 8
structure #mul #add note #mul #add note #mul #add note

A 4L 4L− 2 a 2L 4L− 2 e 2L 4L− 2 i
B,C 3L 3L b 5

2L 3L f 2L 3L j
D,E 3L 3L + 1 c 2L 3L + 1 g 5

2L 3L + 1 k
F 4L 4L + 2 d 2L 4L + 2 h 2L 4L + 2 l

coefficient any type type5 or 6 type7 or 8
structure #mul #add note #mul #add note #mul #add note

A 4L 4L− 2 m 2L 4L− 2 q 2L 4L− 2 q
B,C 3L 5L− 2 n 2L 9

2L− 2 r 2L 9
2L− 2 r

D,E 3L 6L− 2 o 2L 5L− 2 s 2L 5L− 2 s
F 4L 8L− 2 p 2L 6L− 2 t 2L 6L− 2 t

Table 4.1: Number of real multiplications and additions for filters of lengthL.

note example schemes
global local

a Fig. 4.13 2× Fig. 4.7 or2× Fig. 4.8
b Fig. 4.16 or 4.17 3× Fig. 4.1
c Fig. 4.18 or 4.19 3× Fig. 4.1
d Fig. 4.22 2× Fig. 4.7 or2× Fig. 4.8
e Fig. 4.13 2× Fig. 4.9 or2× Fig. 4.10
f Fig. 4.16 or 4.17 2× Fig. 4.1 and1× Fig. 4.5
g Fig. 4.18 or 4.19 1× Fig. 4.1 and2× Fig. 4.5
h Fig. 4.22 2× Fig. 4.11(b) or2× Fig. 4.12(a)
i Fig. 4.13 2× Fig. 4.11(b) or2× Fig. 4.12(a)
j Fig. 4.16 or 4.17 1× Fig. 4.1 and2× Fig. 4.5
k Fig. 4.18 or 4.19 2× Fig. 4.1 and1× Fig. 4.5
l Fig. 4.22 2× Fig. 4.9 or2× Fig. 4.10
m Fig. 4.1 L× Fig. 4.13
n Fig. 4.1 L× Fig. 4.16 orL× 4.17
o Fig. 4.1 L× Fig. 4.18 orL× 4.19
p Fig. 4.1 L× Fig. 4.22
q Fig. 4.5 L

2× Fig. 4.23 orL2× Fig. 4.27
r Fig. 4.5 L

2× Fig. 4.24 orL2× Fig. 4.28
s Fig. 4.5 L

2× Fig. 4.25 orL2× Fig. 4.29
t Fig. 4.5 L

2× Fig. 4.26 orL2× Fig. 4.30

Table 4.2: Example schemes related to Table 4.1.
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Some observations that can be made from the results in Table 4.1 are:

� For ”any type” of filter, the least number of real multiplications is 3L, and for
type5, 6, 7 and8 the least number of real multiplications is2L. These numbers are
valid for both the alternative filter and the alternative coefficient structures.

� In case of the global structures StructureB or StructureC, the minimum number of
real additions is found to be3L.

� In case of the alternative coefficient structures, the number of additions exceeds the
number of additions in case of the alternative filter structures, except for StructureA
where the numbers are equal.

� In case the real multiplications are implemented using shift-and-add operations, see
Appendix E, some alternative structures may be beneficial, since their coefficients
may require less real additions. The alternative filter structures StructureB through
StructureE are good alternatives.

� It is to be expected that the decomposition of a complex filterinto real subfilters
with real operations, will result in lower costs than the decomposition of complex
operations into real operations.

4.9 Conclusion

The transversal filter structure is discussed in detail for(σ, µ)-symmetric real and com-
plex filters. By incorporating the shape of symmetry in the delay line, or by using it as a
separate factor, any(σ, µ)-symmetric filter can be implemented with a transversal struc-
ture, where all coefficients appear in conjugated pairs. In case of a real symmetric filter,
it is trivial to combine coefficients to reduce the computational costs. For complex sym-
metric filters it is shown how pairs of conjugated coefficients can be combined in a new
structure, to reduce computational costs. It is also shown how transversal filters with com-
mon inputs or common outputs can be combined efficiently. Thechoice of a transversal
filter with a tapped delay line or an adding delay line however, appears to be key. Op-
posite to using complex components for implementing complex filters, a complex filter
can be decomposed in its individual real and imaginary parts. A series of alternatives is
discussed that are also of great value in the efficient construction of complex coefficients
in Appendix E.
From the analysis of many alternative structures, it can be concluded that in general the
decomposition of a complex filter into real subfilters with real operations, will result in
lower costs than the decomposition of the individual complex operations into real opera-
tions.
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Chapter 5

Polyphase structures

One of the most important concepts to save in computational costs in multirate filtering is
the polyphase decomposition, and the closely related polyphase structure, as introduced
by Bellanger in1976 [4] and elaborated in, e.g., [43] [132] [133] [135]. This concept
allows for efficient implementations of multirate filters both in hardware and software.
Linear-phase filters exhibit symmetry that may be exploitedfruitfully to reduce compu-
tational costs by a factor of2 see, e.g., [116] and Chapter 4 of this thesis. Application
of the polyphase decomposition to symmetric filters however, often destroys the available
symmetry and hence the reduction of costs by a factor of2 is no longer possible. There-
fore it is desired to have, in case the original filter is symmetric, an alternative polyphase
structure that is composed of symmetric filters only.
A first approach to restore the symmetry in a polyphase structure is published in 1996
[95] and is based on techniques that were introduced in [94].The method from [95] is
suited for real multirate filters with integer factors. A claim without any proof is made
that the algorithm can be applied to multirate filters with rational factors too.
Central in this chapter is the restoration of symmetry in polyphase structures. A new theo-
rem states that the polyphase structure of any real or complex multirate(σ, µ)-symmetric
filter, with integer or rational multirate factors, can be constructed using symmetric filters
only. A unified approach results in a general applicable algorithm to devise the polyphase
structure that contains symmetric filters only. In addition, an extra degree of freedom in
restoring the symmetry is identified that may lead to additional savings in computational
costs. The main results of this chapter are filed for a patent in 2002 and the applications
are published in2004 [17] and2006 [18].
In the time frame between the patent-application publications and the publication of this
thesis, an alternative method to restore symmetry for real filters with integer multirate
factors has been published [141] [142]. The method is extended in [13] to deal with
rational multirate factors too. Next to restoring symmetryalso the possible savings in
memory are considered.
Browsing the literature for the term ”polyphase”, results in many hits in the field of con-
tinuous time filtering. There it is related to what would be called complex filters in this
thesis. A brief introduction into the field of these continuous time complex or polyphase

81
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filters is given in Appendix C.
The outline of this chapter is as follows. After formally describing the polyphase de-
composition and some other valuable definitions and identities in Section 5.1, the known
basic polyphase structures for integer multirate factors are treated in Section 5.2, e.g.,
Figure 5.2 and Figure 5.3. In case of a rational multirate factor the polyphase structure
can be obtained by applying the polyphase decomposition twice. The resulting nested
polyphase structures, e.g., Figure 5.4(b) or Figure 5.4(c)are treated in Section 5.3. The
nested polyphase structure depends on the order in which both polyphase decompositions
are applied. It is known how a nested polyphase structure canbe transformed to a structure
that is independent of the order in which the polyphase decompositions are applied, e.g.,
Figure 5.5(b) or Figure 5.5(c). Section 5.4 discusses in detail this unified polyphase struc-
ture that will serve as a basis for the restoration of the symmetry. Section 5.5 describes
the relations between the various polyphase components (PPCs) of a symmetric filter, that
are key in the restoration of symmetry. The new theorem on restoring symmetry, its proof
and a procedure to restore symmetry, are discussed in Section 5.6. Section 5.7 presents
some typical examples to show the application of the procedure. Finally, in Section 5.8,
some remarks are made about structural zeros in PPCs. The conclusions are found in
Section 5.9.

5.1 Polyphase decomposition and identity

Related to the polyphase structure that will be discussed indetail in this chapter, is the
polyphase decomposition. The notation, some definitions and identities, are presented in
this section. The polyphase decomposition decomposes a filter H(z) into a number of
polyphase components (PPCs). The polyphase component is defined first.

Definition 5.1 (Polyphase component). Polyphase componentR : r, with decomposition
factorR ∈ N+ anddecomposition indexr ∈ Z, of filter H(z) ∈ C(z), is defined as:

HR:r(z) ,
∑

n

h[Rn + r]z−n.

A trivial instance of this definition isH(z) = H1:0(z).
The well-known polyphase decomposition, decomposes any filter intoR PPCs, for a given
decomposition factorR, as follows.

Lemma 5.1(Polyphase decomposition). Any filterH(z) ∈ C(z) can be decomposed in
R PPCs as:

H(z) =

R−1∑

r=0

z−rHR:r(z
R).

Proof. In the definition of thez-transformH(z) of an impulse responseh[n], the variable
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n is substituted,n← Rn + r, resulting in:

H(z) =
∑

n

h[n]z−n

=
∑

n

R−1∑

r=0

h[Rn + r]z−(Rn+r)

=
R−1∑

r=0

z−r
∑

n

h[Rn + r]z−Rn

=

R−1∑

r=0

z−rHR:r(z
R).

Basically, a PPC is a filter from which again a PPC can be selected. In that case the equiv-
alent decomposition factor is the product of the individualdecomposition factors, and the
equivalent decomposition index depends on the first decomposition factor and both in-
dices. To generalize further additional delays can be included, see Lemma 5.2. From this
it is also clear that a PPC with a non-prime decomposition factor can be considered as
a repeated selection of the polyphase components with decomposition factors being the
factors of the original decomposition factor.

Lemma 5.2(Polyphase identity). For any filterH(z) ∈ C(z) and delayza with a ∈ Z

holds:

(
zaHR:r(z)

)
P :p

(z) = HPR:r+R(a+p)(z).

Proof. Repeated application of Definition 5.1 gives:

(
zaHR:r(z)

)
P :p

(z) =

(
za

∑

i

h[Ri + r]z−i

)

P :p

(z)

=

(∑

j

h[Rj + r + Ra]z−j

)

P :p

(z)

=
∑

j

h[R(Pj + p) + r + Ra]z−j

= HPR:r+R(a+p)(z).

From Lemma 5.2 it follows directly thatHR:r(z) andHR:r+aR(z) basically refer to the
same PPC, except for a delay, sincer|R = (r + aR)|R. This implies that the polyphase
decomposition is not unique. To deal with this freedom in a formal way, the index setR
and the fundamental index setR0 are defined. The fundamental index setR0 contains
the integers ranging from 0 throughR− 1. Index setR contains exactlyR elements such
thatR|R = R0. Note that, opposite to the fundamental index set, the indexsetR is not
unique.
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Definition 5.2. For anyR ∈ N+ the fundamental index setR0 and the index setR are:

R0 , {r|r ∈ N, r < R},
R , {r + arR|r ∈ R0, ar ∈ Z}.

Similarly, the fundamental index setsD0 andI0, and the index setsD andI are defined.
Now the polyphase decomposition can be formulated more generally.

Lemma 5.3 (Generalized polyphase decomposition). Any filter H(z) ∈ C(z) can be
decomposed inR PPCs as:

H(z) =
∑

r∈R
z−rHR:r(z

R).

Proof. By Lemma 5.1, Lemma 5.2, Definition 5.2 and takingar ∈ Z:

H(z) =
∑

r∈R0

z−rHR:r(z
R)

=
∑

r∈R0

z−(r+arR)HR:r+arR(zR)

=
∑

r∈R
z−rHR:r(z

R).

This generalized polyphase decomposition will be used mainly in proofs in the sequel of
this chapter. In many schemes index setR = R0 and hence Lemma 5.1 applies. An
alternative description for a PPC is given in the next lemma,whereHR:r(z) is interpreted
as thez-transform of theR-fold decimated signalh[n], started on momentn = r.

Lemma 5.4. TheR : r PPC of filterH(z) ∈ C(z) equals:

HR:r(z) =
1

R

∑

i∈R0

H(z
1
R W i

R)z
r
R W ir

R .

Proof. From Definition 5.1 of the PPC, and Definition A.2 of the SRD, itfollows that
HR:r(z) = zrH(z); ↓ D. Application of Lemma A.2 about downsampling concludes the
proof.

5.2 Basic polyphase structure

The concept of decimation with an integer decimation factorD is straightforward. After
appropriate filtering to avoid aliasing, only1 out of everyD samples is left, the others are
discarded by the sampling rate decreaser (SRD). For interpolation with an integer interpo-
lation factorI, between every2 successive input samples,I − 1 zeros are inserted by the
sampling rate increaser (SRI), prior to appropriate filtering to suppress image frequency
components.
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In order to obtain computational efficient structures, the popularpolyphase structureis
used often, see [133]. The termbasic polyphase structureis used in this thesis to distin-
guish from thenested polyphase structure, that is used in case of non-integer multirate
factors, and will be discussed in the next section.
The basic polyphase structure is obtained, by first applyinga polyphase decomposition
with a decomposition factor equal to the decimation or interpolation factor, and second a
noble identity, see Section A.3. Lemma 5.1 can be rewritten using Horner’s scheme as:

H(z) = HR:0(z
R) + z−1

(
HR:1(z

R) + z−1
(
· · ·+ z−1HR:R−1(z

R)
))

.

This relates to the two alternative structures as shown in Figure 5.1, that traditionally [133]
are called the first and second polyphase structure respectively. Like with the transversal
structures in Figure 4.1, the terms tapped and adding delay lines are applicable.

- HR:0(zR)

- HR:1(zR) -?

- HR:R−1(zR) -?

z−1

z−1

-

- HR:R−1(zR)

- HR:R−2(zR) -?

- HR:0(zR) -?

z−1

z−1

-

(a) (b)

Figure 5.1: First (a) and second (b) polyphase structure.

In case of a decimating filter the first polyphase structure isused, since the SRD follow-
ing the filter can be moved towards the left after applying thefirst noble identity, see
Figure 5.2.

Lemma 5.5. Any decimating filterH(z) ∈ C(z) with decimation factorD ∈ N+ and
index setD can be rewritten as:

H(z); ↓ D =
∑

d∈D

(
z−d; ↓ D; HD:d(z)

)
.

Proof. Application of the polyphase decomposition, Lemma 5.3, andthe first noble iden-
tity (Lemma A.3) gives:

H(z); ↓ D =
∑

d∈D

(
z−d; HD:d(z

D)
)
; ↓ D

=
∑

d∈D

(
z−d; HD:d(z

D); ↓ D
)

=
∑

d∈D

(
z−d; ↓ D; HD:d(z)

)
.
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In caseD = D0, the related Horner’s scheme is:

H(z) =
(
↓ D; HD:0(z)

)

+
(
z−1;

((
↓ D; HD:1(z)

)
+

(
z−1;

(
· · ·+

(
z−1; ↓ D; HD:D−1(z)

)))))
.

- H(z) -
D

- HD:0(z)

- HD:1(z) -?

- HD:D−1(z) -?

z−1

z−1

D

D

D

-

(b)

(a)

Figure 5.2: First polyphase structure for an efficient decimating filter.

Similarly, in case of an interpolating filter the second polyphase structure is selected, since
the SRI preceding the filter can be moved towards the right after applying the second noble
identity, see Figure 5.3.

Lemma 5.6. Any interpolating filterH(z) ∈ C(z) with interpolation factorI ∈ N+ and
index setI can be rewritten as:

↑ I; H(z) =
∑

i∈I

(
HI:i(z); ↑ I; z−i

)
.

Proof. Application of the polyphase decomposition, Lemma 5.3, andthe second noble
identity (Lemma A.4) gives:

↑ I; H(z) =↑ I;
∑

i∈I

(
HI:i(z

I); z−i
)

=
∑

i∈I

(
↑ I; HI:i(z

I); z−i
)

=
∑

i∈I

(
HI:i(z); ↑ I; z−i

)
.

In caseI = I0, the related Horner’s scheme is:

H(z) =
(((((

HI:I−1(z); ↑ I; z−1
)

+ · · ·
)
; z−1

)
+

(
HI:1(z); ↑ I

))
; z−1

)

+
(
HI:0(z); ↑ I

)
.
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- H(z) -
I

- HI:I−1(z)

- HI:I−2(z) -?

- HI:0(z) -?

z−1

z−1

I

I

I

-

(b)

(a)

Figure 5.3: Second polyphase structure for an efficient interpolating filter.

The left part of Figure 5.2(b), the tapped delay line and the SRDs, will be referred to as
the demultiplexer. The right part of Figure 5.3(b), the adding delay line and the SRIs, will
be referred to as the multiplexer. In other work the functionality of these networks is often
seen as a rotating switch or commutator, see for instance [43] and [135].
Since the SRDs are at the left most or the SRIs are at the right most position, the sampling
rate inside the PPCs is minimal.

5.3 Nested polyphase structure

In Section 5.2 about the basic polyphase structure, the polyphase decomposition was ap-
plied to a multirate filter with an integer factor. For a rational factor, it is known how to
apply the polyphase decomposition repeatedly [133] [135],and in this thesis the resulting
structure is called thenested polyphase structure. In this section the multirate filter with
the rational decimation factorDI (or interpolation factorID ) is discussed in more detail.
To obtain a nested structure both types of polyphase decompositions are applied, one after
the other. Also the split-delay identity plays an essentialrole, see Lemma A.7.
Lemma 5.7 shows two alternative formulations for↑ I; H(z); ↓ D. The first formulation
results from, first applying the first polyphase decomposition, followed by the second
polyphase decomposition. The second formulation results from applying both polyphase
decompositions in the reversed order.
In many lemmas it is a requirement that the interpolation factor I and the decimation
factorD have no common factor, or their greatest common divisorgcd(I, D) = 1. This
property is equivalent to the equalitypD + qI = 1 with p, q ∈ Z. See Appendix D
for more details and a procedure to determine the values ofp andq by means of the so
called extended Euclid’s algorithm. For a decimating filterwith integer factorD the other
parameters are:I = 1, p = 0 andq = 1. For an interpolating filter with integer factorI
the other parameters are:D = 1, p = 1 andq = 0.
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Lemma 5.7(Nested polyphase structure). Any multirate filterH(z) ∈ C(z) with inter-
polating factorI and decimating factorD and pD + qI = 1 with p, q ∈ Z, can be
reformulated as:

↑ I; H(z); ↓ D =
∑

d∈D

(
z−dq; ↓ D;

∑

i∈I

((
z−dpHD:d(z)

)
I:i

(z); ↑ I; z−i
))

,

or:

↑ I; H(z); ↓ D =
∑

d∈I

(∑

d∈D

(
z−d; ↓ D;

(
HI:i(z)z−iq

)
D:d

(z)
)
; ↑ I; z−ip

)
.

Proof. The polyphase structures from Lemma 5.5 and Lemma 5.6 are used together with
the split-delay identity, Lemma A.7, both noble identities, Lemma A.3 and Lemma A.4
and the first prime identity, Lemma A.5, giving:

↑ I; H(z); ↓ D =↑ I;
∑

d∈D

(
z−d; ↓ D; HD:d(z)

)

=↑ I;
∑

d∈D

(
z−dqIz−dpD; ↓ D; HD:d(z)

)

=
∑

d∈D

(
↑ I; z−dqIz−dpD; ↓ D; HD:d(z)

)

=
∑

d∈D

(
z−dq; ↓ D; ↑ I;

(
z−dpHD:d(z)

))

=
∑

d∈D

(
z−dq; ↓ D;

∑

i∈I

((
z−dpHD:d(z)

)
I:i

(z); ↑ I; z−i
))

,

or:

↑ I; H(z); ↓ D =
∑

i∈I

(
HI:i(z); ↑ I; z−i

)
; ↓ D

=
∑

i∈I

(
HI:i(z); ↑ I; z−iqIz−ipD

)
; ↓ D

=
∑

i∈I

(
HI:i(z); ↑ I; z−iqIz−ipD; ↓ D

)

=
∑

i∈I

((
HI:i(z)z−iq

)
; ↓ D; ↑ I; z−ip

)

=
∑

i∈I

(∑

d∈D

(
z−d; ↓ D;

(
HI:i(z)z−iq

)
D:d

(z)
)
; ↑ I; z−ip

)
.

In the following example both types of nested polyphase structures are determined for
I = 2 andD = 3.
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Example 5.1. For interpolation factorI = 2 and decimation factorD = 3, p = 1 and
q = −1, the nested polyphase structures related to both formulations from Lemma 5.7 are
depicted in Figure 5.4(b) and Figure 5.4(c).
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Figure 5.4: Examples of nested polyphase structures in case of a rational dec-
imation factor (32 ), I = 2 andD = 3.
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The respective expressions, withD = {0, 1, 2} andI = {0, 1}, are:

↑ 2; H(z); ↓ 3 =
2∑

d=0

(
zd; ↓ 3;

1∑

i=0

((
z−dH3:d(z)

)
2:i

(z); ↑ 2; z−i
))

,

or:

↑ 2; H(z); ↓ 3 =
1∑

i=0

( 2∑

d=0

(
z−d; ↓ 3;

(
H2:i(z)zi

)
3:d

(z)
)
; ↑ 2; z−i

)
,

Application of the polyphase identity, Lemma 5.2, shows that all the subfilters are, possi-
ble delayed, PPCs with decomposition factorID = 6 of H(z).

r Figure 5.4(b) Figure 5.4(c)
0 H6:0(z) =

(
H3:0(z)

)
2:0

(z) =
(
H2:0(z)

)
3:0

(z)

1 H6:1(z) =
(
z−1H3:1(z)

)
2:1

(z) = z−1
(
z1H2:1(z)

)
3:2

(z)

2 H6:2(z) = z
(
z−2H3:2(z)

)
2:0

(z) =
(
H2:0(z)

)
3:1

(z)
3 H6:3(z) =

(
H3:0(z)

)
2:1

(z) =
(
z1H2:1(z)

)
3:0

(z)

4 H6:4(z) = z
(
z−1H3:1(z)

)
2:0

(z) =
(
H2:0(z)

)
3:2

(z)

5 H6:5(z) = z
(
z−2H3:2(z)

)
2:1

(z) =
(
z1H2:1(z)

)
3:1

(z)

Basically, the schemes differ only in the structure of the multiplex and demultiplex net-
works. These networks can be made more efficient by combiningsome of the adders and
delay elements (not shown). Other examples can be found in for instance [133] and [135].
End of example

5.4 Unified polyphase structure

In the nested polyphase structure there exists an asymmetryin the structure. The order in
which both polyphase decompositions are applied, affects the resulting structure. In this
section theunified polyphase structureis presented where the asymmetry is absent. In
[135] a structure similar to the unified polyphase structurein, e.g., Figure 5.5(c) is shown.
In the reference, equal delays and the SRDs at the input, are combined. For each of the
PPCs in Figure 5.4(b) and Figure 5.4(c), there is a route through both the demultiplexer
and the multiplexer. The unified polyphase structure shows each possible route from input
to output as a parallel branch or path. For the following discussion, and also for later when
symmetry will be restored, the path of a multirate filter is defined first.

Definition 5.3 (Path). Thepath(r) of a multirate filterH(z) ∈ C(z), with interpolation
factorI, decimation factorD, pD + qI = 1 with p, q ∈ Z, andR = ID, is defined as:

path(r) , z−rq; ↓ D; HR:r(z); ↑ I; z−rp.

Next it will be shown that on basis of this definition any multirate filter can be formulated
as a sum of paths.
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Lemma 5.8(Unified polyphase structure). Any multirate filterH(z) ∈ C(z), with inter-
polation factorI, decimation factorD, pD + qI = 1 with p, q ∈ Z, andR = ID, can be
reformulated as:

↑ I; H(z); ↓ D =
∑

r∈R
path(r).

Proof. The polyphase decomposition, Lemma 5.3, the split delay identity, Lemma A.7,
both noble identities, Lemma A.3 and Lemma A.4, the first prime identity, Lemma A.5
and Definition 5.3 for the path, are used:

↑ I; H(z); ↓ D =↑ I;
∑

r∈R

(
z−rHR:r(z

R)
)
; ↓ D

=↑ I;
∑

r∈R

(
z−rqIHR:r(z

R)z−rpD
)
; ↓ D

=
∑

r∈R

(
z−rq; ↑ I; HR:r(z

R); ↓ D; z−rp
)

=
∑

r∈R

(
z−rq; ↓ D; HR:r(z); ↑ I; z−rp

)

=
∑

r∈R
path(r).

The unified polyphase structure is clarified in the next example.

Example 5.2. Continuation of Example 5.1 with Lemma 5.8 gives:

↑ 2; H(z); ↓ 3 =

5∑

r=0

(
zr; ↓ 3; H6:r(z); ↑ 2; z−r

)
,

and the related scheme is shown in Figure 5.5(b). Recall thatI = 2, D = 3, p = 1 and
q = −1. Now, the delays in front of the SRDs and behind the SRIs can benormalized by
means of the noble identities, such thatd ∈ D0 andi ∈ I0. In this process delay elements
moved towards the PPCs may cancel. In Figure 5.5(c) the result is shown. Note that only
for PPCH6:1(z) the delayz1 remains and that all other PPCs have no additional delay.
End of example

In Lemma 5.9 it will be shown that forr ∈ R0 the remaining delays can be limited to
z0 andz1, and in Lemma 5.10 it will be shown that both values appear in every unified
polyphase structure with normalized delays.

Lemma 5.9. Anypath(r) with r ∈ R0 can be rewritten in the normalized form as:

path(r) = z−(rq)|D ; ↓ D; z−xrHR:r(z); ↑ I; z−(rp)|I ,

with xr = ⌊ rq
D ⌋+ ⌊ rp

I ⌋ andxr ∈ {−1, 0}.
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Figure 5.5: Examples of unified polyphase structures in case of a rational dec-
imation factor (32 ), I = 2 andD = 3.

Proof. By the noble identities, Lemma A.3 and Lemma A.4, it follows that:

path(r) = z−rq; ↓ D; HR:r(z); ↑ I; z−rp

= z−(rq)|D ; ↓ D; z−xrHR:r(z); ↑ I; z−(rp)|I ,

and is easy to check thatxr = ⌊ rq
D ⌋ + ⌊ rp

I ⌋. Using thata − 1 < ⌊a⌋ ≤ a for a ∈ R,
gives rq

D + rp
I − 2 < xr ≤ rq

D + rp
I . SincepD + qI = 1 andID = R, this results in

r
R − 2 < xr ≤ r

R . By r ∈ R0 andxr ∈ Z it follows thatxr ∈ {−1, 0}.
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Lemma 5.10. For I ≥ 2, D ≥ 2, pD + qI = 1 andr ∈ R0:

� there exists anr such thatxr = 0,

� there exists anr such thatxr = −1.

Proof. It will be proven thatx0 = 0 andx1 = −1. SinceI ≥ 2 andD ≥ 2, the values
of r = 0 andr = 1 exist. Evaluation of the expression forxr of Lemma 5.9 in case
r = 0, givesx0 = 2⌊0⌋ = 0. Evaluation of the expression forxr in caser = 1, gives
x1 = ⌊ q

D ⌋+⌊
p
I ⌋. SincepD+qI = 1, the expression forx1 is x1 = ⌊ 1

ID−
q
D ⌋+⌊

q
D ⌋ and

write q = kD + l with k, l ∈ Z and1 ≤ l < D. Nowx1 = ⌊ 1
ID − k− l

D ⌋+ ⌊k + l
D ⌋ =

⌊ 1
ID − l

D ⌋+ ⌊ l
D ⌋. From 1

ID < l
D < 1 it follows thatx1 = −1.

The unified polyphase structure with its paths in the normalized, form will always con-
tain the non-causal delayz1 in combination with some of the PPCs. In case causality
is relevant, this non-causal delay can be removed by increasing the overall delay of the
multirate filter. Assuming all PPCs being causal, adding thedelayz−D in front of the
system orz−I behind the system will, after application of the noble identities, result in a
causal system.

5.5 Relations between PPCs

In the previous discussions on the polyphase decompositionand structures, it was not
relevant whether the filter itself was symmetric or not. The remainder of this chapter
typically deals with the polyphase decomposition and structures of symmetric filters. In
general, the PPCs of a(σ, µ)-symmetric filter are not symmetric as will be illustrated in
Example 5.3. In this section it will be shown that a PPC of a symmetric filter is either
symmetric or a second PPC exists that is a mirrored version ofthe first PPC. This property
together with the mirrored-pair identity, see Lemma 2.18, form the basis for the restoration
of symmetry as will be discussed in the next section.

Example 5.3. As an example consider the(σ, 3)-symmetric filterH(z):

H(z) = 〈a, b, c,
√

σd, σc∗, σb∗, σa∗〉.

The two PPCsH2:0(z) andH2:1(z) have(σ, 3
2 ) and(σ, 1)-symmetry respectively:

H2:0(z) = 〈a, c, σc∗, σa∗〉,
H2:1(z) = 〈b,

√
σd, σb∗〉.

A second example is the(σ, 5
2 )-symmetric filterG(z):

G(z) = 〈a, b, c, σc∗, σb∗, σa∗〉.
The two PPCsG2:0(z) andG2:1(z) have no symmetry but are mutually mirrored versions:

G2:0(z) = 〈a, c, σb∗〉 =Mσ,1

(
G2:1(z)

)
,

G2:1(z) = 〈b, σc∗, σa∗〉=Mσ,1

(
G2:0(z)

)
.

End of example
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In Lemma 5.11 it will be shown that for anyR : r PPC of the(σ, µ)-symmetric filter
H(z), there exists anR : s PPC that is mutually mirrored with respect to the center
of symmetryµ0. Different values ofµ0 result in different decomposition indicess that,
however, refer to the same PPC, see Lemma 5.2.

Lemma 5.11. For any(σ, µ)-symmetric filterH(z) ∈ C(z):

Mσ,µ0

(
HR:r(z)

)
= HR:s(z),

with s = 2µ− 2Rµ0 − r ands ∈ Z.

Proof. Applying Definition 5.1 and Definition 2.2 gives:

Mσ,µ0

(
HR:r(z)

)
=Mσ,µ0

(∑

n

h[nR + r]z−n

)

= z−2µ0σ
∑

n

h∗[nR + r]zn

= z−2µ0

∑

n

h[2µ− nR− r]zn

= z−2µ0

∑

n

h[nR + 2µ− r]z−n

= z−2µ0HR:(2µ−r)(z)

= HR:(2µ−2Rµ0−r)(z)

= HR:s(z) with s = 2µ− 2Rµ0 − r.

Fromµ, µ0 ∈ Z/2, R ∈ N+ andr ∈ Z, it follows thats ∈ Z. For a given value ofr,
everyµ0 gives a value fors that refers to the same PPC except for a delay. This is because
of the equalitys|R = (2µ− 2Rµ0 − r)|R, that does not depend onµ0.

From Example 5.3 it is clear that symmetric PPCs not necessarily exist. However, in case
a center of symmetryµ0 ∈ Z/2 exists such that the decomposition indicesr = s, the
relatedR : r PPC is symmetric.

5.6 Restoration of symmetry

This section forms the central part of the chapter. Here it will be shown that if a PPC
in a unified polyphase structure of a symmetric filter is non-symmetric, this PPC can be
combined with other non-symmetric PPCs, such that the filters in the resulting structure
all are symmetric. This is formulated in the following theorem.

Theorem 5.1 (Symmetry restoration). Any (σ, µ)-symmetric multirate filterH(z) ∈
C(z), with interpolation factorI and decimation factorD, with gcd(I, D) = 1, can
be constructed fromR = ID symmetric filters in a polyphase structure.

In Section 5.6.1 the proof of this theorem is presented, and in Section 5.6.2 a possible
procedure for restoring the symmetry is given. In Section 5.7 the theorem is applied to
some typical examples.
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5.6.1 Proof of symmetry restoration theorem

For the proof of the theorem some lemmas are needed that will be presented first. The
proofs of these lemmas can be used later as a recipe for the construction of the symmetric
polyphase structure.
The assumption in the theorem thatgcd(I, D) = 1, implies that there existp, q ∈ Z such
that pD + qI = 1 (Euclid). This is used in the following series of lemmas. Also the
Chinese Remainder Theorem (CRT)will be used. The CRT states that ifgcd(I, D) = 1,
the pair(r|D, r|I) has a one-to-one relation tor|R with R = ID and0 ≤ r < R.

Lemma 5.12. If for the(σ, µ)-symmetric multirate filterH(z) ∈ C(z), with interpolation
factor I, decimation factorD, pD + qI = 1 and s = 2µ − 2Rµ0 − r, the relation
(r|D = s|D) ∧ (r|I = s|I) holds, thenpath(r) comprises a symmetric filter.

Proof. By assumption and the CRT,r|R = s|R so indicesr ands refer to the same PPC.
If r = s, Lemma 5.11 and Lemma 2.7 give thatHR:r(z) is (σ, µ0)-symmetric. To make
r = s let µ0 = 2µ−2r

2R . Sincer|R = s|R the relation(2µ)|R = (2r)|R holds, and makes
µ0 ∈ Z/2. See Figure 5.6(a) for the related structure.

Lemma 5.13. If for the(σ, µ)-symmetric multirate filterH(z) ∈ C(z), with interpolation
factor I, decimation factorD, pD + qI = 1 and s = 2µ − 2Rµ0 − r, the relation
(r|D 6= s|D) ∧ (r|I = s|I) holds, then the2 parallel paths,path(r) andpath(s), can be
constructed using2 symmetric filters.

Proof. By assumption and the CRT, indicesr ands refer to different PPCs sincer|D 6=
s|D, and, by Lemma 5.11,Mσ,µ0

(HR:r(z)) = HR:s(z). The symmetric construction is
now as follows:

path(r) + path(s) =

=

[
path(r)
path(s)

]
;
[
1 1

]

=

[
z−rq; ↓ D; HR:r(z); ↑ I; z−rp

z−sq; ↓ D; HR:s(z); ↑ I; z−sp

]
;
[
1 1

]

=

[
z−rq; ↓ D; HR:r(z)
z−sq; ↓ D; z−x; HR:s(z)

]
;
[
1 1

]
; ↑ I; z−rp

=

[
z−rq; ↓ D
z−sq; ↓ D; z−x

]
;H(z); ↑ I; z−rp,

and:

H(z) =

[
1 0
0 z−a

]
;

[
1 1
1 −1

]
;
[
E0(z) E1(z)

]
,

with the arbitrary delayz−a and the delayz−x, with x = (s−r)p
I , to compensate for the

difference between delayz−rp and delayz−sp. Froms|I = r|I it follows thatx ∈ Z.



96 Chapter 5. Polyphase structures

The2 new filters are:

E0(z) = 1
2

(
HR:r(z) + zaHR:s(z)

)
,

E1(z) = 1
2

(
HR:r(z)− zaHR:s(z)

)
.

By assumption and application of Lemma 2.11,zaHR:s(z) = Mσ,µ0− a
2

(HR:r(z)).
Now by Lemma 2.17 the filterE0(z) is (σ, µ0 − a

2 )-symmetric and the filterE1(z) is
(−σ, µ0 − a

2 )-symmetric. See Figure 5.6(b) for the related structure.

Lemma 5.14. If for the(σ, µ)-symmetric multirate filterH(z) ∈ C(z), with interpolation
factor I, decimation factorD, pD + qI = 1 and s = 2µ − 2Rµ0 − r, the relation
(r|D = s|D) ∧ (r|I 6= s|I) holds, then the2 parallel paths,path(r) andpath(s), can be
constructed using2 symmetric filters.

Proof. By assumption and the CRT, indicesr ands refer to different PPCs sincer|I 6=
s|I , and, by Lemma 5.11,Mσ,µ0

(HR:r(z)) = HR:s(z). The symmetric construction is
now as follows:

path(r) + path(s) =

=

[
path(r)
path(s)

]
;
[
1 1

]

=

[
z−rq; ↓ D; HR:r(z); ↑ I; z−rp

z−sq; ↓ D; HR:s(z); ↑ I; z−sp

]
;
[
1 1

]

= z−rq; ↓ D;

[
HR:r(z); ↑ I; z−rp

HR:s(z); z−x; ↑ I; z−sp

]
;
[
1 1

]

= z−rq; ↓ D;H(z);
[
↑ I; z−rp z−x; ↑ I; z−sp

]
,

and:

H(z) =

[
E0(z)
E1(z)

]
;

[
1 1
1 −1

]
;

[
1 0
0 z−b

]
,

with the arbitrary delayz−b and the delayz−x, with x = (s−r)q
D , to compensate for the

difference between delayz−rq and delayz−sq. Froms|D = r|D it follows thatx ∈ Z.
The2 new filters are:

E0(z) = 1
2

(
HR:r(z) + zbHR:s(z)

)
,

E1(z) = 1
2

(
HR:r(z)− zbHR:s(z)

)
.

By assumption and application of Lemma 2.11,zbHR:s(z) =Mσ,µ0− b
2

(HR:r(z)). Now

by Lemma 2.17, the filterE0(z) is (σ, µ0 − b
2 )-symmetric and the filterE1(z) is

(−σ, µ0 − b
2 )-symmetric. See Figure 5.6(c) for the related structure.
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Lemma 5.15. If for the(σ, µ)-symmetric multirate filterH(z) ∈ C(z), with interpolation
factor I, decimation factorD, pD + qI = 1 ands0 = 2µ − 2Rµ0 − r0, the relation
(r0|D 6= s0|D)∧ (r0|I 6= s0|I) holds, then forr1 = s0pD + r0qI ands1 = r0pD + s0qI
the 4 parallel paths,path(r0), path(s0), path(r1) and path(s1), can be constructed
using4 symmetric filters.

Proof. It will be shown thatpath(r1) andpath(s1) differ from path(r0) andpath(s0),
and that their filters are also mutually mirrored with centerof symmetryµ0. This will be
followed by the symmetric construction.
From the definitions ofr1 ands1 follows thatr1|D = (r0qI)|D = (r0(1−pD))|D = r0|D
and similarlys1|D = s0|D, r1|I = s0|I ands1|I = r0|I . From the relation betweenr0

ands0, it now follows thatr0|R, s0|R, r1|R ands1|R are different, sor0, s0, r1 ands1

refer to different paths. Also the values ofr1|R ands1|R are fully determined byr0|R.
Furthermore(r1|D 6= s1|D) ∧ (r1|I 6= s1|I) so it is not possible to use Lemma 5.13 or
Lemma 5.14 forpath(r1) andpath(s1).
By Lemma 5.11,Mσ,µ0

(HR:r0
(z)) = HR:s0

(z). Using the assumptions and definitions
it is easy to verify thats1 = 2µ − 2Rµ0 − r1. Observe thatr1 + s1 = s0pD + r0qI +
r0pD+s0qI = s0+r0 = 2µ−2Rµ0. As a consequenceMσ,µ0

(HR:r1
(z)) = HR:s1

(z).
The symmetric construction is now as follows:

path(r0) + path(s0) + path(r1) + path(s1) =

=





path(r0)
path(s0)
path(r1)
path(s1)



 ;
[
1 1 1 1

]

=





z−r0q; ↓ D; HR:r0
(z); ↑ I; z−r0p

z−s0q; ↓ D; HR:s0
(z); ↑ I; z−s0p

z−r1q; ↓ D; HR:r1
(z); ↑ I; z−r1p

z−s1q; ↓ D; HR:s1
(z); ↑ I; z−s1p



 ;
[
1 1 1 1

]

=





z−r0q; ↓ D; HR:r0
(z); ↑ I; z−r0p

z−s0q; ↓ D; HR:s0
(z); ↑ I; z−s0p

z−r0q; ↓ D; z−x0; HR:r1
(z); ↑ I; z−s0p

z−s0q; ↓ D; z−x1 ; HR:s1
(z); ↑ I; z−r0p



 ;
[
1 1 1 1

]

=

[
z−r0q; ↓ D
z−s0q; ↓ D

]
;H(z);

[
↑ I; z−r0p ↑ I; z−s0p

]
,

and:

H(z) =

[
1 0
0 z−a

]
;

[
1 1
1 −1

]
;

[
E0(z) E2(z)
E1(z) E3(z)

]
;

[
1 1
1 −1

]
;

[
1 0
0 z−b

]
,

with the arbitrary delaysz−a andz−b. The delaysz−x0 andz−x1 are to compensate for
the differences between the delays in front of the SRDs and behind the SRIs. For delay
z−x0 it is found that:x0 = (r1−r0)q

D + (r1−s0)p
I = (s0pD+r0(qI−1))q

D + (s0(pD−1)+r0qI)p
I =
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(s0− r0)pq + (r0− s0)pq = 0. Similarly it is found that:x1 = (s1−s0)q
D + (s1−r0)p

I = 0.
The4 new filters are:

E0(z) = 1
4

(
HR:r0

(z) + zaHR:s1
(z) + zbHR:r1

(z) + za+bHR:s0
(z)

)
,

E1(z) = 1
4

(
HR:r0

(z) + zaHR:s1
(z)− zbHR:r1

(z)− za+bHR:s0
(z)

)
,

E2(z) = 1
4

(
HR:r0

(z)− zaHR:s1
(z) + zbHR:r1

(z)− za+bHR:s0
(z)

)
,

E3(z) = 1
4

(
HR:r0

(z)− zaHR:s1
(z)− zbHR:r1

(z) + za+bHR:s0
(z)

)
.

By assumption and application of Lemma 2.11,zaHR:s1
(z) =Mσ,µ0− a+b

2

(
zbHR:r1

(z)
)

andza+bHR:s0
(z) =Mσ,µ0− a+b

2

(HR:r0
(z)). Now by Lemma 2.17 the filtersE0(z) and

E3(z) are(σ, µ0 − a+b
2 )-symmetric and the filtersE1(z) andE2(z) are(−σ, µ0 − a+b

2 )-
symmetric. See Figure 5.6(d) for the related structure.

The proof of Theorem 5.1 on page 94 now is as follows.

Proof. The assumptiongcd(I, D) = 1 implies that there existp, q ∈ Z such thatpD +
qI = 1 (Euclid).
From Lemma 5.8 and Definition 5.2 it follows that exactlyR = ID paths,path(r) with
r ∈ R, have to be considered. For anyr ∈ R, there is an indexs = 2µ− 2Rµ0 − r such
that exactly one of the following four rules applies (CRT):

Rule a: (r|D = s|D) ∧ (r|I = s|I) apply Lemma 5.12,

Rule b: (r|D 6= s|D) ∧ (r|I = s|I) apply Lemma 5.13,

Rule c: (r|D = s|D) ∧ (r|I 6= s|I) apply Lemma 5.14,

Rule d: (r|D 6= s|D) ∧ (r|I 6= s|I) apply Lemma 5.15.

Rule a applies to a single path, whereas Rule b and Rule c both apply to 2 paths, and
Rule d applies to4 paths. Lemma 5.12 shows that for indexr the filter is symmetric,
Lemma 5.13 and Lemma 5.14 show how2 new symmetric filters are constructed, and
Lemma 5.15 shows how4 new symmetric filters are constructed.

Theorem 5.1 is applicable only ifD andI are coprime. In caseD andI have a common
factor the second prime identity, Lemma A.6, can be used to delete this factor. As a
consequence however, the resulting filter may be non-symmetric even if the original filter
was. Note that the savings by restoring symmetry are at most afactor of2, whereas the
savings by application of the second prime identity are at least a factor of2.

5.6.2 Procedure for restoring symmetry

The proof of Theorem 5.1 is constructive. A procedure for restoring the symmetry in the
polyphase structure of a symmetric filter could be along the lines as inspired by this proof.
As a consequence the following part resembles the proof as presented before, in a great
extent.
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Figure 5.6: The four possible constructions to restore symmetry.

First, the multirate-filter specification is verified in Step1 to determine if the procedure is
applicable, and some parameters are derived in Step2. Step3, Step4 and Step5 are used
repeatedly until all filters in the polyphase structure are symmetric. In Step5 one of the
rules as given in the proof of the theorem on the preceding page, Rule a, Rule b, Rule c
or Rule d, will be applied. The value of the parametersa andb can be chosen to optimize
the resulting filtersEi(z).

Step 1: Evaluate the multirate filter specification.

1. Is filterH(z) (σ, µ)-symmetric?

2. AreI andD coprime, i.e.gcd(I, D) = 1?

3. If both conditions hold, then continue with Step 2, otherwise this procedure is
not applicable.

Step 2: Determine the valuesp, q ∈ Z in pD + qI = 1 and letR = ID.



100 Chapter 5. Polyphase structures

Step 3: The following steps have to be repeated until every indexr ∈ R is considered
either directly by selection, or implied by Step4 and/or Step5-Rule d.

Step 4: Determine indexs = 2µ− 2Rµ0 − r for anyµ0 ∈ Z/2.

Step 5: Determiner|D, r|I , s|Dands|I and select the applicable rule.

Rule a: If (r|D = s|D) ∧ (r|I = s|I), then:

path(r) = z−rq; ↓ D; E0(z); ↑ I; z−rp.

The new filter:

E0(z) = 1
2

(
HR:r(z) + HR:s(z)

)
,

is (σ, µ0)-symmetric. Forµ0 = µ−r
R : r = s so E0(z) = HR:r(z). The

related structure is found in Figure 5.6(a).

Rule b: If (r|D 6= s|D) ∧ (r|I = s|I), then with the arbitrary delayz−a and the
delayz−x, with x = (s−r)p

I , the two new filters are:

E0(z) = 1
2

(
HR:r(z) + zaHR:s(z)

)
,

E1(z) = 1
2

(
HR:r(z)− zaHR:s(z)

)
.

Filter E0(z) is (σ, µ0 − a
2 )-symmetric and filterE1(z) is (−σ, µ0 − a

2 )-
symmetric. The related structure is found in Figure 5.6(b).

Rule c: If (r|D = s|D) ∧ (r|I 6= s|I), then with the arbitrary delayz−b and the
delayz−x, with x = (s−r)q

D , the two new filters are:

E0(z) = 1
2

(
HR:r(z) + zbHR:s(z)

)
,

E1(z) = 1
2

(
HR:r(z)− zbHR:s(z)

)
.

Filter E0(z) is (σ, µ0 − b
2 )-symmetric and filterE1(z) is (−σ, µ0 − b

2 )-
symmetric. The related structure is found in Figure 5.6(c).

Rule d: If (r|D 6= s|D) ∧ (r|I 6= s|I), then let indicesr0 = r, s0 = s, r1 =
s0pD + r0qI ands1 = r0pD + s0qI, and with the arbitrary delaysz−a and
z−b, the four new filters are:

E0(z) = 1
4

(
HR:r0

(z) + zaHR:s1
(z) + zbHR:r1

(z) + za+bHR:s0
(z)

)
,

E1(z) = 1
4

(
HR:r0

(z) + zaHR:s1
(z)− zbHR:r1

(z)− za+bHR:s0
(z)

)
,

E2(z) = 1
4

(
HR:r0

(z)− zaHR:s1
(z) + zbHR:r1

(z)− za+bHR:s0
(z)

)
,

E3(z) = 1
4

(
HR:r0

(z)− zaHR:s1
(z)− zbHR:r1

(z) + za+bHR:s0
(z)

)
.

FiltersE0(z) andE3(z) are(σ, µ0 − a+b
2 )-symmetric and filtersE1(z) and

E2(z) are(−σ, µ0 − a+b
2 )-symmetric. The related structure is found in Fig-

ure 5.6(d).

Step 6: Return to Step3.
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5.7 Examples

In this section three examples are presented to illustrate the symmetry-restoration proce-
dure as described in Section 5.6.2. In Example 5.4 the procedure is used for a symmetric
multirate filter with the rational decimation factor3

2 . Example 5.5 describes the proce-
dure for a decimating filter withD = 7. Finally, Example 5.6 describes the procedure
for a decimating filter withD = 2. In the latter case the quantized filter coefficients are
known and the actual costs, i.e., the number of additions, are determined. Also the role of
parametersa andb is shown.
In [8] a possible implementation in MATLAB of the symmetry restoration procedure for
real filters only is presented. Based on this tool additionalexamples are elaborated that
show the possibilities of the procedure.

Example 5.4. The general method to restore symmetry in a unified polyphasestructure
is illustrated for the(σ, 7

2 )-symmetric filterH(z) ∈ C(z), with interpolation factorI = 2
and decimation factorD = 3. The resulting scheme is presented in Figure 5.7(b).
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Figure 5.7: Example of a polyphase structure with restored symmetry, incase
of a rational decimation factor (32 ), I = 2, D = 3 andµ = 7

2 .

Step 1: By assumption the filterH(z) is symmetric withµ = 7
2 and gcd(I, D) =

gcd(2, 3) = 1.

Step 2: I = 2, D = 3, R = ID = 6, the values forp andq arep = 1 andq = −1.

Step 3: Selectr0 = 0.
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Step 4: Forµ0 = 1
2 : s0 = 2µ− 2Rµ0 − r0 = 1.

Step 5: Since(0|3 6= 1|3) ∧ (0|2 6= 1|2) Step5-Rule d is selected. Nowr1 = s0pD +
r0qI = 3, s1 = r0pD + s0qI = −2, −r0q = 0, −s0q = 1, −r0p = 0 and
−s0p = −1. The values ofa andb can be chosen freely, e.g.,a = b = 0. So:

E0(z) = 1
4

(
H6:0(z) + H6:−2(z) + H6:3(z) + H6:1(z)

)
,

E1(z) = 1
4

(
H6:0(z) + H6:−2(z)−H6:3(z)−H6:1(z)

)
,

E2(z) = 1
4

(
H6:0(z)−H6:−2(z) + H6:3(z)−H6:1(z)

)
,

E3(z) = 1
4

(
H6:0(z)−H6:−2(z)−H6:3(z) + H6:1(z)

)
.

Filters E0(z) and E3(z) are (σ, 1
2 )-symmetric and filtersE1(z) and E2(z) are

(−σ, 1
2 )-symmetric.

Step 6: Until now, only 4 of the6 paths are considered{−2, 0, 1, 3} ⊂ R, so return to
Step3.

Step 3: Selectr0 = 2.

Step 4: Forµ0 = 0: s = 2µ− 2Rµ0 − r = 5.

Step 5: Since(2|3 = 5|3) ∧ (2|2 6= 5|2) Step5-Rule c is selected. Now−rq = 2,
−rp = −2, −sp = −5 and−x = − (s−r)q

D = 1. The value ofb can be chosen
freely, e.g.,b = 0. So:

E4(z) = 1
2

(
H6:2(z) + H6:5(z)

)
,

E5(z) = 1
2

(
H6:2(z)−H6:5(z)

)
.

Filter E4(z) is (σ, 0)-symmetric and filterE5(z) is (−σ, 0)-symmetric.

Step 6: Now, all 6 paths are considered:{−2, 0, 1, 2, 3, 5} = R, so the symmetry-
restoration procedure terminates.

Note that by selecting non-zero values for thea andb parameters alternative solutions can
be obtained. Adding delays and applying noble identities, the delay before the SRD and
after the SRI can be modified or made causal.
End of example

Example 5.5. The general method for restoring the symmetry in a unified polyphase
structure is also applicable to basic polyphase structures. For a decimating filter the factor
I is set toI = 1, and for an interpolating filter the factorD is set toD = 1. In this example
the (σ, 5)-symmetric decimating filterH(z) ∈ C(z) with decimation factorD = 7 is
discussed. The resulting structure is shown in Figure 5.8.

Step 1: By assumption the filterH(z) is symmetric withµ = 5 and gcd(I, D) =
gcd(1, 7) = 1.

Step 2: I = 1, D = 7, R = ID = 7, the values forp andq arep = 0 andq = 1.
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Figure 5.8: Example of a polyphase structure with restored symmetry, incase
of an integer decimation factorD = 7 andµ = 5.

Step 3: Selectr = 0.

Step 4: Forµ0 = 1
2 : s = 2µ− 2Rµ0 − r = 3.

Step 5: Since(0|7 6= 3|7) ∧ (0|1 = 3|1) Step5-Rule b is selected. Now−rq = 0,
−rp = 0,−sq = −3 and−x = − (s−r)p

I = 0. The value ofa can be chosen freely,
e.g.,a = 0. So:

E0(z) = 1
2

(
H7:0(z) + H7:3(z)

)
,

E1(z) = 1
2

(
H7:0(z)−H7:3(z)

)
.

Filter E0(z) is (σ, 1
2 )-symmetric and filterE1(z) is (−σ, 1

2 )-symmetric.

Step 6: Until now, only2 of the7 paths are considered{0, 3} ⊂ R, so return to Step3.

Step 3: Selectr = 1.

Step 4: Forµ0 = 1
2 : s = 2µ− 2Rµ0 − r = 2.

Step 5: Since(1|7 6= 2|7) ∧ (1|1 = 2|1) Step5-Rule b is selected. Now−rq = −1,
−rp = 0,−sq = −2 and−x = − (s−r)p

I = 0. The value ofa can be chosen freely,
e.g.,a = 0. So:

E2(z) = 1
2

(
H7:1(z) + H7:2(z)

)
,

E3(z) = 1
2

(
H7:1(z)−H7:2(z)

)
.

Filter E2(z) is (σ, 1
2 )-symmetric and filterE3(z) is (−σ, 1

2 )-symmetric.
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Step 6: Until now, only 4 of the 7 paths are considered{0, 1, 2, 3} ⊂ R, so return to
Step3.

Step 3: Selectr = 6.

Step 4: Forµ0 = 0: s = 2µ− 2Rµ0 − r = 4.

Step 5: Since(6|7 6= 4|7) ∧ (6|1 = 4|1) Step5-Rule b is selected. Now−rq = −6,
−rp = 0,−sq = −4 and−x = − (s−r)p

I = 0. The value ofa can be chosen freely,
e.g.,a = 0. So:

E4(z) = 1
2

(
H7:6(z) + H7:4(z)

)
,

E5(z) = 1
2

(
H7:6(z)−H7:4(z)

)
.

Filter E4(z) is (σ, 0)-symmetric and filterE5(z) is (−σ, 0)-symmetric.

Step 6: Until now, only4 of the7 paths are considered{0, 1, 2, 3, 4, 6} ⊂ R, so return
to Step3.

Step 3: Selectr = 5.

Step 4: Forµ0 = 0: s = 2µ− 2Rµ0 − r = 5.

Step 5: Since(5|7 = 5|7) ∧ (5|1 = 5|1) Step5-Rule a is selected. Now−rq = −5 and
−rp = 0. So filterE6(z) = H7:5(z) is (σ, 0)-symmetric.

Step 6: Now, all 7 paths are considered:{0, 1, 2, 3, 4, 5, 6} = R, so the symmetry-
restoration procedure terminates.

In the structure, see Figure 5.8, the delays at the input are combined efficiently in a tapped
delay line. Since for all indicesr ands the relationr|I = s|I holds, either Step5-Rule a
or Step5-Rule b of the procedure apply. Similarly, in case of an interpolating filter, i.e.
D = 1, either Step5-Rule a or Step5-Rule c of the procedure apply.
End of example

Example 5.6. Also this example illustrates restoration of symmetry in the polyphase
structure of decimating filterH(z) now with decimation factorD = 2. The focus now is
on varying parametera (and/orb in the general recipe), that can be beneficial to further
reduce the number of additions in case the multiplications are implemented using shift-
and-add operations, CSD [120] and Appendix E.
Consider the(1, 11

2 )-symmetric real filterH(z) ∈ Z/214(z), with a passband gain of
0 dB, a passband ripple of1 dB and a stopband gain of−80 dB. The passband ranges
from θ = 0 throughθ = 0.3π and the stopband ranges fromθ = 0.7π throughθ = π.
The filter length isL = 12. For reasons of clarity a scaled version of the filterH(z)
will be used:H ′(z) = 214H(z) ∈ Z(z). The12 coefficients of filterH ′(z) are listed in
Table 5.1 column2 and3 for each of the PPCs,H ′(z) = H ′2:0(z

2) + z−1H ′2:1(z
2). The

pi refer to the multipliers in Figure 5.9.
Direct use of the basic polyphase structure, as in Figure 5.2, results in the scheme of Fig-
ure 5.9, where in total11 additions,6 delay elements and12 multiplications are required.
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a = 0 a = 1
H ′2:0(z) H ′2:1(z) 2E′0(z) 2E′1(z) 2E′0(z) 2E′1(z)

n h′2:0[n] # h′2:1[n] # 2e′0[n] # 2e′1[n] # 2e′0[n] # 2e′1[n] #
−1 −544 = q0 1 544 = q4 1

0 −109 = p0 3 −544 = p5 1 −653 4 435 4 −10 = q1 1 −208 = q5 2
1 −935 = p1 4 99 = p4 3 −836 3 −1034 2 5408 = q2 3 −7278 = q6 4
2 3230 = p2 4 6343 = p3 5 9573 6 −3113 4 6460 = q3 4 0
3 6343 = p3 5 3230 = p2 4 9573 3113 5408 7278
4 99 = p4 3 −935 = p1 4 −836 1034 −10 208
5 −544 = p5 1 −109 = p0 3 −653 −435 −544 −544

20 20 13 10 9 7

Table 5.1: Filter coefficients and their required number of additions for the
schemes in Figure 5.9 and Figure 5.10.

The equal multiplications in both PPCs cannot be combined. In case the multiplications
are implemented using shift-and-add operations, CSD, the12 multiplications can be re-
placed by20+20 = 40 additions (the column with header# gives the number of additions
and subtractions for the coefficient as CSD), such that in total 11 + 20 + 20 = 51 addi-
tions and6 delay elements are required. If symmetry could have been exploited (not in
this scheme), the number of multiplications would have been6 or the number of additions
would have been11 + 20 = 31.

- - - - - -z−1 z−1 z−1 z−1 z−1? ? ? ? ? ?

p5 p4 p3 p2 p1 p0

? ? ? ? ? ?

6 6 6 6 6 6
p0 p1 p2 p3 p4 p5

6 6 6 6 6 6

2

2

z−1

Figure 5.9: Basic polyphase structure forH(z); ↓ 2, requires51 additions. The
values forpi and the required number of additions are listed in
Table 5.1.

Next, the symmetry will be restored according to the procedure as described in Sec-
tion 5.6.2.

Step 1: By assumption the filterH(z) is symmetric withσ = 1, µ = 11
2 andgcd(I, D) =

gcd(1, 2) = 1.

Step 2: I = 1, D = 2, R = ID = 2, the values forp andq arep = 0 andq = 1.
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Step 3: Selectr = 0.

Step 4: Forµ0 = 5
2 : s = 2µ− 2Rµ0 − r = 1.

Step 5: Since(0|2 6= 1|2) ∧ (0|1 = 1|1) Step5-Rule b is selected. Now−rq = 0,
−rp = 0, −sq = −1 and−x = − (s−r)p

I = 0. Different values ofa will be
considered later. So:

E0(z) = 1
2

(
H2:0(z) + zaH2:1(z)

)
,

E1(z) = 1
2

(
H2:0(z)− zaH2:1(z)

)
.

Filter E0(z) is (1, 5
2 − a

2 )-symmetric and filterE1(z) is (−1, 5
2 − a

2 )-symmetric.

Step 6: Now, both paths are considered:{0, 1} = R, so the symmetry-restoration pro-
cedure terminates.

Next, the number of additions required to implement the coefficients of both filters, using
CSDs and exploiting symmetry, is evaluated for different values ofa. It is found that for
a = 1 this number is optimal. In Table 5.1 the coefficients of filter2E0(z) and2E1(z) are
listed for the casesa = 0 anda = 1. Introduction of the factor2 is to avoid non-integer
coefficients but has no consequences with respect to the number of additions. Fora = 0,
the coefficients require13+10 = 23 additions, whereas fora = 1, the coefficients require
only 9+7 = 16 additions. Now, in total12+16+2 = 30 additions and8 delay elements
are required. Theqi in Table 5.1 refer to the multipliers in Figure 5.10. The equations
and Table 5.1 allow filters to be non-causal fora = 1. The scheme of Figure 5.10 is made
causal by introducing an additional delay at the output. As aconsequence the scheme in
Figure 5.10 implementsH(z); ↓ 2; z−1.

? ? ? ? ? ? ?

-
-
-
- q3

q2

q1

q0

- - - - - - -z−1 z−1 z−1 z−1 z−1 z−1

-
-
- q4

q5

q6 6 6 6 6 6 6− − −

-

-

�

W−

2

2

z−1

z−1

Figure 5.10: Polyphase structure with restored symmetry, forH(z); ↓ 2; z−1,
requires30 additions. The values forqi and the required number
of additions are listed in Table 5.1.

End of example
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5.8 Structural zeros in PPCs

Real linear-phase(σ, µ)-symmetric filters can have structural zeros depending on the val-
ues ofσ andµ, whereas complex symmetric filters never have, see Section 2.11. Since
the individual real and imaginary parts of a complex filter are real filters, they can have
structural zeros.
Application of Theorem 5.1 to restore the symmetry in a unified polyphase structure, can
result in many subfilters with structural zeros even when theoriginal filter has none or just
a few structural zeros. It depends on the structure in which all the subfilters are connected
whether structural zeros can be shared or not.

5.9 Conclusion

Central in this chapter is the restoration of symmetry in polyphase structures of symmetric
multirate filters. A new theorem states that the polyphase structure of any real or com-
plex multirate(σ, µ)-symmetric filter, with integer or rational interpolation or decimation
factors, can be constructed from symmetric filters only. A unified approach results in a
general applicable algorithm to devise the structure that contains symmetric filters only.
In addition an extra degree of freedom in restoring the symmetry is identified.
To tool up for the treatment of the new theorem, a few important definitions, identities
and known structures, the basic polyphase structures for integer multirate factors, and the
nested polyphase structures for rational multirate factors, are treated in detail first. The
unified polyphase structure for rational multirate factorsserves as basis for the restoration
of symmetry. By means of some typical examples it is shown howthe new procedure can
be used to restore the symmetry and what savings can be achieved.
It is subject to future research to integrate the techniquesdescribed in [94] and [95] with
the new method described in this chapter, to further reduce the complexity of multirate
filters.
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Chapter 6

Conclusions

In this final chapter of the thesis, the research questions are answered in Section 6.1, and
some suggestions for future work are made in Section 6.2.

6.1 Answers to the research questions

The three main questions posed in Section 1.7 will be answered in this section, by com-
bining results from the various chapters in this thesis. More details can be found in the
conclusions of the individual chapters.

• Is it relevant to design generalized-Hermitian-symmetricfilters?

Any generalized-Hermitian-symmetric filter with complex coefficients,H(z) ∈ C(z),
can be obtained from a Hermitian-symmetric filter with complex coefficients,G(z) ∈
C(z), in a trivial way, by takingH(z) = aG(z) for a special value ofa ∈ C. The-
orem 2.1 describes this so called reduction of symmetric filters overC. Therefore it is
not relevant to have a special filter design tool for directlydesigning the generalized-
Hermitian-symmetric filterH(z) ∈ C(z).
With respect to the generalized-Hermitian-symmetric filter with complex-integer coef-
ficients, H(z) ∈ CZ(z), the answer is more surprising. According to Theorem 2.2,
any generalized-Hermitian-symmetric filter with complex-integer coefficients,H(z) ∈
CZ(z), can be obtained from a Hermitian-symmetric filter with scaled complex-integer
coefficients,G(z) ∈ CZ/2(z), by takingH(z) = aG(z) for a special value ofa ∈ CZ.
This is called the reduction of symmetric filters overCZ. As a consequence, it is also
not relevant to have a special filter design tool for directlydesigning the generalized-
Hermitian-symmetric filterH(z) ∈ CZ(z). Starting with a Hermitian-symmetric filter
G(z) ∈ CZ(z), and a special value fora, viz., a = 1, j, 1 + j or 1 − j, the resulting
generalized-Hermitian-symmetric filterH(z) = aG(z) shows clear forms of symmetry.
It was shown in Chapter 3, for first- and second-order filters,that, depending on the spec-
ifications, these special generalized-Hermitian-symmetric filters may be beneficial.
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• What structures implement generalized-Hermitian-symmetric filters?

The transversal structure is very suited to implement any generalized-Hermitian-symmet-
ric filter. This is elaborated in Chapter 4, where it is also shown how the symmetry can
be accomplished with a special scale factor and coefficientsthat appear in conjugated
pairs. A few efficient structures are presented for these conjugated pairs. Alternatively,
several structures are shown for the decomposition of FIR filters into individual real and
imaginary parts.

• Is it possible to restore the symmetry in polyphase filter structures?

Yes, according to Theorem 5.1, any generalized-Hermitian-symmetricmultirate filter with
integer or rational interpolation or decimation factors can be constructed from generalized-
Hermitian-symmetric filters in a polyphase structure. The several subfilters in a polyphase
structure exhibit relations that can be exploited to obtaingeneralized-Hermitian-symmet-
ric filters according to the methods described in Chapter 2. The structures that may be
applied to implement these filters are discussed in Chapter 4.

6.2 Suggestions for future work

The results presented in this thesis inspire a few topics that may be worthwhile considering
in future work.
The DESFIL software package can be extended in several ways:i) design a generalized-
Hermitian-symmetric filter with complex-integer coefficients, by designing a Hermitian-
symmetric filter and an appropriate scale factor, and ii) restore the symmetry in a poly-
phase structure and select the optimal configuration.
The theorems about the reduction of generalized-Hermitian-symmetricfilters overCZ can
be extended to multi-dimensional filters. Also the restoration of symmetry in polyphase
structures may be studied for multi-dimensional filters.
When studying alternatives for integer and complex-integer coefficients (Appendix E),
the exhaustive search had to be limited. It would be beneficial to know close bounds for
the search.



Appendix A

Some common identities

A number of identities like the noble identities and the prime identities, including their
proofs known from e.g. [133] and [135], are summarized in this appendix. In addition,
the split-delay identity and some identities related to complex modulators in combination
with SRDs and SRIs are presented. Also some properties of thenorms that are defined in
Section 1.9.6 are listed. Finally, some examples are presented to demonstrate a possible
application of the identities.

A.1 Increasing and decreasing the sampling rate

The building blocks for changing the sampling rate, the Sampling Rate Increaser (SRI)
and the Sampling Rate Decreaser (SRD), are commonly described in the time domain,
for instance [43]. For the SRI, the output signaly[n] = x[n

I ] if n is a multiple ofI, and
y[n] = 0 for all othern, whereI is called the interpolation factor. For the SRD the output
signaly[n] = x[nD], whereD is called the decimation factor. Both factorsI andD are
positive integers, i.e.,I, D ∈ N+.

A.1.1 Increasing the sampling rate

For the SRI in Figure A.1, the relation between the output andthe input in time domain is
defined next.

X(z) -
I

Y (z)

Figure A.1: Sampling Rate Increaser (SRI).
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Definition A.1. For a given input signalx[n] and SRI↑ I with I ∈ N+, the output signal
y[n] is defined as:

y[n] ,

{
x[n

I ], n = kI with k ∈ Z,
0, otherwise.

For thez-domain the next lemma describes the behaviour of the SRI.

Lemma A.1. Let signalY (z) be the upsampled version of signalX(z), with interpolation
factorI ∈ N+, then:

Y (z) = X(zI).

Proof. By the SRI the indices of the input samples,x[n], are basically multiplied by the
factorI. All other samples become zero. Using the definition of thez-transform gives:

X(z) =
∑

n

x[n]z−n,

Y (z) =
∑

n

y[n]z−n

=
∑

n

x[n]z−nI

=
∑

n

x[n](zI)−n

= X(zI).

A.1.2 Decreasing the sampling rate

For the SRD in Figure A.2, the relation between the output andthe input in time domain
is defined next.

X(z) -
D

Y (z)

Figure A.2: Sampling Rate Decreaser (SRD).

Definition A.2. For a given input signalx[n] and SRD↓ D with D ∈ N+, the output
signaly[n] is defined as:

y[n] , x[nD].

For thez-domain the next lemma describes the behaviour of the SRD.
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Lemma A.2. Let signalY (z) be the downsampled version of signalX(z), with decima-
tion factorD ∈ N+, then:

Y (z) =
1

D

D−1∑

i=0

X(z
1
D W i

D),

whereWD is theDth root of unity, or twiddle factor, defined asWD = e−j 2π
D .

Proof. First an auxiliary signalv[n] is described that has the same sampling frequency as
x[n], see Figure A.3. The signalv[n] = x[n] for all n that are multiples ofD, for all other
n, v[n] = 0. This can be expressed using the well known orthogonality property:

1

D

D−1∑

i=0

W−in
D =

{
1, n = kD,
0, otherwise,

so:

v[n] = x[n]
1

D

D−1∑

i=0

W−in
D .

X(z) -
D D

Y (z)
V (z)

Figure A.3: Scheme with an SRD and an SRI to support the proof.

Thez-transform ofv[n] is:

V (z) =
∑

n

v[n]z−n

=
1

D

∑

n

x[n]

D−1∑

i=0

W−in
D z−n

=
1

D

D−1∑

i=0

∑

n

x[n]W−in
D z−n

=
1

D

D−1∑

i=0

∑

n

x[n](W i
Dz)−n

=
1

D

D−1∑

i=0

X(zW i
D).

Using the SRIz-domain description, Lemma A.1, givesY (zD) = V (z). Sincev[n] = 0

for indices not being multiple ofD and substituting:zD ← z or z ← z
1
D , concludes the

proof.
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A.2 Some identities of SRDs and SRIs

In multirate structures with SRDs or SRIs, it is often possible to move around or ma-
nipulate with these elements according to special rules. The noble identities, the prime
identities, the split-delay identity and some of the modulator identities are discussed ex-
tensively in the following sections of this appendix. Some,rather trivial, identities that
follow directly from Definition A.2 are presented in Figure A.4. These examples are all
based on SRDs only. Similar examples for SRIs can be obtainedby transposing the SRD
schemes [41] [135].

-

=

-
1

-
D0 D1

=

-
D0D1

-
D0 D1

=

-
D1 D0

D

D

?
6

-

=

?
6

-
D

-

-

D

D

=

D

-

-

- a -
D

=

-
D

a -

Figure A.4: Some trivial identities of SRDs.

The respective equalities are:1 =↓ 1, ↓ D0; ↓ D1 =↓ D0D1, ↓ D0; ↓ D1 =↓ D1; ↓ D0,
[ ↓D ↓D ] = [ 1 1 ] ; ↓ D,

[ ↓D
↓D

]
=↓ D; [ 1

1 ] anda; ↓ D =↓ D; a.

The equalities for the SRIs are:1 =↑ 1, ↑ I0; ↑ I1 =↑ I0I1, ↑ I0; ↑ I1 =↑ I1; ↑ I0,
[ ↑I ↑I ] = [ 1 1 ] ; ↑ I,

[ ↑I
↑I

]
=↑ I; [ 1

1 ] anda; ↑ I =↑ I; a.
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A.3 Noble identities

The first and second noble identities describe the combination of a filter and an SRD or
SRI respectively and the change of their order.

A.3.1 First noble identity

An SRD with decimation factorD followed by a filter with system functionH(z), is
identical to a filterG(z) = H(zD) that is followed by the same SRD, see Figure A.5. In
the filter with system functionH(zD) each delay element of the original filter, is replaced
byD delay elements. The new filter is also referred to as a comb filter with comb factorD.

X(z) -
D

Vu(z)
H(z) - Yu(z)

=
(
G(z) = H(zD)

)

X(z) - G(z) -Vl(z)
D

Yl(z)

Figure A.5: First noble identity.

Lemma A.3. For any filterH(z) ∈ C(z) and decimation factorD ∈ N+:

↓ D; H(z) = G(z); ↓ D ⇔ G(z) = H(zD).

Proof. By Lemma A.2, the upper part of Figure A.5 gives:

Vu(z) =
1

D

D−1∑

i=0

X(z
1
D W i

D),

Yu(z) = H(z)Vu(z)

=
1

D

D−1∑

i=0

H(z)X(z
1
D W i

D),

and the lower part of Figure A.5 gives:

Vl(z) = G(z)X(z),

Yl(z) =
1

D

D−1∑

i=0

Vl(z
1
D W i

D)

=
1

D

D−1∑

i=0

G(z
1
D W i

D)X(z
1
D W i

D).
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The expressions forYu(z) andYl(z) are identical if for alli holds:G(z
1
D W i

D) = H(z),
which is true iffG(z) = H(zD).

A.3.2 Second noble identity

An SRI with interpolation factorI preceded by a filter with system functionH(z), is
identical to a filterG(z) = H(zI) that is preceded by the same SRI, see Figure A.6. In
this case each delay element of the original filterH(z) is replaced byI delay elements.
The new filter is also referred to as a comb filter with comb factor I.

X(z) - H(z) -Vu(z)
I

Yu(z)

=
(
G(z) = H(zI)

)

X(z) -Vl(z)
I

G(z) - Yl(z)

Figure A.6: Second noble identity.

Lemma A.4. For any filterH(z) ∈ C(z) and interpolation factorI ∈ N+:

H(z); ↑ I =↑ I; G(z)⇔ G(z) = H(zI).

Proof. By Lemma A.1, the upper circuit given in Figure A.6 gives:

Vu(z) = H(z)X(z),

Yu(z) = Vu(zI)

= H(zI)X(zI),

and the lower part of Figure A.6 gives:

Vl(z) = X(zI),

Yl(z) = G(z)Vl(z)

= G(z)X(zI).

The expressions forYu(z) andYl(z) are identical iffG(z) = H(zI).
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A.4 Prime identities

Two prime identities are described next. The first prime identity concerns a combination
of an SRD and an SRI, and the second prime identity concerns a filter with an SRD and
SRI.

A.4.1 First prime identity

An SRD with decimation factorD and an SRI with interpolation factorI in cascade,
may be interchanged without affecting the overall behaviour, if their factorsD andI are
coprime orgcd(I, D) = 1, see Figure A.7.

X(z) -
D

Vu(z)
I

Yu(z)

=
(
gcd(I, D) = 1

)

X(z) -
I

Vl(z)
D

Yl(z)

Figure A.7: First prime identity.

Lemma A.5. For any decimation factorD ∈ N+ and interpolation factorI ∈ N+:

↓ D; ↑ I =↑ I; ↓ D ⇔ gcd(I, D) = 1.

Proof. The upper circuit of Figure A.7 gives:

Vu(z) =
1

D

D−1∑

i=0

X(z
1
D W i

D),

Yu(z) = Vt(z
I)

=
1

D

D−1∑

i=0

X(z
I
D W i

D),

and the lower circuit of Figure A.7 gives:

Vl(z) = X(zI),

Yl(z) =
1

D

D−1∑

j=0

Vl(z
1
D W j

D)

=
1

D

D−1∑

j=0

X(z
I
D W jI

D ).
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The difference between the expressions only occurs in the exponents of the twiddle factors
W i

D andW jI
D . Both expressions are equivalent iff for alli : 0 ≤ i < D, there exists aj

such thati|D = (jI)|D. This is true iffI andD are coprime, as will be shown next. The
fact thatI andD are coprime implies that there existp, q ∈ Z such thatpD + qI = 1.
Considering the remainder after division byD gives(qI)|D = 1|D. As a consequence,
(iqI)|D = i|D or ((iq)|DI)|D = i|D, for all i. Definingj = (iq)|D gives(jI)|D = i|D
for all i.

If I andD have common factork, defineI = kI ′ andD = kD′. Now i|D = (jI)|D
can be rewritten asi|D = k(jI ′ −mD′) which implies thati|D is a multiple ofk. Only
for k = 1 it is possible to leti|D take any value, which means thatI andD have to be
coprime.

A.4.2 Second prime identity

For a decimating or an interpolating filter that changes the sampling rate with a rational
factor, the structure of Figure A.8 is used often. If the interpolation and decimation factors
are not coprime, a common factorR may be removed from both factors and the filter in
between has to be modified. The impulse response of the new filter is the decimated
version (decimation factorR) of the original impulse response. In other words thez-
transform of the new filter is equal to theR : 0 polyphase componentHR:0(z) of the
original filter. Note that forI = D the total system is monorate and time-invariant. A
possible side effect of this identity is that the resulting filter may be non-symmetric even
if the original filter is symmetric.

X(z) -
IR

Uu(z)
H(z) -Vu(z)

DR

Yu(z)

=
(
G(z) = HR:0(z)

)

X(z) -
I

Ul(z)
G(z) -Vl(z)

D

Yl(z)

Figure A.8: Second prime identity.

Lemma A.6. For any filterH(z) ∈ C(z), decimation factorD ∈ N+ and interpolation
factorI ∈ N+:

↑ IR; H(z); ↓ DR =↑ I; G(z); ↓ D ⇔ G(z) = HR:0(z).
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Proof. The upper circuit in Figure A.8 gives:

Uu(z) = X(zIR),

Vu(z) = H(z)Uu(z)

= H(z)X(zIR),

Yu(z) =
1

DR

DR−1∑

i=0

Vu(z
1

DR W i
DR)

=
1

DR

DR−1∑

i=0

H(z
1

DR W i
DR)X(z

I
D W iIR

DR )

=
1

DR

DR−1∑

i=0

H(z
1

DR W i
DR)X(z

I
D W iI

D ).

The output signal of the lower circuit in Figure A.8 can be derived by Lemma A.1,
Lemma A.2 and Lemma 5.4 and substitutingG(z)← HR:0(z):

Ul(z) = X(zI),

Vl(z) = G(z)Ul(z)

= HR:0(z)X(zI),

Yl(z) =
1

D

D−1∑

i=0

Vl(z
1
D W i

D)

=
1

D

D−1∑

i=0

HR:0(z
1
D W i

D)X(z
I
D W iI

D )

=
1

D

D−1∑

i=0

1

R

R−1∑

j=0

H(z
1

DR W
i
R

D W j
R)X(z

I
D W iI

D )

=
1

DR

D−1∑

i=0

R−1∑

j=0

H(z
1

DR W i
DRW jD

DR)X(z
I
D W iI

D ).

Finally definingk = i + jD gives:

Yb(z) =
1

DR

DR−1∑

k=0

H(z
1

DR W k
DR)X(z

I
D W kI

D ).

The equations are identical, so both systems are identical.
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A.5 Split-delay identity

If the interpolation and decimation factors of an SRI and SRDrespectively are coprime,
a delay between these SRI and SRD can be split, and the resulting parts can be placed
outside the SRI and SRD, also the order of the SRI and SRD can bereversed. This is
illustrated in Figure A.9. Note that the reversed process, combining both delays into one
between the SRI and SRD, is trivial.

X(z) -
I

za
D

Y (z)

=
(
gcd(I, D) = 1

)

X(z) -zaq
D I

zap

Y (z)

Figure A.9: Split-delay identity.

Lemma A.7. For any interpolation factorI ∈ N+, delayza, a ∈ Z, and decimation
factorD ∈ N+, with gcd(I, D) = 1, holds:

↑ I; za; ↓ D = zaq; ↓ D; ↑ I; zap,

with pD + qI = 1 andp, q ∈ Z.

Proof. The proof consists of the following three steps.

1. The assumptiongcd(I, D) = 1 implies thatp, q ∈ Z exist such thatpD + qI = 1,
see extended Euclid’s algorithm Appendix D. Thereforea = apD + aqI and
↑ I; za; ↓ D =↑ I; zaqI ; zapD; ↓ D.

2. Application of the first and second noble identities, Lemma A.3 and Lemma A.4
gives↑ I; za; ↓ D = zaq; ↑ I; ↓ D; zap.

3. Sincegcd(I, D) = 1 the first prime identity, Lemma A.5, gives↑ I; za; ↓ D =
zaq; ↓ D; ↑ I; zap.

A.6 Complex modulation identities

Modulation can be described in the time-domain as the multiplication on sample by sam-
ple basis, of a signalx[n] and a carrierc[n]. Both the signal and the carrier may be real or
complex,x[n], c[n] ∈ C[n]. The effect of modulation can be described in the frequency
domain as shifting the spectrum of the signal to other frequencies. The carrier can be real
c[n] = cos(θcn + φc), or complexc[n] = ej(θcn+φc), with relative frequencyθc and the
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phaseφc. The fundamental difference between modulation with a realor complex carrier,
can best be illustrated by comparing the Fourier transformsof the output signals in both
cases. If:

x[n]
F←→ X(ejθ),

then:

c[n]x[n]
F←→ C(ejθ) ⊛ X(ejθ),

where⊛ is the cyclic convolution. Forc[n] ∈ R this gives:

cos(θcn + φc)x[n]
F←→ 1

2

(
ejφcX(ej(θ−θc)) + e−jφcX(ej(θ+θc))

)
,

and forc[n] ∈ C this gives:

ej(θcn+φc)x[n]
F←→ ejφcX(ej(θ−θc)).

In case of the real carrierc[n] = cos(θcn+φc), the resulting signal spectrum is composed
of two shifted versions of the original spectrum. Both shifted versions may interfere
depending on the signal bandwidth and carrier frequency. Such interference in general
cannot be reversed in subsequent processing steps. In case of the complex carrierc[n] =
ej(θcn+φc), the resulting signal spectrum is only a single shifted versions of the original
spectrum, no interference will occur. This last property makes the complex modulator
valuable in many signal processing systems.

In this section az-domain description of the modulator is given and also a number of
complex modulation properties are described.

A.6.1 Complex modulation

Thez-domain description of a signal that is modulated with the complex carrierej(θcn+φc),
is given in the following lemma.

Lemma A.8. Letx[n] be the input signal of a modulator with the complex carrierc[n] =
ej(θcn+φc), then thez-transform of the output signaly[n] = c[n]x[n] is:

Y (z) = ejφcX(ze−jθc),

whereX(z) ∈ C(z) is thez-transform ofx[n].
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Proof. Straightforward application of thez-transform gives:

Y (z) =
∑

n

x[n]c[n]z−n

=
∑

n

x[n]ej(θcn+φc)z−n

= ejφc

∑

n

x[n]ejθcnz−n

= ejφc

∑

n

x[n](ze−jθc)−n

= ejφcX(ze−jθc).

The substitutionz ← ze−jθc, can be interpreted as a counter clockwise rotation in thez-
plane. The symbol from Figure A.10 will be used to depict the modulation functionality
in schemes. In equations the following notation will be used:

Y (z) = X(z); ej(θcn+φc).

X(z) -×
?

ej(θcn+φc)

- Y (z)

Figure A.10: Complex modulator with carrierej(θcn+φc).

A.6.2 Swapping a complex modulator and a filter

The overall behaviour of a cascade connection of a modulatorand a filter is invariant under
swapping the modulator and the filter, if the filter is replaced by a modulated version, see
Figure A.11.

Lemma A.9. For any filterH(z) ∈ C(z) and complex carrierej(θcn+φc):

ej(θcn+φc); H(z) = G(z); ej(θcn+φc) ⇔ G(z) = H(zejθc).

Proof. The upper part of Figure A.11 gives:

Vu(z) = ejφcX(ze−jθc),

Yu(z) = H(z)Vu(z)

= ejφcH(z)X(ze−jθc),



A.6. Complex modulation identities 123

and the lower part of Figure A.11 gives:

Vl(z) = G(z)X(z),

Yl(z) = ejφcVl(ze−jθc)

= ejφcG(ze−jθc)X(ze−jθc).

The expressions forYu(z) andYl(z) are identical iffH(z) = G(ze−jθc), or equivalently
G(z) = H(zejθc).

X(z) -×
?

ej(θcn+φc)

- H(z) -Vu(z)
Yu(z)

=
(
G(z) = H(zejθc )

)

X(z) - G(z) -×
?

ej(θcn+φc)

-Vl(z)
Yl(z)

Figure A.11: Swapping a complex modulator and a filter.

A.6.3 Swapping a complex modulator and a delay

The overall behaviour of a cascade connection of a modulatorand a delay is invariant
under swapping the modulator and the delay, if the phase of the modulator is modified
properly, see Figure A.12. Swapping a modulator and a delay is just a special case of
swapping a modulator and a filter, Lemma A.9 and therefore thecorresponding relations
can be used too.

Lemma A.10. For any delayz−N with N ∈ Z and complex carrierej(θcn+φc):

ej(θcn+φc); z−N = z−N ; ej(θcn+φ′
c) ⇔ φ′c = φc − θcN.

Proof. The upper part of Figure A.12 gives:

Vu(z) = ejφcX(ze−jθc),

Yu(z) = z−NVu(z)

= z−NejφcX(ze−jθc),
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and the lower part of Figure A.12 gives:

Vl(z) = z−NX(z),

Yl(z) = ejφ′
cVl(ze−jθc)

= ejφ′
c(ze−jθc)−NX(ze−jθc)

= z−Nej(φ′
c+θcN)X(ze−jθc).

The expressions forYu(z) andYl(z) are identical iffφc = φ′c + θcN , or equivalently
φ′c = φc − θcN .

X(z) -×
?

ej(θcn+φc)

-z−NVu(z)
Yu(z)

=
(
φ′

c = φc − θcN
)

X(z) -z−N

×
?

ej(θcn+φ′
c)

-Vl(z)
Yl(z)

Figure A.12: Swapping a complex modulator and a delay.

A.6.4 Swapping a complex modulator and an SRD

If a modulator is moved from a position behind an SRD to a position before the SRD, see
Figure A.13, the relative frequency of the modulator has to be adapted. The phase does
not change. Due to decimation with a factorD, D shifted versions of the spectrum are
added, see Lemma A.2. This allows the modulator in front of the SRD to have any of the
D different frequencies, viz.θ′c = θc

D + d2π
D , to give identical results.

Lemma A.11. For any decimation factorD withD ∈ N+ and complex carrierej(θcn+φc):

↓ D; ej(θcn+φc) = ej(θ′
cn+φc); ↓ D ⇔ θ′c =

θc

D
+ d

2π

D
,

with d ∈ Z.
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X(z) -
D

×
?

ej(θcn+φc)

-Vu(z)
Yu(z)

=
(
θ′c = θc

D
+ d 2π

D

)

X(z) -×
?

ej(θ
′
cn+φc)

-
D

Vl(z)
Yl(z)

Figure A.13: Swapping a complex modulator and an SRD.

Proof. The upper part of Figure A.13 gives:

Vu(z) =
1

D

D−1∑

d=0

X(z
1
D W d

D),

Yu(z) = ejφcVu(ze−jθc)

= ejφcVu(ze−j(θc+d2π))

=
1

D
ejφc

D−1∑

d=0

X(z
1
D e−j( θc

D
+d 2π

D
)W d

D).

and the lower part of Figure A.13 gives:

Vl(z) = ejφcX(ze−jθ′
c),

Yl(z) =
1

D

D−1∑

d=0

Vl(z
1
D W d

D)

=
1

D
ejφc

D−1∑

d=0

X(z
1
D e−jθ′

cW d
D),

The expressions forYu(z) andYl(z) are identical iffθ′c = θc

D + d2π
D . Since the spectra

are2π-periodic all integer values ford are allowed:d ∈ Z.

A.6.5 Swapping a complex modulator and an SRI

If a modulator is moved from a position before an SRI to a position behind the SRI, see
Figure A.14, the relative frequency of the modulator has to be adapted. Due to interpola-
tion with a factorI, the SRI introduces a periodic spectrum. This allows the modulator
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behind the SRI to have any of theI different frequencies, viz.θ′c = θc

I + i 2π
I , to give the

same results.

Lemma A.12. For any interpolation factorI with I ∈ N+ and complex carrierej(θcn+φc):

ej(θcn+φc); ↑ I =↑ I; ej(θ′
cn+φc) ⇔ θ′c =

θc

I
+ i

2π

I
,

with i ∈ Z.

X(z) -×
?

ej(θcn+φc)

-
I

Vu(z)
Yu(z)

=
(
θ′c = θc

I
+ i 2π

I

)

X(z) -
I

×
?

ej(θ
′
cn+φc)

-Vl(z)
Yl(z)

Figure A.14: Swapping a complex modulator and an SRI.

Proof. The upper part of Figure A.14 gives:

Vu(z) = ejφcX(ze−jθc),

Yu(z) = Vu(zI)

= ejφcX(zIe−jθc)

= ejφcX(zIe−j(θc+i2π)).

and the lower part of Figure A.14 gives:

Vl(z) = X(zI),

Yl(z) = ejφcVl(ze−jθ′
c)

= ejφcX(zIe−jθ′
cI),

The expressions forYu(z) andYl(z) are identical iffθ′cI = θc + i2π, or equivalently
θ′c = θc

I + i 2π
I . Since the spectra are2π-periodic all integer values fori are allowed:

i ∈ Z.
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A.7 Norms

Based on Definition 1.10 about norms, a number of inequalities is discussed in this sec-
tion. The sum or difference of values with a limited∞-norm have a limited∞-norm
too.

Lemma A.13. Leta, b ∈ C, then:

‖a± b‖∞ ≤ ‖a‖∞ + ‖b‖∞.

Proof. This result follows directly from Definition 1.10, for thep-norm.

From Definition 1.10 it follows that‖aH(z)‖p = ‖a‖1‖H(z)‖p for a ∈ R. In case of
a ∈ C the following inequalities hold forp = 1 andp =∞.

Lemma A.14. Leta ∈ C andH(z) ∈ C(z), then:

‖aH(z)‖1 ≤ ‖a‖1‖H(z)‖1.

Proof. From the norm definition and the triangle inequality it follows:

‖aH(z)‖1 = ‖ (arHr(z)− aiHi(z)) + j (aiHr(z) + arHi(z)) ‖1
= ‖arHr(z)− aiHi(z)‖1 + ‖aiHr(z) + arHi(z)‖1
≤ ‖arHr(z)‖1 + ‖aiHi(z)‖1 + ‖aiHr(z)‖1 + ‖arHi(z)‖1
≤ |ar|‖Hr(z)‖1 + |ai|‖Hi(z)‖1 + |ai|‖Hr(z)‖1 + |ar|‖Hi(z)‖1
≤ (|ar|+ |ai|) (‖Hr(z)‖1 + ‖Hi(z)‖1)
≤ ‖a‖1‖H(z)‖1.

Lemma A.15. Leta ∈ C andH(z) ∈ C(z), then:

‖aH(z)‖∞ ≤ ‖a‖1‖H(z)‖∞.

Proof. From the norm definition and the triangle inequality it follows:

‖aH(z)‖∞ = ‖ (arHr(z)− aiHi(z)) + j (aiHr(z) + arHi(z)) ‖∞
= max (‖arHr(z)− aiHi(z)‖∞, ‖aiHr(z) + arHi(z)‖∞)

≤ max (‖arHr(z)‖∞ + ‖aiHi(z)‖∞, ‖aiHr(z)‖∞ + ‖arHi(z)‖∞)

≤ max (|ar|‖Hr(z)‖∞ + |ai|‖Hi(z)‖∞, |ai|‖Hr(z)‖∞ + |ar|‖Hi(z)‖∞)

≤ (|ar|+ |ai|)max (‖Hr(z)‖∞, ‖Hi(z)‖∞)

≤ ‖a‖1‖H(z)‖∞.

For the special casea ∈ CZ the following lemma is applicable.
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Lemma A.16. a ∈ CZ ∧ a 6= 0⇒
∥∥ 1

a

∥∥
1
≤ 1.

Proof. Rewriting part of the lemma gives:
∥∥∥∥

1

a

∥∥∥∥
1

=

∥∥∥∥
a∗

|a|2
∥∥∥∥

1

=
‖a‖1
|a|2 .

To proof now is‖a‖1 ≤ |a|2 or |ar|+ |ai| ≤ a2
r +a2

i , for a ∈ CZ∧a 6= 0. The implication
|x| ≥ 1⇒ x2 ≥ 1, for x ∈ R, proofs the lemma for|ar| ≥ 1∧|ai| ≥ 1. Remains to proof
the case|ar| < 1∨|ai| < 1. This latter case impliesar = 0∧|ai| ≥ 1 or |ar| ≥ 1∧ai = 0
which concludes the proof.

Next, the maximum output values of complex filters with complex input signals are de-
rived, using the maximum output values of real filters with real input signals. From [63]
it is known that the maximum value of the output signal for a given real input signal is
limited by the1-norm of the real filter.

Lemma A.17. For filter H(z) ∈ R(z) and input signalX(z) ∈ R(z):

‖X(z)H(z)‖∞ ≤ ‖X(z)‖∞‖H(z)‖1.
Proof. LetY (z) = X(z)H(z) and its elements be expressed by means of the convolution
sum. For alln:

y[n] =
∑

i

x[i]h[n− i],

|y[n]| ≤
∑

i

|x[i]||h[n− i]|.

Let |x[i]| = ‖X(z)‖∞ for all i, then:

‖Y (z)‖∞ ≤ ‖X(z)‖∞
∑

i

|h[n− i]|,

‖Y (z)‖∞ ≤ ‖X(z)‖∞‖H(z)‖1.
It can be checked that forx[n] = c sign(h[−n]) with c ∈ R, the bound is reached.

The same inequality is found in case both the filter and the input signal are complex as is
shown in the next lemma.

Lemma A.18. For filter H(z) ∈ C(z) and input signalX(z) ∈ C(z):

‖X(z)H(z)‖∞ ≤ ‖X(z)‖∞‖H(z)‖1.
Proof. For a complex system, by Lemma A.17:

Y (z) = X(z)H(z),

Yr(z) = Xr(z)Hr(z)−Xi(z)Hi(z),

Yi(z) = Xi(z)Hr(z) + Xr(z)Hi(z),

‖Yr(z)‖∞ ≤ ‖Xr(z)‖∞‖Hr(z)‖1 + ‖Xi(z)‖∞‖Hi(z)‖1,
‖Yi(z)‖∞ ≤ ‖Xi(z)‖∞‖Hr(z)‖1 + ‖Xr(z)‖∞‖Hi(z)‖1.

Since(‖Xr(z)‖∞ = ‖Xi(z)‖∞)⇒ (‖Yr(z)‖∞ = ‖Yi(z)‖∞) the proof is complete.
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From this lemma it follows that if for a given∞-norm of the input signal the∞-norm of
the output signal should be minimal, the1-norm of the filter should be minimal. It can
be checked that forx[n] = c(sign(hr[−n]) − j sign(hi[−n])) with c ∈ R, the bound is
reached. Also for the input signaljx[n] the bound is reached.

A.8 Examples

In the following examples some of the identities that have been presented in the previous
sections, will be used to derive alternative structures.

Example A.1. If a decimating filter with a non-prime decimation factor hasto be realized,
it is often favorable to design a cascade of multiple decimating filters each with a smaller
decimation factor. In order to analyze the overall behaviour of such a cascade, it may be
necessary to determine the equivalent filter that in fact is realized. The top of Figure A.15
shows two decimating filters in cascade. If the first noble identity is applied, as shown in
Figure A.5, to the SRD with decimation factorD0 and to filterH1(z), the circuit at the
bottom of Figure A.15 results.

X(z) - H0(z) -
D0

H1(z) -
D1

Y (z)

=

X(z) -H0(z)H1(zD0) -
D0D1

Y (z)

Figure A.15: First noble identity applied to a cascade of two decimating filters.

From this example it is clear that for any cascade of decimating filters, the equivalent filter
and the decimation factor can be derived by repeatedly applying the first noble identity.
Basically, the same procedure is applicable for a cascade ofinterpolating filters. There
the second noble identity has to be used.
End of example

Example A.2. In digital receivers, for instance [59], the structure as isgiven in Fig-
ure A.16 is often used. Behind the decimating filterH0(z) with decimation factorD, a
complex modulator shifts the spectrum in one direction. At the end, the filterH1(z) takes
care for extra selectivity. To study the overall behaviour of this scheme, two alternative
structures can be used, one with the modulator at the output (middle scheme) and one
with the modulator at the input.
End of example
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X(z) - H0(z) -
D

×
?

ej(θcn+φc)

- H1(z) - Y (z)

X(z) - H0(z)H1(zDejθc ) -
D

×
?

ej(θcn+φc)

- Y (z)

=

X(z) -×
?

ej((
θc
D

+d 2π
D

)n+φc)

-
H0(ze−j( θc

D
+d 2π

D
))H1(zD) -

D

Y (z)

=

Figure A.16: Swapping a complex modulator with a filter and an SRD in a
receiver-like structure.

Example A.3. Consider the top circuit in Figure A.17 with a cascade of a decimating and
an interpolating filter. Ifgcd(D, I) = 1, the first prime identity of Figure A.7 and both
noble identities can be applied, so resulting in the circuitat the bottom of Figure A.17.

X(z) - H0(z) -
D I

H1(z) - Y (z)

=
(
gcd (D, I) = 1

)

X(z) -
I

H0(zI)H1(zD) -
D

Y (z)

Figure A.17: First prime identity and both noble identities applied to a cascade
of a decimating and an interpolating filter.

End of example



Appendix B

Introduction to pipelining

In this appendix only a brief introduction to the concept of pipelining is given, to ex-
plain its relevance in case of high speed hardware implementations of signal processing
algorithms. In for instance [90], more details can be found.
In a discrete-time signal processing system, the signal samples basically move from de-
lay element to delay element, in the pace of the sampling rate. In between two delay
elements the sample values may change due to operations likeadditions and multiplica-
tions, see Figure B.1(a). In hardware terminology this is reformulated as: binary values
stored in registers pass through a combinatorial network towards the next register, see
Figure B.1(b).

- - - -?
6

z−1 z−1

-
-
-
-

R
eg

is
te

r

-
-
-
- Combinatorial

Network
-
-
-
-
-

R
eg

is
te

r

-
-
-
-
-

-6 6
clk

(b)

(a)

Figure B.1: Signal processing and hardware structures.

Because the system clock,clk, may only trigger a register to copy the input values when
all these values are stable, the maximum value of the system clock frequency,fclk, is
limited by the delay,ti, of the combinatorial network in between two successive registers.

131
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For a complete system, the system clock frequency,fclk, is limited by the worst case
delay,max(ti), of all combinatorial networks:

fclk <
1

max (ti)
.

From this it is clear that one way to increase the system clockfrequency, and hence
the sampling rate, is to diminish the worst case delay of the combinatorial networks. If
somehow a combinatorial network can be partitioned and a register can be interposed, the
system clock frequency may be increased, or the speed requirements of the combinatorial
networks may be relaxed.
In Figure B.2(a), the transversal structure with atapped delay line, see Figure 4.1(a), is
extended with one extra delay element or register, at the input and one at the output. This
is to make explicit that data is received from and transferred to other system parts. These
delay elements do not belong to the filter itself. From this figure it is clear that the critical
path, as indicated with the thick arrow, is formed by the multiplier with coefficienta and
4 successive adders.

- - - - -? ? ? ?

? ? ? ? ?
z−1 z−1 z−1 z−1

a b c d e

z−1

z−1

- - - - -? ? ? ?

? ? ? ? ?
z−1 z−1 z−1 z−1 z−1

z−1

a b c d e

z−1

z−1

- - - - -? ? ? ?

? ? ? ? ?

z−1 z−1 z−1 z−1

e d c b a

z−1

z−1

(c)

(b)

(a)

Figure B.2: Transversal structure: examples of the critical paths and pipelin-
ing.

The system from Figure B.2(a) can be partitioned such that the new critical path is formed
by the multiplier with coefficientc and only 2 successive adders, as indicated with the
thick arrow. This is at the cost of two additional delay elements, see inside the ellipse in
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Figure B.2(b). By interposing the delay elements also the functionality has changed. The
newly obtained filterh′[n] or H ′(z) is:

h′[n] = 〈0, a, b, c, d, e〉 = 〈0, h[n]〉,
H ′(z) = z−1H(z).

It strongly depends on the application of the filter whether an additional delay matters. If
this filter is part of a control loop such a delay changes the overall system behaviour. In
case this filter is part of a system with parallel branches, the delays in these branches have
to be increased too, which may be a costly affair.
For all these reasons the structure from Figure B.2(c), the transversal filter with theadding
delay lineis preferred, see Figure 4.1(b). Without additional delay elements and without
increased system delay, the critical paths all consist of a single multiplier and a single
adder only, as indicated with the thick arrows. This is what is calledfree pipelining.
In this example, the concept of pipelining is applied on the level of multiplications and ad-
ditions. The same concept can in general be applied on many different levels in a system.
Basically, pipelining is a method to obtain a high degree of parallelism or concurrency in
a system.
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Appendix C

Introduction to analog polyphase
filters

It is perhaps a bit strange to have an introduction to a special type of analog filters in a
document that is focused on digital filters. There are two reasons for doing so. First of all
it is the fact that the analog, or continuous time, polyphasefilters realize non-symmetric
frequency responses that relate to complex impulse responses, and it is of course interest-
ing to see how such responses can be realized in the analog domain. The second reason
is the name itself. Scanning the literature for polyphase filters, while implicitly assuming
to search for the efficient structure to realize multirate digital filters, gives many hits on
analog polyphase filters.

In this appendix only a brief introduction is given, just to show how in principle analog fil-
ters with different responses for positive and negative frequencies, can be realized. More
information about this type of filters, that were introducedby Gingell in 1973 [52], can
be found in for instance [50] and [129].

C.1 Example

To demonstrate the behaviour of an analog polyphase filter, asimple example will be
analyzed. In Figure C.1 the electrical scheme is given of a 1-section 4-phase network that
basically consists of resistorsR 1 and capacitorsC only. The buffers at the input and
output are not fundamental for the filtering operation.

The relations between the input voltages:Xr,+, Xi,+, Xr,−, Xi,−, and the output volt-

1Traditionally, a resistor is denoted asR and a capacitor is denoted asC and have no relation with the
decomposition factor and costs respectively, that are usedin the major part of this thesis.
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ages:Yr,+, Yi,+, Yr,−, Yi,− are:

Yr,+(p) = Xr,+(p) +
(
Xi,−(p)−Xr,+(p)

)
T (p)

= Xr,+(p)
(
1− T (p)

)
+ Xi,−(p)T (p),

Yi,+(p) = Xi,+(p)
(
1− T (p)

)
+ Xr,+(p)T (p),

Yr,−(p) = Xr,−(p)
(
1− T (p)

)
+ Xi,+(p)T (p),

Yi,−(p) = Xi,−(p)
(
1− T (p)

)
+ Xr,−(p)T (p),

wherep is the complex frequency2 p = σ + jω andT (p) is:

T (p) =
R

R + 1
pC

=
pτ

1 + pτ
with τ = RC.

R

R

R

R

C

C

C

C

Xr,+

Xi,+

Xr,−

Xi,−

Yr,+

Yi,+

Yr,−

Yi,−

Xr

Xi

Yr

Yi

+

+

−

−

+

+

−

−

Figure C.1: Example of a 1-section 4-phase RC polyphase network.

2Traditionally, the real part of the complex frequencyp is denoted asσ and has no relation with the shape of
symmetryσ that is used in the major part of this thesis.
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The two input buffers give:Xr,+(p) = 1
2Xr(p) andXr,−(p) = − 1

2Xr(p), also:

Xr(p) = Xr,+(p)−Xr,−(p).

Similar definitions forXi(p), Yr(p) andYi(p) result in:

Yr(p) = Xr(p)
(
1− T (p)

)
−Xi(p)T (p),

Yi(p) = Xi(p)
(
1− T (p)

)
+ Xr(p)T (p).

A definition of the complex input and output signals as:

X(p) = Xr(p) + jXi(p),

together with a similar definitions forY (p), results in:

Y (p) = X(p)
(
1 + (j− 1)T (p)

)
,

or:

H(p) =
Y (p)

X(p)

= 1 + (j− 1)T (p)

=
1 + jpτ

1 + pτ
.

The zero and pole are located atp = j 1
τ andp = − 1

τ respectively. The frequency response
of the scheme can be obtained by substitutingp← jω:

H(jω) =
1− ωτ

1 + jωτ
.

The magnitude and phase of the frequency response, forτ = 1
2 , are presented in Fig-

ure C.2. Both responses are clearly non-symmetric with respect toω = 0, the notch and
phase change are both atω0 = 1

τ = 2.

Forω = 0, the ideal capacitorC behaves as a break and therefore only the resistors in the
phases are present. As a result the magnitude equals 0 dB and the phase equals 0 radians.
For |ω| → ∞ the ideal capacitorC behaves as a short-circuit and as a consequence the
magnitude and phase approximate 0 dB andπ

2 radians respectively.

If for instance both the input signalXi and the output signalYi are negated, by simply
interchanging the+ and− terminals of the input and output buffers respectively, the
system function realized is conjugated. The zero is then moved fromω = 2 to ω = −2.
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(
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↑

[rad]

0

−π
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Figure C.2: Magnitude and phase of the frequency response corresponding to
the polyphase filter in Figure C.1 forτ = 1

2 .

C.2 Remark

In the previous example only a single passive section, with oneR and oneC per phase,
is used. If more sections, with possible other values forR andC, other interconnects or
active elements, are added, the calculus is a bit more laborious but the idea remains the
same. It was also assumed that all components, allR’s, all C ’s and all buffers are ideal: no
parasites and no tolerances with respect to the actual value. In case of digital systems this
is something that can be guaranteed trivially, whereas in analog systems this is practically
impossible. Nevertheless analog polyphase filters are fruitfully applied in many systems,
like for instance the GSM receiver [92], and they offer an additional degree of freedom to
the system designer.



Appendix D

Introduction to Euclid’s
algorithms

In the process of manipulating multirate structures, for instance in Chapter 5 and Ap-
pendix A, it is often a prerequisite that two integer multirate factors have no common
factor, in other words, they have to be relatively prime or coprime. An other important
property as for instance is used in the split-delay identity, Lemma A.7, is that any integer
number can be written as the integer-weighted sum of two coprimes. Euclid’s algorithms
can be used to determine both the common factor and the weights.
More information about these algorithms can be found in for instance [91]. The reasons
to pay attention to these algorithms is that the presented descriptions often are hard to
comprehend, although the basis of these algorithms is simple.
In this appendix the algorithms are introduced mainly on basis of an example and a de-
scription in a Pascal-like pseudo language. The so called Euclid’s algorithm is used to
determine the common factor and the so called extended Euclid’s algorithm also provides
the weights.

D.1 Euclid’s algorithm

If two integers have no common factor they are said to be coprime. This is generally
formulated as: the greatest common divisor ofA andB equals1, or gcd(A, B) = 1.
Euclid’s algorithm can be used to determine the greatest common divisor of two natural
numbers. In this section first some basic properties are presented followed by an example
and a program description.
An important rule is that, ifA ≥ B ≥ 0, thengcd(A, B) = gcd(A − B, B), or for-
mulated alternativelygcd(A, B) = gcd(A|B , B). Also important is the trivial property
gcd(A, 0) = A. For the special situationA = B = 0, in principle any number is a
common factor, however the algorithm is designed to producegcd(0, 0) = 0.

139



140 Appendix D. Introduction to Euclid’s algorithms

Example D.1. ForA = 387 andB = 109 the common factor orgcd is:

gcd(387, 109) = gcd(3 · 109 + 60, 109) = gcd(60, 109)

= gcd(60, 1 · 60 + 49) = gcd(60, 49)

= gcd(1 · 49 + 11, 49) = gcd(11, 49)

= gcd(11, 4 · 11 + 5) = gcd(11, 5)

= gcd(2 · 5 + 1, 5) = gcd(1, 5)

= gcd(1, 5 · 1 + 0) = gcd(1, 0)

= 1.

From this result it can be concluded that the numbers387 and109 are coprime.
End of example

In the following description of the algorithm, basically the same recipe is used as in the
example. The procedureswap(x,y) is used to interchange, or swap, the values of the
variablesx andy.

proc euclid(A,B,gcd)≡
if A ≥ B ≥ 0
then

d0 := A; d1 := B;
while d1 > 0
do

d0 := d0 modd1; swap(d0,d1);
od
gcd := d0;

else
output(’ERROR: inconsistent input’);
exit;

fi
endproc

with

proc swap(x,y)≡
t := x; x := y; y := t;

endproc

D.2 Extended Euclid’s algorithm

The extended Euclid’s algorithm can be used to determine theinteger weightsi andj in:

gcd(A, B) = i ·A + j · B. (D.1)

Equation D.1 is also known as Bézout’s identity. The algorithm will first be illustrated by
means of an example and second with a program description.



D.2. Extended Euclid’s algorithm 141

Example D.2. In the Example D.1, it was found that forA = 387 andB = 109 the
gcd(A, B) = 1. Now determine the integersi andj such that:

1 = i · 387 + j · 109.

The process is initiated with two trivial equations, line0 and line1 in Table D.2, where
the original values are expressed in themselves. Now, the value q = 387 div 109 = 3
is calculated, and line2 becomes line0 minusq = 3 times line1. As a result the value
d = 60 is formulated as an integer weighted sum of387 and109. Next, the valueq =
109 div 60 = 1 is calculated, and line3 becomes line1 minusq = 1 times line2. As
a result the new valued = 49 is formulated as an integer weighted sum of387 and
109. This procedure is repeated as long asd ≥ 1 (line 6). The equation in every next
line is a linear combination of the two previous equations. Basically, the same steps as in
Euclid’s algorithm to derive the common factor are followed, and consequently the values
in columnd are identical to the values obtained earlier.

line q d = i ·A + j ·B
0 387 = 1 · 387 + 0 · 109
1 109 = 0 · 387 + 1 · 109
2 3 60 = 1 · 387 + −3 · 109
3 1 49 = −1 · 387 + 4 · 109
4 1 11 = 2 · 387 + −7 · 109
5 4 5 = −9 · 387 + 32 · 109
6 1 1 = 20 · 387 + −71 · 109
7 5 0 = −109 · 387 + 387 · 109 (D.2)

The equation in line6 expresses the desired result.
End of example

Equation D.1 can trivially be extended to:

K · gcd(A, B) = K · i ·A + K · j ·B.

So, for all natural numbersA andB, with gcd(A, B) = 1, it is always possible to deter-
mine the integersi andj to express the integerK as:

K = K · i ·A + K · j ·B.

In the following description of the algorithm, basically the same steps are taken as in the
previous example. Note that the Euclid’s algorithm as described earlier can be obtained
from the extended version by deleting some parts. Observe that:
q := d0 div d1; d0 := d0 − q ∗ d1;
is equal to:
d0 := d0 modd1;.
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proc extendedeuclid(A,B,gcd,i,j)≡
if A ≥ B ≥ 0
then

d0 := A; i0 := 1; j0 := 0; { line 0 in D.2 }
d1 := B; i1 := 0; j1 := 1; { line 1 in D.2 }
while d1 > 0
do

q := d0 div d1;
d0 := d0 − q ∗ d1; swap(d0,d1);
i0 := i0 − q ∗ i1; swap(i0,i1);
j0 := j0 − q ∗ j1; swap(j0,j1); { lines2..7 in D.2 }

od
gcd := d0; i := i0; j := j0; { copy line6 in D.2 }

else
output(’ERROR: inconsistent input’);
exit;

fi
endproc
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Alternatives for coefficients

An operation that occurs in almost every DSP algorithm is themultiplication of a signal
sample with a constant or coefficient. In principle a generalpurpose multiplier can be
used for such multiplication. In many applications, however, such a multiplier may be a
bottle-neck in view of speed and costs.
An interesting alternative, especially when both the sample and coefficient are integers
or scaled integers, is thehard-wiredmultiplier. Thebinary representation of an integer
directly inspires theshift-and-addconstruction for such multiplier. For anya ∈ N the
unique binary number representation is the series of bitsai ∈ {0, 1} such that:

a =
∑

i≥0

ai2
i.

In many cases the costs of the shift operations can be neglected compared to the costs of
the adders. From this it follows that the costs of a multiplication are related to the number
of ones in the binary representation of the coefficient. Moreprecisely, the required number
of adders is one less than the number of ones.
It is now a challenge to find alternative constructions that have lower costs. Already in
1951 Booth [10] introduced the so calledrecodingof binary numbers. Booth suggested to
replace sequences of binary ones like, e.g.,[00111]2 ← [01001]2 where1 stands for−1.
Since the costs of an adder and a subtractor are practically equal, this recoding clearly can
give a cost reduction if the sequence of1’s is sufficiently long.
The introduction of the signed-digit, as1 is, makes number representations non-unique
or redundant. In1960 Reitwiesner [120] presented a special definition for binarysigned-
digit numbers, and proved their uniqueness and minimality of costs. For these reasons this
type of number representation is often referred to as the Canonical Signed Digits (CSDs).
For anya ∈ Z, the unique CSD number representation is the series of tritsai ∈ {−1, 0, 1}
such that:

a =
∑

i≥0

ai2
i ∧ aiai+1 = 0.

143
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In the same period of time the property of signed-digits was also studied by others, e.g.,
[3], and also special number systems for complex coefficients were introduced [74] [112].
In the following period a much effort was, and today still is,directed to the design of ef-
ficient algorithms for designing single coefficients. Bernstein [6] presented his algorithm
that exploited some kind of factorization in 1986, and much later this algorithm was still
under discussion [14]. Based on [6] many improvements/extensions were presented [26]
[45] [47] [78] [79]. Instead of optimizing a single coefficient also blocks of coefficients,
i.e., coefficients with a common input or output, are optimized [11] [42] [46].
An important approach for cost reduction is the search for a repetition of patterns or subex-
pressions intra [45] [78], and inter coefficients [54] [87] [140]. Possible lower bounds for
the costs are studied in [80] where the focus is on coefficients that consist of multiple-
hundreds of bits.
The work in this appendix isnotabout efficient or alternative search methods or programs
like in most references. After defining minimal costs and therelated minimal construc-
tions in Section E.1, alternative constructions for integers are presented in Section E.2.
Here cascade connections of CSD-based constructions are used to obtain constructions of
lower costs, also sums and differences of such cascade connections are used. The results
for the integers together with the structures discussed in Section 4.5 and Section 4.6, are
used to construct complex integers in Section E.3. The possibilities to use scaled coef-
ficients for both the integers and complex integers are elaborated in Section E.4. The
remarkable property that the scaling of coefficients with a factor of2 may result in lower
costs is also illustrated. Finally, in Section E.5 a number of examples are presented. The
results from this appendix can, and some already are, be usedin the DESFIL software
package, see Section 1.5.
Appendix F provides next to a brief historical overview, also a comparison of implemen-
tation costs of the standard base-2 and the complex-base system from [112]. Appendix G
gives a brief introduction to complex primes to support the analysis of complex integers
and their factorization.

E.1 Costs, minimal costs and minimal constructions

In many papers it is assumed that adders and subtractors haveequal costs, e.g., [44], and
that bit-shifts are for free. An adder consists typically ofa single half-adder and multiple
full-adders, and a subtractor consists typically of full-adders and inverters for the inputs of
the subtrahend. Since the costs of adders and subtractors are proportional to the number
of bits to represent the data, in principle costs can be reduced when the maximum shift is
limited [108]. In many papers, however, the effect of the number of bits on the costs is
neglected. A cascade connection is the connection of outputs from one circuit to the inputs
of next circuits. An output driver should be capable of driving a single or multiple inputs.
In [9] examples of alternatives for coefficients are presented that require less additions
but more equivalent gates. A synthesis tool does not necessarily transform a minimal
number of adders into a minimal chip area. In this appendix the costs of the adder and the
subtractor are defined as1, and the costs for the cascade connector are defined as0.
Since both the binary and CSD number representations are unique, the constructions ac-
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cording to these representations are unique, and hence the costs of these constructions are
minimal. The constructions based on the binary and CSD representations will be referred
to asB andC respectively. The possible alternatives for the constructions that will be
considered in the remainder of this appendix are not necessarily unique. For obvious rea-
sons the focus is on alternatives for coefficients,a, with minimal costs in case particular
constructions,X , may be used. In addition, mulitiple alternatives for a coefficient can
have minimal costs.

Definition E.1. For anya ∈ Z or a ∈ CZ constructed from constructions inX :

� theminimal costsare denoted as:CX (a), and

� theminimal constructionsare denoted as:ΓX (a).

Using constructionsX , the minimal constructions for coefficienta, ΓX (a), form a set of
alternatives that all have the same minimal costs,CX (a). For the binary and CSD con-
structions the minimal constructions contain exactly1 element. In the remainder of this
appendix many minimal constructions are considered from which only a single element
will be mentioned. Also, the special symbols⊕ and⊖ are used for the adder and subtrac-
tor respectively. This is to emphasize that these are counted in the costs, and to distinguish
from the ordinary+ and− symbols as used in the notation for the complex integers.

Example E.1. The unique construction of coefficient value7, using the binary construc-
tionsB, is:

ΓB(7) ∋ 22 ⊕ 21 ⊕ 20 andCB(7) = 2.

This can be read as: Using the binary constructionsB to construct coefficient7, the mini-
mal constructions contain at least22⊕21⊕20 and the minimal costs are2. Alternatively,
the unique construction of coefficient value7, using the CSD constructionsC, is:

ΓC(7) ∋ 23 ⊖ 20 andCC(7) = 1.

This can be read as: Using the CSD constructionsC to construct coefficient7, the minimal
constructions contain at least23 ⊖ 20 and the minimal costs are1.
End of example

To enable the comparison of costs of arbitrary constructions for coefficients, the Averaged
Costs (AC) are defined for both integer and complex integer coefficients.

Definition E.2. For all coefficientsa ∈ Z or a ∈ CZ that are constructed using construc-
tionsX , the Averaged Costs (AC) are defined as:

ACX (Ξ) ,
1

N

∑

0<‖a‖∞≤Ξ

CX (a),

with N = Na :: 0 < ‖a‖∞ ≤ Ξ.

Fora ∈ Z anda ∈ CZ, the value ofN is respectivelyN = 2a andN = 4a(a + 1). The
averaged costs can be interpreted as follows. For a uniformly distributed set of coefficients
a with ‖a‖∞ ≤ Ξ, ACX (Ξ) expresses the average costs, if constructions fromX are used.
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E.2 Alternative constructions for integers

The standard constructionsB andC all are sums or differences of powers of2. Alter-
natively, it is possible to save on costs by putting standardconstructions in a cascade
connection, as is illustrated in Example E.2.

Example E.2. An implementation of coefficient value45, using the binary constructions
B, gives:

ΓB(45) ∋ 25 ⊕ 23 ⊕ 22 ⊕ 20 andCB(45) = 3.

Usage of the CSD constructionsC does not reduce the minimal costs:

ΓC(45) ∋ 26 ⊖ 24 ⊖ 22 ⊕ 20 andCC(45) = 3.

Now consider the following two alternative constructions for 45 that both have costs of2:

(23 ⊕ 20)(22 ⊕ 20),

(24 ⊖ 20)(22 ⊖ 20).

These constructions are the cascade connections of the CSD constructions for the factors
9 and5, and the factors15 and3, respectively.
End of example

In the remainder of this section new constructions are defined and evaluated that exploit
the possibilities of cascading, adding and subtracting of constructions. The idea is that for
a given coefficient, the CSD construction may have higher costs than a cascade connec-
tion of CSD constructions for the factors of the coefficient.Also, for a given coefficient
such cascade connection may have higher costs than the adding or subtracting of cas-
cades. The recipe of alternately cascading and adding or subtracting constructions, can be
repeated until no progress in cost reduction can be achieved. The resulting constructions
are denoted withAC.
Since minimal constructions can be designed off-line on a super computer, the design
process may be an exhaustive search. Of course, a more efficient design process is always
welcome, but this is not the object of this appendix.
Creation of minimal constructions that consist of cascade connections, is based on evalu-
ating all possible factorizations of the given integer value. The prime factorization gives
a finite number of prime factors and the subsequent list of allpossible combinations of
prime factors is finite too. An algorithm to efficiently generate all different combinations
is obtained from [137].
Creation of minimal constructions that consist of additions or subtractions is based on
evaluating all possible partitions of the given integer value. For each integer an infinite
number of partitions exists, e.g.,5 = 4+1 = 3+2 = 6−4+3 = 1000−990−5 = · · · .
So, for practical reasons the range of the exhaustive searchhas to be limited. As a result
however there is no guarantee that the designed construction set is optimal. To make this
restriction explicit, a hat is added to the symbol, i.e.,ÂC. In the sequel the limit is set to
|a| ≤ 216 which, most importantly, covers the most interesting coefficient values and also
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results in a practical computer load. In [113] an optimization program was used to search
for |a| ≤ 220. For the range215 ≤ |a| ≤ 216 in total 81 values were found with lower
costs. In all cases intermediate values exceeding216 were used.

Example E.3. The smallest value for which a cascade connection of CSDs gives lower
costs than the CSD itself, is45. The smallest value for which an addition or subtraction
of cascade connections of CSDs gives lower costs than a cascade connection of CSDs, is
173. The smallest value for which again cacading gives an improvement is10995. The
smallest value for which again adding or subtracting gives an improvement is58107.

a ΓÂC(a) ∋
45 (23 ⊕ 20)(22 ⊕ 20)

173 23 ⊕ (25 ⊕ 20)(22 ⊕ 20)
10995 (24 ⊖ 20)((28 ⊖ 20)(22 ⊖ 20)⊖ 25)
58107 22((28 ⊖ 20)(26 ⊕ 20)⊖ 211)⊖ 20

End of example

In Figure E.1 severalACs are given to show the relevance of the alternative constructions.
Observe that for popular values ofΞ, i.e.,Ξ < 210, the constructionŝAC contribute in the
reduction of costs.

20 24 28 212 216

Ξ→

7AC ↑

0

1

2

3

4

5

6

← B

← C

← ÂC

Figure E.1: Averaged Costs for the standard constructionsB andC, and alter-
native constructionŝAC.

For a limited set of values,Ξ = 210, examples of minimal constructions that have lower
costs than CSD constructions, are listed in Table E.5. An example to illustrate the possible
effect of alternative constructions for integer coefficients is presented in Section E.5.

E.3 Alternative constructions for complex integers

In the previous sections the constructions were designed toimplement a multiplication of
integer data with an integer coefficient. Now, the focus is onconstructions to implement
multiplications of complex-integer data with a complex-integer coefficient.
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The constructions for complex-integer coefficients are made in terms of constructions for
integer coefficients, and StructureA through StructureF for complex filters as presented
in Section 4.5 and Section 4.6 (Figure 4.13, Figure 4.16 through Figure 4.19 and Fig-
ure 4.22). In these sections it is shown how a complex filter can be decomposed into its
individual real and imaginary parts so requiring real subfilters only. By takingH(z) = a
with a ∈ CZ the individual real and imaginary parts become:Hr(z) = ar andHi(z) = ai

with ar, ai ∈ Z. The respective subfilters are now integer coefficients only.
StructureA through StructureF are used here to define theglobal constructionsof the
complex-integer coefficient, and the constructions definedearlier for integer coefficients,
are used for thelocal constructions. The fact that StructureF implements the coefficient
value2a instead ofa can be ignored since a scaling with a factor2 will not increase costs.
In [48] it is shown that it is impossible to realize a denormalized lattice structure, i.e.,[ 1 −q

q 1

]
or

[ p −1
1 p

]
with one multiplication only. This is basically the same problem as

realizing a complex integera with eitherar = 1 or ai = 1. So at least2 multiplications
are required which is consistent with the results here. Simplifying StructureA through
StructureF by takingHr = 1, gives that StructureA, StructureC, StructureD and Struc-
tureE require2 multiplications only. Similarly, takingHi = 1 gives that StructureA,
StructureB, StructureD and StructureE require2 multiplications only. Note that denor-
malizing over the integers in general is not possible.
Like for the integer coefficients the complex-integer constructions are defined for the
complex-integer coefficients. For each of the global constructions the construction set
deals with integer construction setX for the integer coefficients.

Definition E.3. The complex-integer constructions with global constructionsX and local
integer constructionsX , are denoted as(X,X ).

First it will be shown that each of the global constructionsA throughE contribute in min-
imizing costs. Table E.1 lists5 example valuesa ∈ CZ each with a different global con-
struction to realize the minimal costs. All cases make use ofthe local constructionŝAC.

C(.,ÂC)(a)

a A B C D E F
1 + j2 2 4 4 4 5 8
3 + j 4 3 4 5 5 6
1 + j3 4 4 3 5 5 6

408 + j279 10 10 10 9 12 16
279 − j408 10 10 10 12 9 16

Table E.1: Examples showing relevance of global constructionsA throughE.

For all5 example values global constructionF has the highest costs. This is mainly caused
by the6 adders and subtractors that are required in StructureF regardless of the coeffi-
cient. It can be proven that there is no coefficient value for which global constructionF
has minimal costs. Therefore StructureF will not be considered anymore.
Similarly as for the integer coefficients, theACs for several complex constructions are
shown in Figure E.2. The top line(A,B) shows theAC for global constructionA and
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the binary constructionsB as local constructions. Replacing constructionsB by C or
ÂC, gives an improvement consistent with the results from Figure E.1, lines(A, C) and
(A, ÂC) respectively. Minimization of the costs over the set of global constructions, i.e.,
X = {A, B, C, D, E}, in combination with local constructionsC and ÂC, again gives
further improvements, lines(X, C) and(X, ÂC) respectively, see Figure E.3.

20 25 210

Ξ→

18AC ↑

0

6

12

← (A,B)

ւ (A, C)
← (A, ÂC)

Figure E.2: Averaged Costs for the complex construction sets:(A,B), (A, C)
and(A, ÂC).

20 25 210

Ξ→

18AC ↑

0

6

12 ← (X, C)
տ (X, ÂC)

← (X,B)

տ Â(X, ÂC)

Figure E.3: Averaged Costs for the complex construction sets:(X,B), (X, C),
(X, ÂC) andÂ(X, ÂC).

Similarly as the integers, the complex integers may be constructed using cascades, ad-
ditions and subtractions. The resulting constructions aredenoted withA(X, ÂC). Cre-
ation of minimal constructions for complex-integers that consist of cascade connections
is based on evaluating all possible factorizations of the given complex-integer value. The
search process is identical to the process for integer values. The requiredcomplex prime
factorizationis described briefly in Appendix G. An algorithm to efficiently generate all
different combinations is obtained from [137].
Creation of minimal constructions for complex-integer that consist of additions and sub-
tractions is based on evaluating all possible partitions ofthe given complex-integer value
like for the integer values. Here too the range of the exhaustive search has to be limited.
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In the sequel the limit is set to‖a‖∞ ≤ 28 which, most importantly, covers the most
interesting coefficient values and also results in a practical computer load. As a result
however there is no guarantee that the designed constructions are optimal. To make this
restriction explicit, a hat is added to the symbol, i.e.,Â(X, ÂC).

Example E.4. In a similar way as in Example E.3 for the integers, the complex integers
with the smallest norm for which an extra cascading or addition/subtraction is relevant, are
shown. The alternative complex constructions are described in terms of complex integers
between square brackets with the subscript referring to an optimal global construction for
that complex integer, i.e., one of the structures StructureA through StructureE. As local
construction for the integers the constructionsÂC are used.
Starting with a cascade connection:

a ΓÂ(X,ÂC)(a) ∋
6 + j3 [3]A[2 + j]A

13 + j10 [j5]A[2− j]A ⊕ [8]A
83 + j54 [2 + j]A([64]A ⊖ [5]A[4− j]A)

226 + j123 [2]A([2 + j]A[64− j]A ⊖ [16]A)⊖ [j]A

Starting with an addition or subtraction:

a ΓÂ(X,ÂC)(a) ∋
6 + j3 [j]A ⊕ [6 + j2]B

41 + j38 ([1]A ⊖ [8− j24]C)[1 − j2]A
163 + j120 [5]A([8 + j24]C ⊖ [1]A)⊕ [128]A

End of example

For a limited set of values,Ξ = 25, examples of minimal constructions that have lower
costs than(X, ÂC) constructions, are listed in Table E.6.

E.4 Scaled coefficients

For many applications, filters in particular, it is often irrelevant whether the filterH(z)
or the scaled filtersH(z) is implemented. If values for scale factors exist such that the
coefficients of filtersH(z) have lower costs, it is worthwhile to consider the alternatives.
The general question is: do pairs(a, s) exist witha, s ∈ Z\{0} or a, s ∈ CZ\{0}, for
which: CX (sa) < CX (a)? This will be discussed in detail for the integers and the
complex integers in the next sections.

E.4.1 Scaling integers

Inspection ofCÂC(a) teaches thatCÂC(sa) < CÂC(a) holds for many pairs(a, s) with
a ∈ Z ands ∈ N+. In Figure E.4 the dots represent the pairs(a, s) for whichCÂC(sa) <
CÂC(a) with 1 ≤ a ≤ 210 and1 ≤ s ≤ 27. The right-top part of the figure is empty since
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20 27 28 29 210

a→

27
s ↑

20

26

Figure E.4: Pairs (a, s) for whichCÂC(sa) < CÂC(a).

the cost functionCÂC(a) is only available for1 ≤ a ≤ 216. As a consequence the values

of s are limited by the hyperboles = 216

a .
A remarkable result is that in the range0 ≤ 2a ≤ 216, four values ofa are found for
which CÂC(2a) < CÂC(a) implying that a multiplication with a factor of2 may save
costs. In Table E.2 these four values and their constructions are listed. This property for
a = 26827 has been mentioned in [82]. Each implementation for2a consists of a sum or
difference with20. In all cases the costs reduce from5 to 4.

a ΓÂC(a) ∋ ΓÂC(2a) ∋
26827 (27 ⊕ 24 ⊖ 22 ⊖ 20)(28 ⊖ 26 ⊕ 20) (24 ⊖ 20)(29 ⊖ 20)(23 ⊖ 20)⊖ 20

26933 22 ⊕ (23 ⊖ 20)(212 ⊖ 28 ⊕ 23 ⊖ 20) (29 ⊕ 20)(24 ⊖ 20)(23 ⊖ 20)⊕ 20

28003 (22 ⊖ 20)⊕ (212 ⊖ 27 ⊕ 25)(23 ⊖ 20) (26 ⊖ 20)(23 ⊖ 20)(27 ⊖ 20)⊖ 20

29347 (22 ⊖ 20)⊕ (28 ⊖ 25)(27 ⊕ 22 ⊖ 20) (27 ⊕ 20)(26 ⊕ 20)(23 ⊖ 20)⊖ 20

Table E.2: Examples ofa ∈ Z for whichCÂC(2a) < CÂC(a).

In earlier sections it is shown that more complicated constructions require larger coef-
ficients for being relevant. So it may be expected that for valuesa much larger than
discussed here, in more casesCÂC(2a) < CÂC(a) will hold. In [79] integers ofseveral
hundreds of bits, are evaluated without considering the even numbers. So particular there
the savings may become significant.

E.4.2 Scaling complex integers

Also for the complex integers, many pairs(a, s) with a, s ∈ CZ exist for which
CÂ(X,ÂC)(sa) < CÂ(X,ÂC)(a) holds, withX = {A, B, C, D, E}.
For the integers it is easy to plot the results for many valuesof scale factors. Since
the complex integers have an additional degree of freedom, every value ofs results in
a separate plot. In Figure E.5 for some typical values ofs, i.e., s = 1 + j, s = 2 + j,
s = 3 ands = 3 + j, those values ofa are indicated with a black dot for which holds:
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CÂ(X,ÂC)(sa) < CÂ(X,ÂC)(a) and‖sa‖∞ ≤ 256. This causes alla to lie within a rotated
square. Only the first quadrant is shown since the other quadrant are rotated versions of
the first.

20 27 28

ar →
20

27

28
ai↑

(a) s = 1 + j

20 27 28

ar →
20

27

28
ai↑

(b) s = 2 + j

20 27 28

ar →
20

27

28
ai↑

(c) s = 3

20 27 28

ar →
20

27

28
ai↑

(d) s = 3 + j

Figure E.5: For some typical values ofs, the complex integersa = ar + jai for
which CÂ(X,ÂC)(sa) < CÂ(X,ÂC)(a) and X = {A, B, C, D, E},
are ploted.

Similar as for the integers, there is the remarkable result that values ofa ∈ CZ are found
for whichCÂ(X,ÂC)(2a) < CÂ(X,ÂC)(a). For‖a‖∞ < 28 in total16 solutions exist. Two
of these are listed in Table E.3 and their costs reduce from9 to 8. Each implementation
for 2a consists of a sum or difference with20 or j. The others are the conjugates and
associatesjka andjka∗.

a ΓÂ(X,ÂC)(a) ∋ ΓÂ(X,ÂC)(2a) ∋
105 + j53 [105 + j53]C [105]A[2 + j]A ⊕ [j]A
115 + j87 [5 + j7]B[16− j5]A [2 + j]A[8 + j]A[16 + j]A ⊖ [j]A

Table E.3: Examples ofa ∈ CZ for whichCÂ(X,ÂC)(2a) < CÂ(X,ÂC)(a).
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E.5 Examples

In this appendix many possibilities for costs reduction of integer and complex-integer
multiplications are described. In this section a few typical examples will be discussed
in more detail. Even in recent work only CSD-like methods areapplied to reduce the
number of adders and subtractors. Consider the following example.

Example E.5. In [39], where efficient transforms are designed, an implementation of the
integer value31183 is proposed at the cost of5 adders. This equals the costs according
the CSD constructions, i.e.,CC(31183) = 5. On basis of constructionŝAC however, the
results are:

ΓÂC(31183) ∋ (29 ⊖ 26)⊕ (24 ⊖ 20)(211 ⊕ 20),

CÂC(31183) = 4,

which gives a saving of1.
End of example

The possibilities of alternative constructions for coefficients, as discussed in Section E.2,
and scaled coefficients, as discussed in Section E.4, are illustrated next using a transversal
filter structure with integer coefficients.

Example E.6. The property that the minimal costs of an integer or a complexinteger
after scaling, may be less than the costs of the original value, inspires an alternative for
the transversal filter structure. Consider the(1, 5)-symmetric real filterH(z) ∈ Z/214(z)
with a passband gain of0 dB, a passband ripple of1 dB and a stopband gain of−60 dB.
The passband ranges fromθ = 0 throughθ = 0.2π and the stopband ranges fromθ =
0.6π throughθ = π. The filter length isL = 11.
For reasons of clarity a scaled version of the filterH(z) will be usedH ′(z) = 214H(z) ∈
Z(z). The6 different coefficientsh′[n] of the(1, 5)-symmetric filterH ′(z) are listed in
column2 of Table E.4. For the CSD constructionsC, the costs of the coefficientsh′[n]
and3h′[n] are shown in columns3 and4. Column5 gives the optimal scale factors.
Similarly for the alternative construction set̂AC, the data is presented in the columns6
through8.
It can be observed that for the central coefficient,h′[5], the use of the scaling is beneficial
for both constructions. The savings,3 and2 additions respectively, are more than the
cost of the additional scaling withs = 3, CC(3) = CÂC(3) = 1. Also, the application
of alternative construction set̂AC is beneficial for coefficienth′[2]. This results in the
following total costs for the coefficients and scale factor:

X = C X = ÂC
s = 1 15 13
s = 3 13 12

A structure that can be used to implement this filter is shown in Figure E.6. This con-
cept can be generalized to a set of different factorssi, at the cost of a less-regular filter
structure. The alternative transversal structure, see Figure E.6 for an example, has some
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resemblance to the filter structure as obtained in [87] wherecommon subexpressions are
exploited.
End of example

n h′[n] CC(h′[n]) CC(3h′[n]) s CÂC(h
′[n]) CÂC(3h′[n]) s

0 10 −124 1 3 1 1 2 1
1 9 −252 1 3 1 1 2 1
2 8 279 3 4 1 2 3 1
3 7 2065 2 5 1 2 3 1
4 6 4424 3 4 1 3 3 1 or 3

5 5548 5 2 3 4 2 3

ΓC(279) ∋ 28 ⊕ 25 ⊖ 23 ⊖ 20,

ΓÂC(279) ∋ (23 ⊕ 20)(25 ⊖ 20),

ΓC(5548) ∋ 213 ⊖ 211 ⊖ 29 ⊖ 26 ⊖ 24 ⊖ 22,

ΓC(3 · 5548) ∋ 214 ⊕ 28 ⊕ 22,

ΓÂC(5548) ∋ (26 ⊕ 24 ⊖ 22)(26 ⊕ 23 ⊕ 20),

ΓÂC(3 · 5548) ∋ 214 ⊕ 28 ⊕ 22.

Table E.4: Coefficients of the filtersH ′(z) and3H ′(z), and their costs.

?
?

?
?

?

- -
- -

- -
- -

--
- sh[5]

h[0]

h[1]

h[2]

h[3]

h[4]

s

?-
?-
?-
?--

?--

z−1 z−1 z−1 z−1 z−1 z−1 z−1 z−1 z−1 z−1

Figure E.6: Transversal structure with shared and scaled multiplications.

A limited list of alternative constructions that have lowercosts than the standard construc-
tions are presented in the following two examples. Comparedto, e.g., the well-known
CSDs the alternative constructions are not unique. Nevertheless only a single construc-
tion will be listed per coefficient.

Example E.7. For a limited set of integer values1 ≤ a ≤ 210, an element of the al-
ternative constructionsΓÂC(a), is presented in Table E.5. Only the odd values ofa are
listed since the even values can be obtained by considering2ia. The smallest even value
a that can be implemented at lower costs than the related odd value, a

2 , is a = 53654, see
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Section E.4 and Table E.2. An alternative is only presented if its costs are less than the
costs of a CSD construction, so only ifCÂC(a) < CC(a). Values for which the savings
in costs of implementation are more than1 compared to CSDs, are labeled with→ .
End of example

Example E.8. For a limited set of complex integersa for which‖a‖∞ < 25, alternative
constructions that have lower costs than(X, ÂC) constructions, are listed in Table E.6.
Only the non-even values ofa are listed since the even values can be obtained by consid-
ering2ia. For the even valuea that can be implemented at lower costs than the related odd
value,a

2 , holds:‖a‖∞ = 105, see Section E.4 and Table E.3. An alternative is only pre-
sented if its costs are less than the minimal costs of global constructionsA throughE, so
only if CÂ(X,ÂC)(a) < C(X,ÂC)(a). Values for which the savings in costs of implementa-
tion are more than2, are labeled with→ . Only valuesa for whichar > 0 ∧ 0 ≤ ai ≤ ar

are presented. The other values can be obtained by negation,multiplication by jk and
conjugation.
End of example
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a CC(a) CÂC(a) ΓÂC(a) ∋
45 3 2 (23 ⊕ 20)(22 ⊕ 20)
51 3 2 (22 ⊖ 20)(24 ⊕ 20)
75 3 2 (24 ⊖ 20)(22 ⊕ 20)
85 3 2 (22 ⊕ 20)(24 ⊕ 20)
93 3 2 (22 ⊖ 20)(25 ⊖ 20)
99 3 2 (25 ⊕ 20)(22 ⊖ 20)

105 3 2 (24 ⊖ 20)(23 ⊖ 20)
153 3 2 (23 ⊕ 20)(24 ⊕ 20)
155 3 2 (22 ⊕ 20)(25 ⊖ 20)
165 3 2 (25 ⊕ 20)(22 ⊕ 20)
171 4 3 (23 ⊕ 20)(24 ⊕ 22 ⊖ 20)
173 4 3 23 ⊕ (25 ⊕ 20)(22 ⊕ 20)
179 4 3 (22 ⊖ 20)(24 ⊕ 20)⊕ 27

181 4 3 20 ⊕ (25 ⊕ 22)(22 ⊕ 20)
189 3 2 (26 ⊖ 20)(22 ⊖ 20)
195 3 2 (22 ⊖ 20)(26 ⊕ 20)
203 4 3 (23 ⊖ 20)(25 ⊖ 22 ⊕ 20)
205 4 3 (22 ⊕ 20)(25 ⊕ 23 ⊕ 20)
211 4 3 20 ⊕ (25 ⊖ 21)(23 ⊖ 20)
213 4 3 (22 ⊖ 20)(26 ⊕ 23 ⊖ 20)
217 3 2 (23 ⊖ 20)(25 ⊖ 20)
231 3 2 (25 ⊕ 20)(23 ⊖ 20)
279 3 2 (23 ⊕ 20)(25 ⊖ 20)
297 3 2 (23 ⊕ 20)(25 ⊕ 20)
299 4 3 21 ⊕ (23 ⊕ 20)(25 ⊕ 20)
301 4 3 20 ⊕ (26 ⊖ 22)(22 ⊕ 20)
307 4 3 20 ⊕ (24 ⊕ 21)(24 ⊕ 20)
309 4 3 (23 ⊕ 21)(25 ⊖ 20)⊖ 20

315 3 2 (26 ⊖ 20)(22 ⊕ 20)
325 3 2 (26 ⊕ 20)(22 ⊕ 20)
331 4 3 20 ⊕ (26 ⊕ 21)(22 ⊕ 20)
333 4 3 (23 ⊕ 20)(25 ⊕ 22 ⊕ 20)
339 4 3 (22 ⊖ 20)(27 ⊖ 24 ⊕ 20)
341 4 3 (24 ⊖ 22 ⊖ 20)(25 ⊖ 20)
343 4 3 (26 ⊖ 24 ⊕ 20)(23 ⊖ 20)
345 4 3 (24 ⊖ 20)(25 ⊖ 23 ⊖ 20)
347 4 3 25 ⊕ (26 ⊖ 20)(22 ⊕ 20)
349 4 3 (22 ⊖ 20)(25 ⊖ 20)⊕ 28

355 4 3 (22 ⊕ 20)(26 ⊕ 23 ⊖ 20)
357 4 3 (24 ⊕ 22 ⊕ 20)(24 ⊕ 20)
359 4 3 27 ⊕ (25 ⊕ 20)(23 ⊖ 20)
361 4 3 20 ⊕ (26 ⊕ 23)(22 ⊕ 20)

continued on next page
Table E.5:Examples of alternative constructions for integer coefficients.
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continued from previous page
a CC(a) CÂC(a) ΓÂC(a) ∋

363 4 3 (25 ⊕ 20)(24 ⊖ 22 ⊖ 20)
365 4 3 (22 ⊕ 20)(26 ⊕ 23 ⊕ 20)
371 4 3 (24 ⊖ 22)(25 ⊖ 20)⊖ 20

373 4 3 20 ⊕ (24 ⊖ 22)(25 ⊖ 20)
381 3 2 (22 ⊖ 20)(27 ⊖ 20)
387 3 2 (27 ⊕ 20)(22 ⊖ 20)
395 4 3 (22 ⊕ 20)(26 ⊕ 24 ⊖ 20)
397 4 3 20 ⊕ (27 ⊕ 22)(22 ⊖ 20)
403 4 3 (24 ⊖ 22 ⊕ 20)(25 ⊖ 20)
405 4 3 (26 ⊕ 24 ⊕ 20)(22 ⊕ 20)
407 4 3 27 ⊕ (23 ⊕ 20)(25 ⊖ 20)
409 4 3 20 ⊕ (25 ⊖ 23)(24 ⊕ 20)
411 4 3 (22 ⊖ 20)(27 ⊕ 23 ⊕ 20)
413 4 3 (23 ⊖ 20)(26 ⊖ 22 ⊖ 20)
419 4 3 25 ⊕ (27 ⊕ 20)(22 ⊖ 20)
421 4 3 20 ⊕ (26 ⊖ 22)(23 ⊖ 20)
423 4 3 (23 ⊕ 20)(26 ⊖ 24 ⊖ 20)
425 4 3 (25 ⊖ 23 ⊕ 20)(24 ⊕ 20)
427 4 3 (23 ⊖ 20)(26 ⊖ 22 ⊕ 20)
429 4 3 (25 ⊕ 20)(24 ⊖ 22 ⊕ 20)
435 4 3 (24 ⊖ 20)(25 ⊖ 22 ⊕ 20)
437 4 3 (26 ⊖ 20)(23 ⊖ 20)⊖ 22

441 3 2 (26 ⊖ 20)(23 ⊖ 20)
455 3 2 (26 ⊕ 20)(23 ⊖ 20)
459 4 3 (25 ⊖ 22 ⊖ 20)(24 ⊕ 20)
461 4 3 (26 ⊕ 21)(23 ⊖ 20)⊖ 20

465 3 2 (24 ⊖ 20)(25 ⊖ 20)
467 4 3 21 ⊕ (24 ⊖ 20)(25 ⊖ 20)
469 4 3 (23 ⊖ 20)(26 ⊕ 22 ⊖ 20)
555 4 3 (24 ⊖ 20)(25 ⊕ 22 ⊕ 20)
557 4 3 (23 ⊕ 20)(22 ⊕ 20)⊕ 29

561 3 2 (25 ⊕ 20)(24 ⊕ 20)
563 4 3 21 ⊕ (25 ⊕ 20)(24 ⊕ 20)
565 4 3 (22 ⊕ 20)(27 ⊖ 24 ⊕ 20)
567 3 2 (26 ⊖ 20)(23 ⊕ 20)
585 3 2 (23 ⊕ 20)(26 ⊕ 20)
587 4 3 21 ⊕ (23 ⊕ 20)(26 ⊕ 20)
589 4 3 (24 ⊕ 22 ⊖ 20)(25 ⊖ 20)
595 4 3 (25 ⊕ 22 ⊖ 20)(24 ⊕ 20)
597 4 3 (22 ⊕ 20)(24 ⊕ 20)⊕ 29

599 4 3 25 ⊕ (26 ⊖ 20)(23 ⊕ 20)
continued on next page

Table E.5:Examples of alternative constructions for integer coefficients.
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continued from previous page
a CC(a) CÂC(a) ΓÂC(a) ∋

601 4 3 20 ⊕ (27 ⊖ 23)(22 ⊕ 20)
603 4 3 (23 ⊕ 20)(26 ⊕ 22 ⊖ 20)
605 4 3 (22 ⊕ 20)(27 ⊖ 23 ⊕ 20)
611 4 3 (25 ⊕ 20)(22 ⊖ 20)⊕ 29

613 4 3 20 ⊕ (25 ⊕ 22)(24 ⊕ 20)
615 4 3 (24 ⊖ 20)(25 ⊕ 23 ⊕ 20)
617 4 3 25 ⊕ (23 ⊕ 20)(26 ⊕ 20)
619 4 3 (24 ⊕ 22)(25 ⊖ 20)⊖ 20

621 4 3 (23 ⊕ 20)(26 ⊕ 22 ⊕ 20)
627 4 3 (25 ⊕ 20)(24 ⊕ 22 ⊖ 20)
629 4 3 (24 ⊕ 20)(25 ⊕ 22 ⊕ 20)
635 3 2 (22 ⊕ 20)(27 ⊖ 20)
645 3 2 (27 ⊕ 20)(22 ⊕ 20)
651 4 3 (24 ⊕ 22 ⊕ 20)(25 ⊖ 20)
653 4 3 23 ⊕ (27 ⊕ 20)(22 ⊕ 20)
659 4 3 (27 ⊕ 22)(22 ⊕ 20)⊖ 20

661 4 3 20 ⊕ (27 ⊕ 22)(22 ⊕ 20)
663 4 3 (25 ⊕ 23 ⊖ 20)(24 ⊕ 20)
665 4 3 (27 ⊖ 25 ⊖ 20)(23 ⊖ 20)
667 4 3 25 ⊕ (22 ⊕ 20)(27 ⊖ 20)
669 4 3 (22 ⊖ 20)(28 ⊖ 25 ⊖ 20)
675 4 3 (27 ⊕ 23 ⊖ 20)(22 ⊕ 20)
677 4 3 25 ⊕ (27 ⊕ 20)(22 ⊕ 20)
679 4 3 (23 ⊖ 20)(27 ⊖ 25 ⊕ 20)
681 4 3 20 ⊕ (25 ⊕ 23)(24 ⊕ 20)
683 5 4 20 ⊕ (25 ⊖ 23 ⊖ 21)(25 ⊖ 20)

→ 685 5 3 (22 ⊕ 20)(27 ⊕ 23 ⊕ 20)
689 4 3 27 ⊕ (25 ⊕ 20)(24 ⊕ 20)
691 5 4 20 ⊕ (25 ⊖ 21)(25 ⊖ 23 ⊖ 20)

→ 693 5 3 (26 ⊖ 20)(24 ⊖ 22 ⊖ 20)
695 4 3 27 ⊕ (26 ⊖ 20)(23 ⊕ 20)
697 4 3 (24 ⊕ 20)(25 ⊕ 23 ⊕ 20)
699 4 3 26 ⊕ (22 ⊕ 20)(27 ⊖ 20)
701 4 3 (26 ⊖ 20)(22 ⊖ 20)⊕ 29

707 4 3 (22 ⊖ 20)(26 ⊕ 20)⊕ 29

709 4 3 26 ⊕ (27 ⊕ 20)(22 ⊕ 20)
711 4 3 (23 ⊕ 20)(26 ⊕ 24 ⊖ 20)
713 4 3 (25 ⊖ 23 ⊖ 20)(25 ⊖ 20)

→ 715 5 3 (26 ⊕ 20)(24 ⊖ 22 ⊖ 20)
→ 717 5 3 (22 ⊖ 20)(28 ⊖ 24 ⊖ 20)

719 4 3 (27 ⊕ 24)(22 ⊕ 20)⊖ 20

continued on next page
Table E.5:Examples of alternative constructions for integer coefficients.
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continued from previous page
a CC(a) CÂC(a) ΓÂC(a) ∋

721 4 3 20 ⊕ (27 ⊕ 24)(22 ⊕ 20)
→ 723 5 3 (22 ⊖ 20)(28 ⊖ 24 ⊕ 20)
→ 725 5 3 (27 ⊕ 24 ⊕ 20)(22 ⊕ 20)

727 4 3 210 ⊖ (23 ⊕ 20)(25 ⊕ 20)
729 4 3 (26 ⊕ 24 ⊕ 20)(23 ⊕ 20)
733 4 3 (28 ⊖ 20)(22 ⊖ 20)⊖ 25

739 4 3 (22 ⊖ 20)(28 ⊕ 20)⊖ 25

741 4 3 (22 ⊖ 20)(28 ⊖ 23 ⊖ 20)
743 4 3 (25 ⊕ 20)(23 ⊖ 20)⊕ 29

745 4 3 20 ⊕ (25 ⊖ 23)(25 ⊖ 20)
747 4 3 (28 ⊖ 23 ⊕ 20)(22 ⊖ 20)
749 4 3 (28 ⊖ 20)(22 ⊖ 20)⊖ 24

755 4 3 (28 ⊖ 22)(22 ⊖ 20)⊖ 20

757 4 3 20 ⊕ (28 ⊖ 22)(22 ⊖ 20)
765 3 2 (28 ⊖ 20)(22 ⊖ 20)
771 3 2 (22 ⊖ 20)(28 ⊕ 20)
779 4 3 23 ⊕ (22 ⊖ 20)(28 ⊕ 20)
781 4 3 20 ⊕ (24 ⊖ 22)(26 ⊕ 20)
787 4 3 24 ⊕ (22 ⊖ 20)(28 ⊕ 20)
789 4 3 (22 ⊖ 20)(28 ⊕ 23 ⊖ 20)
791 4 3 (23 ⊖ 20)(27 ⊖ 24 ⊕ 20)
793 4 3 20 ⊕ (28 ⊕ 23)(22 ⊖ 20)
795 4 3 (27 ⊕ 25 ⊖ 20)(22 ⊕ 20)
797 4 3 25 ⊕ (28 ⊖ 20)(22 ⊖ 20)
803 4 3 25 ⊕ (22 ⊖ 20)(28 ⊕ 20)
805 4 3 (22 ⊕ 20)(27 ⊕ 25 ⊕ 20)
807 4 3 210 ⊖ (23 ⊖ 20)(25 ⊖ 20)
809 4 3 (23 ⊕ 20)(25 ⊕ 20)⊕ 29

811 5 4 20 ⊕ (27 ⊕ 25 ⊕ 21)(22 ⊕ 20)
→ 813 5 3 (22 ⊖ 20)(28 ⊕ 24 ⊖ 20)

815 4 3 (26 ⊖ 24)(24 ⊕ 20)⊖ 20

817 4 3 20 ⊕ (26 ⊖ 24)(24 ⊕ 20)
→ 819 5 3 (26 ⊖ 20)(24 ⊖ 22 ⊕ 20)

821 5 4 20 ⊕ (24 ⊕ 22)(25 ⊕ 23 ⊕ 20)
823 4 3 28 ⊕ (26 ⊖ 20)(23 ⊕ 20)
825 4 3 (24 ⊖ 20)(26 ⊖ 23 ⊖ 20)
827 4 3 (26 ⊖ 20)(22 ⊕ 20)⊕ 29

829 4 3 26 ⊕ (28 ⊖ 20)(22 ⊖ 20)
835 4 3 26 ⊕ (22 ⊖ 20)(28 ⊕ 20)
837 4 3 (25 ⊖ 22 ⊖ 20)(25 ⊖ 20)
839 4 3 (27 ⊖ 23)(23 ⊖ 20)⊖ 20

continued on next page
Table E.5:Examples of alternative constructions for integer coefficients.
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continued from previous page
a CC(a) CÂC(a) ΓÂC(a) ∋

841 4 3 20 ⊕ (27 ⊖ 23)(23 ⊖ 20)
843 5 4 (22 ⊖ 20)(28 ⊕ 25 ⊖ 23 ⊕ 20)

→ 845 5 3 (26 ⊕ 20)(24 ⊖ 22 ⊕ 20)
847 4 3 (23 ⊖ 20)(27 ⊖ 23 ⊕ 20)
849 4 3 (26 ⊕ 20)(24 ⊕ 20)⊖ 28

851 5 4 (25 ⊖ 23 ⊖ 20)(25 ⊕ 22 ⊕ 20)
853 5 4 20 ⊕ (24 ⊖ 22)(26 ⊕ 23 ⊖ 20)
855 4 3 (23 ⊕ 20)(27 ⊖ 25 ⊖ 20)
857 4 3 (23 ⊖ 20)(27 ⊖ 20)⊖ 25

859 4 3 210 ⊖ (25 ⊕ 20)(22 ⊕ 20)
861 4 3 (27 ⊖ 22 ⊖ 20)(23 ⊖ 20)
867 4 3 (22 ⊖ 20)(28 ⊕ 25 ⊕ 20)
869 4 3 20 ⊕ (25 ⊖ 22)(25 ⊖ 20)
871 4 3 (27 ⊕ 20)(23 ⊖ 20)⊖ 25

873 4 3 (23 ⊕ 20)(27 ⊖ 25 ⊕ 20)
875 4 3 (27 ⊖ 22 ⊕ 20)(23 ⊖ 20)
883 4 3 20 ⊕ (27 ⊖ 21)(23 ⊖ 20)
885 4 3 (24 ⊖ 20)(26 ⊖ 22 ⊖ 20)
889 3 2 (23 ⊖ 20)(27 ⊖ 20)
903 3 2 (27 ⊕ 20)(23 ⊖ 20)
907 4 3 22 ⊕ (27 ⊕ 20)(23 ⊖ 20)
909 4 3 (27 ⊕ 21)(23 ⊖ 20)⊖ 20

915 4 3 (24 ⊖ 20)(26 ⊖ 22 ⊕ 20)
917 4 3 (23 ⊖ 20)(27 ⊕ 22 ⊖ 20)
919 4 3 24 ⊕ (27 ⊕ 20)(23 ⊖ 20)
921 4 3 25 ⊕ (23 ⊖ 20)(27 ⊖ 20)
923 4 3 (27 ⊕ 22)(23 ⊖ 20)⊖ 20

925 4 3 20 ⊕ (27 ⊕ 22)(23 ⊖ 20)
931 4 3 (27 ⊕ 22 ⊕ 20)(23 ⊖ 20)
935 4 3 (26 ⊖ 23 ⊖ 20)(24 ⊕ 20)
937 4 3 (26 ⊖ 20)(24 ⊖ 20)⊖ 23

939 4 3 210 ⊖ (22 ⊕ 20)(24 ⊕ 20)
941 4 3 (26 ⊖ 20)(24 ⊖ 20)⊖ 22

945 3 2 (26 ⊖ 20)(24 ⊖ 20)
947 4 3 21 ⊕ (26 ⊖ 20)(24 ⊖ 20)
949 4 3 22 ⊕ (26 ⊖ 20)(24 ⊖ 20)
971 4 3 (24 ⊖ 20)(26 ⊕ 20)⊖ 22

973 4 3 (24 ⊖ 20)(26 ⊕ 20)⊖ 21

975 3 2 (24 ⊖ 20)(26 ⊕ 20)
979 4 3 22 ⊕ (24 ⊖ 20)(26 ⊕ 20)

Table E.5:Examples of alternative constructions for integer coefficients.
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a C(X,ÂC)(a) CÂ(X,ÂC)(a) ΓÂ(X,ÂC)(a) ∋
[6 + j3]A 6 4 [3]A[2 + j]A
[7 + j6]A 6 4 [2 + j]A[4 + j]A
[9 + j3]A 6 5 [1 + j3]C ⊕ [8]A
[10 + j5]A 6 4 [5]A[2 + j]A
[12 + j3]A 6 4 [3]A[4 + j]A
[12 + j5]A 6 5 [j]A ⊕ [12 + j4]B
[13 + j6]B 7 6 [2− j]A[4 + j5]A
[13 + j10]B 7 6 [j5]A[2− j]A ⊕ [8]A
[14 + j7]A 6 4 [7]A[2 + j]A
[14 + j11]C 7 6 [7]A[2 + j]A ⊕ [j4]A
[15 + j3]A 6 5 [−1 + j3]C ⊕ [16]A
[15 + j5]A 6 5 [5]A[3 + j]B
[15 + j10]A 6 4 [2 + j]A[8 + j]A
[17 + j3]A 6 5 [1 + j3]C ⊕ [16]A
[17 + j6]A 6 4 [8− j]A[2 + j]A
[18 + j9]A 6 4 [9]A[2 + j]A
[18 + j11]C 7 6 [2− j]A[5 + j8]A
[19 + j6]A 8 6 [3]A[1 + j2]A ⊕ [16]A
[19 + j7]B 7 6 [9− j]A[2 + j]A
[19 + j10]B 7 6 [2 + j]A[8 + j]A ⊕ [4]A
[20 + j5]A 6 4 [5]A[4 + j]A
[21 + j6]B 7 6 [3]A[7 + j2]A
[21 + j7]B 6 5 [7]A[3 + j]B
[21 + j10]B 7 6 [j5]A[2− j]A ⊕ [16]A
[21 + j14]B 7 6 [7]A[3 + j2]A
[21 + j18]B 7 6 [3]A[2 + j]A[4 + j]A
[22 + j3]A 8 6 [4− j]A[5 + j2]A
[22 + j5]B 7 6 [−5]A[2− j]A ⊕ [32]A
[22 + j7]B 7 6 [2− j]A[1 + j4]A ⊕ [16]A
[22 + j9]B 7 6 [2− j]A[7 + j8]A
[22 + j11]B 8 6 [11]A[2 + j]A
[22 + j13]B 8 7 [−j]A ⊕ [22 + j14]B
[22 + j15]B 7 6 [2 + j]A[−1 + j8]A ⊕ [32]A
[22 + j17]B 7 6 [−1 + j8]A[2− j]A ⊕ [16]A
[22 + j19]B 8 6 [8 + j]A[3 + j2]A
[22 + j21]B 8 7 [13 + j4]B[2 + j]A
[23 + j3]B 7 6 [3]A[8 + j]A ⊕ [−1]A
[23 + j6]B 7 6 [2− j]A[8 + j7]A
[23 + j10]B 7 6 [4 + j]A[6 + j]A
[23 + j11]B 7 5 [3 + j]B[8 + j]A
[23 + j12]A 8 6 [12]A[2 + j]A ⊕ [−1]A
[23 + j14]B 7 6 [12 + j]A[2 + j]A

continued on next page
Table E.6:Examples of alternative constructions for complex-integer co-
efficients.
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continued from previous page
a C(X,ÂC)(a) CÂ(X,ÂC)(a) ΓÂ(X,ÂC)(a) ∋

[23 + j18]B 7 6 [9]A[−1 + j2]A ⊕ [32]A
[24 + j3]A 6 4 [3]A[8 + j]A
[24 + j7]A 6 5 [−j]A ⊕ [24 + j8]B
[24 + j9]A 6 5 [j]A ⊕ [24 + j8]B
[24 + j11]A 8 6 [4− j]A[5 + j4]A
[24 + j13]A 8 6 [3]A[8− j]A ⊕ [j16]A
[24 + j19]A 8 6 [3]A[8 + j]A ⊕ [j16]A
[24 + j21]C 7 6 [3]A[8 + j7]A
[25 + j3]B 7 6 [3]A[8 + j]A ⊕ [1]A
[25 + j5]B 6 5 [8− j]A[3 + j]B
[25 + j6]B 7 6 [2− j]A[−4 + j]A ⊕ [32]A
[25 + j10]B 7 6 [5]A[5 + j2]A
[25 + j12]A 8 6 [12]A[2 + j]A ⊕ [1]A
[25 + j13]B 8 7 [j4]A ⊕ [25 + j9]B
[25 + j14]A 8 6 [7]A[−1 + j2]A ⊕ [32]A
[25 + j18]A 8 6 [9]A[1 + j2]A ⊕ [16]A
[25 + j19]B 8 7 [8]A ⊕ [17 + j19]C
[25 + j20]B 7 6 [5]A[5 + j4]A
[26 + j3]A 8 6 [3]A[−2 + j]A ⊕ [32]A
[26 + j5]B 7 6 [5]A[2 + j]A ⊕ [16]A
[26 + j7]B 7 6 [9 + j8]A[2− j]A
[26 + j9]B 7 6 [9]A[2 + j]A ⊕ [8]A
[26 + j11]B 8 7 [j]A ⊕ [26 + j10]B

→ [26 + j13]B 9 6 [13]A[2 + j]A
[26 + j15]A 8 6 [4 + j]A[7 + j2]A
[26 + j17]A 8 6 [1 + j8]A[2 + j]A ⊕ [32]A
[26 + j23]B 8 6 [2 + j]A[15 + j4]A
[27 + j6]B 7 6 [3]A[9 + j2]A
[27 + j9]B 6 5 [9]A[3 + j]B
[27 + j10]B 7 6 [j5]A[2 + j]A ⊕ [32]A
[27 + j11]B 7 6 [−1 + j7]A[1− j4]A
[27 + j12]B 7 6 [3]A[9 + j4]A
[27 + j14]A 8 6 [14]A[2 + j]A ⊕ [−1]A
[27 + j18]B 7 6 [9]A[3 + j2]A
[27 + j20]B 7 6 [5]A[−1 + j4]A ⊕ [32]A
[27 + j21]B 7 6 [3 + j3]B[8− j]A
[27 + j24]B 7 6 [3]A[9 + j8]A
[27 + j26]B 8 6 [2 + j]A[16 + j5]A
[28 + j7]A 6 4 [7]A[4 + j]A
[28 + j11]C 7 6 [7]A[4 + j]A ⊕ [j4]A
[28 + j13]C 7 6 [14]A[2 + j]A ⊕ [−j]A

continued on next page
Table E.6:Examples of alternative constructions for complex-integer co-
efficients.
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continued from previous page
a C(X,ÂC)(a) CÂ(X,ÂC)(a) ΓÂ(X,ÂC)(a) ∋

[28 + j19]C 7 6 [2 + j]A[15 + j2]A
[28 + j21]C 7 6 [j7]A[3− j4]A
[28 + j23]C 7 6 [7]A[4 + j]A ⊕ [j16]A
[28 + j25]A 8 6 [7]A[4− j]A ⊕ [j32]A
[29 + j6]A 8 6 [3]A[−1 + j2]A ⊕ [32]A
[29 + j7]B 7 6 [7]A[4 + j]A ⊕ [1]A
[29 + j10]A 8 7 [6 + j2]B[5]A ⊕ [−1]A
[29 + j12]B 7 6 [2 + j]A[14− j]A
[29 + j14]A 8 6 [14]A[2 + j]A ⊕ [1]A
[29 + j15]B 7 6 [15]A[2 + j]A ⊕ [−1]A
[29 + j17]B 7 6 [15 + j]A[2 + j]A
[29 + j18]A 8 6 [2 + j]A[16 + j]A ⊕ [−2]A
[29 + j20]B 7 6 [4 + j]A[8 + j3]A
[29 + j22]B 8 6 [16 + j3]A[2 + j]A
[29 + j23]B 8 7 [−j8]A ⊕ [29 + j31]B
[29 + j24]A 8 6 [3]A[−1 + j8]A ⊕ [32]A
[29 + j26]B 8 7 [−1]A ⊕ [30 + j26]C
[30 + j11]A 8 6 [15]A[2 + j]A ⊕ [−j4]A
[30 + j13]A 8 6 [15]A[2 + j]A ⊕ [−j2]A
[30 + j15]A 6 4 [15]A[2 + j]A
[30 + j19]A 8 6 [15]A[2 + j]A ⊕ [j4]A
[30 + j21]C 7 6 [4 + j2]A[8 + j]A ⊕ [j]A
[30 + j23]A 8 6 [15]A[2 + j]A ⊕ [j8]A
[30 + j25]C 7 6 [7 + j16]A[2− j]A
[31 + j3]A 6 5 [−1 + j3]C ⊕ [32]A
[31 + j11]C 7 6 [8 + j]A[4 + j]A ⊕ [−j]A
[31 + j12]A 6 4 [8 + j]A[4 + j]A
[31 + j13]C 7 6 [15− j]A[2 + j]A
[31 + j18]A 6 4 [2 + j]A[16 + j]A
[31 + j19]C 7 6 [2 + j]A[16 + j]A ⊕ [j]A
[31 + j22]A 8 6 [1 + j2]A[15− j8]A
[31 + j26]C 7 6 [2 + j]A[16 + j]A ⊕ [j8]A

Table E.6:Examples of alternative constructions for complex-integer co-
efficients.



164 Appendix E. Alternatives for coefficients



Appendix F

Complex-base numbers:
introduction and evaluation

Traditionally complex numbers are represented either withtheir real and imaginary parts
or with their modulus and argument. In the literature some references to work are found
that use a complex base for representing complex numbers. Out of curiosity these papers
were studied and it was found that the claims that were made are questionable.

In 1960 Knuth [74] proposed to use a single-component positional numbering system for
representing complex numbers. This allows for complex-arithmetic operations on single
data elements, instead of a series of real arithmetic operations on the individual real and
imaginary parts, or moduli and arguments. Knuth proposed the unique or non-redundant
representation of anya ∈ C in a quaternary system, as:

a =
∑

i

aip
i with base p = j2 and ai ∈ {0, 1, 2, 3}.

In the, for digital systems preferred, binary system withai ∈ {0, 1}, basep = j
√

2 was
proposed. However, the valuesa ∈ CZ/2k cannot be represented with a finite number
of bits. Somewhat later Penney [112] proposed the non-redundant alternative basep =
−1+j, with ai ∈ {0, 1}, and the equally suitablep = −1−j. Nielsen provides a thorough
analysis of many, possibly exotic, number systems in [100].

Today, among others, Jamil [66] [67] and Khmelnik [72] [73] are developing hardware
for arithmetic units to fully exploit the possibilities of the complex-base number systems.
In [73] Khmelnik claims to achieve5 to 10 times speedup, in terms of cycles, of complex
number processing. No claims are made with respect to hardware costs.

In this appendix the use of the base-p number system for representing complex integers,
with p = −1 + j, is described and compared to the traditional base-2 system, as is gen-
erally used in this thesis. In particular the hardware costsof the addition and subtraction
are evaluated. Also the multiplication form shift-and-add, is considered briefly.
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F.1 Basep = −1 + j: representation

In Table F.1 and Table F.2 some typical complex and scaled complex integers respectively
are listed, both in base-10 and base-p. The shaded, wild-formed, area in Figure F.1 shows
the set of complex integers that can be represented with at most 10 bits in base-p. The
rectangular shows the set in case base-2 (2’s-complement) is used with5 bits for the real
part and5 bits for the imaginary part. Due to the wild form of the set in base-p, it is easy
to see that numbers with a smaller modulus may require more bits than numbers with a
larger modulus. From Figure F.1 it is also clear that for a particular complex integer, the
base-p representation may require more bits than the base-2 representation does.

base-10 base-p base-10 base-p
4 111010000 j4 1110000
3 1101 j3 1110111
2 1100 j2 1110100
1 1 j 11
0 0
−1 11101 − j 111
−2 11100 −j2 100
−3 10001 −j3 110011
−4 10000 −j4 110000

1 + j 1110 −1 + j 10
1− j 111010 −1− j 110

Table F.1: Examples of base-p complex integers, withp = −1 + j.

base-10 base-p base-10 base-p
1
8 0.000011 j1

8 0.011101
1
4 1.1101 j1

4 0.0111
1
2 1.11 j1

2 0.01
− 1

2 0.11 −j1
2 111.01

− 1
4 0.0001 −j1

4 0.0011
− 1

8 0.000111 −j1
8 0.000001

Table F.2: Examples of base-p scaled complex integers, withp = −1 + j.

For the valuesa ∈ CZ with ‖a‖∞ ≤ Ξ and20 ≤ Ξ ≤ 210, the required number of bits
in base-p (top stair case) and in base-2 (lower stair case) are shown in Figure F.2. The
difference of both numbers is shown in the bottom curve. Fromthis it can be concluded
that base-p representation requires2 to 4 bits more than the base-2 representation.
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−32 −16 0 16 32
ℜ →

32ℑ↑

−32

−16

0

16

Figure F.1: Set of10 bit complex integers in base-p = −1 + j and base-2
(square).

20 22 24 26 28 210

Ξ→

30#bit ↑

0

10

20

← base-p

← base-2

← difference

Figure F.2: Required number of bits, and the difference, to represent any a ∈
CZ with ‖a‖∞ ≤ Ξ in base-p = −1 + j and base-2.

F.2 Basep = −1 + j: addition and subtraction

Next some example circuits that perform additions and subtractions are discussed. In
the sequel the relatively small valueΞ = 3 is chosen to obtain practically sized figures.
Lemma A.13 (for‖a‖∞, ‖b‖∞ ≤ Ξ holds‖a± b‖∞ ≤ 2Ξ) and Figure F.2 show that for
a base-2 complex adder6 inputs and8 outputs are required. Similarly for a base-p adder
10 inputs and12 outputs are required.
The traditional schemes for base-2 adders use half- and full-adder components. The so
called half-adder, adds two1-bit inputsai andbi and generates the data outputdi and the
carry outputci,out that are defined as:

di = ai xor bi,

ci,out = aibi.

The so called full-adder, adds like the half-adder, two1-bit inputsai andbi and also the
1-bit carryci,in. Basically the full-adder adds three1-bit signals. The data outputdi and
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the carry outputci,out are now defined as:

di = ai xor bi xor ci,in,

ci,out = aibi oraici,in or bici,in.

In Figure F.3 a possible well-known structure of a base-2 (2’s-complement) complex
adder forΞ = 3 is given. Per signal part, a series of full-adders and a single half-adder is
used. In total2 extra output bits are generated.

2 sets of base-2 inputs

imaginary part

(2)(2)(2)

012

1 set of base-2 outputs

imaginary part

(1)(1)(1)(1)

0123

(2)

(1)
♦

(3)

(1)
♦

(3)

(1)

2 sets of base-2 inputs

real part

(2)(2)(2)

012bits:

1 set of base-2 outputs

real part

(1)(1)(1)(1)

0123bit:

(2)

(1)
♦

(3)

(1)
♦

(3)

(1)

Figure F.3: Example structure of a base-2 complex adder forΞ = 3.

To simplify the schemes in this appendix a special notation is used. Bit-lines with equal
weights are grouped and only the number of bit-lines is givenbetween parenthesis. A
diamond is used to indicate that a carry output and bit-linesare grouped. For the full- and
half-adder a black square is used. The full-adder is distinguished by the symbolic carry
input.
For a base-2 (2’s-complement) complex subtractor the structure is similar, the two half-
adders are replaced by full-adders, and theb-inputs are inverted (not shown).
Adding or subtracting on a bit-by-bit bases gives4 cases to be considered. Table F.3
shows that the bit-addition forai = bi = 1 and the bit-subtraction forai = 0 andbi = 1
produce a carry out. Note that unlike the base-2 (2’s-complement) addition, the carry is
not to be combined with the next higher bit,i + 1. Furthermore the addition produces2
and the subtraction produces3 carries. Due to this, the complexity of a base-p addition
and subtraction is likely to be larger than for base-2.
In Figure F.4 a possible structure of a base-p adder forΞ = 3 is given. A series of
full-adders and half-adders is used. Here too,2 extra output bits are generated.
Similar to the half-adder the half-subtractor is defined. The so called half-subtractor for
subtracting the1-bit input bi from the1-bit inputai, generates the data outputdi and the
carry outputci,out, that are defined as:

di = ai xor bi,

ci,out = aibi.



F.2. Basep = −1 + j: addition and subtraction 169

ai + bi ai − bi

ai bi base-10 base-p base-10 base-p
0 0 0 0 0 0
0 1 1 1 −1 11101
1 0 1 1 1 1
1 1 2 1100 0 0

Table F.3: Base-p bit addition and subtraction.

2 sets of base-p inputs

(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)

0123456789bits:

1 set of base-p outputs

(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

01234567891011bit:

(2)

(1)
♦♦

(2)

(1)
♦♦

(3)

(1)
♦♦

(4)

(2)
♦♦

(2)

(1)
♦♦

(4)

(2)
♦♦

(2)

(1)
♦♦

(5)

(3)
♦♦

(3)

(1)
♦♦

(6)

(4)
♦♦

(4)

(2)
♦♦

(2)

(1)
♦♦

(6)

(4)
♦

(4)

(2)
♦♦

(2)

(1)
♦♦

(7)

(5)
♦

(5)

(3)
♦♦

(3)

(1)
♦♦

(8)

(6)
♦

(6)

(4)
♦

(4)

(2)
♦

(2)

(1)
♦

(6)

(4)(4)

(2)(2)

(1)

(7)

(5)(5)

(3)(3)

(1)

Figure F.4: Example structure of a base-p adder forΞ = 3.
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The half-subtractor is represented by a black square and a minus-sign. In Figure F.6 a
possible structure of a base-p subtractor forΞ = 3 is given. A series of half-subtractors,
full-adders and half-adders is used. Here too2 extra output bits are generated. The half-
and full-adders in the two highest bit-lines can in principle be simplified, since the carry-
outputs,ci,out, are not used.
To enable cost comparison of base-2 and base-p additions and subtractions, the following
relation between costs of half-adders,HA, full-adders,FA, and half-subtractors,HS,
based on the earlier definitions, is assumed:

C(HA) = C(HS) = 1
2C(FA).

In Figure F.5 the ratio of costs,ROC, for 20 ≤ Ξ ≤ 210 is shown for both the adder and
the subtractor. The ratio is defined as the quotient of the costs for a base-p implementation
and the costs for a base-2 implementation. Clearly, the base-p adders and subtractors have
higher costs than the base-2 versions. In the example schemes the valueΞ = 3 is used,
however, typical values are in the range28 ≤ Ξ ≤ 210. Observe that for theseΞ-values
theROC for the adder is about6 and for the subtractor about11.

20 22 24 26 28 210

Ξ→

12ROC ↑

0

4

8

← subtractor

← adder

Figure F.5: Ratio of costs,ROC: base-p versus base-2.

F.3 Basep = −1 + j: shift-and-add multiplication

Like for base-2, see Appendix E, the shift-and-add procedure can be used to realize the
multiplication of complex-integer data and a complex-integer coefficient in base-p. In
base-p only a single series of bit-shifts and additions is needed for complex-integer data
and coefficients, whereas in base-2 a few series of bit-shifts and integer additions are
required for the individual real and imaginary parts.
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2 sets of base-p inputs

(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)

0123456789bits:

1 set of base-p outputs

(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)

01234567891011bit:

(2)

(1)

−
♦♦♦

(2)

(1)

−
♦♦♦

(3)

(2)

−
♦♦♦

(4)

(3)

−
♦♦♦

(5)

(4)

−
♦♦♦

(5)

(4)

−
♦♦♦

(5)

(4)

−
♦♦

(5)

(4)

−
♦♦

(5)

(4)

−
♦♦

(5)

(4)

−
♦

(2)

(1)
♦♦

(3)

(1)
♦♦

(5)

(3)
♦♦

(3)

(1)
♦♦

(6)

(4)
♦♦

(4)

(2)
♦♦

(2)

(1)
♦♦

(7)

(5)
♦♦

(5)

(3)
♦♦

(3)

(1)
♦♦

(9)

(7)
♦♦

(7)

(5)
♦♦

(5)

(3)
♦♦

(3)

(1)
♦♦

(10)

(8)
♦♦

(8)

(6)
♦♦

(6)

(4)
♦♦

(4)

(2)
♦♦

(2)

(1)
♦♦

(11)

(9)
♦

(9)

(7)
♦

(7)

(5)
♦

(5)

(3)
♦

(3)

(1)
♦

(12)

(10)(10)

(8)(8)

(6)(6)

(4)(4)

(2)(2)

(1)

(13)

(11)(11)

(9)(9)

(7)(7)

(5)(5)

(3)(3)

(1)

Figure F.6: Example structure of a base-p subtractor forΞ = 3.
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Next, base-2 and base-p are compared in case of multiplication by the factors2 andp.

� Multiplication in base-2 by the factor2 (i.e. [0010]2):
1 shift of both the real and imaginary parts over1 position, and no additions or
subtractions are required.

� Multiplication in base-2 by the factorp (i.e.−[0001]2 + j[0001]2):
no shifts are needed, and2 additions or subtractions of individual real and imagi-
nary parts are required in case Structure A is used. These2 additions or subtractions
compare to1 base-2 complex addition or subtraction.

� Multiplication in base-p by the factor2 (i.e. [1100]p):
2 shifts are needed, one over2 and one over3 positions, and1 base-p addition is
needed.

� Multiplication in base-p by the factorp (i.e. [0010]p):
1 shift over1 position, and no additions are required.

The previous results are sumarized in Table F.4 where#shift and#add are the numbers
of shifts and add or subtract operations respectively. Since the costs of a shift can be
neglected compared to the costs of an addition, the table basically shows symmetrical
entries. However, note that the base-p addition that is required for the factor2 has about
6 times higher costs than the base-2 addition that is required for the factorp.

factor base-2 base-p
#shift #add #shift #add

2 1 0 2 1
p 0 1 1 0

Table F.4: Comparison of base-2 and base-p shift-and-add multiplication.

F.4 Conclusion

In terms of speedup [73] claims a factor5 to 10. However, the hardware-cost performance
of the complex-base number operations, as found in this appendix, is disappointing. Al-
though no exhaustive search has been performed for low cost base-p adder and subtractor
structures, it is unlikely that the ratio of costs for addersand subtractors can be reduced
from values of6 and11 respectively to values below1. As a consequence the costs of the
shift-and-add method for base-p multiplications in general are significantly higher than
for base-2. Note that in base-p the costs of a subtraction are twice the cost of an addition.
Other issues like the conversion between bases will also affect the ratio of costs negatively.



Appendix G

Introduction to complex primes

Natural numbers can be factorized into primes in a unique way. This idea is applied in
Appendix E to derive alternative constructions for the integer-valued coefficients. In the
same appendix a similar approach is applied to complex-integer-valued coefficients that
can be factorized into complex primes in a unique way.
This appendix gives a brief introduction into the field of complex primes. Searching for
information about complex primes and the related factorization of complex integers, gives
either a very sloppy or a very mathematical expose, e.g., [53]. Therefore this appendix
presents some explanation and some examples mainly based on[88].
In Section G.1 more will be said about prime factorization and complex primes. Sec-
tion G.2 and Section G.3 present methods to test complex primes and to obtain complex
prime factorizations. Finally two examples are presented in Section G.4.

G.1 Primes and complex primes

A prime numberp is a natural numberp ∈ N andp ≥ 2, which is only divisible by1
or itself but not by any other natural number. According to Gauss, any non-zero natural
numberx ∈ N+ can be factorized uniquely into prime numberspi like:

x =
∏

i

pei

i with ei ∈ N.

Unique factorization of the negative integers is possible also, if the extra unit factor−1 is
introduced. Now any non-zero integerx ∈ Z\{0} can be factorized uniquely into prime
numbers like:

x = (−1)k
∏

i

pei

i with ei ∈ N andk ∈ {0, 1}.

According to Gauss the definition of primes can be extended tocomplex primes, also
called the Gaussian primes,P ∈ CZ and the unique factorization of a complex integer
into complex primes. Now4 units need to be defined, viz.:1, j,−1,−j, such that non-zero
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complex integerx ∈ CZ\{0} can be factorized uniquely into complex prime numbers
like:

x = jk
∏

i

P ei

i with ei ∈ N andk ∈ {0, 1, 2, 3}.

Also, if P ∈ CZ is a complex prime the valuesjkP , the associates, and their conjugates
jkP ∗ are complex primes too. So if a single complex prime is found,7 more complex
primes are obtained by considering the associates and the conjugates. Except forP = 1+j
where the associates and the conjugates coincide, only3 additional complex primes can
be obtained.
To distinguish between the integers and complex integers explicitly in this appendix, the
integers will be referred to as the natural integers. Similarly to distinguish here between
the primes and the complex primes explicitly, the primes will be referred to as the natural
primes.
A number which is a natural prime not necessarily is a complexprime. As an example
consider the natural primes:2 = (1 + j)(1 − j) and5 = (2 + j)(2 − j).
Natural primes can for instance be found by the computation demanding method often
referred to as the Sieve of Eratosthenes. Starting with number2, i.e., the smallest natural
prime, all multiples of2 are discarded since they are no prime trivially. The next largest
number not discarded yet, i.e.,3, is selected and now all multiples of3 are discarded since
they are no prime either. This process of discarding multiples is repeated until sufficient
primes are obtained.
Basically, the complex primes can be obtained in a similar way, however, it is possible to
use the natural primes to obtain the complex primes in an efficient way. The same is true
for the complex factorization. The factorization of a natural number into natural primes
can be used to obtain the factorization of a complex integer into complex primes. In [12]
a computer program to calculate complex primes is presented.

G.2 Test for complex primes

Given a non-zero complex integerx ∈ CZ\{0}, the question is how to check ifx is a
complex prime or not. Letx = xr + jxi, then2 cases can be distinguished, viz.x is real
or imaginary, i.e.,x ∈ Z ∪ jZ, or x has non-zero real and non-zero imaginary parts, i.e.,
x 6∈ Z ∪ jZ.

Case 1: If x ∈ Z ∪ jZ, or equivalentlyxrxi = 0, the natural number|x| should be a
natural primep with p|4 = 3.

Case 2: If x 6∈ Z ∪ jZ, or equivalentlyxrxi 6= 0, the natural numberxx∗ should be a
natural primep with p|4 = 1 or p = 2.

G.3 Factorization in complex primes

Given a non-zero complex integerx ∈ CZ\{0}, the question is how to derive the complex
factorization ofx. The factorization process consists of the following four steps.
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Let x = xr + jxi, then:

Step 1: Remove the common factorλ from xr andxi, soy = x
λ with λ = gcd(xr, xi).

Next λ is factorized in Step2, andy is factorized in Step3. The factorization of
x = λy, is the product of factorizations ofλ andy in Step4.

Step 2: The common factorλ is a natural number that can be factorized uniquely in
natural primes asλ =

∏
i pei

i . For each of the natural primespi holds eitherpi = 2,
pi|4 = 1 or pi|4 = 3. For pi = 2 the complex factorization ispi = PiP

∗
i with

P = (1 + j). Forpi|4 = 1 the unique complex factorization ispi = PiP
∗
i , and for

pi|4 = 3 a complex factorization is not possible.

Step 3: The natural numberyy∗ can also be factorized uniquely up to unity in natural
primes asyy∗ =

∏
i pei

i . Thesepi all satisfypi|4 = 1. Eachpi can be factorized as
pi = PiP

∗
i . It has to be tested whetherPi|y or P ∗i |y. Note that the value ofei does

not depend on this test. Finally the unit value can be determined by dividingy by
all found factors.

Step 4: Finally, combine the factorizations from Step2 and Step3 to obtain the factor-
ization ofx.

G.4 Examples

Two examples will now illustrate the test for complex primesand if possible the factor-
ization in complex primes.

Example G.1. Considerx = 5− j2.

Test: Sincex 6∈ Z∪ jZ, Case2 of the test has to be used. The valuexx∗ = 29 is a natural
prime with29|4 = 1.

As a consequence5− j2 is a complex prime and factorization is not possible.
End of example

Example G.2. Considerx = 36− j2.

Test: Sincex 6∈ Z ∪ jZ, Case2 of the test has to be used. The valuexx∗ = 1300 is not a
natural prime. As a consequence36− j2 is not a complex prime and hence can be
factorized.

Factorization: According to the4 steps:

Step 1: The common factorλ = gcd(36,−2) = 2 and consequentlyy = x
λ =

18− j.

Step 2: Sinceλ is a natural prime there is only one factor to consider, viz.p = 2.
The factorization ofλ now is:λ = (1 + j)(1 − j).
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Step 3: Fory = 18−j the valueyy∗ = 325 that can be factorized in natural primes
as325 = 52 ·131, with 5 = (2+j)(2− j) and13 = (3+j2)(3− j2). It is easy
to verify that:(2+ j)|y and(3+ j2)|y, such that up to a unity the factorization
is known:y = jk(2 + j)2(3 + j2)1 with k = 3.

Step 4: The complex prime factorization ofx now is:

36− j2 = −j(1 + j)(1− j)(2 + j)2(3 + j2).

End of example
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Samenvatting

Symmetrie en Efficïentie bij Complexe FIR Filters

De belangrijkste bijdrage van dit proefschrift is een reeksvan nieuwe methodes voor het
ontwerpen van symmetrische en efficiënte complexe FIR filters, zoals: i) het reduceren
over de complexe geheeltallige coëfficiënten van gegeneraliseerde-Hermitisch-symmetri-
sche filters tot Hermitisch-symmetrische filters, ii) de introductie van alternatieve struc-
turen voor complexe filters, en iii) een algemeen toepasbaarrecept voor het herstellen van
symmetrie in ’multirate’ (meer dan één bemonsteringsfrequentie) polyphase filter struc-
turen.

Hoofdstuk 1: Inleiding Op het gebied van de digitale signaalbewerking (’Digital Sig-
nal Processing’ of ’DSP’), spelen filters een belangrijke rol. Digitale filters die bijvoor-
beeld gebruikt worden in radiozenders en -ontvangers, werken met een zeer hoge be-
monsteringsfrequentie. Voor deze belangrijke categorie filters is efficiëntie cruciaal. Toe-
passing van filters met een verschillend gedrag voor positieve en negatieve frequenties
is in veel gevallen voordelig, bijvoorbeeld in ’multirate’systemen. In zulke filters zijn
sommige coëfficiënten complex. Dit proefschrift richt zich in het bijzonder op methodes
ter verbetering van de efficiëntie van symmetrische filters. Eindige-lengte impulsrespon-
sie (’Finite Impulse Response’ of ’FIR’) filters met een symmetrische impulsresponsie
hebben een lineaire-fase-frequentieresponsie.
Dit inleidende hoofdstuk geeft het verhaal achter de titel van dit proefschrift en schetst
het gebied van DSP in zijn algemeenheid en van het ontwerpen van digitale filters in het
bijzonder. Ook het belang van de complexe filters wordt toegelicht. De inspiratie voor
het schrijven van dit proefschrift is ontstaan uit de ervaringen, opgedaan bij de ontwik-
keling en het gebruik van het DESFIL softwarepakket voor filterontwerp. Van DESFIL
wordt daarom enige achtergrondinformatie gegeven. Veel van de resultaten die in dit
proefschrift worden gepresenteerd, kunnen gebruikt worden in toekomstige versies van
pakketten voor filterontwerp zoals DESFIL. Daarna wordt de achtergrond gegeven van de
drie hoofdonderzoeksvragen die in dit proefschrift aan de orde komen. Deze vragen zijn
de volgende.

Is het van belang om gegeneraliseerde-Hermitisch-symmetrischefilters te ontwerpen?
Welke structuren implementeren gegeneraliseerde-Hermitisch-symmetrische filters?
Is het mogelijk om de symmetrie te herstellen in polyphase filter structuren?
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Tot slot wordt het overzicht van dit proefschrift gepresenteerd en worden enige notaties
geı̈ntroduceerd.

Hoofdstuk 2: Symmetrische filters Vanwege hun lineaire-fase eigenschap vormen
symmetrische filters een interessante klasse van FIR-filters. Bovendien kunnen sym-
metrische FIR-filters efficiënt geı̈mplementeerd worden.Niet-symmetrische FIR filters
komen beknopt aan de orde in Hoofdstuk 4 en Hoofdstuk 5. In dithoofdstuk wordt
de klassieke definitie van Hermitische symmetrie uitgebreid naar een meer algemene
definitie die ook geschikt is voor complexe filters, gegeneraliseerde-Hermitische oftewel
(σ, µ)-symmetrie, waarbijσ devorm van symmetrieenµ hetcentrum van symmetrieis,
met |σ| = 1, σ ∈ C en µ ∈ Z/2. De relevantie van deze nieuwe definitie, die een
gelijke behandeling van filters met een even en oneven lengtemogelijk maakt, wordt uit-
voerig aangetoond. Diverse interessante eigenschappen die gebruikt worden in volgende
hoofdstukken, worden in dit hoofdstuk gepresenteerd en afgeleid. Verder wordt er spe-
ciale aandacht besteed aan symmetrische filters met eindige-precisie coëfficiënten. Voor
deze filters worden nieuwe theorema’s met betrekking tot hetreduceren van willekeurige
(σ, µ)-symmetrische FIR-filters tot(1, µ)- of (j, µ)-symmetrische filters gepresenteerd.
Op basis van deze theorema’s is een procedure ontworpen voorhet reduceren van derge-
lijke (σ, µ)-symmetrische filters. De mogelijke besparingen in rekenkundige kosten door
het toepassen van de reductieprocedure worden in detail besproken.

Hoofdstuk 3: Eerste- en tweede-orde-filters Voorbeelden van eenvoudige filters zijn
FIR-filters van een lage orde. Voor de eerste- en tweede-ordeFIR-filters wordt bekeken
wat de mogelijkheden zijn om de transmissienulpunten in hetz-vlak te plaatsen, voor het
geval dat de coëfficiëntwaarden een beperkt bereik hebben. Verder wordt aangetoond dat
de nieuw gedefinieerde(j, µ)-symmetrische complexe filters voordelen kunnen hebben
boven de(1, µ)-symmetrische complexe filters, afhankelijk van de gegevenspecificatie.

Hoofdstuk 4: Transversale en complexe structuren De transversale filterstructuur
is een van de vele mogelijke structuren voor zowel symmetrische als niet-symmetrische
FIR-filters. Belangrijke eigenschappen van deze structuurzijn: i) coëfficiënten zijn iden-
tiek aan de waarden van de impulsresponsie, ii) de coëffici¨enten zijn invariant onder de
polyphase decompositie voor ’multirate’ filters, en iii) pipelining kan op triviale wijze
toegepast worden. Natuurlijk kunnen deze transversale structuren op hun beurt deel uit-
maken van een samengestelde structuur.
Met als doel filterstructuren kostenefficiënt te maken, toont dit hoofdstuk hoe(σ, µ)-sym-
metrie verschijnt in de transversale structuur en hoe die benut kan worden. Dan volgt
een overzicht van enkele bekende structuren en van structuren die geı̈nspireerd zijn door
de nieuwe definitie voor symmetrie. Indien twee filters gemeenschappelijke ingangen of
uitgangen hebben, bestaan er interessante structuren. Diverse alternatieven om complexe
filters of coëfficiënten te splitsen in hun individuele re¨ele en imaginaire delen worden
besproken en in detail vergeleken. Ook nieuwe structuren omgeconjugeerde coëfficiënten
efficiënt te combineren worden in het vergelijk betrokken.
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Hoofdstuk 5: Polyphase structuren Een van de belangrijkste concepten bij ’multi-
rate’ filteren is de polyphase decompositie en de nauw gerelateerde polyphase filter struc-
tuur. Dit concept maakt een efficiënte realisatie van interpolerende en decimerende filters
mogelijk. Echter toepassing van deze decompositie op lineaire-fase-filters zal in veel
gevallen de symmetrie tenietdoen die benut had kunnen worden om de rekenkundige
kosten te verminderen zoals is besproken in het vorige hoofdstuk.
Centraal in dit hoofdstuk is het herstel van symmetrie in polyphase structuren. Volgens
een nieuw theorema kan elk reëel of complex ’multirate’(σ, µ)-symmetrisch filter met
geheeltallige of rationale interpolatie- of decimatie-factoren geconstrueerd worden met
gebruikmaking van symmetrische filters in een polyphase structuur. Een mogelijke pro-
cedure om de symmetrie te herstellen, wordt gegeven en verder toegepast in diverse voor-
beelden om zijn waarde te tonen.

Hoofdstuk 6: Conclusies In dit laatste hoofdstuk worden de drie hoofdonderzoeksvra-
gen beantwoord en wordt een opsomming gegeven van mogelijk interessante onderwer-
pen voor toekomstig onderzoek.

Appendices Een scala van appendices ondersteunt de discussies en analyses in de kern
van dit proefschrift. Eerst is er een verzameling van veelgebruikte equivalenties en hun
bewijs betreffende ’multirate’ en complexe systemen, gevolgd door beknopte inleiding-
en in: pipelining, analoge polyphase filters en het algoritme van Euclides. Verder wor-
den interessante alternatieve constructies voor de realisatie van vermenigvuldigingen met
geheeltallige en complexe-geheeltallige coëfficiëntenbesproken samen met diverse voor-
beelden. Tot slot worden getallen met een complexe basis en de complexe priemgetallen
beknopt geı̈ntroduceerd.
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