
Real-time DSP-enabled digital subcarrier cross-connect (DSXC) for
optical communication networks

By

Tong Xu

Submitted to the graduate degree program in the Electrical Engineering and Computer Science
and the Graduate Faculty of the University of Kansas in partial fulfillment of the

requirements for the degree of Doctor of Philosophy.

Chair: Dr. Rongqing Hui

Dr. Christopher Allen

Dr. Erik Perrins

Dr. Esam Eldin Aly

Dr. Jie Han

Date Defended: August 20th, 2019

ii

The dissertation committee for Tong Xu certifies that this is the approved
version of the following dissertation:

Real-time DSP-enabled digital subcarrier cross-connect (DSXC) for

optical communication networks

Chair: Dr. Rongqing Hui

Date Approved: August 23rd, 2019

iii

Abstract

Elastic optical networking (EON) is intended to offer flexible channel wavelength granularity to

meet the requirement of high spectral efficiency (SE) in today’s optical networks. However,

optical cross-connects (OXC) and switches based on optical wavelength division multiplexing

(WDM) are not flexible enough due to the coarse bandwidth granularity imposed by optical

filtering. Thus, OXC may not meet the requirements of many applications which require finer

bandwidth granularities than that carried by an entire wavelength channel.

In order to achieve highly flexible and fine enough bandwidth granularities, electrical digital

subcarrier cross-connect (DSXC) can be utilized in EON. As presented in this dissertation, my

research work focuses on the investigation and implementation of real-time digital signal

processing (DSP) enabled DSXC which can dynamically assign both bandwidth and power to

each individual sub-wavelength channel, known as subcarrier. This DSXC is based on digital

subcarrier multiplexing (DSCM), which is a frequency division multiplexing (FDM) technique

that multiplexes a large number of digitally created subcarriers on each optical wavelength.

Compared with OXC based on optical WDM, DSXC based on DSCM has much finer bandwidth

granularities and flexibilities for dynamic bandwidth allocation.

Based on a field programmable gate array (FPGA) hardware platform, we have designed and

implemented a real-time DSP-enabled DSXC which uses Nyquist FDM as the multiplexing

scheme. For the first time, we demonstrated real-time DSP enabled real-time DSXC which uses

resampling filters for channel selection and frequency translation. This circuit-based DSXC

supports flexible and fine data-rate subcarrier channel granularities, offering a low latency data

plane, transparency to modulation formats, and the capability of compensating transmission

impairments in the digital domain. The experimentally demonstrated 𝟖𝟖 × 𝟖𝟖 DSXC makes use of

iv

a Virtex-7 FPGA platform, which supports any-to-any switching of eight subcarrier channels

with mixed modulation formats and data rates. Digital resampling filters, which enable frequency

selections and translations of multiple subcarrier channels, have much lower DSP complexity

and reduced FPGA resources requirements (DSP slices used in FPGA) in comparison to the

traditional technique based on I/Q mixing and filtering.

We have also investigated the feasibility of using distributed arithmetic (DA) for real-time

DSXC to completely eliminate the usage of DSP slices in FPGA implementation. For the first

time, we experimentally demonstrated the implementation of real-time frequency translation and

channel selection based on the DA architecture in the same FPGA platform. Compared with

resampling filters that leverage multipliers, the DA-based approach eliminates the need of DSP

slices in the FPGA implementation and significantly reduces the hardware cost. In addition, with

a processing latency that equals to a few clock cycles, a DA-based resampling filter is

significantly faster when compared to a conventional direct-structured FIR filter whose overall

latency is proportional to the filter order. The DA-based DSXC is, therefore, able to achieve not

only the improved spectral efficiency, programmability of multiple orthogonal subcarrier

channels, and low hardware resources requirements, but also much reduced cross-connect

switching latency when implemented in a real-time DSP hardware platform. This reduced

latency can be critically important for time-sensitive applications such as 5G mobile fronthaul,

cloud radio access network (C-RAN), cloud-based robot control, tele-surgery and network

gaming.

v

Acknowledgments

First of all, I would like to sincerely thank my supervisor, Dr. Rongqing Hui, for supporting me

in conducting research on this challenging and interesting topic. Without his support and patient

supervision, I wouldn’t have been able to overcome the difficulties and make progress in my

research.

I would also like to thank Dr. Christopher Allen, Dr. Erik Perrins, Dr. Esam Eldin Aly and Dr.

Jie Han, who served as my committee members.

I also want to thank Mr. Robert Young, Mr. Daniel DePardo and Ms. Paulette Place for helping

me in setting up the hardware platform.

Thanks to my colleagues and friends Govind Vedala, Mustafa Al-Qadi and Kishanram Kaje for

the happy times of discussion and collaboration in our research lab.

Finally, I would like to thank my parents and my sister. I wouldn’t have been able to complete

my PhD without their support.

vi

Table of Contents

List of Figures .. viii

List of Tables .. x

Chapter 1: Introduction ... 1

1.1 Motivation and background of research ... 1

1.2 Digital subcarrier cross-connect (DSXC) ... 6

1.3 Digital subcarrier multiplexing techniques ... 8

1.4 Overview of proposed work ... 11

1.4.1 Real-time DSP hardware platform ... 11

1.4.2 Channel selection and frequency translation in DSXC .. 11

1.4.3 Implementation of DSXC based on hardware platform .. 12

Chapter 2: Real-time DSP hardware platform .. 13

2.1 Hardware Platform .. 13

2.2 Data Interfaces .. 16

2.2.1 JESD204B interface ... 17

2.2.2 Design in Xilinx Vivado .. 20

2.3 Considerations in FPGA Implementation ... 21

Chapter 3: Real-time DSP-enabled DSXC based on resampling filters 24

3.1 Digital subcarrier cross-connect based on FPGA ... 24

3.2 Frequency translation techniques .. 26

3.2.1 I/Q mixing and filtering ... 26

3.2.1 Resampling Filters ... 28

3.3 Resource utilization of frequency translation ... 36

vii

3.4 Experiments .. 40

3.5 Conclusion .. 47

Chapter 4: DA based real-time DSP-enabled DSXC .. 49

4.1 Distributed Arithmetic .. 49

4.1.1 Principle of DA .. 51

4.1.2 Polyphase decomposition of DA resampling filter .. 54

4.2 Experiment .. 58

4.3 Resource requirement and discussion ... 65

4.3.1 Resource Utilization ... 65

4.3.2 Latency ... 70

4.3.3 Power Consumption ... 72

4.4 Conclusion .. 72

Chapter 5: Conclusion and Future work ... 74

5.1 Conclusion .. 74

5.2 Future work ... 74

References ... 76

Acronyms .. 85

Appendix I .. 88

viii

List of Figures

Figure 1.1 Digital subcarrier cross-connect………………………………………………….…...6

Figure 1.2 (a) Nyquist pulse in time domain (b) spectrum of a single Nyquist pulse (c) spectrum

of Nyquist FDM……………………………………………………………………………..…… 9

Figure 1.3 Principle of OFDM (a) single pulse shape (b) spectrum of a single OFDM symbol (c)

spectrum of OFDM…………………………………………………………………………..…..10

Figure 2.1 (a) block diagram and (b) photo of DSCM testbed…………………………………14

Figure 2.2 JESD204B standard……………………………………………………………….….17

Figure 2.3 Block diagram of real-time Transmitter based on FPGA and DAC…………………18

Figure 2.4 Block diagram of High-Speed Receiver based on FPGA and ADC…………………20

Figure 3.1 Block diagram of digital subcarrier cross-connect (DSXC) based on FPGA……..…24

Figure 3.2 Frequency translation through I/Q mixing and filtering…………………………...…27

Figure 3.3 (a) DDC through BPF and down-sampling, (b) DDC through interpolation BPF, (c)

DUC through up-sampling and BPF, (d) DUC through decimation BPF………………………29

Figure 3.4. (a) DFT of 𝑦𝑦[𝑛𝑛], and (b) DFT of 𝑧𝑧[𝑛𝑛] for down sampling………………………..…29

Figure 3.5. (a) DFT of [𝑛𝑛] , and (b) DFT of 𝑦𝑦[𝑛𝑛] for up-sampling ……………………….…….30

Figure 3.6 (a) spectrum of a[n], (b) DSP block of DSXC, and (c) spectrum of b[n] ……..….…37

Figure 3.7 FPGA resource cost of a 4 × 4 DSXC…………………………………………….…37

Figure 3.8 Experimental setup………………………………………………………………...…40

Figure 3.9 Spectra of output signal: (a) at optical receiver output which is DSXC input (b) after

DSP platform but without switching (c) after DSP platform with switching assignment of

DSXC1 (d) after DSP platform with switching assignment of DSXC2………………………....43

Figure 3.10. Signal EVM of recovered subcarrier channels……………………………………..44

ix

Figure 3.11 Effects vs FIR filter order ….………………………………………………….……46

Figure 4.1 A super sample rate FIR filter with a degree of parallelism of 4………………….…56

Figure 4.2 Block diagram of an interpolation FIR filter…………………………………………57

Figure 4.3 Block diagram of a decimation FIR filter…………………………………….………57

Figure 4.4 Experimental setup………………………………………………………………...…58

Figure 4.5 Spectrum of (a) output of optical receiver (b) output of DAC without cross-connect

switching (c) output of DA-DSXC1 (d) output of DA-DSXC2…………………………………60

Figure 4.6 Signal EVM of recovered subcarriers…………………………………………….….61

Figure 4.7 (a) EVM vs Passband Ripple, and (b) EVM vs Stopband Attenuation…………...…63

x

List of Tables

Table 2.1 Available FPGA resources on Virtex 5 and Virtex 7…………………………………15

Table 2.2 Specifications of ADC12J4000 and DAC38RF82……………………………………16

Table 2.3 Specifications of Optical Tx and Rx…………………………………………………..16

Table 3.1 AWG generated input signal to 8 × 8 DSXC…………………………………………42

Table 3.2 FPGA resource cost of DSXC………………………………………………………...45

Table 4.1 FPGA resource utilization of DA DSXC IP and MULT DSXC IP…………………...68

Table 4.2 FPGA resource utilization of DA DSXC and MULT DSXC…………………………69

1

Chapter 1: Introduction

1.1 Motivation and background of research

Due to the ever-increasing data traffic in today’s optical networks and the demand for high data

rates, improving spectral efficiency (SE) in optical communication systems and networks is of

the essence. Compared with a traditional wavelength division multiplexing (WDM) system of

fixed 50GHz wavelength grid, elastic optical networking (EON) offers more flexibility, with

channel wavelength granularity down to 12.5GHz or lower, which may yield tangible SE

improvement in optical networks [1, 2]. Both bandwidth and channel allocation are flexible in

EON and can be chosen to best accommodate the modulation formats of choice, transmission

distance, system capacity, and number of required channels [3-5]. However, due to the limited

spectral selectivity of extant optical filters, further reduction of channel wavelength granularity

can prove to be challenging in the optical domain. Yet, many applications could benefit from

finer channel bandwidth granularities below 10GHz. Optical domain EON alone may not suffice

to achieve the fine bandwidth allocation which may be required in some access and metro area

network deployments. For this and other reasons conventional solutions combine the use of

optical circuits with electronic packet switching technologies (Ethernet, IP, PON), i.e., multiple

connections are multiplexed together by interleaving their data packets in time, thus filling up the

relatively large bandwidth of the optical circuit.

Subcarrier multiplexing (SCM) can provide much finer granularity by multiplexing a large

number of subcarrier channels in the electrical domain [6, 7]. Subcarrier circuits can be flexibly

multiplexed and individually switched electronically, offering dedicated circuits to the

application down to MHz of bandwidth. Earlier SCM solutions are analog. While the radio

frequency (RF) analog filter solutions offer much better spectral selectivity compared to optical

2

filters, the transition between passband and stopband in the transfer function of an RF filter still

may not be sharp enough to separate closely spaced subcarrier channels. As a result, analog

based SCM usually requires sufficiently large spectral guard-bands between adjacent subcarriers,

resulting in a suboptimal solution. In addition, the bandwidth and the central frequency of high

order RF filters are usually not dynamically adjustable after they are built, and thus analog SCM

systems tend to be static and not suitable for dynamic switching.

Thanks to the rapid development of CMOS-based digital electronics, high speed analog to digital

converters (ADC), digital to analog converters (DAC) and digital signal processing (DSP)

hardware is widely available nowadays [8]. Processing high data rate signals in the digital

domain has become practical and offers many advantages compared to traditional analog

techniques [9-12]. For example, high order digital filters can be designed to achieve nearly ideal

transfer functions, along with dynamically reconfigurable of roll-off rate, bandwidth, and central

frequency. Digitally generated and processed subcarrier channels are referred to as digital

subcarrier multiplexing (DSCM). DSCM offers a high degree of flexibility because the applied

DSP algorithms can be reconfigurable, and yields high spectral efficiency because minimum

spectral guard-band is required between adjacent subcarriers. Real-time generation of DSCM

signals based on either high order Nyquist filters, or orthogonal frequency division multiplexing

(OFDM) has been demonstrated using FPGA platform [13, 14]. DSP-enabled real-time

reconfigurable optical add/drop multiplexing (ROADM) technologies have also been

demonstrated using FPGA platforms [15, 16]. In addition to being used as a modulation format

for optical signal transmission [17], DSCM can also be used to carry orthogonal channel which

can be switched individually by digital subcarrier cross-connect (DSXC) devices as introduced in

[18, 20]. A DSXC-based network is a circuit switching solution in which subcarrier channels are

3

individually routed end-to-end to provide dedicated circuits with custom data rates. Compared

with optical domain cross-connect (OXC) based on wavelength channels, DSXC in the

electronic domain can provide a more flexible and finer data rate granularity, which can help

maximize the network spectral efficiency. In comparison with packet based routers, DSXC

provides dedicated bandwidth to users without the requirement of packet buffering and forward

engine, resulting in a deterministic switching latency [21, 22].

An application example of DSCM is the 5G wireless network fronthaul, which is the network

segment between remote radio head (RRH) and central office (CO) [23]. In some solutions

common public radio interface (CPRI) is the protocol used in the mobile fronthaul with digital

radio over fiber (DRoF) transmitted using on-off keying (OOK). This approach is known to

require a relatively high data rate in the fronthaul compared to the radio data rate, due to the

sampling of the radio wave and the required high-resolution sampling of ADC and DAC. In

DRoF, the received analog wireless waveforms are digitized and encoded into digital bits for

transmission. In this analog to digital conversion process, the data rate and thus the bandwidth

required for transmission over the fronthaul is scaled roughly by 𝑏𝑏 times higher than the original

analog signal bandwidth where 𝑏𝑏 is the bit resolution of the ADC. For example, for 8 channels of

20MHz LTE signals using 40MS/s ADC sampling rate at 15-bit resolution for each I- and Q-

component of the complex RF waveform, the digital data rate will be approximately 8 × 40 ×

15 × 2 = 12,000 Mb/s (Reference [24] has more detailed data rate estimation taking into

account control words and line coding). Further considering multiple antenna elements for

MIMO beam forming, the required data rate can easily reach up to 100Gb/s.

In order to improve the spectral efficiency of the fronthaul, analog radio over fiber (ARoF) has

been proposed and actively investigated [25, 26]. Compared with DRoF, ARoF can transmit the

4

same radio wave using a narrower bandwidth in the fronthaul. Considering that 5G fronthaul is

expected to support numerous RRHs, DSCM would be an efficient technology for aggregating

and de-aggregating multiple radio waves while offering spectrum flexibility and efficiency at the

same time. The DSCM solution would also offer the ability to compensate for transmission

impairments in the digital domain [27, 28]. Recently, an ARoF transmission of a multicarrier

signal with a carrier frequency of 60GHz, and an aggregation of hundreds of subcarriers to

occupy 152MHz of total bandwidth, has been demonstrated experimentally over 25km of single

mode fiber (SMF) [29]. In addition, the deployment of DSXC nodes in the fronthaul makes

DSCM channel aggregation, de-aggregation and routing dynamically programmable, which

would be desirable in a fronthaul connecting multiple RRHs and COs.

For real-time implementation of the DSXC key functions efficient utilization of DSP resources is

a major concern. While application-specific integrated circuit (ASIC) is commonly used in

commercial communication equipment, FPGA represents a more flexible platform for

prototyping and testing the DSP algorithms that are required in DSXC.

We have demonstrated a real-time DSP-enabled DSXC based on resampling digital filters to

achieve frequency translation and channel selection of subcarriers [30], as described in Chapter

3. We demonstrated the first implementation of a real-time DSXC node, realizing one of its basic

functionalities (switching individual subcarriers in frequency) using digital resampling filters,

and experimentally assessing the DSXC node (deterministic) latency to be less than 1µs. This

latency is mainly determined by the order of Finite Impulse Response (FIR) filters and the clock

period of the digital circuit. Compared to commodity packet switches, DSXC may therefore

provide a simple and cost-effective switching solution that achieves zero-jitter even in the

presence of high link utilization.

5

Although these resampling filters reduce DSP resource utilization compared to the traditional

frequency translation scheme based on I/Q mixing and filtering, they still heavily rely on

multipliers which are usually implemented as expensive DSP slices in FPGA. To overcome this

drawback, we demonstrate a more efficient technique to realize real-time frequency translation

and channel selection of DSCM channels based on distributed arithmetic (DA) [31], as described

in Chapter 4. No digital multipliers are required when using DA, thus completely eliminating the

need for DSP slices in the FPGA. In addition, the DA-based DSXC reduces DSP-induced latency

down to only a few clock periods, which is independent of the applied digital filter order. DA has

been used to implement digital filters for Nyquist pulse generation in fiber-optic transmitter [9,

14], but has not been used for digital subcarrier frequency translation and channel selection. By

applying DA algorithms to implement resampling filters, we show that DSXC key functionalities

can be implemented in an FPGA platform without requiring any DSP slice. To our best

knowledge, this is the first realization of a DA-based DSXC, which is capable of performing

bandwidth flexible switching and routing with improved hardware efficiency, low latency, and

transparency to signal modulation formats.

6

1.2 Digital subcarrier cross-connect (DSXC)

Figure 1.1 Digital subcarrier cross-connect

Figure 1.1 shows the block diagram of a generic DSXC node [30]. Input to the DSXC node are 𝑛𝑛

optical signals, each consisting of 𝑚𝑚 subcarrier channels. Each optical signal is received by a

receiver, which performs optical-to-electrical conversion (O/E) through an optical receiver, and

analog-to-digital conversion through an ADC. The digitized signal from each receiver is sent to

the DSP module for processing. In the DSP module, each multicarrier signal is de-multiplexed

into multiple subcarriers and sent into a cross-bar switch to be routed to any output port for

multiplexing. The multiplexer aggregates multiple subcarriers and sent them into the targeted

transmitter. The transmitter performs digital to analog conversion through a DAC, and electrical

to optical (O/E) conversion obtained by an electro-optic modulator. In the shown DSXC node

architecture, each digital subcarrier channel cij, (i = 1, 2....n, and j = 1, 2 ...m) in any input

wavelength can be routed to any output wavelength 𝜆𝜆𝑖𝑖 and subcarrier frequency slot through a

cross-bar circuit-switch.

7

The optical system can be either coherent or direct-detection. The multiplexing method can be

through either high order Nyquist filters or OFDM. Digital compensation techniques, such as

chromatic dispersion compensation and electronic circuit frequency roll-off compensation, can

be performed in the digital domain. In the design of this DSXC, we use high order Nyquist filters

for DSCM, which provide the flexibility of using unequal spectral bandwidth and distinct

modulation formats to be assigned to each subcarrier channel.

In order to be able to route any subcarrier channel of any input wavelength to any subcarrier

channel of any output wavelength, frequency translation and channel selection of individual

subcarrier are two critical functions in a DSXC. Frequency translation includes frequency down

conversion and up conversion of each subcarrier channel. The frequency down conversion can be

achieved through decimation filter, in which the decimation factor is the ratio of the input rate to

the output rate. The frequency up conversion can be achieved through an interpolation filter, in

which the interpolation factor is the ratio of the output rate to the input rate. Since resampling

filter includes decimation filter and interpolation filter, both decimation factor and interpolation

factor are named as resampling factor. According to Nyquist criterion, the available analog

bandwidth of each wavelength channel is limited to half of the ADC’s sampling rate. This total

bandwidth can be subdivided among many frequency slots (FS). The bandwidth of each FS is

given by the total available bandwidth divided by the resampling factor when digital resampling

filters are used. In this process, any subcarrier in a FS is first down-converted to the lowest

frequency FS through a decimation filter, and then up-converted to any targeted FS through an

interpolation filter [23]. During the down-conversion process, a decimation filter, whose

frequency response has a passband targeted at a particular FS, selects the subcarrier in this FS

and down converts it to the first FS. During the up-conversion process, an interpolation filter,

8

whose frequency response has a passband targeted at a particular FS, selects the up-sampled

copy of subcarrier in this FS and rejects all copies in other FSs. Theoretically, decimation is

equivalent to a cascaded process of filtering and down sampling, whereas interpolation is

equivalent to a cascaded process of up sampling and filtering. Further information about these

two procedures can be found in [30]. Both decimation filter and interpolation filter can be

categorized as resampling filters, which are essentially finite impulse response (FIR) filters with

the capability of changing sampling rate of its input signal. FIR filter characteristics such as

passband ripple, width of transition band, and stopband attenuation are determined by the filter

order and coefficients. For a given sampling rate, a low passband ripple, sharp transition band,

and large stopband attenuation are desirable features, which usually require a high filter order

and take significant DSP resources in hardware. In addition, when supporting high capacity

DSXC with fine spectral granularity of subcarrier channels the number of digital filters can be

quite high. In summary, an efficient digital filter design is critically important in order to

minimize the DSP resource requirement.

1.3 Digital subcarrier multiplexing techniques

DSXC is circuit cross-connect switch that is based on DSCM. Nyquist-FDM and OFDM are the

are two major techniques for implementing DSCM.

9

Figure 1.2 (a) Nyquist pulse in time domain (b) spectrum of a single Nyquist pulse (c) spectrum of Nyquist FDM

The basic principle of Nyquist pulse modulation is shown in Figure 1.2. For simplicity, we use

OOK modulation format. Modulation formats with high spectral efficiency can also be employed

[32]. As it shown in Figure 1.2 (a), a Nyquist pulse in time domain is a sinc-shaped waveform

which spreads into adjacent time slots. By taking the Fourier transform of the Nyquist pulse in

Figure 1.2 (a), we can get the spectrum of this pulse. As shown in Figure 1.2 (b), the spectrum of

Nyquist pulse has a rectangular shape. By shifting the spectrum of Nyquist pulse in Figure 1.2

(b) by 𝑘𝑘∆𝑓𝑓 (𝑘𝑘 = 0, 1, … ,𝑁𝑁 − 1), we can get 𝑁𝑁 sub-spectra of Nyquist pulse signal. The

superposition of the 𝑁𝑁 sub-spectra results in the total Nyquist-FDM spectrum as it illustrated in

Figure 1.2 (c). Ideally, there is no guard-band between every two adjacent channels if perfect

filtering is performed. However, ideal filtering cannot be realized in practical implementation

since the order of digital filter is limited, so a guard-band between every two adjacent channels is

required to prevent inter-channel crosstalk. In Nyquist-FDM based DSCM, phase

synchronization between different channels is not needed, since every channel is independent

from other channels.

10

The basic principle of OFDM is shown in Figure 1.3, suppose OOK is utilized as the modulation

format. A single carrier OFDM signal in time domain is shown in Figure 1.3 (a), it has a

rectangular pulse shape and a symbol period of TS. By taking the Fourier transform of the signal

in Figure 1.3 (a), we can get the spectrum of a single carrier OFDM signal whose bandwidth is

∆𝑓𝑓 . The spectrum of this single carrier OFDM signal spreads to adjacent frequency slots.

Shifting the spectrum of OFDM symbol in Figure 1.3 (b) by 𝑘𝑘∆𝑓𝑓 (k = 0, 1,…, N-1), we can get

𝑁𝑁 sub-spectra of OFDM signal. The superposition of the N sub-spectra results in the total OFDM

spectrum as illustrated in Figure 1.3 (c).

Figure 1.3 Principle of OFDM (a) single pulse shape (b) spectrum of a single OFDM symbol (c) spectrum of OFDM

As it shown in Figure 1.3, in OFDM based DSCM, the spectral of each channel spreads to

adjacent channels and there is no guard-band between adjacent channels.

The research of real-time DSCM has been actively conducted. The real-time generation and

reception of N-FDM have been reported and experimentally demonstrated [9, 14, 33]. Recent

years, OFDM has also received a lot of attention in the field of optical communication [34]. The

real-time generation of OFDM [9, 14, 35], real-time reception of OFDM [36-38] and the

11

implementation of real-time OFDM transceivers [39, 40] have been demonstrated. Optical

networks based on real-time OFDM with flexible power loading and bandwidth allocation have

also been demonstrated [41-43].

1.4 Overview of proposed work

In this dissertation, we aim to investigate and implement real-time DSP-enabled DSXC for

optical communication networks. In Chapter 2, we introduced the principle of DSXC and a

hardware platform to implement real-time DSP for this DSXC. In Chapter 2 and Chapter 3, we

investigate the cost and performance of different techniques, such as resampling filters and DA

architecture, to efficiently implement this DSXC on the hardware platform. The implemented

real-time DSP-enabled DSXC is demonstrated experimentally.

1.4.1 Real-time DSP hardware platform

We built a hardware platform to implement real-time DSP-enabled DSXC. This platform is

based on Virtex7 FPGA, which allows the test of various real-time DSP algorithms for cross-

connect switching in optical communication systems and networks. It consists of two ADCs

boards, a DAC board, a Virtex 7 FPGA board and a data processing computer. In order to

achieve very high data transfers between different parts of this platform, we developed the high-

speed interface, such as JESD204B interface between FPGA and converters.

1.4.2 Channel selection and frequency translation in DSXC

In this work, we focus on the study of DSXC based on Nyquist FDM. The essential operation of

a DSXC is the switching and routing of subcarrier channels, which is achieved through channel

selection and frequency translation. There are multiple techniques to achieve channel selection

and frequency translation. We discussed and compared the performance and resource cost of two

techniques: (1) mixing and filtering, (2) resampling filters. In the design of real-time DSP

12

algorithms, considerations must be given to the performance and resource cost because the DSP

resource of FPGA is limited.

1.4.3 Implementation of DSXC based on hardware platform

After the development of real-time DSP algorithms and the hardware platform, we implemented

the real-time DSP algorithm on this hardware platform. The implemented DSXC can be either

based on resampling filters that consumes multipliers or resampling filters that based on DA

architecture. In Chapter 3, we discuss and demonstrate the DSXC based on resampling filters

that consume multipliers and compared it with traditional technique that is based on I/Q mixing

and filtering. In Chapter 4, we describe the principle of DA architecture and introduce a DA-

based DSXC, and we compare it with the DSXC based on resampling filters that utilize

multipliers. We built the project for FPGA and generated the bitstream to be downloaded onto

FPGA board, which results in a real-time DSP-enabled DSXC. We incorporated this cross-

connect into optical fiber transmission system and analyzed its performance in experiment.

13

Chapter 2: Real-time DSP hardware platform

In this chapter, we introduce the architecture of a real-time DSP hardware platform for

implementing DSXC. This platform consists of high-speed ADCs, high-speed DACs, FPGA, and

optical transceivers. The development of data interfaces and considerations for FPGA

implementation are also discussed in this chapter.

2.1 Hardware Platform

In order to meet the requirements of processing time in a practical application, a real-time DSP is

needed. A general-purpose computer lacks the needed resources and is not suitable for real-time

DSP. In contrast, an FPGA has the advantage of fast, parallel processing and is programmable,

which makes it a good choice for building a platform for the prototype research of a real-time

DSP for optical communication.

Our purpose is to establish an optical system testbed capable of generating, detecting, and

processing advanced multiplexing techniques such as N-FDM and OFDM, which allows us to

investigate various modulation formats and DSP algorithms in real-time optical systems and

networks. In order to demonstrate algorithms and capabilities of DSCM, we have developed a

flexible FPGA platform that consists of three major parts: an FPGA board (HTG700), two ADC

boards (ADC12J4000EVM), and a DAC board (DAC38RF82EVM). The interface between the

converters and the FPGA is a JESD204B, and the interface between the FPGA and the computer

is a peripheral component interconnect express (PCIe).

14

Figure 2.1 (a) block diagram and (b) photo of DSCM testbed

As shown in Figure 2.1 (a), the testbed consists of two ADC evaluation boards, a DAC

evaluation board, an FPGA board, and a connection with the data collection computer through

the PCIe. Two ADCs are used to convert the received electrical signal from the optical receivers

into the digital domain and send it to the FPGA board through the FPGA mezzanine card (FMC)

connectors. The FPGA has three major tasks: digital down-conversion (DDC)/digital up-

conversion (DUC), digital filtering, and cross-connect switching of digital subcarrier channels.

Digital compensation of transmission impairments and waveform distortion can also be

15

implemented with DSP algorithms in the FPGA platform. The DAC is used to convert the

processed digital signals in the FPGA back to analog waveforms. Figure 2.1 (b) shows the cross-

connect platform. This platform uses a Texas Instruments (TI) DAC evaluation board

(DAC38RF82EVM), which supports two DAC output channels each with a 2.5GS/s un-

interpolated input sampling rate with 16-bit resolution, and two ADC evaluation boards (TI:

ADC12J400EVM), each with a 4GS/s sampling rate with 12-bit resolution. The FPGA

evaluation board is a HTG700, which is mounted with a Xilinx Virtex7-XC7VX690T FPGA

chip and equipped with three FMC connectors. The FPGA board also supports a PCIe-X8-Gen3

with eight lanes operating in parallel, and the maximum data rate is approximately 63 Gb/s.`

Table 2.1 Available FPGA resources on Virtex 5 and Virtex 7 [44, 45]

Part Number Slices
Logic

Cells

CLB Flip-

Flops

BRAM

(Kbits)

DSP

Slices

XC5VFX200T 30,720 196,608 122,880 16,416 384

XC7VX690T 108,300 693,120 866,400 52,920 3,600

Table 2.1 shows the available FPGA resources on a Virtex 5 XC5VFX200T and a Virtex 7

XC7VX690T. A Virtex 7 has many more resources than a Virtex 5. The DSP slices on a Virtex 7

are almost 10 times those of a Virtex 5. With more FPGA resources, a DSP platform with higher

performance can be developed and more complex DSP algorithms can be investigated.

16

Table 2.2 Specifications of ADC12J4000 and DAC38RF82

Part Number Bit Resolution
Maximum Sampling

Rate
Number of Channels Interface

ADC12J400 12 4 GSPS 1 JESD204B

DAC38RF82 16 3.33 GSPS 2 JESD204B

Table 2.2 shows the specifications of the ADC and DAC used in the design of this DSXC. The

ADC operates in single channel mode with 12-bit resolution, and the DAC operates in dual-

channel mode with 16-bit resolution. Both of them have a JESD204B interface. Considering the

available resources and timing issues in the FPGA design, we used 1.6 GHz as the sampling rate

of both the ADC and DAC.

Table 2.3 Specifications of Optical Tx and Rx

Part Number Bandwidth Wavelength Type Modulation

OZ510 30 MHz ~ 3GHz 1330nm Linear
Intensity

modulation

Table 2.3 shows the specifications of the optical Tx and Rx used in this testbed. Both are linear,

have intensity modulation, and have a RF bandwidth from 30 MHz to 3 GHz.

2.2 Data Interfaces

There are a few different data interfaces in our design. Low speed data interfaces include a JTAG

(named after the Joint Test Action Group) interface and a universal asynchronous receiver-

transmitter (UART) interface. The JTAG is the interface between the FPGA and the PC, through

which the bitstream can be downloaded to the FPGA. The UART is also a low speed interface

between the FPGA and the PC, which can be used to transfer low rate data between the FPGA

board and the computer, such as during debugging and monitoring the status of modules in the

17

FPGA. The high-speed interfaces include the JESD204B and the PCI Express. The JESD204B is

a high-speed serial interface between the data converters and the computer, and the PCI Express

is a high-speed serial interface between the FPGA board and the computer. The JESD204B and

PCI Express are complicated and are discussed in the following sections.

2.2.1 JESD204B interface

The high throughput rates of these gigabit ADCs and DACs push the limits and timing

constraints of the current standard high-speed interface, a serial low-voltage differential signaling

(LVDS) interface. In order to address this problem, the Joint Electron Device Engineering

Council (JEDEC) committee created a robust wide data converter interface known as the

JESD204 interface [46][48]. The latest version of the JESD204 interface is the JESD204B.

[Xilinx WP 446]

Figure 2.2 JESD204B standard

As shown in Figure 2.2, the JESD204B provides deterministic latency with a data rate in each

serial lane up to 12.5 Gb/s[46, 47]. Since the data rate of each serial lane is much higher than in

the LVDS, the required pin count in the JESD204B can be greatly reduced, which makes the

design of a printed circuit board much simpler and more compact. With improvement comes

complexity; the JESD204B interface is much more complex than the LVDS interface, which

18

makes designing with the JESD204B more challenging. The JESD204B has an OSI-type

protocol stack, which is very complicated. In order to reduce the complexity of design, Xilinx

has provided a configurable FPGA object for implementing the JESD interface, called the

JESD204B IP Core. In this design, a JESD204B subclass 1 is used.

A real-time high-speed transmitter is based on the FPGA board and DAC board. This design is

able to generate arbitrary waveforms at the output of the DAC.

Figure 2.3 Block diagram of a real-time transmitter based on FPGA and DAC

Since the data is transferred from the FPGA to the DAC through the JESD interface, the FPGA

board serves as a JESD transmitter, and the DAC board serves as a JESD receiver accordingly.

Digital signals are transferred from the FPGA board to the DAC board through eight JESD serial

lanes, and the maximum data rate of each JESD lane is 12.5 Gb/s. As shown in Figure 2.3, the

block design inside the FPGA mainly consists of three blocks: the data block, the JESD block,

and the Microblaze block (MB block).

19

In the MB block, the Microblaze is a soft-core processor implemented on the FPGA, which can

be programmed by C language. With the Microblaze, IP cores can be easily programmed and

configured through the advanced extensible interface (AXI). The block random access memory

(BRAM) provides local memory for the Microblaze processor. The AXI interconnect serves as

the bridge between the Microblaze and other AXI IPs. In the data block, the waveform generator

is a user-packaged IP that generates waveforms by using a look-up table (LUT). The data mapper

maps the generated waveform into the AXI data stream that fits the data format of the JESD

block. In the JESD block, the JESD204B TX block transmits data to the JESD204 PHY once it

receives the request from the DAC through the FMC connector. In the JESD block, the JESD TX

IP is configured and monitored through an AXI4-Lite management interface. The JESD PHY IP

implements the Xilinx GTX transceiver logic and control interface. After receiving the AXI

stream data from the data block, the JESD TX IP sends the data to the JESD PHY IP. The source

clock for the Microblaze and AXI interfaces is provided by an oscillator (OSC) on the HTG700.

The JESD clock, which includes the reference clock (REFCLK) and core clock (CORE CLK) for

JESD, are generated by the clock chip (LMK04828) on the DAC board.

A real-time high-speed receiver is based on the FPGA board and ADC board. This allows the

ADC to sample and digitize analog signals and send digital signals to the FPGA for real-time

processing. The receiver project is intended to build the interface and synchronize between the

ADC board and the FPGA board. This is an essential part for a high-speed digital receiver, which

enables the DSXC to convert analog signals received from the photodetector to the digital

domain and transfer them to the FPGA board for real-time processing.

20

Figure 2.4 Block diagram of high-speed receiver based on FPGA and ADC

As shown in Figure 2.4, the block design of the real-time receiver consists of an MB block, data

block, and JESD block. The design of the receiver is similar to the design of the real-time

transmitter, except that in this design the FPGA board serves as the JESD receiver while the

ADC board serves as the JESD transmitter. The ADC converts analog input signals into digital

data and transmits them to the FPGA board.

As shown in Figure 2.3 and 2.4, projects for interfacing ADC and DAC with FPGA have been

built in Xilinx Vivado separately. The ADC and DAC have been tested separately to verify if the

JESD204B interfaces are working properly.

2.2.2 Design in Xilinx Vivado

In the FPGA design of the DSXC, Xilinx Vivado 2015.4 is used as the design tool. The design of

the resampling filters is accomplished using the Xilinx System Generator and Filter Design HDL

Coder. A more detailed description of the DSXC design process is given in Appendix I.

21

2.3 Considerations in FPGA Implementation

In implementing an FPGA, there are a few issues that need to be addressed, such as clocking and

bit resolution, as they may have a significant impact on the signal quality. Timing is critical

during the setup of a real-time DSP hardware platform. In this setup, the ADC and DAC use

external clocks generated by signal generators. If the signal generators are running freely, the

frequencies of their generated clocks may slightly differ, and this can cause a frequency offset in

the digital signal. This frequency offset may cause the degradation of the signal quality at the

output of the DAC. In order to avoid frequency offset when transferring a digital signal from the

ADC clock domain to the DAC clock domain, it is necessary to lock the clock frequencies. We

used the 10 MHz reference signal to lock the clock frequencies of all the signal generators and

first in first out (FIFO) IP to transfer large amounts of data between the different clock domains.

Bit growth is also a very common issue in real-time DSP implementation, because in FPGA

arithmetic, the bit width of a digital signal can rapidly grow, making it impossible to keep full

precision during the processing. For example, adding two 𝑁𝑁 bit numbers results in a 𝑁𝑁 + 1 bit

number, and multiplying two 𝑁𝑁 bit numbers results in a 2𝑁𝑁 − 1 bit number. If full precision is

kept, the bit growth can quickly exceed the computation capability of the FPGA. Thus, it is very

important to reduce bit width. The simplest way of reducing bit width is truncation, which can be

achieved through dropping the least significant bits (LSB). However, truncation results in

undesirable DC bias at the output. The round to even technique can solve the problem of DC bias

by rounding up to the nearest even number. Compared with truncation, which does not consume

logic resources, this technique costs logic resources but only contributes a negligible resource

cost of the DSXC. In the implementation of the DSXC, we use the round to even technique to

reduce the bit width while keeping sufficient resolution in the signal quality.

22

Another issue is that the FPGA has limited maximum clock frequency, on the order of a few

hundred MHz. Current GSPS ADCs and DACs can achieve a sampling rate on the order of a few

GHz, which is much higher than the maximum clock frequency in FPGA processing. The

solutions for this issue are parallel processing and pipelining. Parallel processing means

processing the data in parallel channels, so data with high sampling rates can be processed with a

relatively low clock frequency. The FPGA architecture makes it very suitable for parallel

processing. For example, if the FPGA has a clock frequency of 200 MHz and the data are

processed in 20 parallel channels, then logically the total sampling rate is 4 GHz.

Timing is a critical issue in FPGA implementation, because it takes time for a signal to propagate

from one flip-flop, through a combinational logic, to the next flip-flop. The more complicated

the combinational logic, the longer takes for the signal to propagate. Timing can be a very

difficult issue when the combinational logic is large and the FPGA clock frequency is high

(above 50 MHz). The simplest technique to fix a timing issue is pipelining. By adding flip-flops

into a large combinational logic, pipelining breaks the combinational logic into multiple stages,

where the propagation delay in each stage is shorter than the original propagation delay. It is also

important to note that pipelining does not decrease the total throughput of this digital design.

Pipelining only increases the latency by a few clock periods, which is acceptable in many FPGA

designs.

DSP units such as finite impulse response (FIR) filters, mixers, and local oscillators can also be

easily implemented in parallel and be pipelined. Fast Fourier transform (FFT) can be

implemented in FPGA by using a third-party IP named SpiralFFT, which can be generated in the

format of a hardware description language (HDL) as described in [49]. Thus, all the DSP

23

algorithms described in this thesis can be implemented in FPGA to achieve a very high

processing rate.

24

Chapter 3: Real-time DSP-enabled DSXC based on resampling filters

In this chapter, we introduce the design and experimental demonstration of the first real-time

DSP-enabled DSXC based on resampling filters. This DSXC is implemented on a Xilinx Virtex-

7 FPGA board, and the results have been presented in [30].

3.1 Digital subcarrier cross-connect based on FPGA

Figure 3.1 Block diagram of digital subcarrier cross-connect (DSXC) based on FPGA

Figure 3.1 shows a basic DSXC block diagram based on FPGA. The input signal to the DSXC

switch fabric comprises n wavelength channels, and each wavelength carries m radio frequency

(RF) subcarrier channels. The RF subcarriers can support different modulation formats and make

use of different spectral bandwidths. Each wavelength channel is detected by an optical receiver

performing optical to electrical (O/E) conversion, which is followed by an ADC digitizing the

analog waveform delivered by the optical carrier. Then the digitized waveform is sent to a DSP

block for subcarrier de-multiplexing. The de-multiplexed subcarriers from all wavelength

channels are sent to a cross-bar circuit switch, in which any input subcarrier can be routed to any

output port. Subcarrier channel local add/drop can also be performed in this cross-bar switch

C
ro

ss
-b

ar
 c

irc
ui

t s
w

itc
h

D
SP

D
SP

D
SP

𝑐11

𝑐12

𝑐1𝑚𝑚

…
𝑐𝑛𝑛1

𝑐𝑛𝑛2

𝑐𝑛𝑛𝑚𝑚

…

…

D
SP…

ADCO/E

Receiver

ADCO/E

Receiver

DAC E/O

Transmitter

DAC E/O

Transmitter

…
…

…
…… …

𝜆𝜆𝑛𝑛

𝜆𝜆1

𝜆𝜆𝑛𝑛

𝜆𝜆1

…
…

…
…

Add/Drop

25

unit. The subcarriers switched through the cross-connect are then re-grouped and multiplexed by

n DSP units corresponding to n output wavelength channels. Each digitally multiplexed

composite signal forms a wavelength channel that is converted from electrical to optical (E/O)

through a DAC and an optical transmitter. With this basic DSXC architecture, any subcarrier

channel of any input optical carrier can be routed to any subcarrier of any output wavelength

channel.

For demonstration purpose, the DSP units and the cross-bar circuit switch can be implemented

using a single FPGA module which provides real-time processing. The cost of this

implementation choice is proportional to the amount of FPGA resources that is required to

implement the DSXC. FPGA resources mainly consist of memory resources and DSP slices.

Memory resources include look-up table (LUT), LUT random access memory (LUTRAM), flip-

flop (FF) and block RAM (BRAM). DSP slices are used to carry out digital multiplications,

which are usually the most expensive operation in a real-time DSP hardware platform. For

convenience, in this chapter we use the term DSP cost to represent the number of required DSP

slices.

Since subcarrier channels in each wavelength are multiplexed in frequency domain, frequency

translation (also known as spectral translation) is a critical operation in DSXC. A straightforward

and conventional frequency translation technique is based on signal mixing and filtering

operations whereby multiple local oscillators (LOs), mixers, and low pass filters are combined to

achieve the intended goal. Digital filtering, which is the convolution between the input data

sequence and the filter coefficients, is achieved through FIR filters that involve a large number of

multiplications and represent the major DSP cost. Because the number of FIR filters increases

linearly with the number of subcarriers in the cross-connect switch, the DSP cost for a DSXC

26

based on this frequency translation technique also increases accordingly, and may become a

major limiting factor.

Since DSXC is performed in the digital domain, some inherent properties of digital sequence and

DSP algorithms can be utilized to achieve frequency translation at a reduced DSP cost. More

specifically, interpolation and decimation are techniques that have been widely used in digital

systems to change the sampling rate of a signal [50]. By applying some modifications as

described in Section 3.2, interpolation and decimation techniques can be used to perform

frequency translation with significantly less DSP cost in comparison to the frequency translation

obtained through conventional I/Q/ mixing and filtering. For reader’s convenience, we first

briefly describe frequency translation through I/Q mixing and filtering. Then, we describe

frequency translation through resampling filters.

3.2 Frequency translation techniques

In this section, we briefly introduce two techniques for frequency translation: 1) I/Q mixing and

filtering; 2) Resampling filters.

3.2.1 I/Q mixing and filtering

A traditional technique for frequency translation is through I/Q mixing and filtering. As shown in

Figure 3.2, traditional frequency translation includes down-conversion and up-conversion, in

which LOs are implemented from direct digital synthesizer (DDS). In order to maintain phase

synchronization between LO and the RF subcarrier whose frequency needs to be translated, I/Q

mixing is usually required. Figure 3.2 shows a standard two-step digital frequency translation

process which consists of both digital down-conversion (DDC) and digital up-conversion (DUC).

27

Figure 3.2 Frequency translation through I/Q mixing and filtering

As shown in Figure 3.2, in the DDC process, a DDS simultaneously generating sine and cosine

waveforms is used to provide a pair of LOs. Assume the incoming signal data sequence on the ith

subcarrier channel is 𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖(𝑡𝑡) cos(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡 + 𝜑𝜑𝑖𝑖), where 𝐴𝐴𝑖𝑖(𝑡𝑡) is modulated amplitude, 𝑓𝑓𝑖𝑖 is

the carrier frequency, and 𝜑𝜑𝑖𝑖 is the carrier phase; and the in-phase (I) and quadrature (Q)

components of the LO are cos(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡) and sin(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡) , respectively. After down-conversion

mixing and low pass filtering (LPF), the I and Q components of the baseband signal are

1
2
𝐴𝐴𝑖𝑖(𝑡𝑡) cos(𝜑𝜑𝑖𝑖) and −1

2
𝐴𝐴𝑖𝑖(𝑡𝑡) sin(𝜑𝜑𝑖𝑖), respectively. If the subcarrier channel needs to be dropped

at this node, the I and Q components are combined together to recover the original baseband

signal. Otherwise, the I and Q components are mixed with another pair of LOs, cos�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡� and

sin�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡� , in the DUC module. The frequency up-conversion generates

1
2
𝐴𝐴𝑖𝑖(𝑡𝑡)cos(𝜑𝜑𝑖𝑖) cos�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡� and −1

2
𝐴𝐴𝑖𝑖(𝑡𝑡) sin(𝜑𝜑𝑖𝑖) sin�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡�, and they are combined to form the

DUC module output as,

 𝑂𝑂𝑚𝑚(𝑡𝑡) = 1
2
𝐴𝐴𝑖𝑖(𝑡𝑡)cos [2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡 + 𝜑𝜑𝑖𝑖] (3.1)

Throughout this frequency translation process, the carrier frequency is changed from 𝑓𝑓𝑖𝑖 to 𝑓𝑓𝑗𝑗 ,

while the original carrier phase, 𝜑𝜑𝑖𝑖, is automatically maintained.

28

Note that I/Q mixing requires two separate filters for the I and the Q channels. Alternatively, one

can use a single stage frequency translation from 𝑓𝑓𝑖𝑖 to 𝑓𝑓𝑗𝑗 using an LO frequency |𝑓𝑓𝑗𝑗 − 𝑓𝑓𝑖𝑖| .

However, to avoid spectral overlap with other subcarrier channels, this approach requires the

selection of the subcarrier channel at 𝑓𝑓𝑖𝑖 by a bandpass filter before mixing, and the selection of

subcarrier frequency at 𝑓𝑓𝑗𝑗 by another bandpass filter after mixing, and thus the number of digital

filters remains unchanged.

Alternatively, frequency translation may be applied to complex field modulated subcarriers in

which the upper and lower sidebands of each subcarrier channel are not redundant. In that case

Hilbert transform must be applied to avoid spectral aliasing, which would further increase the

DSP cost.

As previously noted, when implementing this frequency translation in FPGA platform, the major

DSP cost comes from digital filters, which increases linearly with the number of subcarrier

channels.

3.2.1 Resampling Filters

Alternatively, frequency translation may be achieved through resampling and filtering of each

subcarrier channel. Similar to mixing and filtering, the resampling and filtering technique also

consists of both DDC and DUC processes. As shown in Figure 3.3(a) and 3.3(c), DDC is usually

achieved by cascading a bandpass filter (BPF) with a down sampling unit, while DUC can be

achieved with an up-sampling unit followed by a BPF. For simplicity, we refer both down-

sampling and up-sampling as resampling [50].

29

Figure 3.3 (a) DDC through BPF and down-sampling, (b) DDC through interpolation BPF, (c) DUC through up-

sampling and BPF, (d) DUC through decimation BPF

In Figure 3.3(a), a BPF is used to select a specific subcarrier channel, the data sequence after

BPF is down sampled by a factor of Q through a down sampling unit.

Figure 3.4. (a) DFT of 𝑦𝑦[𝑛𝑛], and (b) DFT of 𝑧𝑧[𝑛𝑛] for down sampling

Figure 3.4 shows an example of discrete Fourier transform (DFT) spectra of the input data

sequence 𝑦𝑦[𝑛𝑛] and the output data sequence 𝑧𝑧[𝑛𝑛] of the down sampling unit with an input

sampling frequency 𝐹𝐹𝑠𝑠 and a down-sampling factor 𝑄𝑄 = 4 . Through down sampling, the

frequency range is scaled down by a factor of 4 from (−𝐹𝐹𝑠𝑠/2,𝐹𝐹𝑠𝑠/2) to (−𝐹𝐹𝑠𝑠/8,𝐹𝐹𝑠𝑠/8). As shown

in Figure 3.4(a), the selected subcarrier channel originally located in frequency slot 2 (FS2) is

automatically down shifted to the frequency slot (0,𝐹𝐹𝑠𝑠/8). In general, if the selected subcarrier

channel is originally located within an even frequency slot, such as FS2 and FS4 in Figure 3.4(a),

𝑓𝑓

𝑌𝑌(𝑓𝑓)

0
𝑓𝑓

𝑍(𝑓𝑓)

0
3𝐹𝐹𝑠𝑠
8

−𝐹𝐹𝑠𝑠
4

𝐹𝐹𝑠𝑠
8

−
𝐹𝐹𝑠𝑠
8−

3𝐹𝐹𝑠𝑠
8

𝐹𝐹𝑠𝑠
2 −

𝐹𝐹𝑠𝑠
8

𝐹𝐹𝑠𝑠
8

−
𝐹𝐹𝑠𝑠
2

𝐹𝐹𝑠𝑠
4(a)

FS 1 FS 2 FS 3 FS 4

(b)

30

it will be spectrally flipped after down sampling. While if it is located in an odd frequency slot,

such as FS1 and FS3, its spectrum will not flip.

Figure 3.5. (a) DFT of [𝑛𝑛] , and (b) DFT of 𝑦𝑦[𝑛𝑛] for up-sampling

For the process of DUC shown in Figure 3.3(c), a subcarrier channel at the lowest frequency slot

needs to be translated to a higher frequency slot. Figure 3.5 shows an example of DFT spectra of

the input data sequence 𝑥𝑥[𝑛𝑛] and the output data sequence 𝑦𝑦[𝑛𝑛] of the up-sampling unit with a

sampling rate 𝐹𝐹𝑠𝑠 and an up-sampling factor of 𝑃𝑃 = 4 . Through up-sampling, the frequency

range is expanded 4 times from (−𝐹𝐹𝑠𝑠/2,𝐹𝐹𝑠𝑠/2) to (−2𝐹𝐹𝑠𝑠, 2𝐹𝐹𝑠𝑠). The up-sampled DFT spectrum in

this expanded frequency range consists of multiple copies of the original spectrum, and each of

them falls into a different frequency slot. By applying a band pass filter on the up-sampled

spectrum, a particular copy of spectrum at the desired frequency slot can be selected, which is

equivalent to a frequency translation. Again, similar to the down-sampling process the

frequency-translated spectra in even frequency slots such as FS2 and FS4 shown in Figure

3.5(b), are flipped in comparison to the original spectrum in FS1. The flipped spectrum, although

contains the full information, is a frequency conjugated version of the original signal, and thus

another conjugate operation has to be performed when the baseband waveform needs to be

recovered.

𝑓𝑓

𝑌𝑌(𝑓𝑓)

0
𝑓𝑓

𝑋𝑋(𝑓𝑓)

0 3𝐹𝐹𝑠𝑠
2

−𝐹𝐹𝑠𝑠
𝐹𝐹𝑠𝑠
2

−
𝐹𝐹𝑠𝑠
2−

3𝐹𝐹𝑠𝑠
2

−2𝐹𝐹𝑠𝑠 𝐹𝐹𝑠𝑠 2𝐹𝐹𝑠𝑠−
𝐹𝐹𝑠𝑠
2

𝐹𝐹𝑠𝑠
2

FS 1 FS 2 FS 3 FS 4

(a) (b)

31

In comparison to I/Q mixing and filtering, the resampling and filtering technique shown in

Figure 3.3(a) and 3.3(c) does not need LOs and mixers, and there is no need for carrier phase

synchronization. Since the actual bandwidth of each frequency slot is determined by the

sampling frequency and the resampling factor, it can be flexible to accommodate different data

rates carried by different subcarriers. Suppose the sampling frequency is 𝑓𝑓𝑠𝑠 and the resampling

factors are 𝐿𝐿1, 𝐿𝐿2 and 𝐿𝐿3, then the bandwidths of the frequency slot after resampling is 𝑓𝑓𝑠𝑠/(2𝐿𝐿1),

𝑓𝑓𝑠𝑠/(2𝐿𝐿2) and 𝑓𝑓𝑠𝑠/(2𝐿𝐿3), respectively. The channel data rate granularity of DSXC can be made

fine enough to address network efficiency requirements through the change of resampling factor.

However, the major drawback of both DDC and DUC shown in Figure 3.3(a) and 3.3(c) is that

the BPF still requires significant DSP resources of FPGA, similar to that based on I/Q mixing

and filtering. A novel technique to solve this problem is to combine the resampling and BPF into

a single resampling BPF as showing in Figure 3.3(b) and 3.3(d). Resampling BPF is a general

term which includes decimation BPF for DDC and interpolation BPF for DUC.

Resampling filters can be implemented as polyphase decimation or interpolation filters on FPGA

hardware [51], which was proposed primarily for resampling of data sequences while avoiding

spectral aliasing and rejecting spectral images. Although polyphase resampling filters have been

previously used in wireless transceivers [52], they have not been used for DSXC switches which

require the capability of handling asynchronous subcarrier channels with non-equal bandwidth

and independent modulation formats. While the required DSP resources linearly increases with

the number of subcarrier channels for both I/Q-mixing-and-filtering and resampling-and-

filtering, DSP resources required for resampling BPF is independent of the number of subcarrier

channels. This significantly reduces the DSP resources requirement for FPGA implementation.

32

Digital frequency translation can be accomplished with resampling and filtering. As shown in

Figure 3.3(a), DDC can be achieved by applying a band-pass filter (BPF) before a down-

sampling unit, so that the subcarrier channel selected by the BPF is down-converted to a lower

frequency slot. Let 𝑄𝑄 be the down-sampling factor indicating that one of every 𝑄𝑄 output samples

from the BPF is retained, while the other 𝑄𝑄 − 1 samples are discarded. The processing of these

𝑄𝑄 − 1 discarded samples is in fact unnecessary and could be avoided to reduce the DSP cost. By

combining down-sampling and filtering into a single decimation filter as shown in Figure 3.3(b),

only one of every 𝑄𝑄 sampling operations is actually performed for BPF. Therefore, the total

computation is effectively reduced by a factor of 𝑄𝑄, and the DSP cost of a decimation BPF is

only 1/𝑄𝑄 of a conventional BPF with the same number of coefficients.

Similarly, DUC can be achieved by using an up-sampling unit followed by a BPF, as shown in

Figure 3.3(c), so that a subcarrier channel at a lower frequency slot is up-converted to a higher

frequency slot and be selected by the BPF. For an up-sampling factor of 𝑃𝑃, 𝑃𝑃 − 1 zeros are

inserted between every two samples of the input digital sequence in the up-sampling process. As

the multiplication of these inserted zeros with filter coefficients always results in zeros in the

subsequent digital filtering process, these operations are not necessary. By combining up-

sampling and filtering into a single interpolation filter as shown in Figure 3.3(d), unnecessary

operations performed on the inserted zeros can be avoided by using only 1/𝑃𝑃 of the BPF

coefficients during each convolution. Thus, the total computation is effectively reduced by a

factor of 𝑃𝑃 and the DSP cost of the interpolation BPF is only 1/𝑃𝑃 that of a traditional BPF with

the same number of coefficients.

The frequency translation based on resampling filters and its DSP cost can be analyzed

mathematically. In Figure 3(a) the input sequence 𝑥𝑥[𝑛𝑛] represents a digital multi-carrier signal.

33

Suppose that the BPF is an N-tap FIR filter with coefficients ℎ0,ℎ1, … ,ℎ𝑁𝑁−1, then the filter

output is

 𝑦𝑦[𝑛𝑛] = ∑ ℎ𝑖𝑖 ∙ 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]𝑁𝑁−1
𝑖𝑖=0 (3.2)

which is the digital sequence of a selected subcarrier channel that needs to be down-converted.

After down sampling by a factor of 𝑄𝑄, the output is

 𝑧𝑧[𝑛𝑛] = 𝑦𝑦[𝑛𝑛𝑛𝑛] (3.3)

The Z-transform of 𝑧𝑧[𝑛𝑛] can be calculated as

 Z(z) = ∑ 𝑧𝑧[𝑛𝑛] ∙ 𝑧𝑧−𝑛𝑛𝑛𝑛 (3.4)

= �𝑦𝑦[𝑛𝑛𝑛𝑛] ∙ 𝑧𝑧−𝑛𝑛
𝑛𝑛

= �𝑦𝑦[𝑚𝑚] ∙ �
1
𝑄𝑄
�𝑒𝑒𝑗𝑗

2𝜋𝜋
𝑄𝑄 𝑝𝑝𝑝𝑝

𝑄𝑄−1

𝑝𝑝=0

� ∙ 𝑧𝑧−
𝑚𝑚
𝑄𝑄

𝑚𝑚

=
1
𝑄𝑄
��𝑦𝑦[𝑚𝑚] ∙ (𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑄𝑄 𝑝𝑝𝑝𝑝 ∙ 𝑧𝑧1/𝑄𝑄)−𝑚𝑚

𝑚𝑚

𝑄𝑄−1

𝑝𝑝=0

=
1
𝑄𝑄
�𝑌𝑌(𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑄𝑄 𝑝𝑝 ∙ 𝑧𝑧1/𝑄𝑄)

𝑄𝑄−1

𝑝𝑝=0

By letting z = 𝑒𝑒𝑗𝑗Ω in Equation (3.4), the discrete-time Fourier transform (DTFT) of the down-

sampled digital sequence 𝑧𝑧[𝑛𝑛] can be calculated as

 Z�𝑒𝑒𝑗𝑗Ω� = 1
𝑄𝑄
∑ 𝑌𝑌(𝑒𝑒𝑗𝑗

Ω−2𝜋𝜋𝜋𝜋
𝑄𝑄)𝑄𝑄−1

𝑝𝑝=0 (3.5)

where Y�𝑒𝑒𝑗𝑗Ω� is the DTFT of 𝑦𝑦[𝑛𝑛].

According to Equation (3.5), Z�𝑒𝑒𝑗𝑗Ω� is an expanded and shifted version of Y�𝑒𝑒𝑗𝑗Ω� with an

expansion factor 𝑄𝑄. Since the DTFT of a digital sequence is periodical with a period of 2𝜋𝜋, every

spectral component with an original bandwidth 𝜋𝜋/𝑄𝑄 will be expanded to 𝜋𝜋. As a result, the

34

original spectrum which occupies a frequency slot (FS) with a bandwidth of 𝜋𝜋/𝑄𝑄 will be

automatically expanded to 𝜋𝜋 , and frequency shifted by 2𝑝𝑝𝑝𝑝 into 𝑄𝑄 copies with 𝑝𝑝 =

 0, 1, 2 …𝑄𝑄 − 1.

Although Y�𝑒𝑒𝑗𝑗Ω� is continuous and periodical, the DFT of 𝑦𝑦[𝑛𝑛], is one sampled period of its

DTFT, which is sampled at discrete points Ω = 2𝜋𝜋𝜋𝜋/𝑀𝑀 , where Ω is a normalized angular

frequency, 𝑀𝑀 is the length of DFT, and 𝑘𝑘 = 0, 1, 2 …𝑀𝑀 − 1 is the index of sampling in the

frequency domain. Thus, Ω ∈ (0, 2𝜋𝜋) for 𝑀𝑀 >> 1. If the sampling rate of 𝑦𝑦[𝑛𝑛] is 𝐹𝐹𝑠𝑠, the actual

frequency range of its DFT, denoted by 𝑌𝑌(𝑓𝑓), is (−𝐹𝐹𝑠𝑠/2,𝐹𝐹𝑠𝑠/2).

As described previously, it is unnecessary to calculate the values of the samples in 𝑦𝑦[𝑛𝑛] that are

not used in the subsequent down-sampling process. The BPF and the down-sampling unit could

be more efficiently implemented together as a decimation filter as shown in Figure 3.3(b).

Consider Equation (3.2) and Equation (3.3), the output of the decimation BPF is

 𝑧𝑧[𝑛𝑛] = ∑ ℎ𝑖𝑖 ∙ 𝑥𝑥[𝑛𝑛𝑛𝑛 − 𝑖𝑖]𝑁𝑁−1
𝑖𝑖=0 (3.6)

Compared with Equation (3.2), the amount of calculations in Equation (3.6) has been reduced by

a factor of 𝑄𝑄. This is because the number of output samples of the decimation filter is 𝑄𝑄 times

less than that of a traditional digital filter, and thus the DSP cost is reduced by a factor of 𝑄𝑄.

Similarly, for the conventional up-sampling process shown in Figure 3.3(c), suppose the input

digital sequence is 𝑥𝑥[𝑛𝑛], after up-sampling by a factor of 𝑃𝑃, the output is,

 𝑦𝑦[𝑛𝑛] = �𝑥𝑥[𝑛𝑛/𝑃𝑃] if n/p is an integer
0, otherwise (3.7)

The Z transform of 𝑦𝑦[𝑛𝑛] can be calculated as

 Y(z) = ∑ 𝑦𝑦[𝑛𝑛] ∙ 𝑧𝑧−𝑛𝑛𝑛𝑛 (3.8)

= � 𝑥𝑥 �
𝑛𝑛
𝑃𝑃
� ∙ 𝑧𝑧−𝑛𝑛

𝑛𝑛:𝑛𝑛𝑝𝑝∈𝑍𝑍

35

= �𝑥𝑥[𝑘𝑘] ∙ 𝑧𝑧−𝑘𝑘𝑘𝑘
𝑘𝑘

= 𝑋𝑋(𝑧𝑧𝑃𝑃)

Based on the result of Equation (3.8), the DTFT of the up-sampled digital sequence 𝑦𝑦[𝑛𝑛] can be

calculated by letting z = 𝑒𝑒𝑗𝑗Ω, we get

 𝑌𝑌�𝑒𝑒𝑗𝑗Ω� = 𝑋𝑋�𝑒𝑒𝑗𝑗ΩP� (3.9)

Where 𝑋𝑋�𝑒𝑒𝑗𝑗ΩP� is the DTFT of 𝑥𝑥[n/P]. In this up-sampling process, Y�𝑒𝑒𝑗𝑗Ω� is a compressed

version of X�𝑒𝑒𝑗𝑗Ω�, and the compression factor is equal to the up-sampling factor 𝑃𝑃.

This up-sampling process can be explained by the similar scaling rule between DFT and DTFT

as described above for down-sampling. An up-sampling by a factor 𝑃𝑃 is equivalent to creating 𝑃𝑃

equally spaced copies of DFT of 𝑥𝑥[𝑛𝑛], denoted by 𝑌𝑌(𝑓𝑓), in the expanded frequency range of

(−P𝐹𝐹𝑠𝑠/2, P𝐹𝐹𝑠𝑠/2).

As shown in Figure 3.3(c), 𝑦𝑦[𝑛𝑛] and 𝑧𝑧[𝑛𝑛] are the input and output of the BPF, respectively.

Suppose this BPF is a N-tap FIR filter with coefficients ℎ0,ℎ1, … ,ℎ𝑁𝑁−1, the output of this BPF is

 𝑧𝑧[𝑛𝑛] = ∑ ℎ𝑖𝑖 ∙ 𝑦𝑦[𝑛𝑛 − 𝑖𝑖]𝑁𝑁−1
𝑖𝑖=0 (3.10)

As described previously, the up-sampling unit and BPF can be combined into an interpolation

BPF to reduce the DSP cost. Consider Equation (3.7) and Equation (3.10), the output of this

combined interpolation BPF is

 𝑧𝑧[𝑛𝑛] = ∑ ℎ𝑛𝑛−𝑘𝑘𝑘𝑘 ∙ 𝑥𝑥[𝑘𝑘]𝑁𝑁/𝑃𝑃−1
𝑘𝑘=0 (3.11)

Compared with Equation (3.10), Equation (3.11) only requires 𝑁𝑁/𝑃𝑃 , instead of 𝑁𝑁 ,

multiplications, so that the DSP cost is reduced accordingly by a factor of 𝑃𝑃.

36

3.3 Resource utilization of frequency translation

In order to estimate the resource utilization of different frequency translation techniques, a 4 × 4

DSXC is designed in Xilinx System Generator. In this design, the FPGA platform is based on

Xilinx Virtex-7 690t [45].

Figure 3.6 (a) spectrum of a[n], (b) DSP block of DSXC, and (c) spectrum of b[n]

Figure 3.6(a) shows an example of input electrical signal spectrum which has 4 subcarrier

channels each carrying a different data sequence (𝐷𝐷1~𝐷𝐷4). For simplicity, in this example each

subcarrier channel has the same bandwidth. Figure 3.6(b) shows the block diagram of DSP used

for this 4 × 4 DSXC. In this DSP block, the composite digital sequence including all 4 subcarrier

channels at the input is first made into 4 equal copies. Each of the 4 DDC blocks down converts

a channel from its subcarrier frequency to the baseband. The 4 × 4 cross-bar switch routes each

down-converted baseband data sequence to a DUC block for frequency up-conversion. Channel

add/drop is also possible at this stage before DUC. After up-conversion with each channel

assigned a new subcarrier frequency, these subcarrier channels are combined at the output and

sent to a DAC. The spectrum of the output electrical signal is illustrated in Figure 3.6(c) with the

frequencies of subcarriers switched in comparison to the input spectrum.

Frequency (MHz)

𝐴𝐴(𝑓𝑓)

0 600200 800400

D1 D2 D3 D4

𝑓𝑓

FS 1 FS 2 FS 3 FS 4

𝑓𝑓

𝐵𝐵(𝑓𝑓)

0 600200 800400

D4 D1 D2 D3

Frequency (MHz)

FS 1 FS 2 FS 3 FS 4
DDC

DDC

DUC

DUC

DDC

DDC

DUC

DUC

DSP Block

Sum
Cross-

bar
Switch

𝑎[𝑛𝑛] 𝑏𝑏[𝑛𝑛]

(a) (b) (c)

37

Figure 3.7 FPGA resource cost of a 4 × 4 DSXC

Two frequency translation techniques, one based on resampling BPF, and the other one based on

I/Q mixing and filtering, are compared for this example. Both of them use 800MHz total analog

bandwidth which is equally divided into 4 frequency slots with 200MHz bandwidth in each slot.

40MHz is reserved as the guard band between adjacent subcarrier channels. 79th order finite

impulse response (FIR) filters are used for both techniques with 60dB stopband attenuation. For

the resampling-based frequency translation technique, the resampling factor is 4, and bandpass-

filtering in each DDC block is accomplished by a decimation BPF. Similarly, each DUC block

also performs bandpass-filtering which is implemented as an interpolation BPF. For the

frequency translation based on mixing with LO, each DDC is performed by I/Q mixing and

filtering by two low-pass FIR filters for the I and the Q channels, and each DUC also uses a DDS

and two mixers, as shown in Figure 3.2. In this configuration, LOs are implemented through

DDS by using look-up table (LUT), and mixers are implemented as digital multipliers, they both

cost FPGA resources in memories and DSP slices. Figure 3.7 shows the comparison of FPGA

resource cost to build this 4 × 4 DSXC based on the two different frequency translation

R
es

ou
rc

e
ut

ili
za

tio
n

(%
)

0

10

20

30

40

50

60

70

80

LUT LUTRAM FF BRAM DSP

Resampling and filtering I/Q Mixing and filtering

Number of Subcarriers

2 3 4 5 6 7 8

DS
P

co
st

 (%
)

0

50

100

150
Resampling and filtering

I/Q mixing and filtering

38

techniques. In order to achieve the same performance, DSXC based on I/Q mixing and filtering

has more than twice DSP cost than that based on resampling filters.

Here we used Xilinx Virtex-7 690t FPGA chip as the DSP hardware platform, and the total

number of available DSP slices on this chip is 3600. As indicated by Figure 3.7, the bottleneck of

the FPGA available resources in the design of DSXC is the DSP slices, and thus it is very

important to minimize the cost of DSP slices in the design of DSP algorithms. The usage of DSP

slices is mainly consumed by FIR filters, and the design of FIR filters is a tradeoff between the

performance and resources cost. A higher order FIR filter has smaller passband ripple, sharper

cutting edges, and higher stopband attenuation, but has higher resources cost. Passband ripple of

a FIR filters causes frequency-dependent attenuation of the signal in the passband, which

introduces signal waveform distortion.

For a traditional FIR filter to be implemented on a Virtex-7 FPGA, and suppose the length of its

coefficients is S and the coefficients are symmetric, if the degree of parallelism is R, then the

DSP cost of this FIR filter is 𝑅𝑅 × (𝑆𝑆/2). Since a mixer is just a multiplier that supports parallel

processing, it simply uses R DSP slices. For the I/Q mixing and filtering technique shown in

Figure 3.2, the frequency translation of each subcarrier channel needs 2 filters and 4 mixers, so

that it requires (𝑆𝑆 + 4)𝑅𝑅 DSP slices. If the number of subcarrier channels is L, the total DSP cost

of a DSXC based on I/Q mixing and filtering is

 𝐶𝐶1 ≈ (𝑆𝑆 + 4)𝐿𝐿𝐿𝐿 (3.12)

Since usually 𝑆𝑆 >> 4 , the resources cost of this DSXC mainly comes from FIR filters.

According to Equation (3.12), the total DSP cost increases linearly with the number of

subcarriers.

39

Resampling BPF will cost less resource compared to a traditional FIR filter of the same

coefficients. In order to compare with the frequency translation based on I/Q mixing and filtering

with the number of subcarrier channels of 𝐿𝐿, we assume the total available bandwidth is B, and

the bandwidths of subcarrier channels are 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝐿𝐿 , so that ∑ 𝐵𝐵𝑖𝑖 = 𝐵𝐵𝐿𝐿
𝑖𝑖=1 . The resampling

factor Mi of subcarrier channel i is inversely proportional to the bandwidth of that channel, 𝑀𝑀𝑖𝑖 =

𝐵𝐵/𝐵𝐵𝑖𝑖, thus an 𝐿𝐿 × 𝐿𝐿 DSXC could be built by using resampling filters with resampling factors

𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝐿𝐿 . For a resampling FIR filter with a resampling factor 𝑀𝑀𝑖𝑖 and a length of

coefficients S, if the degree of parallelism in the DSP system is R, the number of required DSP

slices to build this resampling FIR filter is 𝑅𝑅 × 𝑆𝑆/𝑀𝑀𝑖𝑖. Since a DDC block needs a decimation

BPF and a DUC block needs an interpolation BPF for each subcarrier channel, all together the

DSXC needs L decimation BPF and L interpolation BPF. Therefore, the total DSP cost for

building these resampling filters is

 𝐶𝐶2 ≈ ∑ 2 × 𝑅𝑅 × 𝑆𝑆/𝑀𝑀𝑖𝑖
𝐿𝐿
𝑖𝑖=1 = 2𝑆𝑆 × 𝑅𝑅 (3.13)

According to Equation (3.13), the total DSP cost of DSXC based on resampling filters for

frequency translation is independent of the number of subcarrier channels. Basically, a higher

channel count requires a larger resampling factor for resampling filters which reduces the DSP

cost of each filter, and thus the total DSP cost does not increase with the number of channels. In

comparison, for frequency translation based on I/Q mixing and filtering technique, each digital

filter requires the same amount of DSP slices and thus the overall DSP cost increases linearly

with the number of subcarrier channels.

The inset of Figure 3.7, obtained through Equation (3.12) and Equation (3.13), shows the DSP

cost of DSXC based on two different methods. Here we assume length of filter coefficients is

𝑆𝑆 = 80 and the degree of parallelism is 𝑅𝑅 = 4 . The DSP cost of the DSXC based on

40

resampling filters remains unchanged when the number of subcarriers increases. Whereas the

DSP cost increases linearly with the number of subcarriers for I/Q mixing and filtering, and there

will not be enough DSP slices available on a Xilinx Virtex-7 690T FPGA if the number of

subcarriers exceeds 5.

Although we used 4 × 4 DSXC as the example with equal subcarrier channel spacing and equal

data rate for each channel, unequal channel spacing and different bandwidth for subcarrier

channels can also be used because the resampling factor for each channel can be independently

set. This has been experimentally demonstrated and will be discussed in the next section.

3.4 Experiments

In order to demonstrate DSXC and test its performance experimentally, an optical system based

on digital subcarrier multiplexing has been setup using an FPGA platform for real-time DSP and

cross-connect switching.

Figure 3.8 Experimental setup

The experimental setup is shown in Figure 3.8, where an AWG generates an electrical waveform

which has multiple subcarriers. A linear optical transmitter converts this multicarrier electrical

waveform into optical domain through direct intensity modulation. The optical signal is

transmitted through 25 km standard single mode fiber (SMF), and detected by an optical receiver

which linearly converts the received optical signal into electrical waveform. This detected

electrical waveform is then sent into the DSXC for subcarrier level cross-connect switch. The

AWG Optical
TX OSC

25km SMF

Optical
RX ADC DAC

FPGA

DSXC

41

waveform at the output of the DSXC is sampled by a real-time digital oscilloscope (OSC,

DPO72304DX) for analysis.

This DSXC platform consists of three major parts: FPGA board (Hitech-global HTG700),

analog-to-digital converter (ADC) (TI ADC12J4000EVM) and digital-to-analog converter

(DAC) (TI DAC38RF82EVM). The resolutions of the ADC and the DAC are 12-bit and 16-bit

respectively. Because a common clock is required, both the ADC and the DAC are running at an

input sampling rate of 1.6 GSPS, so that the available analog bandwidth is 800MHz. The FPGA

board is mounted with a Xilinx Virtex-7 690t FPGA chip. The FPGA clock frequency is

200MHz, and thus the sampled data in FPGA is processed in eight parallel channels.

Based on this DSP platform, an 8 × 8 DSXC has been implemented, which switches subcarrier

channels with three different data rates. Only resampling filters have been used for frequency

translation in the experiment. The available analog bandwidth of 800MHz is divided into 8

frequency slots with three different widths: 200MHz, 100MHz and 50MHz, and 20MHz is

reserved for the guard band between adjacent subcarrier channels. Thus, the bandwidth of the

corresponding subcarrier channels are 180MHz, 80MHz and 30MHz, respectively, and in

principle each can have an independent modulation format. Equiripple 108th order FIR filters are

used in this experiment for DDC and DUC. The ripple in the filter passband is 0.5dB and the

stopband attenuation is 30dB.

Table 3.1 shows an example of the input signal to the 8 × 8 DSXC, in which 8 subcarrier

channels, SC1, SC2, …SC8, are generated by the AWG. Each subcarrier is filtered to have

rectangular spectral shape by using the method described in [53]. To demonstrate the capability

of working with mixed modulation formats and data rates, Table I shows the bandwidth and

modulation format assignment for the 8 subcarrier channels.

42

Table 3.1 AWG generated input signal to 8×8 DSXC

Subcarrier # Bandwidth (MHz) Modulation Format

1 30 QPSK

2 80 QPSK

3 180 16QAM

4 80 16QAM

5 80 QPSK

6 80 QPSK

7 30 QPSK

8 30 QPSK

Figure 3.9 (a) shows the spectrum of the signal at the output of the optical receiver, where each

subcarrier channel has almost equal amplitude. In order to characterize the effects of this DSP

platform imposed on the signal, we measured the output of DSP platform without cross-connect

switching, and the spectrum is shown in Figure 3.9 (b). Although most channels from SC1 to

SC6 have nearly the same amplitude at the output for the frequency range of <700MHz, high

frequency channels SC7 and SC8 experience large role-off of more than 5dB for the frequencies

beyond 700MHz. This roll-off is mainly caused by ADC and DAC.

43

Figure 3.9 Spectra of output signal: (a) at optical receiver output which is DSXC input (b) after DSP platform but

without switching (c) after DSP platform with switching assignment of DSXC1 (d) after DSP platform with

switching assignment of DSXC2.

Figure 3.9(c) and (d) show the spectra after subcarrier switching for two different output channel

assignments. In Figure 3.9 (c) denoted as DSXC1, the original subcarrier channels [1 2 3 4 5 6 7

8] have been switched to [7 4 6 5 3 2 8 1] at the output. While for the spectrum shown in Figure

3.9 (d) denoted as DSXC2, the original subcarrier channels [1 2 3 4 5 6 7 8] are switched to [8 6

1 7 2 3 4 5].

To evaluate the impact of DSXC on the signal quality, the waveforms at DSXC input and output

are processed to find the error vector magnitude (EVM) for each subcarrier channel. The EVM is

calculated according to the method described in [54]. As the frequency response of the DSP

Frequency (MHz)

0 200 400 600 800

M
ag

ni
tu

de
 (d

B)

-40

-30

-20

-10

0

Frequency (MHz)

0 200 400 600 800

M
ag

ni
tu

de
 (d

B)
-40

-30

-20

-10

0

Frequency (MHz)

0 200 400 600 800

M
ag

ni
tu

de
 (d

B)

-40

-30

-20

-10

0

Frequency (MHz)

0 200 400 600 800

M
ag

ni
tu

de
 (d

B)

-40

-30

-20

-10

0

(b)

44

platform including ADC and DAC is deterministic as shown in Figure 3.9 (b, c, d), its impact

can be digitally compensated in frequency domain at the transmitter and/or the receiver.

Figure 3.10. Signal EVM of recovered subcarrier channels

Figure 3.10 shows the EVM of the 8 subcarrier channels in 4 different scenarios. Open squares

show the EVM measured at the input of DSXC, which is after 25km fiber transmission and

detected by the optical receiver. Open circles show the EVM after passing through the DSXC

platform but without cross-connect switching, and thus no digital filters are applied for each

subcarrier channel. The EVM degradation compared to those shown by open squares is primarily

due to the frequency-dependent transfer functions and high frequency roll-offs of ADC and

DAC. Although we have applied slope compensation at the receiver, small amount of EVM

degradation still exists, especially for high frequency channels. Open triangles in Figure 3.10

show EVM values of all channels after cross-connect switching with two different output

channel assignments corresponding to the spectra shown in Figure 3.9(c) and (d). The additional

45

EVM degradation compared to those without switching is mainly attributed to resampling filters.

This includes the impact of passband ripple which directly contributes to the increase of EVM,

and the inter-subcarrier crosstalk because of the insufficient stopband attenuation. Several

representative constellation diagrams are shown in the inset of Figure 3.10, including channels

with both QPSK and 16QAM modulation and at different frequency slots.

Table 3.2 FPGA resource cost of DSXC

Resource Utilization Available Utilization %

LUT 38909 433200 8.98

LUTRAM 18929 174200 10.87

FF 60475 866400 6.98

BRAM 96 1470 6.53

DSP slice 2051 3600 56.97

FPGA resources used to build this DSXC are summarized in Table 3.2. This includes 56.97% of

the DSP slices usage which is often the bottleneck for this application. There would not be

enough DSP slices available with a Xilinx Virtex-7 690t to build this DSXC if the I/Q mixing

and filtering method was used.

As mentioned in Chapter 3.3, higher order digital filters help reducing passband ripple and

increasing stopband attenuation. FIR filters with lower ripple in the passband and higher

suppression in the stopband would result in less EVM degradation. In fact, the EVM percentage

of a signal constellation diagram is monotonically increases with the passband ripple. However,

increasing the order of digital filters would increase the FPGA resources cost, especially the DSP

cost. In addition, higher order digital filters would also introduce longer processing delays for the

signal.

46

In terms of signal processing latency, the latency of this DSXC is mainly introduced by the FIR

filters. In fact, the latency of a FIR filter is 𝑡𝑡𝐿𝐿 = 𝑇𝑇𝐶𝐶(𝑆𝑆 − 1)/2 , where 𝑆𝑆 − 1 is the filter order

with 𝑆𝑆 the length of filter coefficients, and 𝑇𝑇𝐶𝐶 is the clock period. Latency caused by other utility

logic such as cross-bar switch and data type converter is only a few clock periods which is

negligible compared to 𝑡𝑡𝐿𝐿. With a clock period of 𝑇𝑇𝐶𝐶 = 5𝑛𝑛𝑛𝑛, the latency of each FIR filter as the

function of the FIR filter order is shown in Figure 3.11. By sending an impulse to the DSXC in

the simulation based on Xilinx system generator, the overall latency of DSXC in this system,

including two Equiripple 108th order FIR filters and other utility logics, was found to be less than

0.65 µs.

Figure 3.11 Effects vs FIR filter order

The simulation result also shows the impact of filter order on the EVM of the received signal. In

the simulation, a subcarrier channel with QPSK signal is selected by an Equiripple FIR filter, and

EVM is calculated as the function as filter order, as shown in Figure 3.11. With the increase of

filter order, the passband ripple decreases and thus EVM improves. The inset of Figure 3.11

47

shows the calculated relation between passband ripple and the signal EVM, which indicates that

the EVM increases monotonically with the increase of passband ripple.

3.5 Conclusion

We described a real-time DSP-enabled 8 × 8 digital subcarrier cross-connect (DSXC) test-bed

implemented on a Virtex-7 FPGA platform. The functionality and performance of the 8 × 8

DSXC test-bed are assessed in terms of signal quality, required FPGA resources, and cross-

connect data plane latency. Frequency translation of individual subcarrier channels while being

routed through the DSXC is achieved through digital resampling filters, implemented on the

FPGA. This solution reduces the required FPGA resources when compared to the more

conventional I/Q mixing and filtering. To implement I/Q mixing and filtering the amount of

required FPGA resources increases linearly with the number of subcarrier channels, while it

remains constant when using digital resampling filters.

The experimental results show that the 8 × 8 DSXC test-bed successfully switches the spectral

location of each individual subcarrier channel while it is routed through the DSXC. Each

subcarrier channel can be independently assigned a specific bandwidth, modulation format and

position in the spectrum. In addition, the circuit-switching DSXC introduces a deterministic and

relatively small delay (<1µs) in the data plane compared to the hard-to-predict delay and jitter of

commercial packet switches, which depend on the link utilization and packet size.

Due to its fine bandwidth granularity and high spectral efficiency (which cannot be achieve by

today’s optical cross-connects), DSXCs are suited for access and metro area networks that

support applications with stringent network round trip time requirements, like 5G, cloud assisted

robotics, tele-surgery, and real-time gaming. For example, with its capability to mitigate

48

transmission impairments in the digital domain, offer bandwidth flexibility, and support multiple

modulation formats, DSXC represents a valid solution to concurrently support and switch a

variety of RoF channels in the mobile network fronthaul. Applications of such capabilities have

also been discussed for DSP-based analog RoF systems [55-57].

49

Chapter 4: DA based real-time DSP-enabled DSXC

In this chapter, a real-time DSXC based on distributed arithmetic (DA) architecture is presented.

The experimental demonstration of this DSXC is presented in [31]. Compared with the DSXC

presented in Chapter 3, the DA-based real-time DSXC has lower latency, lower resource cost

and potential lower energy consumption.

4.1 Distributed Arithmetic

First proposed in the early 1970s [58], DA has been used to efficiently implement sum-of-

products without using any multipliers [59-61]. In DA architecture, multiplication and

accumulation are jointly achieved by using adders, look-up tables (LUTs), and shifters, so that

conventional multipliers are not needed. Considering that multipliers are usually the most

expensive type of resource in real-time DSP platform, DSP design based on DA architecture can

be an advantageous alternative. As a kind of multiply-accumulate circuitry (MAC), FIR filter can

be implemented using DA by pre-computing and storing all of the possible results in a LUT. As

a consequence, the major drawback of DA-based FIR filter is that the size of its LUT, which

must contain the number of possible outcomes, increases exponentially with the number of filter

taps. For a FIR with large a number of taps, the LUT size may be too large to be practical. LUT

partitioning can significantly reduce the total size of LUT, but at the cost of increased adder

complexity and signal latency [61]. With that said, the design of DA FIR filter usually results to

be a tradeoff between memory size on the one hand, adder complexity and processing latency on

the other [61]. Techniques such as antisymmetric product coding (APC) and odd-multiple-

storage (OMS) have been proposed to reduce the LUT size by a factor of two. Another approach,

which combines APC and OMS, can further reduce the size of LUT by a factor of four [62]. FIR

filter based on DA can be efficiently implemented on hardware such as FPGA or ASIC to

50

support real-time processing [63]. DA-based reconfigurable FIR filters can also be efficiently

implemented in FPGA or ASIC [64]. DA-based FIR filters have been implemented to save DSP

resources of FPGA for real-time Nyquist pulse generation in the transmitter of an optical

communication system [9]. The comparison between real-time Nyquist pulse generation based

on DA and real-time OFDM waveform generation based on multipliers showed that DA can

greatly reduce the FPGA required resources [9, 14].

In principle, DSP functions such as FIR filters, discrete cosine transform (DCT), FFT, discrete

wavelet transform (DWT), image and video processing functions can be implemented using DA

architectures [58], and DA-architectures have been used to build traditional filters such as pulse

shaping, low-pass and bandpass filters [9, 14]. However, to our best knowledge, DA based

resampling filters have not been reported as a technique to simultaneously achieve channel

frequency translation and channel selection which are two key functions required in DSXC. We

have previously demonstrated digital filtering and frequency translation and channel selection

based on resampling filters to reduce DSP resources requirement for DSXC compared to I/Q

mixing and filtering [30]. Here we show that DA architecture can further reduce DSP resource

consumption and significantly reduce DSXC latency.

In the remainder of this chapter, we demonstrate the implementation of DA-based bandpass

resampling filters to achieve simultaneous digital filtering (for channel selection) and frequency

translation of a DSXC. In order to support the relatively high data rate optical system

applications with GS/s sampling rates provided by ADC and DAC, parallel processing must be

applied in the relatively low rate FPGA platform. Processing is achieved through polyphase

decomposition, in which a super-sample rate FIR filter is composed of multiple low sample rate

sub-filters. LUT partitioning is then applied to each sub-filter implemented in DA to further

51

reduce the LUT size. The major contributions are: 1) the efficient implementation of resampling

filters on FPGA hardware through DA architecture to eliminate the need of DSP slices; 2) the

use of DA-based resampling sub-filters to support parallel processing of high-speed signals and

reduce the LUT size; and 3) the use of DA-based resampling filter algorithm to achieve

simultaneous bandpass filtering and frequency translation. Both system performance and

hardware resource cost of a DSXC making use of DA-based resampling filters are investigated.

For the reader’s convenience the principle of DA-based FIR filter design is reviewed in Chapter

4.1.1, and the principle of polyphase decomposition to realize super-sample rate FIR filter is

reviewed in Chapter 4.1.2. By utilizing resampling filters, which combine DA architecture and

polyphase decomposition, the DA-based DSXC is able to support subcarrier level switching of

high-speed signals through parallel processing, subcarrier channel selection, and frequency

translation.

4.1.1 Principle of DA

The DA principles are discussed in [59, 63]. For the reader’s convenience, we briefly describe

the main principle of DA and its application to DA-based FIR filters.

Let 𝐴𝐴 and 𝐵𝐵 be two 𝑁𝑁-element vectors. Let R be the bit width of each element in vector 𝐵𝐵. The

elements in 𝐴𝐴 can have any bit width. The elements in 𝐴𝐴 are constant values while the elements

in 𝐵𝐵 change over time. Equation (4.1) shows the inner-product computation of 𝐴𝐴 and 𝐵𝐵, which

can be obtained using DA as described next.

 𝐶𝐶 = ∑ 𝐴𝐴𝑘𝑘 ∙ 𝐵𝐵𝑘𝑘𝑁𝑁−1
𝑘𝑘=0 (4.1)

Suppose each value in 𝐵𝐵 is represented in the format of 2’s complement and is scaled to be |𝐵𝐵| <

1, then 𝐵𝐵 can be decomposed as shown in Equation (4.2).

 𝐵𝐵𝑘𝑘 = −𝑏𝑏𝑘𝑘0 + ∑ 𝑏𝑏𝑘𝑘𝑘𝑘 ∙ 2−𝑟𝑟𝑅𝑅−1
𝑟𝑟=1 (4.2)

52

Substituting Equation (4.2) into Equation (4.1), the inner-product of 𝐴𝐴 and 𝐵𝐵 can be expanded as

in Equation (4.3).

 𝐶𝐶 = −∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘0𝑁𝑁−1
𝑘𝑘=0 + ∑ 𝐴𝐴𝑘𝑘 ∙ [∑ 𝑏𝑏𝑘𝑘𝑘𝑘 ∙ 2−𝑟𝑟𝑅𝑅−1

𝑟𝑟=1]𝑁𝑁−1
𝑘𝑘=0 (4.3)

Taking the 2−𝑟𝑟 component out of the bracket in Equation (4.3), we get

 𝐶𝐶 = −∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘0𝑁𝑁−1
𝑘𝑘=0 + ∑ 2−𝑟𝑟 ∙ [∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘𝑘𝑘𝑁𝑁−1

𝑘𝑘=0]𝑅𝑅−1
𝑟𝑟=1 (4.4)

Signed 2’s complement and unsigned offset binary format have the same resource cost if they

have the same word size. Without loss of generality, the samples in vector B can be assumed to

be unsigned words of size R. Equation (4.4) can be re-written as in Equation (4.5), where the

expression of 𝐶𝐶𝑟𝑟 is shown in (4.6).

 𝐶𝐶 = ∑ 2−𝑟𝑟 ∙ 𝐶𝐶𝑟𝑟𝑅𝑅−1
𝑟𝑟=0 (4.5)

 𝐶𝐶𝑟𝑟 = ∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘𝑘𝑘𝑁𝑁−1
𝑘𝑘=0 (4.6)

As shown in Equation (4.6), every 𝐶𝐶𝑟𝑟 of 𝑟𝑟 = 0, 1, … ,𝑅𝑅 − 1, can only be assigned one of 2𝑁𝑁

possible values obtained from all possible permutations of the 𝑏𝑏𝑘𝑘𝑘𝑘 values. The 2𝑁𝑁 possible values

for 𝐶𝐶𝑟𝑟 can be pre-computed and stored in a LUT.

A DA based FIR filter has a structure similar to the previously depicted inner-product

computation between a constant vector A (the filter impulse response) and a time-varying vector

B (the input signal). Suppose the impulse response vector of the FIR filter is {ℎ(𝑘𝑘), 𝑘𝑘 =

 0, 1, … ,𝑁𝑁 − 1} and its input vector is {𝑠𝑠𝑛𝑛(𝑘𝑘), 𝑘𝑘 = 0,1, … ,𝑁𝑁 − 1}, then the output of this FIR

filter can be given by Equation (4.7).

 𝑦𝑦(𝑛𝑛) = ∑ ℎ(𝑘𝑘) ∙ 𝑠𝑠𝑛𝑛(𝑘𝑘)𝑁𝑁−1
𝑘𝑘=0 (4.7)

Here we assume the input sample of the filter is 𝑥𝑥(𝑛𝑛), and 𝑠𝑠𝑛𝑛(𝑘𝑘) = 𝑥𝑥(𝑛𝑛 − 𝑘𝑘). Comparing with

Equation (4.6), Equation (4.7) can be rewritten as

 𝑦𝑦(𝑛𝑛) = ∑ 2−𝑟𝑟 ∙ 𝐶𝐶𝑟𝑟𝑅𝑅−1
𝑟𝑟=0 (4.8)

53

where

 𝐶𝐶𝑟𝑟 = ∑ ℎ(𝑘𝑘) ∙ (𝑠𝑠𝑛𝑛(𝑘𝑘))𝑟𝑟𝑁𝑁−1
𝑘𝑘=0 (4.9)

with (𝑠𝑠𝑛𝑛(𝑘𝑘))𝑟𝑟 being the 𝑟𝑟th bit of 𝑠𝑠𝑛𝑛(𝑘𝑘).

Equation (4.8) and (4.9) can be directly implemented by pre-computing all of the possible

multiplication results and storing them into a LUT. However, since the number of possible

values in the LUT (its size) is 2𝑁𝑁, which increases exponentially with the filter length 𝑁𝑁, this

approach is impractical when 𝑁𝑁 is large. In order to reduce the LUT size, the filter length 𝑁𝑁 can

be partitioned to form a set of 𝑃𝑃 shorter vectors of coefficients, which require only 2𝑁𝑁/𝑃𝑃 values

to be stored in the LUT.

Let 𝑁𝑁 = 𝑃𝑃𝑃𝑃 (𝑃𝑃 and 𝑀𝑀 are positive integers), the index 𝑘𝑘 can be mapped into (𝑚𝑚 + 𝑝𝑝𝑝𝑝) for

𝑚𝑚 = 0,1, … ,𝑀𝑀 − 1 and 𝑝𝑝 = 0,1, … ,𝑃𝑃 − 1. In this case, Equation (4.8) can be rewritten as

 𝑦𝑦(𝑛𝑛) = ∑ 2−𝑟𝑟 ∙ (∑ (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝
𝑃𝑃−1
𝑝𝑝=0)𝑅𝑅−1

𝑟𝑟=0 (4.10)

where

 (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝 = ∑ ℎ(𝑚𝑚 + 𝑝𝑝𝑝𝑝) ∙ (𝑠𝑠𝑛𝑛(𝑚𝑚 + 𝑝𝑝𝑝𝑝))𝑟𝑟𝑀𝑀−1
𝑚𝑚=0 (4.11)

for r = 0,1, … , R − 1 and p = 0,1, … , P − 1.

Since each (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝 has 2𝑀𝑀 possible values this approach requires 𝑃𝑃 relatively small LUTs.

Equation (4.10) can be re-written using the memory-read operation of LUT as

 𝑦𝑦(𝑛𝑛) = ∑ 2−𝑟𝑟 ∙ (∑ ℱ(𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝
𝑃𝑃−1
𝑝𝑝=0)𝑅𝑅−1

𝑟𝑟=0 (4.12)

where ℱ is the memory-read operator and ℱ(𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝 = (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝 . Bit vector (𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝 is used as

address word and (𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝 = [�𝑠𝑠𝑛𝑛(𝑝𝑝𝑝𝑝)�
𝑟𝑟
 , �𝑠𝑠𝑛𝑛(1 + 𝑝𝑝𝑝𝑝)�

𝑟𝑟
 ,⋯ , (𝑠𝑠𝑛𝑛(𝑀𝑀− 1 + 𝑝𝑝𝑝𝑝))𝑟𝑟] for 0 ≤

r ≤ R − 1 and 0 ≤ p ≤ P − 1.

54

4.1.2 Polyphase decomposition of DA resampling filter

Since the sampling rate of high-speed data converters is much higher than the FPGA clock rate,

it is necessary to process data in parallel using polyphase decomposition.

A super sample rate FIR filter is a filter whose sampling rate is higher than its clock rate. The

purpose of polyphase decomposition is to support parallel processing, in which a high sampling

rate data can be processed with a relatively low speed clock [65]. Here we briefly describe the

steps of constructing a super sample rate FIR filter and the steps of constructing super sample

rate resampling filters based on the former.

For a FIR filter with N taps, its output can be expressed as in Equation (4.13).

 𝑦𝑦𝑘𝑘 = ∑ 𝑥𝑥𝑘𝑘−𝑖𝑖 ∗ ℎ𝑖𝑖𝑁𝑁−1
𝑖𝑖=0 (4.13)

where ℎ = [ℎ0, ℎ1,ℎ2, … ,ℎ𝑁𝑁−1] is the impulse response of the FIR filter, 𝑥𝑥 is the input vector

and 𝑦𝑦 is the output vector. Suppose the degree of parallelism is 4, then the parallel filter structure

can be derived as in (4.14).

𝑦𝑦0 = 𝑥𝑥0 ∗ ℎ0 + 𝑥𝑥−1 ∗ ℎ1 + 𝑥𝑥−2 ∗ ℎ2 + 𝑥𝑥−3 ∗ ℎ3 + 𝑥𝑥−4 ∗ ℎ4 + 𝑥𝑥−5 ∗ ℎ5 + 𝑥𝑥−6 ∗ ℎ6 + 𝑥𝑥−7 ∗ ℎ7 +⋯

𝑦𝑦1 = 𝑥𝑥1 ∗ ℎ0 + 𝑥𝑥0 ∗ ℎ1 + 𝑥𝑥−1 ∗ ℎ2 + 𝑥𝑥−2 ∗ ℎ3 + 𝑥𝑥−3 ∗ ℎ4 + 𝑥𝑥−4 ∗ ℎ5 + 𝑥𝑥−5 ∗ ℎ6 + 𝑥𝑥−6 ∗ ℎ7 + ⋯

𝑦𝑦2 = 𝑥𝑥2 ∗ ℎ0 + 𝑥𝑥1 ∗ ℎ1 + 𝑥𝑥0 ∗ ℎ2 + 𝑥𝑥−1 ∗ ℎ3 + 𝑥𝑥−2 ∗ ℎ4 + 𝑥𝑥−3 ∗ ℎ5 + 𝑥𝑥−4 ∗ ℎ6 + 𝑥𝑥−5 ∗ ℎ7 +⋯

𝑦𝑦3 = 𝑥𝑥3 ∗ ℎ0 + 𝑥𝑥2 ∗ ℎ1 + 𝑥𝑥1 ∗ ℎ2 + 𝑥𝑥0 ∗ ℎ3 + 𝑥𝑥−1 ∗ ℎ4 + 𝑥𝑥−2 ∗ ℎ5 + 𝑥𝑥−3 ∗ ℎ6 + 𝑥𝑥−4 ∗ ℎ7 + ⋯

(4.14)

Equation (4.14) can be re-written as Equation (4.15) by re-arranging and re-grouping the

multiplications.

𝑦𝑦0 = [𝑥𝑥0 ∗ ℎ0 + 𝑥𝑥−4 ∗ ℎ4 + 𝑥𝑥−8 ∗ ℎ8 + ⋯] + [𝑥𝑥−1 ∗ ℎ1 + 𝑥𝑥−5 ∗ ℎ5 + 𝑥𝑥−9 ∗ ℎ9 + ⋯]

+ [𝑥𝑥−2 ∗ ℎ2 + 𝑥𝑥−6 ∗ ℎ6 + 𝑥𝑥−10 ∗ ℎ10 + ⋯] + [𝑥𝑥−3 ∗ ℎ3 + 𝑥𝑥−7 ∗ ℎ7 + 𝑥𝑥−11 ∗ ℎ11

+ ⋯]

55

𝑦𝑦1 = [𝑥𝑥1 ∗ ℎ0 + 𝑥𝑥−3 ∗ ℎ4 + 𝑥𝑥−7 ∗ ℎ8 + ⋯] + [𝑥𝑥0 ∗ ℎ1 + 𝑥𝑥−4 ∗ ℎ5 + 𝑥𝑥−8 ∗ ℎ9 + ⋯] + [𝑥𝑥−1 ∗ ℎ2

+ 𝑥𝑥−5 ∗ ℎ6 + 𝑥𝑥−9 ∗ ℎ10 + ⋯] + [𝑥𝑥−2 ∗ ℎ3 + 𝑥𝑥−6 ∗ ℎ7 + 𝑥𝑥−10 ∗ ℎ11 + ⋯]

𝑦𝑦2 = [𝑥𝑥2 ∗ ℎ0 + 𝑥𝑥−2 ∗ ℎ4 + 𝑥𝑥−6 ∗ ℎ8 + ⋯] + [𝑥𝑥1 ∗ ℎ1 + 𝑥𝑥−3 ∗ ℎ5 + 𝑥𝑥−7 ∗ ℎ9 + ⋯] + [𝑥𝑥0 ∗ ℎ2

+ 𝑥𝑥−4 ∗ ℎ6 + 𝑥𝑥−8 ∗ ℎ10 + ⋯] + [𝑥𝑥−1 ∗ ℎ3 + 𝑥𝑥−5 ∗ ℎ7 + 𝑥𝑥−9 ∗ ℎ11 + ⋯]

𝑦𝑦3 = [𝑥𝑥3 ∗ ℎ0 + 𝑥𝑥−1 ∗ ℎ4 + 𝑥𝑥−5 ∗ ℎ8 + ⋯] + [𝑥𝑥2 ∗ ℎ1 + 𝑥𝑥−2 ∗ ℎ5 + 𝑥𝑥−6 ∗ ℎ9 + ⋯] + [𝑥𝑥1 ∗ ℎ2

+ 𝑥𝑥−3 ∗ ℎ6 + 𝑥𝑥−7 ∗ ℎ10 + ⋯] + [𝑥𝑥0 ∗ ℎ3 + 𝑥𝑥−4 ∗ ℎ7 + 𝑥𝑥−8 ∗ ℎ11 + ⋯]

(4.15)

According to Equation (4.15), the coefficients of the original FIR filter can be polyphase

decomposed into four sub-filters, whose coefficients are in Equation (4.16).

𝐻𝐻0 = [ℎ0,ℎ4,ℎ8,ℎ12,⋯]

𝐻𝐻1 = [ℎ1, ℎ5,ℎ9,ℎ13,⋯]

𝐻𝐻2 = [ℎ2,ℎ6,ℎ10,ℎ14,⋯]

𝐻𝐻3 = [ℎ3,ℎ7,ℎ11,ℎ15,⋯] (4.16)

As shown in Equation (4.16), the original FIR filter has been decomposed into 4 sub-filters and

the length of each sub-filter is only 1/4 of the original filter.

Note that it is very important to make sure that all sub-filters (H0, H1, H2 and H3) have the same

latency. According to Equation (4.15) and (4.16), the block diagram of this super sample rate

FIR filter with a degree of parallelism of 4 is depicted in Figure 4.1.

56

Figure 4.1 A super sample rate FIR filter with a degree of parallelism of 4.

As shown in Figure 4.1, both the input and output of this super sample rate FIR filter have a

degree of parallelism of 4, for which the data rate is 4 times the FPGA clock rate. A resampling

filter which supports super sample rate can also be derived from the principle of super sample

rate FIR filter as shown above. In principle, an interpolation FIR is equivalent to a cascaded

process of up-sampling and filtering, while a decimation FIR is equivalent to a cascaded process

of down-sampling and filtering. As described in [30], in a resampling filter, the number of

operations can be greatly reduced by avoiding the calculation of unnecessary output and the

multiplication of a number with zero. For simplicity, we assume the resampling factor 𝐿𝐿 to be

equal to the degree of parallelism as depicted in Figure 4.1. For an interpolation FIR filter with

𝐻𝐻0

𝐻𝐻3

𝐻𝐻2

𝐻𝐻1

+
𝑍−1
𝑍−1

𝑍−1

𝑋𝑋0𝑋𝑋4
𝑋𝑋1𝑋𝑋5
𝑋𝑋2𝑋𝑋6

𝑋𝑋3𝑋𝑋7

𝑋𝑋−3
𝑋𝑋−2
𝑋𝑋−1

𝑌𝑌0

𝐻𝐻1

𝐻𝐻0

𝐻𝐻3

𝐻𝐻2

+
𝑍−1

𝑍−1

𝑋𝑋0𝑋𝑋4
𝑋𝑋1𝑋𝑋5
𝑋𝑋2𝑋𝑋6

𝑋𝑋3𝑋𝑋7

𝑋𝑋−2
𝑋𝑋−1

𝑌𝑌1

𝐻𝐻2

𝐻𝐻1

𝐻𝐻0

𝐻𝐻3

+

𝑍−1

𝑋𝑋0𝑋𝑋4
𝑋𝑋1𝑋𝑋5
𝑋𝑋2𝑋𝑋6

𝑋𝑋3𝑋𝑋7 𝑋𝑋−1

𝑌𝑌2

𝐻𝐻3

𝐻𝐻2

𝐻𝐻1

𝐻𝐻0

+

𝑋𝑋0𝑋𝑋4
𝑋𝑋1𝑋𝑋5
𝑋𝑋2𝑋𝑋6

𝑋𝑋3𝑋𝑋7

𝑌𝑌3

57

the same coefficients as the FIR filter in Fig. 6, its block diagram can be modified as in Figure

4.2.

Figure 4.2 Block diagram of an interpolation FIR filter

As shown in Figure 4.2, the output rate of this FIR filter is four times of its input data rate, and

the number of sub-filters is 4, which is only 1/4 of the FIR filter depicted in Figure 4.1.

Similarly, for a decimation FIR filter with the same coefficients as the FIR filter in Figure 4.1, its

block diagram can be modified into the block diagram of a decimation FIR filter as in Figure 4.2.

As shown in Figure 4.3, the output data rate of this decimation FIR filter is one fourth of its input

data rate, and its number of required sub-filters is 4, which is one fourth of the FIR filter depicted

in Figure 4.3, so the LUT size is also reduced by a factor of 4. In conclusion, compared with

super sample rate FIR filters, the resource cost of a resampling FIR filter decreases by a factor

equal to the resampling factor.

Figure 4.3 Block diagram of a decimation FIR filter

58

4.2 Experiment

Figure 4.4 Experimental setup

The DA architecture ability to perform subcarrier channel frequency down-conversion, up-

conversion and digital filtering is tested out using the DSXC node and fiber-optic system shown

in Figure 4.4. The composite DSCM signal used as input to the optical transmitter consists of

multiple digital subcarriers generated by an arbitrary waveform generator (AWG). The AWG-

generated composite DSCM signal is filtered by an analog low-pass filter (LPF) whose 3dB

bandwidth is 1.1GHz. The filtered DSCM signal is then converted into an optical signal at

1310nm wavelength by intensity modulation of an optical transmitter with approximately 1mW

average optical power. After propagation over 25km of single mode fiber (SMF), the optical

signal is detected by an optical receiver with direct-detection, and converted back in to a RF

signal before being sent to the DSXC. In the DSXC, the electrical signal is digitized by an ADC

with a sampling rate of 1.6GS/s and a resolution of 12 bits per sample. Then the digitized signal

is transferred to a FPGA for subcarrier level cross-connect switching, which includes subcarrier

de-multiplexing, cross-bar circuit switching, and subcarrier multiplexing. At the DSXC output

the processed data is sent to a DAC where it is converted to form an analog waveform. The DAC

59

has an input sampling rate of 1.6GS/s and a resolution of 16 bits per sample. The waveform at

the DAC output is recorded by a real-time digital oscilloscope (OSC) for offline processing and

evaluation of the signal quality after the DSXC.

In this experiment, the DSCM signal generated by the AWG consists of eight subcarriers (SCs),

and each SC carries a 16QAM signal that occupies a bandwidth of 80MHz. 20MHz is reserved

as the guard band between adjacent SCs. Since the available bandwidth of the ADC is 800MHz

(according to the Nyquist theorem), up to 8 DSCM channels can be supported. In the design of

the resampling filters, a resampling factor of 8 is used, which equally divides the total available

bandwidth of 800MHz into 8 frequency slots (FSs) each with 100MHz bandwidth. More in

general, the resampling factor may vary from SC channel to SC channel depending on the

bandwidth that is assigned to each SC channel to match its individual data rate and modulation

format.

Channel selection, frequency translation, and switching of all 8 subcarrier channels are

performed using 8 pairs of FIR filters implemented at the input and output of the DA-DSXC.

Each pair of FIR filters consists of one decimation (input) and one interpolation (output) filter to

perform down-conversion and up-conversion, respectively. In this experiment, equiripple FIR

filters are used at 1.6 GS/s sampling rate, with 80MHz width of passband and 20MHz width of

transition band. In order to achieve desirable performance, the FIR filter is designed to have a

passband ripple Apass = 0.5dB, and a stopband attenuation Astop = 40dB. With the above filter

specifications, the FIR filter order is 134 (unless otherwise specified) as determined by a filter

design tool available in Matlab. Coefficients of the FIR filters are obtained using the FIRPM

function in Matlab.

60

Figure 4.5 Spectrum of (a) output of optical receiver (b) output of DAC without cross-connect switching (c) output

of DA-DSXC1 (d) output of DA-DSXC2

For tracking purposes, each SC channel generated by the AWG is assigned a unique identifier [1

2 3 4 5 6 7 8], counting from the lowest frequency to the highest frequency as marked on the

spectrum shown in Figure 4.5 (a). All the SC channels are assigned the same power at the AWG.

Since the channel has a flat frequency response in the signal band, the SC channels at the DA-

DSXC input also have same power. Through the DA-DSXC, these SC channels can be switched

from any input FS to any output FS. Figure 4.5 (b) shows the spectrum measured at the DA-

DSXC output when the SC channels relative positions are not changed, i.e., channel selection

and frequency translation are not applied yet. There is approximately a 10dB roll-off at the

highest frequencies, which accounts for the combined transfer function of the optical transmitter,

receiver, ADC and DAC circuits.Two distinct channel reassignments at the DA-DSXC output

are tested, i.e., DA-DSXC1 [7 4 6 5 3 2 8 1] and DA-DSXC2 [8 6 1 7 2 3 4 5], respectively.

61

Figure 4.5 (c) and (d) show the post-compensated spectra of the DSXC output for the

configurations of DA-DSXC1 and DA-DSXC2, respectively. In these two experiments the roll-

off effects of the transmission system are post-compensated offline at the receiver for ease of

implementation. However, this compensation can also be performed in real-time by

incorporating in the FPGA design filters with frequency responses that are inverse to the roll-off

effects.

For the purpose of comparison, we also built a DSXC using resampling filters based on

multipliers [30], which has the same switching capabilities as the DA-based DSXC. We refer to

this multiplier-based DSXC as MULT-DSXC. Both DA-DSXC and MULT-DSXC are

implemented in the same Virtex-7 FPGA platform and employing the same type of resampling

FIR filters in terms of orders and coefficients. The output of MULT-DSXC is chosen to match

the same two channel switching patters defined earlier. i.e., MULT-DSXC1 [7 4 6 5 3 2 8 1] and

MULT-DSXC2 [8 6 1 7 2 3 4 5].

Figure 4.6 Signal EVM of recovered subcarriers

62

Figure 4.6 shows the error vector magnitude (EVM) for each of the eight subcarrier channels

under six different configurations. Open squares show the subcarrier EVM after 25km of SMF

transmission at the input of the DSXC. Due to the transceiver low frequency cut-off at 30MHz,

the lowest frequency subcarrier channel has an abnormally high EVM. Open circles show the

subcarrier EVM at the DSXC output in the absence of any digital processing (simple pass-

through). The comparison between open squares and open circles indicates that the EVM values

increase by an average of about 1%, due to both the digitizing noise and the non-flat frequency

response of the ADC and DAC. When the switching functionality of DSXC is activated,

resampling filters are applied to the signals to allow subcarrier frequency up- and down-

conversion. Triangles show the EVM values at the DSXC output in four configurations: left- and

right-pointing triangles show the EVM values of DA-DSXC1 and DA-DSXC2, while upward-

and downward-pointing triangles show the EVM values of MULT-DSXC1 and MULT-DSXC2,

respectively. These results clearly indicate that DA-based and multiplier-based resampling filters

yield similar performance, as the EVM values for DA-DSXC1 and DA-DSXC2 are essentially

the same as those for MULT-DSXC1 and MULT-DSXC2.

In our experiment, each subcarrier channel carries a set of independent data with a modulation

format of 16QAM. According to [66, 67], the required EVM threshold for LTE-A is 12.5% for

16QAM. Figure 4.6 shows that this DSXC implementation meets this EVM requirement. In

addition to avoid frequency cut-off by the optical transceiver, the signal quality can be further

improved by increasing the order of the DA FIR filter, which results in a lower passband ripple

and higher stopband attenuation of the FIR filter. However, a higher order DA FIR filter costs

more LUTs in the FPGA. A tradeoff between the filter performance and resource consumption

has to be found in the design. Both passband ripple and stopband attenuation are dependent on

63

the filter order, and they affect the signal quality. More specifically, passband ripple introduces

frequency dependent loss of the signal spectrum, while non-adequate stopband attenuation would

introduce crosstalk between closely spaced subcarrier channels. Both of these two effects can

significantly deteriorate signal EVM.

Figure 4.7 (a) EVM vs Passband Ripple, and (b) EVM vs Stopband Attenuation

64

Figure 4.7 (a) shows the EVM of a subcarrier channel after passing through a FIR filter with

different values of passband ripple. The simulation has been conducted by sending a signal with

8 subcarriers into the bandpass FIR filter. The stopband attenuation is kept constant at Astop =

40dB while changing the passband ripple through the change of the filter order. Figure 4.7 (a)

indicates that EVM increases linearly with the increase of the passband ripple. The positions of

frequency peaks and notches in the passband ripple also have a minor impact on the EVM.

Consequently the calculated EVM does not exactly follow a straight line in Figure 4.7 (a). The

major impact of insufficient stopband attenuation is the crosstalk from other subcarrier channels.

In the frequency down-conversion process, the resampling FIR filter selects a particular

subcarrier channel, rejects other subcarriers, and shifts the selected subcarrier to the lowest

frequency slot. If stopband attenuation is not high enough, the leakage from all other 7

subcarriers will be shifted to the lowest frequency slot, generating crosstalk. In the frequency up-

conversion process, after up-sampling, every selected subcarrier has 8 copies equally spread

across the 8 frequency slots. After bandpass filtering with insufficient stopband attenuation, the

leakage from all other 7 subcarriers would contribute to crosstalk. To evaluate the impact of

stopband attenuation Astop in the DSXC node, simulation is carried out with a fixed passband

ripple of 0.5dB, and Astop is varied by changing the filter order. Figure 4.7 (b) shows the

calculated EVM as a function of stopband attenuation. For Astop < 40dB, EVM improves rapidly

with the increase of Astop due to the significant reduction of inter-channel crosstalk. The EVM

improvement saturates when Astop approaches 40dB, at which point the crosstalk impact becomes

insignificant. With a fixed passband ripple, the stopband attenuation increases linearly with the

filter length (number of taps) as indicated by the right vertical axis of Figure 4.7 (b). As

65

previously mentioned, by setting Apass = 0.5dB and Astop = 40dB, the order of the FIR filter is

134, which is the value chosen in this study.

4.3 Resource requirement and discussion

Compared with MULT-DSXC, DA-DSXC has three advantages: 1) it does not require expensive

DSP slices in the FPGA implementation; 2) the DSP-induced latency is only a few FPGA clock

periods and is independent of the filter order; and 3) power consumption is reduced as massive

DSP multiplications are avoided. These three aspects are discussed. Most of the terms used in

this section are defined in Section 4.1.1 and 4.1.2.

4.3.1 Resource Utilization

The major resource cost of a DA-based FIR filter is the lookup table (LUT). Consider a FIR filter

with 𝑁𝑁 taps and 𝑊𝑊 bit width of LUT data. Let 𝐺𝐺 be the bit width of the input data. A fully serial

implemented DA FIR filter processes 1 bit per clock period (equivalent to process 1 sample per

𝐺𝐺 clock periods), which means its latency is 𝐺𝐺 clock periods. For a FIR filter with asymmetric

coefficients, its LUT size (without LUT partition) is 𝑊𝑊 ∙ 2𝑁𝑁 bits. Partitioning the LUT can

reduce its size by subdividing a LUT into several smaller LUTs. If we perform a M-fold LUT

partition, such as 𝑁𝑁 = 𝑁𝑁1 + 𝑁𝑁2 + ⋯+ 𝑁𝑁𝑀𝑀 , then the total LUT size becomes 𝑊𝑊1 ∙ 2𝑁𝑁1 + 𝑊𝑊2 ∙

2𝑁𝑁2 + ⋯+ 𝑊𝑊𝑀𝑀 ∙ 2𝑁𝑁𝑀𝑀 bits, where 𝑊𝑊𝑖𝑖 is the bit width of the LUT data which is obtained through

the multiplication of coefficients and allowed input data. The value of 𝑊𝑊𝑖𝑖, which is determined

by the bit width of input data, bit width of coefficients, and the LUT partition, is typically

smaller than the bit width of the output data. The LUT size can be further reduced by skipping

the zero-valued coefficients [61]. In this case the zero-valued coefficients are ignored when LUT

partition is performed. If this DA FIR filter is fully parallel implemented, in which it processes 𝐺𝐺

66

bits per clock period (equivalent to process 1 sample per clock period), its LUT size is 𝐺𝐺 times

that of the fully serially implemented DA FIR filter. In this case, the LUT size of a fully parallel

DA FIR is (𝑊𝑊1 ∙ 2𝑁𝑁1 + 𝑊𝑊2 ∙ 2𝑁𝑁2 + ⋯+ 𝑊𝑊𝑀𝑀 ∙ 2𝑁𝑁𝑀𝑀) ∙ 𝐺𝐺. For example, consider a FIR filter with

12 taps and 12 input bit width, LUT partition of [6 6 2] and corresponding data bit widths of [11

14 8]. If fully serially implemented, its LUT size is 11 × 26 + 14 × 26 + 8 × 22 = 1,632 bits. If

fully parallel implemented, its LUT size is (11 × 26 + 14 × 26 + 8 × 22) × 12 = 19,584 bits.

For a super sample rate FIR filter based on DA architecture, the estimation of its LUT needs to

consider its polyphase decomposition, which is determined by the degree of parallelism. The

polyphase decomposition process decomposes this FIR filter into multiple sub-filters, as

described in Chapter 4.1.2. Each sub-filter can be treated as a small FIR filter and its LUT size

can be estimated by the method described in the previous paragraph, so that the LUT size of the

super sample rate FIR filter can be estimated by summing up the LUT sizes of all sub-filters. For

example, suppose the super sample rate FIR filter has 𝑁𝑁 taps and has a degree of parallelism of

𝐿𝐿, then the number of taps of each sub-filter is 𝑁𝑁/𝐿𝐿. For simplicity, we assume 𝑁𝑁 is an integer

multiple of 𝐿𝐿 and there are no zero-valued coefficients. As described in Chapter 4.1.2, this super

sample rate FIR filter consists of 𝐿𝐿2 sub-filters with 𝑁𝑁/𝐿𝐿 taps in each sub-filter. Suppose LUT

partition is not performed and the bit width of LUT data is 𝑊𝑊 and each sub-filter is fully parallel

implemented, then the LUT size of each sub-filter is 𝑊𝑊 ∙ 2𝑁𝑁/𝐿𝐿 ∙ 𝐺𝐺 and the LUT size of this super

sample rate FIR filter is 𝑊𝑊 ∙ 2𝑁𝑁/𝐿𝐿 ∙ 𝐺𝐺 ∙ 𝐿𝐿2. However, the LUT size might be too large if the value

𝑁𝑁/𝐿𝐿 is relatively large, so the LUT size can be further reduced through LUT partition.

For a resampling filter which has a degree of parallelism of 𝐿𝐿, suppose the resampling factor is

𝑀𝑀, then the resource cost of a resampling FIR filter is only 1/𝑀𝑀 of that of a FIR filter with the

same coefficients, so its LUT size is 𝑊𝑊 ∙ 2
𝑁𝑁
𝐿𝐿 ∙ 𝐺𝐺 ∙ 𝐿𝐿2/𝑀𝑀. In our DSXC design, the degree of

67

parallelism is 8 and the resampling factor is 8, so the LUT size of each DA based resampling

filter is 𝑊𝑊 ∙ 2
𝑁𝑁
8 ∙ 𝐺𝐺 ∙ 8. In our system, the ADC resolution is 12 bits, W = 12, the length of

coefficients is N = 134. In this case, the filter’s LUT size without LUT partition is 12 × 2
134
8 ×

12 × 8 = 1.27 × 108 bits, which is too large and not practical for hardware implementation.

Since N/8 = 16.75, the length of each sub-filter is approximately 17. If LUT partition is

performed as [6 6 5], then the LUT size of a resampling filter becomes(12 × 26 + 12 × 26 +

12 × 25) × 12 × 8 = 184,320 bits. After the LUT partition, the LUT size is scaled down to a

value that is practical for implementation and this resampling filter can be efficiently

implemented with FPGA.

However, there is no analytic formula to accurately estimate the amount of LUTs that are exactly

used in FPGA hardware. This is because the mapping from HDL design of DA filter to hardware

implementation is a complicated process that is affected by many factors such as the architecture

of DA filter, the FPGA tool, and the type of targeted device. Nevertheless, Xilinx Vivado, which

conducts the process of this mapping, can provide estimations of resource cost of the design for

the targeted device. The mapping performed by Xilinx Vivado consists of two stages: synthesis

and implementation. The synthesis process maps the HDL design to netlist, and the

implementation process maps the synthesized netlist to the available resources on the targeted

device and generates bit-stream file to be downloaded to FPGA hardware. The Xilinx Vivado

reports the FPGA hardware resource utilization after synthesis and implementation, respectively.

Only the post-implementation resource utilization reveals the actual hardware cost on FPGA. In

our experiment, there are 433,200 available 6-input LUTs on a Virtex-7 690T FPGA chip. For

convenience, the term LUT cost refers to the number of needed LUTs on the FPGA hardware

68

after synthesis and implementation. The resource utilization is then evaluated through Xilinx

Vivado after synthesis and implementation.

Table 4.1 FPGA resource utilization of DA DSXC IP and MULT DSXC IP

FPGA

Resource

Available

resource

Post-synthesis

DA DSXC IP MULT DSXC IP

Utilization Utilization % Utilization Utilization %

LUT 433,200 111,711 25.79 29,435 6.79

LUTRAM 174,200 0 0 26,904 15.44

FF 866,400 108,412 12.51 30,923 3.57

BRAM 1,470 0 0 0 0

DSP slice 3,600 0 0 2,147 59.64

Since the designed DSP unit of DSXC is packaged into an intellectual property (IP) that can be

conveniently imported into a Vivado project, we use the term DSXC IP to refer to the design of

DSXC inside FPGA. Table 4.1 shows the FPGA resource utilization for both DA DSXC IP and

MULT DSXC IP, which mainly consists of FIR filters. Before importing the DSXC IP into the

FPGA project that contains all other logics, we estimated its resource cost by running synthesis

under Xilinx Vivado. The post-synthesis results show that compared with MULT DSXC IP, DA

DSXC IP consumes more LUTs and flip-flops (FFs), but it does not consume any DSP slice

which is most often the bottleneck of the hardware resources.

It is important to point out that for MULT-DSXC, the number of DSP slices is equal to the

number of required multipliers in the design of FIR filters. Instead of using DSP slice, a

multiplier can also be built by only using LUTs. According to the synthesis results of the LUT

based multiplier IP in Vivado, a 12 × 16 bit multiplier consumes 204 LUTs in the Virtex-7 690T

FPGA chip. Since the number of required multipliers in the MULT DSXC IP is 2147, a total of

69

2,147 × 204 LUTs would be required if all multipliers are implemented with LUTs. So, the total

cost of LUTs for this MULT DSXC IP would be 2,147 × 204 + 29,435 = 467,423, which

exceeds the number of total available LUTs on Virtex-7 690T FPGA. Another problem with this

FIR filter implementation is its linear dependence on the filter order. Therefore, it is more

efficient to implement DA based FIR filters on hardware instead of implementing FIR filters

based on multipliers, even when each multiplier is implemented by LUTs.

Table 4.2 FPGA resource utilization of DA DSXC and MULT DSXC

FPGA

Resource

Available

resource

Post-synthesis Post-implementation

DA DSXC MULT DSXC DA DSXC MULT DSXC

Utilization % Utilization % Utilization % Utilization %

LUT 433,200 31.17 12.18 29.52 9.12

LUTRAM 174,200 1.37 16.81 1.10 11.34

FF 866,400 16.08 7.13 15.58 6.60

BRAM 1,470 6.53 6.53 6.53 6.53

DSP slice 3,600 0 59.64 0 59.64

Table 4.2 shows the FPGA resource utilization of MULT DSXC and DA DSXC, which contain

all other utility logics, after synthesis and implementation. Since the DSXC design includes

utility logics such as the Microblaze IP for controlling and JESD204B IPs for interfacing ADC,

DAC, and FPGA, we can run synthesis and implementation in Xilinx Vivado to estimate the

overall resource cost. It shows that in both cases of post-synthesis and post-implementation, DA

DSXC does not consume DSP slices. The table shows that the MULT DSXC consumes nearly

60% of the total available DSP slices on a Virtex-7 690T FPGA. This means that increasing the

filter order may quickly use up all the available DSP slices. With the same functionality and

performance, the DA DSXC requires 0 DSP slice, but increases the use of LUTs from 9.12% to

70

29.52%, allowing for more room to increase the switching capability with the remaining

hardware resources. Increasing the available memory in digital hardware is also significantly

cheaper than increasing the highly specialized DSP slices in FPGA.

4.3.2 Latency

If we define the latency of a FIR filter as the delay between the time of occurrence of the first

non-zero input and the first non-zero output of the FIR filter, then traditional direct-implemented

FIR filter based on multipliers has a latency which is proportional to its filter order. Whereas the

latency of a DA-based FIR filter is mainly introduced by the reading operation of LUTs and the

shifting and adding operation of digital sequence, which is fixed and is independent of the filter

order.

In order to have a filter with linear phase, we need to design a FIR filter whose coefficients are

symmetric around its center. Theoretically, for a direct-implemented FIR filter with symmetric

coefficients and a filter order of 𝑁𝑁, its latency is 𝑁𝑁 ∙ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐/2, where 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 is the clock period of the

digital circuit. For the DA filter used in our DSXC, its latency is 2 clock periods if implemented

in fully parallel architecture without pipelining. In order to meet the timing constraint of the

FPGA design, the DA FIR has been pipelined and its latency is increased to 7 clock periods.

According to the block diagram in Figure 4.1, the time shift delay and summation operation add

an additional delay of 2 clock periods, so that a DA FIR filter in our design has an overall latency

of 9 clock periods. Since each subcarrier needs a down-conversion and an up-conversion which

require two resampling filters, the filter induced latency of a DA DSXC is 19 clock periods

including the 1 clock latency introduced by the multiplexer. With the clock period of 5 𝑛𝑛𝑛𝑛 in the

FPGA platform that we used, the accumulated latency of this DA DSXC is about 0.1 𝜇𝜇𝜇𝜇 due to

DSP. For the MULT DSXC, the filter induced latency is (𝑁𝑁 + 1) ∙ 𝑇𝑇𝑐𝑐𝑙𝑙𝑙𝑙, where N = 132 is the

71

order of filter used in our design. Thus, the total filter-induced latency of MULT DSXC is

approximately 0.67 𝜇𝜇𝜇𝜇. Note that the actually latency due to DSXC IP might be slightly longer

than the theoretical estimation, since there are some other utility logics that may increase the

latency by a few clock cycles.

As a circuit-based cross-connect, the DSXC has a deterministic latency. The DSXC latency

mainly comes from the data converters (ADC/DAC), the data interfaces between converters,

FPGA, and the DSXC IP inside FPGA. In order to measure the DSXC actual latency, we built

three FPGA projects: in the 1st project the signal passes through the system without any DSP

processing; in the 2nd project the signal passes through MULT DSXC; and in the 3rd project the

signal passes through DA DSXC. For each project, we sent a triangular waveform with relatively

long period (5 𝜇𝜇𝜇𝜇) and compared the delay between the falling edges of the transmitted

waveform (input) and received waveform (output). The measured latency of the 1st project is

1.82 𝜇𝜇𝜇𝜇, which is caused by the signal path between the input of ADC, output of DAC, and the

interfaces between ADC, DAC, and FPGA board. This latency can be greatly reduced by

integrating ADC, DAC and FPGA onto a single chip. The measured latencies of the 2nd project

(MULT DSXC) and the 3rd project (DA DSXC) are 2.75 𝜇𝜇𝜇𝜇 and 1.96 𝜇𝜇𝜇𝜇, respectively. Both of

them are longer than the latency of the 1st project because of the additional processing latency

introduced by the DSXC IP. In this experiment, the additional latency introduced by DSXC IP of

MULT DSXC is 0.93 𝜇𝜇𝜇𝜇 while the latency introduced by DSXC IP of DA DSXC is 0.14 𝜇𝜇𝜇𝜇, both

slightly longer than the corresponding theoretical estimations presented earlier. Nonetheless, the

achievable reduction of processing latency through the use of DA-based resampling filters is

confirmed.

72

4.3.3 Power Consumption

In terms of electrical power consumption, the post-implementation results of the FPGA project

show that the on-chip power consumption of MULT DSXC and DA DSXC are both

approximately 12W. In practical applications, FPGAs are usually used for DSP prototyping,

while the final designs are often integrated into task specific ASICs. As discussed in [65], for a

generic DSP design there is a mapping relation between the integrated circuit (IC) area required

in FPGAs and the IC area required in ASICs. According to [65], the area required to implement

LUT in ASICs is on average 35 times smaller than that in FPGAs, while the area required to

implement multipliers in ASICs is on average only 25 times smaller than that in FPGAs. As

MULT-DSXC uses a large number of multipliers while DA-DSXC only uses LUTs, after

converting from the FPGA design to ASIC design, the IC area required to implement DA-DSXC

is estimated to be on the order of 70% of that required to implement MULT-DSXC, and thus,

there is a potential for the reduction of power consumptions in ASIC design.

4.4 Conclusion

We demonstrated the use of DA-based resampling filters for both frequency translation and

channel selection in DSXC. Compared with traditional FIR filters, which are based on

multipliers and require costly DSP slices to be implemented in FPGA, the DA algorithm makes

use of look-up-tables, which require only digital memories that are usually more abundant and

less costly. DA-based resampling filters provide a hardware resource-efficient solution for

implementing DSXC, which must be able to switch multiple digital subcarrier channels from any

input to any output port. In addition, a DA-based resampling filter has reduced processing

latency compared with a multiplier-based FIR filter with same transfer function. We have

73

experimentally implemented a real-time 8x8 DSXC in a Xilinx Virtex-7 FPGA platform, and

investigated the signal EVM penalties introduced by the DSXC. A comparison based on both

required hardware resources and introduced processing latency was presented between a DA-

based DSXC implementation and a multiplier-based DSXC implementation. The experimental

results show that a DSXC using DA-algorithm for frequency translation and channel selection is

a suitable technology to provide subcarrier circuit switching cross-connection in optical

networks, and may find useful applications in 5G mobile fronthaul, where improved spectral

efficiency and flexibility are of the essence.

74

Chapter 5: Conclusion and Future work

5.1 Conclusion

This dissertation focuses on the investigation of real-time DSP-enabled DSXC that aims to

improve the spectral efficiency and provide a more flexible schemes of cross-connect switching

in future optical networks. We presented the principle of DSXC and demonstrated two different

implementations of them.

The main contribution of this research work consists of three parts: 1) investigated and

experimentally demonstrated the first real-time DSP-enabled DSXC; 2) introduced resampling

filters in the design of DSXC to reduce the computational cost of the expensive multipliers, and

to limit the resource cost increment with the number of subcarriers; 3) introduced DA

architecture in the design of DSXC based on resampling filters to eliminate the use of multipliers

and reduce the processing latency and potential power consumption.

5.2 Future work

There are many other interesting topics worth further investigation.

The DSXC presented in this dissertation is based on Nyquist-FDM. Since DSCM can also be

based on OFDM, it is possible to implement OFDM-based DSXC, and to analyze its resource

cost, power consumption and performance, and to compare it with its Nyquist-FDM-based

counterpart.

Limited by the capability of hardware platform, we mainly demonstrated the function of

frequency translation and channel selection of one DSXC. It would be interesting to investigate

the performance of multiple DSXC nodes, and to evaluate their performance in optical networks.

The performance of DSXCs with high number of subcarriers can also be investigated. For

75

example, a ZCU111 FPGA board has eight ADCs, each with a maximum sampling rate of 4.096

GSPS, and eight DACs, each with a maximum sampling rate of 6.4 GSPS. With a new hardware

platform based on the ZCU111 FPGA board, a DSXC with more wavelength channels, as well as

more subcarriers, can be implemented. The increasing number of subcarriers may lead to a high

peak to average power ratio (PAPR), which mandates further investigation. This new platform

also has more hardware resources (DSP, BRAM, LUT, etc.) that may enable implementing a

DSXC with higher performance powers. The hardware imperfections, such as ADC nonlinearity

and DAC spectral roll-off, can also be compensated by using low order FIR filters implemented

within the FPGA.

76

References

[1] O. Gerstel, M. Jinno, A. Lord, and S. B. Yoo, “Elastic optical networking: A new dawn for

the optical layer?” IEEE Communications Magazine, 50(2), 2012.

[2] M. Jinno, H. Takara, B. Kozicki, Y. Tsukishima, Y. Sone, and S. Matsuoka, “Spectrum-

efficient and scalable elastic optical path network: architecture, benefits, and enabling

technologies,” IEEE communications magazine, 2009, 47(11): 66-73.

[3] K. Christodoulopoulos, I. Tomkos, and E. A. Varvarigos, "Elastic bandwidth allocation in

flexible OFDM-based optical networks," Journal of Lightwave Technology, 29.9 (2011):

1354-1366.

[4] K. Christodoulopoulos, I Tomkos, and E. A. Varvarigos, "Dynamic bandwidth allocation in

flexible OFDM-based networks," Optical Fiber Communication Conference. Optical

Society of America, 2011: OTuI5.

[5] M. Jinno, B. Kozicki, H. Takara, A. Watanabe, Y. Sone, T. Tanaka, and A. Hirano,

“Distance-adaptive spectrum resource allocation in spectrum-sliced elastic optical path

network [topics in optical communications],” IEEE Communications Magazine, 48(8),

(2010).

[6] P. M. Hill, and R. Olshansky, "A 20-channel optical communication system using subcarrier

multiplexing for the transmission of digital video signals," Journal of lightwave

technology 8.4 (1990): 554-560.

[7] R. Hui, B. Zhu, R. Huang, C. T. Allen, K. R. Demarest, and D. Richards, "Subcarrier

multiplexing for high-speed optical transmission," Journal of lightwave technology 20, no. 3

(2002): 417.

77

[8] C. Laperle, and M. O’Sullivan, “Advances in high-speed DACs, ADCs, and DSP for optical

coherent transceivers,” Journal of lightwave technology, 2014, 32(4): 629-643.

[9] E. Dutisseuil, J. M. Tanguy, A. Voicila, R. Laube, F. Bore, H. Takeugming, F. de Dinechin,

F. Cerou, and G. Charlet, “34 Gb/s PDM-QPSK coherent receiver using SiGe ADCs and a

single FPGA for digital signal processing,” Optical Fiber Communication Conference,

Optical Society of America, 2012: OM3H. 7.

[10] C. Fludger, J. C. Geyer, T. Duthel, S. Wiese, and C. Schulien, “Real-time prototypes for

digital coherent receivers,” Optical Fiber Communication Conference, Optical Society of

America, 2010: OMS1.

[11] A. Leven, N. Kaneda, and S. Corteselli, “Real-time implementation of digital signal

processing for coherent optical digital communication systems,” IEEE Journal of Selected

Topics in Quantum Electronics, 2010, 16(5): 1227-1234.

[12] A. Leven, N. Kaneda, and Y. K. Chen, “A real-time CMA-based 10 Gb/s polarization

demultiplexing coherent receiver implemented in an FPGA,” Optical Fiber Communication

Conference, Optical Society of America, 2008: OTuO2.

[13] R. Schmogrow, M. Winter, M. Meyer, D. Hillerkuss, S. Wolf, B. Baeuerle, A. Ludwig,

B. Nebendahl, S. Ben-Ezra, J. Meyer, M. Dreschmann, M. Huebner, J. Becker, C. Koos, W.

Freude, and J. Leuthold, “Real-time Nyquist pulse generation beyond 100 Gbit/s and its

relation to OFDM,” Optics Express, 2012, 20(1): 317-337.

[14] R. Schmogrow, R. Bouziane, M. Meyer, P. A. Milder, P. C. Schindler, R. I. Killey, P.

Bayvel, C. Koos, W. Freude, and J. Leuthold, “Real-time OFDM or Nyquist pulse

generation–which performs better with limited resources? ” Optics Express, 2012, 20(26):

B543-B551.

78

[15] W. Jin, X. Duan, Y. Dong, B. Cao, R. P. Giddings, C. Zhang, K. Qiu, and J. M. Tang,

“DSP-enabled flexible ROADMs without optical filters and OEO conversions,” Journal of

Lightwave Technology, 2015, 33(19): 4124-4131.

[16] R. P. Giddings, E. Al-Rawachy, and J. M. Tang, “Experimental Demonstration of Real-

Time Add/Drop Operations in DSP-enabled Flexible ROADMs for Converging Fixed and

Mobile Networks,” Optical Fiber Communication Conference, Optical Society of America,

2018: W2A. 33.

[17] R. Hui, W. Huang, Y. Zhang, M. Hameed, Miguel Razo, Marco Tacca, and A. Fumagalli,

"Digital subcarrier cross-connects (DSXCs)," Transparent Optical Networks (ICTON),

2012 14th International Conference on, pp. 1-6. IEEE, 2012.

[18] R. Hui, W. Huang, Y. Zhang, M. Hameed, M. Razo, M. Tacca, and A. Fumagalli,

“Digital subcarrier optical networks and cross-connects,” Journal of High Speed

Networks, 19, no. 1 (2013): 55-69.

[19] Y. Zhang, M. O’Sullivan, and R. Hui, “Digital subcarrier multiplexing for flexible

spectral allocation in optical transport network,” Optics Express, Vol. 19, No. 22, pp.

21880-21889, October, 2011.

[20] W. Huang, M. Razo, M. Tacca, A. Fumagalli, and R. Hui, “Digital subcarrier optical

networks (DSONs),” 2012 14th International Conference on Transparent Optical Networks

(ICTON), IEEE, 2012: 1-5.

[21] E. Yetginer and G. N. Rouskas. "Power efficient traffic grooming in optical WDM

networks," GLOBECOM 2009-2009 IEEE Global Telecommunications Conference. IEEE,

2009.

79

[22] C. Kachris, and T. Ioannis, “A survey on optical interconnects for data centers,” IEEE

Communications Surveys & Tutorials, 14.4 (2012): 1021-1036.

[23] A. Pizzinat, P. Chanclou, F. Saliou, and T. Diallo, “Things you should know about

fronthaul,” Journal of Lightwave Technology, 2015, 33(5): 1077-1083.

[24] X. Liu, H. Zeng, N. Chand, and F. Effenberger, “Efficient mobile fronthaul via DSP-

based channel aggregation,” Journal of Lightwave Technology, 34, no. 6 (2016): 1556-1564.

[25] P. T. Dat, A. Kanno, and T. Kawanishi, "Radio-on-radio-over-fiber: efficient fronthauling

for small cells and moving cells," IEEE Wireless Communications, 22.5 (2015): 67-75.

[26] L.Giorgi, G. Bruno, J. Nijhof, P. J. Urban, G. Vall-llosera, F. Ponzini and J. Ladvánszky,

"Subcarrier multiplexing RF plans for analog radio over fiber in heterogeneous networks,"

Journal of Lightwave Technology, 34.16 (2016): 3859-3866

[27] X. Liu, and F. Effenberger, “Emerging optical access network technologies for 5G

wireless,” Journal of Optical Communications and Networking, 8, no. 12 (2016): B70-B79.

[28] H. Zeng, X. Liu, S. Megeed, A. Shen, and F. Effenberger, "Digital Signal Processing for

High-Speed Fiber-Wireless Convergence," Journal of Optical Communications and

Networking 11.1 (2019): A11-A19.

[29] C. Browning, E. P. Martin, A. Farhang, and L. P. Barry, "60 GHz 5G Radio-Over-Fiber

Using UF-OFDM With Optical Heterodyning," IEEE Photonics Technology Letters 29.23

(2017): 2059-2062.

[30] T. Xu, A. Fumagalli, and R. Hui, “Real-Time DSP-Enabled Digital Subcarrier Cross-

Connect Based on Resampling Filters,” Journal of Optical Communications and

Networking, 2018, 10(12): 937-946.

80

[31] T. Xu, and R. Hui, “Real-Time Digital Subcarrier Cross-Connect Based on Distributed

Arithmetic DSP Algorithm,” 2019 IEEE Optical Interconnects Conference (OI), IEEE,

2019: 1-2.

[32] P. J. Winzer, “High-spectral-efficiency optical modulation formats,” Journal of

Lightwave Technology, 2012, 30(24): 3824-3835.

[33] B. Bäuerle, A. Josten, M. Eppenberger, E. Dornbierer, D. Hillerkuss, and J. Leuthold,

“FPGA-based Real-Time Receiver for Nyquist-FDM at 112 Gbit/s sampled with 32 GSa/s,”

2017 Optical Fiber Communications Conference and Exhibition (OFC), IEEE, 2017: 1-3.

[34] J. Armstrong, “OFDM for optical communications,” Journal of lightwave

technology, 2009, 27(3): 189-204.

[35] Y. Benlachtar, P. M. Watts, R. Bouziane, P. Milder, D. Rangaraj, A. Cartolano, R.

Koutsoyannis, J. C. Hoe, M. Püschel, M. Glick, and R. I. Killey, “Generation of optical

OFDM signals using 21.4 GS/s real time digital signal processing,” Optics Express, 2009,

17(20): 17658-17668.

[36] Q. Yang, S. Chen, Y. Ma, and W. Shieh, “Real-time reception of multi-gigabit coherent

optical OFDM signals,” Optics express, 2009, 17(10): 7985-7992.

[37] S. Chen, Q. Yang, Y. Ma, and W. Shieh, “Real-time multi-gigabit receiver for coherent

optical MIMO-OFDM signals,” Journal of Lightwave Technology, 2009, 27(16): 3699-

3704.

[38] N. Kaneda, Q. Yang, X. Liu, S. Chandrasekhar, W. Shieh, and Y. K. Chen, “Real-time

2.5 GS/s coherent optical receiver for 53.3-Gb/s sub-banded OFDM,” Journal of lightwave

technology, 2009, 28(4): 494-501.

81

[39] R. P. Giddings, X. Q. Jin, H. H. Kee, X. L. Yang, and J. M. Tang, “First experimental

demonstration of real-time optical OFDM transceivers,” 2009 35th European Conference on

Optical Communication, IEEE, 2009: 1-2.

[40] R. P. Giddings, X. Q. Jin, and J. M. Tang, “Experimental demonstration of real-time

3Gb/s optical OFDM transceivers,” Optics express, 2009, 17(19): 16654-16665.

[41] R. P. Giddings, X. Q. Jin, and J. M. Tang, “First experimental demonstration of 6Gb/s

real-time optical OFDM transceivers incorporating channel estimation and variable power

loading,” Optics express, 2009, 17(22): 19727-19738.

[42] X. Q. Jin, E. Hugues-Salas, R. P. Giddings, J. L. Wei, J. Groenewald, and J. M. Tang,

“First real-time experimental demonstrations of 11.25 Gb/s optical OFDMA PONs with

adaptive dynamic bandwidth allocation,” Optics express, 2011, 19(21): 20557-20570.

[43] R. P. Giddings, “Real-time digital signal processing for optical OFDM-based future

optical access networks,” Journal of Lightwave Technology, 2013, 32(4): 553-570.

[44] Xilinx, “Virtex 5 Product Table (online)”,

https://www.xilinx.com/support/documentation/selection-guides/virtex5-product-table.pdf

[45] Xilinx, “Virtex 7 Product Table (online)”,

https://www.xilinx.com/support/documentation/selection-guides/virtex7-product-table.pdf

[46] JEDEC Standard: Serial Interface for Data Converters (JESD204B Specification)

[47] T. Hill, "Comprehensive JESD204B Solution Accelerates and Simplifies

Development," White Paper: All Programmable FPGAs and SoCs v1. 0.1) (2014).

[48] Analog Devices. "JESD204B Survival Guide." (2014). (Online)

https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-

Survival-Guide.pdf

https://www.xilinx.com/support/documentation/selection-guides/virtex5-product-table.pdf
https://www.xilinx.com/support/documentation/selection-guides/virtex7-product-table.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf
https://www.analog.com/media/en/technical-documentation/technical-articles/JESD204B-Survival-Guide.pdf

82

[49] P. Milder, F. Franchetti, J. C. Hoe, and M. Püschel, “Computer generation of hardware

for linear digital signal processing transforms,” ACM Transactions on Design Automation of

Electronic Systems (TODAES), 2012, 17(2): 15.

[50] F. J. Harris, “Multirate signal processing for communication systems,” Prentice Hall

PTR, 2004, Chapter 2.

[51] Xilinx, “FIR compiler V7.2 logicCORE IP Product Guide (online),”

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149

-fir-compiler.pdf , November 2015.

[52] F. J. Harris, C. Dick, and M. Rice, “Digital receivers and transmitters using polyphase

filter banks for wireless communications,” IEEE transactions on microwave theory and

techniques, 51.4 (2003): 1395-1412.

[53] G. Bosco, A. Carena, V. Curri, P. Poggiolini, and F. Forghieri, “Performance Limits of

Nyquist-WDM and COOFDM in High-Speed PM-QPSK Systems,” IEEE Photonics

Technology Letters, 22.15 (2010): 1129-1131.

[54] R. Schmogrow, B. Nebendahl, M. Winter, A. Josten, D. Hillerkuss, S. Koenig, J. Meyer,

M. Dreschmann, M. Huebner, C. Koos, J. Becker, W. Freude, and J. Leuthold, “Error vector

magnitude as a performance measure for advanced modulation formats,” IEEE Photonics

Technology Letters, 2011, 24(1): 61-63.

[55] D. Novak, R. B. Waterhouse, A. Nirmalathas, C. Lim, P. A. Gamage, T. R. Clark, M. L.

Dennis, and J. A. Nanzer, “Radio-over-fiber technologies for emerging wireless

systems,” IEEE Journal of Quantum Electronics, 52.1 (2016): 1-11.

https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf
https://www.xilinx.com/support/documentation/ip_documentation/fir_compiler/v7_2/pg149-fir-compiler.pdf

83

[56] D. A. A. Mello, A. N. Barreto, F. A. Barbosa, C. Osorio, M. Fiorani, and P. Monti,

“Spectrally efficient fronthaul architectures for a cost-effective 5G C-RAN,” Transparent

Optical Networks (ICTON), 2016 18th International Conference on, pp. 1-5, IEEE, 2016.

[57] X. Liu, H. Zeng, and F. Effenberger, “Bandwidth-efficient synchronous transmission of

I/Q waveforms and control words via frequency-division multiplexing for mobile

fronthaul,” Global Communications Conference (GLOBECOM), IEEE, 2015.

[58] M. Mehendale, M. Sharma, and P. K. Meher, "DA-Based Circuits for Inner-Product

Computation," Arithmetic Circuits for DSP Applications (2017).

[59] S. A. White, "Applications of distributed arithmetic to digital signal processing: A

tutorial review," IEEE Assp Magazine 6.3 (1989): 4-19.

[60] Mathworks Inc, “Distributed Arithmetic for FIR Filters”,

https://www.mathworks.com/help/hdlfilter/distributed-arithmetic-for-fir-filters.html

[61] Mathworks Inc, “Filter Design HDL Coder™ User's Guide”, 2019.

[62] P. K. Meher, "LUT optimization for memory-based computation," IEEE Transactions on

Circuits and Systems II: Express Briefs 57.4 (2010): 285-289.

[63] P. K. Meher, S. Chandrasekaran, and A. Amira. "FPGA realization of FIR filters by

efficient and flexible systolization using distributed arithmetic," IEEE transactions on signal

processing 56.7 (2008): 3009-3017.

[64] S. Y. Park, and P. K. Meher, "Efficient FPGA and ASIC realizations of a DA-based

reconfigurable FIR digital filter," IEEE Transactions on Circuits and Systems II: Express

Briefs 61.7 (2014): 511-515.

[65] A. Paek, “Super Sample Rate FIR Implementation using Vivado HLS,” 2014.

https://www.mathworks.com/help/hdlfilter/distributed-arithmetic-for-fir-filters.html

84

[66] “3GPP specification: Requirements for further advancements for E-UTRA (LTE

Advanced)”.

[67] “Base Station (BS) radio transmission and reception,” 3GPP TS 36.104, V.12.6.0, Feb.

2015.

[68] I. Kuon, and J. Rose, “Measuring the gap between FPGAs and ASICs,” IEEE

Transactions on computer-aided design of integrated circuits and systems, 2007, 26(2): 203-

215.

85

Acronyms

ADC analog to digital converter

APC antisymmetric product coding

ARoF analog radio over fiber

ASIC application-specific integrated circuit

AWG arbitrary waveform generator

AXI advanced extensible interface

BPF bandpass filter

BRAM block RAM

C-RAN cloud radio access network

CO central office

DA distributed arithmetic

DAC digital to analog converter

DCT discrete cosine transform

DDC digital down-conversion

DDS direct digital synthesizer

DFT discrete Fourier transform

DWT discrete wavelet transform

DUC digital up-conversion

DRoF digital radio over fiber

DSCM digital subcarrier multiplexing

DSP digital signal processing

DSXC digital subcarrier cross-connect

DTFT discrete-time Fourier transform

DXC digital cross-connect

86

EON elastic optical networking

EVM error vector magnitude

FDM frequency division multiplexing

FFT fast Fourier transform

FIFO first in first out

FIR finite impulse response

FMC FPGA mezzanine card

FPGA field programmable gate array

FS frequency slot

GSPS giga samples per second

HDL hardware description language

IP intellectual property

LPF low-pass filter

LO local oscillator

LUT look-up table

LUTRAM LUT random access memory

LSB least significant bit

MAC multiply-accumulate circuitry

OFDM orthogonal frequency division multiplexing

OMS odd-multiple-storage

OOK on-off key

OSC oscilloscope

OXC optical cross-connect

QAM quadrature amplitude modulation

QPSK quadrature phase shift keying

87

PAPR peak to average power ratio

RAM random access memory

RF radio frequency

ROADM reconfigurable optical add/drop multiplexing

RRH remote radio head

SC subcarrier

SCM subcarrier multiplexing

SE spectral efficiency

SMF single mode fiber

UART universal asynchronous receiver-transmitter

WDM wavelength division multiplexing

88

Appendix I

Design of DSXC in Xilinx Vivado

Figure 1 Block design in Xilinx Vivado

Figure 1 shows the block design in Xilinx Vivado 2015.4, each block is an intellectual property

(IP). The IPs can be Vivado built-in IP, user packaged IP or thirty party IP.

Figure 2 Microblaze IP

89

Figure 2 shows the Microblaze IP, which is a softcore processor that can be programmed in C

language. In this design, this processor is used to configure and monitor IPs such as JESD204B

IP through AXI interface. Microblaze can communicate with a computer through the UART

interface, which can be used for debugging.

Figure 3 (a) JESD204B TX IP and (b) JESD RX IP

Figure 3 shows the blocks of JESD204B TX IP and JESD204B RX IP in the block design in

Xilinx Vivado. As shown in Figure 3(a), the JESD204B TX IP has 8 differential pairs of serial

lanes, which transmits data from FPGA board to DAC board. The DAC board is operating in

dual-channel mode, and each DAC has an input data rate of 1.6 GSPS and 16 bits resolution.

Considering the 8B/10B encoding, the line rate of this JESD204B TX IP core is 1.6GSPS × 16

bits × 10/8 × 2 × 1/8 = 8 Gbps. Figure 3(b) shows the JESD204B RX IP which receives data

90

from an ADC board and sends to FPGA logic for processing. Since the ADC is operating in

single channel mode with output data rate of 1.6 GSPS and 12 bits resolution. The ADC

aggregates every 5 samples and add 4 bits overhead to form a frame of 64 bits. Considering the

overhead and 8B/10B encoding, the line rate of this JESD204B RX IP core is 1.6 GSPS × 12 bits

× 64/60 × 10/8 × 1/8 = 3.2 Gbps.

Figure 4 Configuration of (a) compilation and (b) clocking in System Generator

Figure 4 shows the configurations of compilation and clocking in Xilinx System Generator. As

shown in Figure 4 (a) the target device is Virtex7 xc7vx690t-2ffg176, and the targeted hardware

description language of generated IP is Verilog. As shown in Figure 4 (b), both the FPGA clock

period and the Simulink system period are set to be 5 ns.

91

Figure 5 (a) Input data path and (b) output data path of design in System Generator

As shown in Figure 5, both the input data path and output data path consist of eight parallel data

channels. Since the clock rate of FPGA is 200MHz, the overall sampling rate of eight parallel

data channels is 1.6GHz. The design of DSXC between the input data path and output data path

can be packaged into an IP that can be imported into the Vivado project in Figure 1.

Figure 6 DSXC IP generated by System Generator

Figure 6 shows the DSXC IP that is generated and packaged in System Generator. As shown in

Figure 6, the input of DSXC IP has eight parallel data channels with 12 bits width in each

92

channel, which is equal to the bit resolution of ADC. The output of DSXC IP also has eight

parallel data channels with 16 bits width, which is equal to the bit resolution of DAC.

After the design in Figure 1 is completed and bitstream is generated, the hardware, including

bitstream, can be exported into the Xilinx Software development Kit (SDK) environment for

software development. C programs for Microblaze can be developed in SDK.

Figure 7 Address Map

Figure 7 shows the address map of IPs in Vivado Design, each IP has its own unique offset

address which can be used as its base address in SDK. With the knowledge of SDK and C

functions, Microblaze is able to configure and monitor IPs such as JESD and UART through the

AXI interface.

In conclusion, both the design and simulation of DSXC can be accomplished in Xilinx System

Generator, which is a development environment similar to Simulink.

	List of Figures
	List of Tables
	Chapter 1: Introduction
	1.1 Motivation and background of research
	1.2 Digital subcarrier cross-connect (DSXC)
	1.3 Digital subcarrier multiplexing techniques
	1.4 Overview of proposed work
	1.4.1 Real-time DSP hardware platform
	1.4.2 Channel selection and frequency translation in DSXC
	1.4.3 Implementation of DSXC based on hardware platform

	Chapter 2: Real-time DSP hardware platform
	2.1 Hardware Platform
	2.2 Data Interfaces
	2.2.1 JESD204B interface
	2.2.2 Design in Xilinx Vivado

	2.3 Considerations in FPGA Implementation

	Chapter 3: Real-time DSP-enabled DSXC based on resampling filters
	3.1 Digital subcarrier cross-connect based on FPGA
	3.2 Frequency translation techniques
	3.2.1 I/Q mixing and filtering
	3.2.1 Resampling Filters

	3.3 Resource utilization of frequency translation
	3.4 Experiments
	3.5 Conclusion

	Chapter 4: DA based real-time DSP-enabled DSXC
	4.1 Distributed Arithmetic
	4.1.1 Principle of DA
	4.1.2 Polyphase decomposition of DA resampling filter

	4.2 Experiment
	4.3 Resource requirement and discussion
	4.3.1 Resource Utilization
	4.3.2 Latency
	4.3.3 Power Consumption

	4.4 Conclusion

	Chapter 5: Conclusion and Future work
	5.1 Conclusion
	5.2 Future work

	References
	Acronyms
	Appendix I

