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Abstract 

Elastic optical networking (EON) is intended to offer flexible channel wavelength granularity to 

meet the requirement of high spectral efficiency (SE) in today’s optical networks. However, 

optical cross-connects (OXC) and switches based on optical wavelength division multiplexing 

(WDM) are not flexible enough due to the coarse bandwidth granularity imposed by optical 

filtering. Thus, OXC may not meet the requirements of many applications which require finer 

bandwidth granularities than that carried by an entire wavelength channel.  

In order to achieve highly flexible and fine enough bandwidth granularities, electrical digital 

subcarrier cross-connect (DSXC) can be utilized in EON. As presented in this dissertation, my 

research work focuses on the investigation and implementation of real-time digital signal 

processing (DSP) enabled DSXC which can dynamically assign both bandwidth and power to 

each individual sub-wavelength channel, known as subcarrier. This DSXC is based on digital 

subcarrier multiplexing (DSCM), which is a frequency division multiplexing (FDM) technique 

that multiplexes a large number of digitally created subcarriers on each optical wavelength. 

Compared with OXC based on optical WDM, DSXC based on DSCM has much finer bandwidth 

granularities and flexibilities for dynamic bandwidth allocation.  

Based on a field programmable gate array (FPGA) hardware platform, we have designed and 

implemented a real-time DSP-enabled DSXC which uses Nyquist FDM as the multiplexing 

scheme. For the first time, we demonstrated real-time DSP enabled real-time DSXC which uses 

resampling filters for channel selection and frequency translation. This circuit-based DSXC 

supports flexible and fine data-rate subcarrier channel granularities, offering a low latency data 

plane, transparency to modulation formats, and the capability of compensating transmission 

impairments in the digital domain. The experimentally demonstrated 𝟖𝟖 × 𝟖𝟖 DSXC makes use of 
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a Virtex-7 FPGA platform, which supports any-to-any switching of eight subcarrier channels 

with mixed modulation formats and data rates. Digital resampling filters, which enable frequency 

selections and translations of multiple subcarrier channels, have much lower DSP complexity 

and reduced FPGA resources requirements (DSP slices used in FPGA) in comparison to the 

traditional technique based on I/Q mixing and filtering. 

We have also investigated the feasibility of using distributed arithmetic (DA) for real-time 

DSXC to completely eliminate the usage of DSP slices in FPGA implementation. For the first 

time, we experimentally demonstrated the implementation of real-time frequency translation and 

channel selection based on the DA architecture in the same FPGA platform. Compared with 

resampling filters that leverage multipliers, the DA-based approach eliminates the need of DSP 

slices in the FPGA implementation and significantly reduces the hardware cost. In addition, with 

a processing latency that equals to a few clock cycles, a DA-based resampling filter is 

significantly faster when compared to a conventional direct-structured FIR filter whose overall 

latency is proportional to the filter order. The DA-based DSXC is, therefore, able to achieve not 

only the improved spectral efficiency, programmability of multiple orthogonal subcarrier 

channels, and low hardware resources requirements, but also much reduced cross-connect 

switching latency when implemented in a real-time DSP hardware platform. This reduced 

latency can be critically important for time-sensitive applications such as 5G mobile fronthaul, 

cloud radio access network (C-RAN), cloud-based robot control, tele-surgery and network 

gaming. 
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Chapter 1: Introduction 

1.1 Motivation and background of research 

Due to the ever-increasing data traffic in today’s optical networks and the demand for high data 

rates, improving spectral efficiency (SE) in optical communication systems and networks is of 

the essence. Compared with a traditional wavelength division multiplexing (WDM) system of 

fixed 50GHz wavelength grid, elastic optical networking (EON) offers more flexibility, with 

channel wavelength granularity down to 12.5GHz or lower, which may yield tangible SE 

improvement in optical networks [1, 2]. Both bandwidth and channel allocation are flexible in 

EON and can be chosen to best accommodate the modulation formats of choice, transmission 

distance, system capacity, and number of required channels [3-5]. However, due to the limited 

spectral selectivity of extant optical filters, further reduction of channel wavelength granularity 

can prove to be challenging in the optical domain. Yet, many applications could benefit from 

finer channel bandwidth granularities below 10GHz. Optical domain EON alone may not suffice 

to achieve the fine bandwidth allocation which may be required in some access and metro area 

network deployments. For this and other reasons conventional solutions combine the use of 

optical circuits with electronic packet switching technologies (Ethernet, IP, PON), i.e., multiple 

connections are multiplexed together by interleaving their data packets in time, thus filling up the 

relatively large bandwidth of the optical circuit. 

Subcarrier multiplexing (SCM) can provide much finer granularity by multiplexing a large 

number of subcarrier channels in the electrical domain [6, 7]. Subcarrier circuits can be flexibly 

multiplexed and individually switched electronically, offering dedicated circuits to the 

application down to MHz of bandwidth. Earlier SCM solutions are analog. While the radio 

frequency (RF) analog filter solutions offer much better spectral selectivity compared to optical 
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filters, the transition between passband and stopband in the transfer function of an RF filter still 

may not be sharp enough to separate closely spaced subcarrier channels. As a result, analog 

based SCM usually requires sufficiently large spectral guard-bands between adjacent subcarriers, 

resulting in a suboptimal solution. In addition, the bandwidth and the central frequency of high 

order RF filters are usually not dynamically adjustable after they are built, and thus analog SCM 

systems tend to be static and not suitable for dynamic switching. 

Thanks to the rapid development of CMOS-based digital electronics, high speed analog to digital 

converters (ADC), digital to analog converters (DAC) and digital signal processing (DSP) 

hardware is widely available nowadays [8]. Processing high data rate signals in the digital 

domain has become practical and offers many advantages compared to traditional analog 

techniques [9-12]. For example, high order digital filters can be designed to achieve nearly ideal 

transfer functions, along with dynamically reconfigurable of roll-off rate, bandwidth, and central 

frequency. Digitally generated and processed subcarrier channels are referred to as digital 

subcarrier multiplexing (DSCM). DSCM offers a high degree of flexibility because the applied 

DSP algorithms can be reconfigurable, and yields high spectral efficiency because minimum 

spectral guard-band is required between adjacent subcarriers. Real-time generation of DSCM 

signals based on either high order Nyquist filters, or orthogonal frequency division multiplexing 

(OFDM) has been demonstrated using FPGA platform [13, 14]. DSP-enabled real-time 

reconfigurable optical add/drop multiplexing (ROADM) technologies have also been 

demonstrated using FPGA platforms [15, 16]. In addition to being used as a modulation format 

for optical signal transmission [17], DSCM can also be used to carry orthogonal channel which 

can be switched individually by digital subcarrier cross-connect (DSXC) devices as introduced in 

[18, 20]. A DSXC-based network is a circuit switching solution in which subcarrier channels are 
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individually routed end-to-end to provide dedicated circuits with custom data rates. Compared 

with optical domain cross-connect (OXC) based on wavelength channels, DSXC in the 

electronic domain can provide a more flexible and finer data rate granularity, which can help 

maximize the network spectral efficiency. In comparison with packet based routers, DSXC 

provides dedicated bandwidth to users without the requirement of packet buffering and forward 

engine, resulting in a deterministic switching latency [21, 22].  

An application example of DSCM is the 5G wireless network fronthaul, which is the network 

segment between remote radio head (RRH) and central office (CO) [23]. In some solutions 

common public radio interface (CPRI) is the protocol used in the mobile fronthaul with digital 

radio over fiber (DRoF) transmitted using on-off keying (OOK). This approach is known to 

require a relatively high data rate in the fronthaul compared to the radio data rate, due to the 

sampling of the radio wave and the required high-resolution sampling of ADC and DAC. In 

DRoF, the received analog wireless waveforms are digitized and encoded into digital bits for 

transmission. In this analog to digital conversion process, the data rate and thus the bandwidth 

required for transmission over the fronthaul is scaled roughly by 𝑏𝑏 times higher than the original 

analog signal bandwidth where 𝑏𝑏 is the bit resolution of the ADC. For example, for 8 channels of 

20MHz LTE signals using 40MS/s ADC sampling rate at 15-bit resolution for each I- and Q-

component of the complex RF waveform, the digital data rate will be approximately 8 × 40 ×

15 × 2 = 12,000 Mb/s (Reference [24] has more detailed data rate estimation taking into 

account control words and line coding). Further considering multiple antenna elements for 

MIMO beam forming, the required data rate can easily reach up to 100Gb/s.  

In order to improve the spectral efficiency of the fronthaul, analog radio over fiber (ARoF) has 

been proposed and actively investigated [25, 26]. Compared with DRoF, ARoF can transmit the 
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same radio wave using a narrower bandwidth in the fronthaul. Considering that 5G fronthaul is 

expected to support numerous RRHs, DSCM would be an efficient technology for aggregating 

and de-aggregating multiple radio waves while offering spectrum flexibility and efficiency at the 

same time. The DSCM solution would also offer the ability to compensate for transmission 

impairments in the digital domain [27, 28]. Recently, an ARoF transmission of a multicarrier 

signal with a carrier frequency of 60GHz, and an aggregation of hundreds of subcarriers to 

occupy 152MHz of total bandwidth, has been demonstrated experimentally over 25km of single 

mode fiber (SMF) [29]. In addition, the deployment of DSXC nodes in the fronthaul makes 

DSCM channel aggregation, de-aggregation and routing dynamically programmable, which 

would be desirable in a fronthaul connecting multiple RRHs and COs.  

For real-time implementation of the DSXC key functions efficient utilization of DSP resources is 

a major concern. While application-specific integrated circuit (ASIC) is commonly used in 

commercial communication equipment, FPGA represents a more flexible platform for 

prototyping and testing the DSP algorithms that are required in DSXC. 

We have demonstrated a real-time DSP-enabled DSXC based on resampling digital filters to 

achieve frequency translation and channel selection of subcarriers [30], as described in Chapter 

3. We demonstrated the first implementation of a real-time DSXC node, realizing one of its basic 

functionalities (switching individual subcarriers in frequency) using digital resampling filters, 

and experimentally assessing the DSXC node (deterministic) latency to be less than 1µs. This 

latency is mainly determined by the order of Finite Impulse Response (FIR) filters and the clock 

period of the digital circuit. Compared to commodity packet switches, DSXC may therefore 

provide a simple and cost-effective switching solution that achieves zero-jitter even in the 

presence of high link utilization. 
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Although these resampling filters reduce DSP resource utilization compared to the traditional 

frequency translation scheme based on I/Q mixing and filtering, they still heavily rely on 

multipliers which are usually implemented as expensive DSP slices in FPGA. To overcome this 

drawback, we demonstrate a more efficient technique to realize real-time frequency translation 

and channel selection of DSCM channels based on distributed arithmetic (DA) [31], as described 

in Chapter 4. No digital multipliers are required when using DA, thus completely eliminating the 

need for DSP slices in the FPGA. In addition, the DA-based DSXC reduces DSP-induced latency 

down to only a few clock periods, which is independent of the applied digital filter order. DA has 

been used to implement digital filters for Nyquist pulse generation in fiber-optic transmitter [9, 

14], but has not been used for digital subcarrier frequency translation and channel selection. By 

applying DA algorithms to implement resampling filters, we show that DSXC key functionalities 

can be implemented in an FPGA platform without requiring any DSP slice. To our best 

knowledge, this is the first realization of a DA-based DSXC, which is capable of performing 

bandwidth flexible switching and routing with improved hardware efficiency, low latency, and 

transparency to signal modulation formats. 
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1.2 Digital subcarrier cross-connect (DSXC) 

 
Figure 1.1 Digital subcarrier cross-connect 

Figure 1.1 shows the block diagram of a generic DSXC node [30]. Input to the DSXC node are 𝑛𝑛 

optical signals, each consisting of 𝑚𝑚 subcarrier channels. Each optical signal is received by a 

receiver, which performs optical-to-electrical conversion (O/E) through an optical receiver, and 

analog-to-digital conversion through an ADC. The digitized signal from each receiver is sent to 

the DSP module for processing. In the DSP module, each multicarrier signal is de-multiplexed 

into multiple subcarriers and sent into a cross-bar switch to be routed to any output port for 

multiplexing. The multiplexer aggregates multiple subcarriers and sent them into the targeted 

transmitter. The transmitter performs digital to analog conversion through a DAC, and electrical 

to optical (O/E) conversion obtained by an electro-optic modulator. In the shown DSXC node 

architecture, each digital subcarrier channel cij, (i = 1, 2....n, and j = 1, 2 ...m) in any input 

wavelength can be routed to any output wavelength 𝜆𝜆𝑖𝑖 and subcarrier frequency slot through a 

cross-bar circuit-switch.  
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The optical system can be either coherent or direct-detection. The multiplexing method can be 

through either high order Nyquist filters or OFDM. Digital compensation techniques, such as 

chromatic dispersion compensation and electronic circuit frequency roll-off compensation, can 

be performed in the digital domain. In the design of this DSXC, we use high order Nyquist filters 

for DSCM, which provide the flexibility of using unequal spectral bandwidth and distinct 

modulation formats to be assigned to each subcarrier channel.  

In order to be able to route any subcarrier channel of any input wavelength to any subcarrier 

channel of any output wavelength, frequency translation and channel selection of individual 

subcarrier are two critical functions in a DSXC. Frequency translation includes frequency down 

conversion and up conversion of each subcarrier channel. The frequency down conversion can be 

achieved through decimation filter, in which the decimation factor is the ratio of the input rate to 

the output rate. The frequency up conversion can be achieved through an interpolation filter, in 

which the interpolation factor is the ratio of the output rate to the input rate. Since resampling 

filter includes decimation filter and interpolation filter, both decimation factor and interpolation 

factor are named as resampling factor. According to Nyquist criterion, the available analog 

bandwidth of each wavelength channel is limited to half of the ADC’s sampling rate. This total 

bandwidth can be subdivided among many frequency slots (FS). The bandwidth of each FS is 

given by the total available bandwidth divided by the resampling factor when digital resampling 

filters are used. In this process, any subcarrier in a FS is first down-converted to the lowest 

frequency FS through a decimation filter, and then up-converted to any targeted FS through an 

interpolation filter [23]. During the down-conversion process, a decimation filter, whose 

frequency response has a passband targeted at a particular FS, selects the subcarrier in this FS 

and down converts it to the first FS. During the up-conversion process, an interpolation filter, 
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whose frequency response has a passband targeted at a particular FS, selects the up-sampled 

copy of subcarrier in this FS and rejects all copies in other FSs. Theoretically, decimation is 

equivalent to a cascaded process of filtering and down sampling, whereas interpolation is 

equivalent to a cascaded process of up sampling and filtering. Further information about these 

two procedures can be found in [30]. Both decimation filter and interpolation filter can be 

categorized as resampling filters, which are essentially finite impulse response (FIR) filters with 

the capability of changing sampling rate of its input signal. FIR filter characteristics such as 

passband ripple, width of transition band, and stopband attenuation are determined by the filter 

order and coefficients. For a given sampling rate, a low passband ripple, sharp transition band, 

and large stopband attenuation are desirable features, which usually require a high filter order 

and take significant DSP resources in hardware. In addition, when supporting high capacity 

DSXC with fine spectral granularity of subcarrier channels the number of digital filters can be 

quite high. In summary, an efficient digital filter design is critically important in order to 

minimize the DSP resource requirement. 

 

1.3 Digital subcarrier multiplexing techniques 

DSXC is circuit cross-connect switch that is based on DSCM. Nyquist-FDM and OFDM are the 

are two major techniques for implementing DSCM.  
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Figure 1.2 (a) Nyquist pulse in time domain (b) spectrum of a single Nyquist pulse (c) spectrum of Nyquist FDM 

The basic principle of Nyquist pulse modulation is shown in Figure 1.2. For simplicity, we use 

OOK modulation format. Modulation formats with high spectral efficiency can also be employed 

[32]. As it shown in Figure 1.2 (a), a Nyquist pulse in time domain is a sinc-shaped waveform 

which spreads into adjacent time slots. By taking the Fourier transform of the Nyquist pulse in 

Figure 1.2 (a), we can get the spectrum of this pulse. As shown in Figure 1.2 (b), the spectrum of 

Nyquist pulse has a rectangular shape. By shifting the spectrum of Nyquist pulse in Figure 1.2 

(b) by 𝑘𝑘∆𝑓𝑓  (𝑘𝑘 =  0, 1, … ,𝑁𝑁 − 1 ), we can get 𝑁𝑁  sub-spectra of Nyquist pulse signal. The 

superposition of the 𝑁𝑁 sub-spectra results in the total Nyquist-FDM spectrum as it illustrated in 

Figure 1.2 (c). Ideally, there is no guard-band between every two adjacent channels if perfect 

filtering is performed. However, ideal filtering cannot be realized in practical implementation 

since the order of digital filter is limited, so a guard-band between every two adjacent channels is 

required to prevent inter-channel crosstalk. In Nyquist-FDM based DSCM, phase 

synchronization between different channels is not needed, since every channel is independent 

from other channels.  
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The basic principle of OFDM is shown in Figure 1.3, suppose OOK is utilized as the modulation 

format. A single carrier OFDM signal in time domain is shown in Figure 1.3 (a), it has a 

rectangular pulse shape and a symbol period of TS. By taking the Fourier transform of the signal 

in Figure 1.3 (a), we can get the spectrum of a single carrier OFDM signal whose bandwidth is 

∆𝑓𝑓 . The spectrum of this single carrier OFDM signal spreads to adjacent frequency slots. 

Shifting the spectrum of OFDM symbol in Figure 1.3 (b) by 𝑘𝑘∆𝑓𝑓 (k = 0, 1,…, N-1), we can get 

𝑁𝑁 sub-spectra of OFDM signal. The superposition of the N sub-spectra results in the total OFDM 

spectrum as illustrated in Figure 1.3 (c). 

 

Figure 1.3 Principle of OFDM (a) single pulse shape (b) spectrum of a single OFDM symbol (c) spectrum of OFDM 

As it shown in Figure 1.3, in OFDM based DSCM, the spectral of each channel spreads to 

adjacent channels and there is no guard-band between adjacent channels.  

The research of real-time DSCM has been actively conducted. The real-time generation and 

reception of N-FDM have been reported and experimentally demonstrated [9, 14, 33]. Recent 

years, OFDM has also received a lot of attention in the field of optical communication [34]. The 

real-time generation of OFDM [9, 14, 35], real-time reception of OFDM [36-38] and the 
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implementation of real-time OFDM transceivers [39, 40] have been demonstrated. Optical 

networks based on real-time OFDM with flexible power loading and bandwidth allocation have 

also been demonstrated [41-43]. 

1.4 Overview of proposed work 

In this dissertation, we aim to investigate and implement real-time DSP-enabled DSXC for 

optical communication networks. In Chapter 2, we introduced the principle of DSXC and a 

hardware platform to implement real-time DSP for this DSXC. In Chapter 2 and Chapter 3, we 

investigate the cost and performance of different techniques, such as resampling filters and DA 

architecture, to efficiently implement this DSXC on the hardware platform. The implemented 

real-time DSP-enabled DSXC is demonstrated experimentally.  

1.4.1 Real-time DSP hardware platform 

We built a hardware platform to implement real-time DSP-enabled DSXC. This platform is 

based on Virtex7 FPGA, which allows the test of various real-time DSP algorithms for cross-

connect switching in optical communication systems and networks. It consists of two ADCs 

boards, a DAC board, a Virtex 7 FPGA board and a data processing computer. In order to 

achieve very high data transfers between different parts of this platform, we developed the high-

speed interface, such as JESD204B interface between FPGA and converters.  

1.4.2 Channel selection and frequency translation in DSXC 

In this work, we focus on the study of DSXC based on Nyquist FDM. The essential operation of 

a DSXC is the switching and routing of subcarrier channels, which is achieved through channel 

selection and frequency translation. There are multiple techniques to achieve channel selection 

and frequency translation. We discussed and compared the performance and resource cost of two 

techniques: (1) mixing and filtering, (2) resampling filters. In the design of real-time DSP 
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algorithms, considerations must be given to the performance and resource cost because the DSP 

resource of FPGA is limited. 

1.4.3 Implementation of DSXC based on hardware platform 

After the development of real-time DSP algorithms and the hardware platform, we implemented 

the real-time DSP algorithm on this hardware platform. The implemented DSXC can be either 

based on resampling filters that consumes multipliers or resampling filters that based on DA 

architecture. In Chapter 3, we discuss and demonstrate the DSXC based on resampling filters 

that consume multipliers and compared it with traditional technique that is based on I/Q mixing 

and filtering. In Chapter 4, we describe the principle of DA architecture and introduce a DA-

based DSXC, and we compare it with the DSXC based on resampling filters that utilize 

multipliers. We built the project for FPGA and generated the bitstream to be downloaded onto 

FPGA board, which results in a real-time DSP-enabled DSXC. We incorporated this cross-

connect into optical fiber transmission system and analyzed its performance in experiment.  
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Chapter 2: Real-time DSP hardware platform 

In this chapter, we introduce the architecture of a real-time DSP hardware platform for 

implementing DSXC. This platform consists of high-speed ADCs, high-speed DACs, FPGA, and 

optical transceivers. The development of data interfaces and considerations for FPGA 

implementation are also discussed in this chapter. 

2.1 Hardware Platform 

In order to meet the requirements of processing time in a practical application, a real-time DSP is 

needed. A general-purpose computer lacks the needed resources and is not suitable for real-time 

DSP. In contrast, an FPGA has the advantage of fast, parallel processing and is programmable, 

which makes it a good choice for building a platform for the prototype research of a real-time 

DSP for optical communication. 

Our purpose is to establish an optical system testbed capable of generating, detecting, and 

processing advanced multiplexing techniques such as N-FDM and OFDM, which allows us to 

investigate various modulation formats and DSP algorithms in real-time optical systems and 

networks. In order to demonstrate algorithms and capabilities of DSCM, we have developed a 

flexible FPGA platform that consists of three major parts: an FPGA board (HTG700), two ADC 

boards (ADC12J4000EVM), and a DAC board (DAC38RF82EVM). The interface between the 

converters and the FPGA is a JESD204B, and the interface between the FPGA and the computer 

is a peripheral component interconnect express (PCIe).  
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Figure 2.1 (a) block diagram and (b) photo of DSCM testbed 

As shown in Figure 2.1 (a), the testbed consists of two ADC evaluation boards, a DAC 

evaluation board, an FPGA board, and a connection with the data collection computer through 

the PCIe. Two ADCs are used to convert the received electrical signal from the optical receivers 

into the digital domain and send it to the FPGA board through the FPGA mezzanine card (FMC) 

connectors. The FPGA has three major tasks: digital down-conversion (DDC)/digital up-

conversion (DUC), digital filtering, and cross-connect switching of digital subcarrier channels. 

Digital compensation of transmission impairments and waveform distortion can also be 



15 
 

implemented with DSP algorithms in the FPGA platform. The DAC is used to convert the 

processed digital signals in the FPGA back to analog waveforms. Figure 2.1 (b) shows the cross-

connect platform. This platform uses a Texas Instruments (TI) DAC evaluation board 

(DAC38RF82EVM), which supports two DAC output channels each with a 2.5GS/s un-

interpolated input sampling rate with 16-bit resolution, and two ADC evaluation boards (TI: 

ADC12J400EVM), each with a 4GS/s sampling rate with 12-bit resolution. The FPGA 

evaluation board is a HTG700, which is mounted with a Xilinx Virtex7-XC7VX690T FPGA 

chip and equipped with three FMC connectors. The FPGA board also supports a PCIe-X8-Gen3 

with eight lanes operating in parallel, and the maximum data rate is approximately 63 Gb/s.` 

Table 2.1 Available FPGA resources on Virtex 5 and Virtex 7  [44, 45] 

Part Number Slices 
Logic 

Cells 

CLB Flip-

Flops 

BRAM 

(Kbits) 

DSP 

Slices 

XC5VFX200T 30,720 196,608 122,880 16,416 384 

XC7VX690T 108,300 693,120 866,400 52,920 3,600 

 

Table 2.1 shows the available FPGA resources on a Virtex 5 XC5VFX200T and a Virtex 7 

XC7VX690T. A Virtex 7 has many more resources than a Virtex 5. The DSP slices on a Virtex 7 

are almost 10 times those of a Virtex 5. With more FPGA resources, a DSP platform with higher 

performance can be developed and more complex DSP algorithms can be investigated. 
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Table 2.2 Specifications of ADC12J4000 and DAC38RF82 

Part Number Bit Resolution 
Maximum Sampling 

Rate 
Number of Channels Interface 

ADC12J400 12 4 GSPS 1 JESD204B 

DAC38RF82 16 3.33 GSPS 2 JESD204B 

 

Table 2.2 shows the specifications of the ADC and DAC used in the design of this DSXC. The 

ADC operates in single channel mode with 12-bit resolution, and the DAC operates in dual-

channel mode with 16-bit resolution. Both of them have a JESD204B interface. Considering the 

available resources and timing issues in the FPGA design, we used 1.6 GHz as the sampling rate 

of both the ADC and DAC. 

Table 2.3 Specifications of Optical Tx and Rx 

Part Number Bandwidth Wavelength Type Modulation 

OZ510 30 MHz ~ 3GHz 1330nm Linear 
Intensity 

modulation 

 

Table 2.3 shows the specifications of the optical Tx and Rx used in this testbed. Both are linear, 

have intensity modulation, and have a RF bandwidth from 30 MHz to 3 GHz. 

2.2 Data Interfaces 

There are a few different data interfaces in our design. Low speed data interfaces include a JTAG 

(named after the Joint Test Action Group) interface and a universal asynchronous receiver-

transmitter (UART) interface. The JTAG is the interface between the FPGA and the PC, through 

which the bitstream can be downloaded to the FPGA. The UART is also a low speed interface 

between the FPGA and the PC, which can be used to transfer low rate data between the FPGA 

board and the computer, such as during debugging and monitoring the status of modules in the 
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FPGA. The high-speed interfaces include the JESD204B and the PCI Express. The JESD204B is 

a high-speed serial interface between the data converters and the computer, and the PCI Express 

is a high-speed serial interface between the FPGA board and the computer. The JESD204B and 

PCI Express are complicated and are discussed in the following sections.  

2.2.1 JESD204B interface 

The high throughput rates of these gigabit ADCs and DACs push the limits and timing 

constraints of the current standard high-speed interface, a serial low-voltage differential signaling 

(LVDS) interface. In order to address this problem, the Joint Electron Device Engineering 

Council (JEDEC) committee created a robust wide data converter interface known as the 

JESD204 interface [46][48]. The latest version of the JESD204 interface is the JESD204B. 

 

[Xilinx WP 446] 

Figure 2.2 JESD204B standard 

As shown in Figure 2.2, the JESD204B provides deterministic latency with a data rate in each 

serial lane up to 12.5 Gb/s[46, 47]. Since the data rate of each serial lane is much higher than in 

the LVDS, the required pin count in the JESD204B can be greatly reduced, which makes the 

design of a printed circuit board much simpler and more compact. With improvement comes 

complexity; the JESD204B interface is much more complex than the LVDS interface, which 
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makes designing with the JESD204B more challenging. The JESD204B has an OSI-type 

protocol stack, which is very complicated. In order to reduce the complexity of design, Xilinx 

has provided a configurable FPGA object for implementing the JESD interface, called the 

JESD204B IP Core. In this design, a JESD204B subclass 1 is used. 

A real-time high-speed transmitter is based on the FPGA board and DAC board. This design is 

able to generate arbitrary waveforms at the output of the DAC.  

 

Figure 2.3 Block diagram of a real-time transmitter based on FPGA and DAC 

Since the data is transferred from the FPGA to the DAC through the JESD interface, the FPGA 

board serves as a JESD transmitter, and the DAC board serves as a JESD receiver accordingly. 

Digital signals are transferred from the FPGA board to the DAC board through eight JESD serial 

lanes, and the maximum data rate of each JESD lane is 12.5 Gb/s. As shown in Figure 2.3, the 

block design inside the FPGA mainly consists of three blocks: the data block, the JESD block, 

and the Microblaze block (MB block). 
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In the MB block, the Microblaze is a soft-core processor implemented on the FPGA, which can 

be programmed by C language. With the Microblaze, IP cores can be easily programmed and 

configured through the advanced extensible interface (AXI). The block random access memory 

(BRAM) provides local memory for the Microblaze processor. The AXI interconnect serves as 

the bridge between the Microblaze and other AXI IPs. In the data block, the waveform generator 

is a user-packaged IP that generates waveforms by using a look-up table (LUT). The data mapper 

maps the generated waveform into the AXI data stream that fits the data format of the JESD 

block. In the JESD block, the JESD204B TX block transmits data to the JESD204 PHY once it 

receives the request from the DAC through the FMC connector. In the JESD block, the JESD TX 

IP is configured and monitored through an AXI4-Lite management interface. The JESD PHY IP 

implements the Xilinx GTX transceiver logic and control interface. After receiving the AXI 

stream data from the data block, the JESD TX IP sends the data to the JESD PHY IP. The source 

clock for the Microblaze and AXI interfaces is provided by an oscillator (OSC) on the HTG700. 

The JESD clock, which includes the reference clock (REFCLK) and core clock (CORE CLK) for 

JESD, are generated by the clock chip (LMK04828) on the DAC board.  

A real-time high-speed receiver is based on the FPGA board and ADC board. This allows the 

ADC to sample and digitize analog signals and send digital signals to the FPGA for real-time 

processing. The receiver project is intended to build the interface and synchronize between the 

ADC board and the FPGA board. This is an essential part for a high-speed digital receiver, which 

enables the DSXC to convert analog signals received from the photodetector to the digital 

domain and transfer them to the FPGA board for real-time processing. 
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Figure 2.4 Block diagram of high-speed receiver based on FPGA and ADC 

As shown in Figure 2.4, the block design of the real-time receiver consists of an MB block, data 

block, and JESD block. The design of the receiver is similar to the design of the real-time 

transmitter, except that in this design the FPGA board serves as the JESD receiver while the 

ADC board serves as the JESD transmitter. The ADC converts analog input signals into digital 

data and transmits them to the FPGA board.  

As shown in Figure 2.3 and 2.4, projects for interfacing ADC and DAC with FPGA have been 

built in Xilinx Vivado separately. The ADC and DAC have been tested separately to verify if the 

JESD204B interfaces are working properly.  

2.2.2 Design in Xilinx Vivado 

In the FPGA design of the DSXC, Xilinx Vivado 2015.4 is used as the design tool. The design of 

the resampling filters is accomplished using the Xilinx System Generator and Filter Design HDL 

Coder. A more detailed description of the DSXC design process is given in Appendix I. 
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2.3 Considerations in FPGA Implementation 

In implementing an FPGA, there are a few issues that need to be addressed, such as clocking and 

bit resolution, as they may have a significant impact on the signal quality. Timing is critical 

during the setup of a real-time DSP hardware platform. In this setup, the ADC and DAC use 

external clocks generated by signal generators. If the signal generators are running freely, the 

frequencies of their generated clocks may slightly differ, and this can cause a frequency offset in 

the digital signal. This frequency offset may cause the degradation of the signal quality at the 

output of the DAC. In order to avoid frequency offset when transferring a digital signal from the 

ADC clock domain to the DAC clock domain, it is necessary to lock the clock frequencies. We 

used the 10 MHz reference signal to lock the clock frequencies of all the signal generators and 

first in first out (FIFO) IP to transfer large amounts of data between the different clock domains. 

Bit growth is also a very common issue in real-time DSP implementation, because in FPGA 

arithmetic, the bit width of a digital signal can rapidly grow, making it impossible to keep full 

precision during the processing. For example, adding two 𝑁𝑁 bit numbers results in a 𝑁𝑁 + 1 bit 

number, and multiplying two 𝑁𝑁 bit numbers results in a 2𝑁𝑁 − 1 bit number. If full precision is 

kept, the bit growth can quickly exceed the computation capability of the FPGA. Thus, it is very 

important to reduce bit width. The simplest way of reducing bit width is truncation, which can be 

achieved through dropping the least significant bits (LSB). However, truncation results in 

undesirable DC bias at the output. The round to even technique can solve the problem of DC bias 

by rounding up to the nearest even number. Compared with truncation, which does not consume 

logic resources, this technique costs logic resources but only contributes a negligible resource 

cost of the DSXC. In the implementation of the DSXC, we use the round to even technique to 

reduce the bit width while keeping sufficient resolution in the signal quality. 
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Another issue is that the FPGA has limited maximum clock frequency, on the order of a few 

hundred MHz. Current GSPS ADCs and DACs can achieve a sampling rate on the order of a few 

GHz, which is much higher than the maximum clock frequency in FPGA processing. The 

solutions for this issue are parallel processing and pipelining. Parallel processing means 

processing the data in parallel channels, so data with high sampling rates can be processed with a 

relatively low clock frequency. The FPGA architecture makes it very suitable for parallel 

processing. For example, if the FPGA has a clock frequency of 200 MHz and the data are 

processed in 20 parallel channels, then logically the total sampling rate is 4 GHz.  

Timing is a critical issue in FPGA implementation, because it takes time for a signal to propagate 

from one flip-flop, through a combinational logic, to the next flip-flop. The more complicated 

the combinational logic, the longer takes for the signal to propagate. Timing can be a very 

difficult issue when the combinational logic is large and the FPGA clock frequency is high 

(above 50 MHz). The simplest technique to fix a timing issue is pipelining. By adding flip-flops 

into a large combinational logic, pipelining breaks the combinational logic into multiple stages, 

where the propagation delay in each stage is shorter than the original propagation delay. It is also 

important to note that pipelining does not decrease the total throughput of this digital design. 

Pipelining only increases the latency by a few clock periods, which is acceptable in many FPGA 

designs. 

DSP units such as finite impulse response (FIR) filters, mixers, and local oscillators can also be 

easily implemented in parallel and be pipelined. Fast Fourier transform (FFT) can be 

implemented in FPGA by using a third-party IP named SpiralFFT, which can be generated in the 

format of a hardware description language (HDL) as described in [49]. Thus, all the DSP 
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algorithms described in this thesis can be implemented in FPGA to achieve a very high 

processing rate.  
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Chapter 3: Real-time DSP-enabled DSXC based on resampling filters 

In this chapter, we introduce the design and experimental demonstration of the first real-time 

DSP-enabled DSXC based on resampling filters. This DSXC is implemented on a Xilinx Virtex-

7 FPGA board, and the results have been presented in [30]. 

3.1 Digital subcarrier cross-connect based on FPGA 

 

Figure 3.1 Block diagram of digital subcarrier cross-connect (DSXC) based on FPGA 

Figure 3.1 shows a basic DSXC block diagram based on FPGA. The input signal to the DSXC 

switch fabric comprises n wavelength channels, and each wavelength carries m radio frequency 

(RF) subcarrier channels. The RF subcarriers can support different modulation formats and make 

use of different spectral bandwidths. Each wavelength channel is detected by an optical receiver 

performing optical to electrical (O/E) conversion, which is followed by an ADC digitizing the 

analog waveform delivered by the optical carrier. Then the digitized waveform is sent to a DSP 

block for subcarrier de-multiplexing. The de-multiplexed subcarriers from all wavelength 

channels are sent to a cross-bar circuit switch, in which any input subcarrier can be routed to any 

output port. Subcarrier channel local add/drop can also be performed in this cross-bar switch 
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unit. The subcarriers switched through the cross-connect are then re-grouped and multiplexed by 

n DSP units corresponding to n output wavelength channels. Each digitally multiplexed 

composite signal forms a wavelength channel that is converted from electrical to optical (E/O) 

through a DAC and an optical transmitter. With this basic DSXC architecture, any subcarrier 

channel of any input optical carrier can be routed to any subcarrier of any output wavelength 

channel. 

For demonstration purpose, the DSP units and the cross-bar circuit switch can be implemented 

using a single FPGA module which provides real-time processing. The cost of this 

implementation choice is proportional to the amount of FPGA resources that is required to 

implement the DSXC. FPGA resources mainly consist of memory resources and DSP slices. 

Memory resources include look-up table (LUT), LUT random access memory (LUTRAM), flip-

flop (FF) and block RAM (BRAM). DSP slices are used to carry out digital multiplications, 

which are usually the most expensive operation in a real-time DSP hardware platform. For 

convenience, in this chapter we use the term DSP cost to represent the number of required DSP 

slices. 

Since subcarrier channels in each wavelength are multiplexed in frequency domain, frequency 

translation (also known as spectral translation) is a critical operation in DSXC. A straightforward 

and conventional frequency translation technique is based on signal mixing and filtering 

operations whereby multiple local oscillators (LOs), mixers, and low pass filters are combined to 

achieve the intended goal. Digital filtering, which is the convolution between the input data 

sequence and the filter coefficients, is achieved through FIR filters that involve a large number of 

multiplications and represent the major DSP cost. Because the number of FIR filters increases 

linearly with the number of subcarriers in the cross-connect switch, the DSP cost for a DSXC 
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based on this frequency translation technique also increases accordingly, and may become a 

major limiting factor. 

Since DSXC is performed in the digital domain, some inherent properties of digital sequence and 

DSP algorithms can be utilized to achieve frequency translation at a reduced DSP cost. More 

specifically, interpolation and decimation are techniques that have been widely used in digital 

systems to change the sampling rate of a signal [50]. By applying some modifications as 

described in Section 3.2, interpolation and decimation techniques can be used to perform 

frequency translation with significantly less DSP cost in comparison to the frequency translation 

obtained through conventional I/Q/ mixing and filtering. For reader’s convenience, we first 

briefly describe frequency translation through I/Q mixing and filtering. Then, we describe 

frequency translation through resampling filters. 

3.2 Frequency translation techniques 

In this section, we briefly introduce two techniques for frequency translation: 1) I/Q mixing and 

filtering; 2) Resampling filters. 

3.2.1 I/Q mixing and filtering 

A traditional technique for frequency translation is through I/Q mixing and filtering. As shown in 

Figure 3.2, traditional frequency translation includes down-conversion and up-conversion, in 

which LOs are implemented from direct digital synthesizer (DDS). In order to maintain phase 

synchronization between LO and the RF subcarrier whose frequency needs to be translated, I/Q 

mixing is usually required.  Figure 3.2 shows a standard two-step digital frequency translation 

process which consists of both digital down-conversion (DDC) and digital up-conversion (DUC).  
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Figure 3.2 Frequency translation through I/Q mixing and filtering 

As shown in Figure 3.2, in the DDC process, a DDS simultaneously generating sine and cosine 

waveforms is used to provide a pair of LOs. Assume the incoming signal data sequence on the ith 

subcarrier channel is 𝐼𝐼𝑖𝑖(𝑡𝑡) = 𝐴𝐴𝑖𝑖(𝑡𝑡) cos(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡 + 𝜑𝜑𝑖𝑖), where 𝐴𝐴𝑖𝑖(𝑡𝑡) is modulated amplitude, 𝑓𝑓𝑖𝑖  is 

the carrier frequency, and 𝜑𝜑𝑖𝑖  is the carrier phase; and the in-phase (I) and quadrature (Q) 

components of the LO are cos(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡)  and sin(2𝜋𝜋𝑓𝑓𝑖𝑖𝑡𝑡) , respectively. After down-conversion 

mixing and low pass filtering (LPF), the I and Q components of the baseband signal are 

1
2
𝐴𝐴𝑖𝑖(𝑡𝑡) cos(𝜑𝜑𝑖𝑖) and −1

2
𝐴𝐴𝑖𝑖(𝑡𝑡) sin(𝜑𝜑𝑖𝑖), respectively. If the subcarrier channel needs to be dropped 

at this node, the I and Q components are combined together to recover the original baseband 

signal. Otherwise, the I and Q components are mixed with another pair of LOs, cos�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡� and 

sin�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡� , in the DUC module. The frequency up-conversion generates 

1
2
𝐴𝐴𝑖𝑖(𝑡𝑡)cos(𝜑𝜑𝑖𝑖) cos�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡� and −1

2
𝐴𝐴𝑖𝑖(𝑡𝑡) sin(𝜑𝜑𝑖𝑖) sin�2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡�, and they are combined to form the 

DUC module output as,  

                      𝑂𝑂𝑚𝑚(𝑡𝑡) = 1
2
𝐴𝐴𝑖𝑖(𝑡𝑡)cos [2𝜋𝜋𝑓𝑓𝑗𝑗𝑡𝑡 + 𝜑𝜑𝑖𝑖]            (3.1) 

Throughout this frequency translation process, the carrier frequency is changed from 𝑓𝑓𝑖𝑖  to 𝑓𝑓𝑗𝑗 , 

while the original carrier phase, 𝜑𝜑𝑖𝑖, is automatically maintained.  
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Note that I/Q mixing requires two separate filters for the I and the Q channels. Alternatively, one 

can use a single stage frequency translation from 𝑓𝑓𝑖𝑖  to 𝑓𝑓𝑗𝑗  using an LO frequency |𝑓𝑓𝑗𝑗 − 𝑓𝑓𝑖𝑖| . 

However, to avoid spectral overlap with other subcarrier channels, this approach requires the 

selection of the subcarrier channel at 𝑓𝑓𝑖𝑖 by a bandpass filter before mixing, and the selection of 

subcarrier frequency at 𝑓𝑓𝑗𝑗 by another bandpass filter after mixing, and thus the number of digital 

filters remains unchanged.  

Alternatively, frequency translation may be applied to complex field modulated subcarriers in 

which the upper and lower sidebands of each subcarrier channel are not redundant. In that case 

Hilbert transform must be applied to avoid spectral aliasing, which would further increase the 

DSP cost. 

As previously noted, when implementing this frequency translation in FPGA platform, the major 

DSP cost comes from digital filters, which increases linearly with the number of subcarrier 

channels. 

3.2.1 Resampling Filters 

Alternatively, frequency translation may be achieved through resampling and filtering of each 

subcarrier channel. Similar to mixing and filtering, the resampling and filtering technique also 

consists of both DDC and DUC processes. As shown in Figure 3.3(a) and 3.3(c), DDC is usually 

achieved by cascading a bandpass filter (BPF) with a down sampling unit, while DUC can be 

achieved with an up-sampling unit followed by a BPF. For simplicity, we refer both down-

sampling and up-sampling as resampling [50]. 
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Figure 3.3 (a) DDC through BPF and down-sampling, (b) DDC through interpolation BPF, (c) DUC through up-

sampling and BPF, (d) DUC through decimation BPF 

In Figure 3.3(a), a BPF is used to select a specific subcarrier channel, the data sequence after 

BPF is down sampled by a factor of Q through a down sampling unit.  

 

Figure 3.4. (a) DFT of 𝑦𝑦[𝑛𝑛], and (b) DFT of 𝑧𝑧[𝑛𝑛] for down sampling 

Figure 3.4 shows an example of discrete Fourier transform (DFT) spectra of the input data 

sequence 𝑦𝑦[𝑛𝑛]  and the output data sequence 𝑧𝑧[𝑛𝑛]  of the down sampling unit with an input 

sampling frequency 𝐹𝐹𝑠𝑠  and a down-sampling factor 𝑄𝑄 =  4 . Through down sampling, the 

frequency range is scaled down by a factor of 4 from (−𝐹𝐹𝑠𝑠/2,𝐹𝐹𝑠𝑠/2) to (−𝐹𝐹𝑠𝑠/8,𝐹𝐹𝑠𝑠/8). As shown 

in Figure 3.4(a), the selected subcarrier channel originally located in frequency slot 2 (FS2) is 

automatically down shifted to the frequency slot (0,𝐹𝐹𝑠𝑠/8). In general, if the selected subcarrier 

channel is originally located within an even frequency slot, such as FS2 and FS4 in Figure 3.4(a), 
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it will be spectrally flipped after down sampling. While if it is located in an odd frequency slot, 

such as FS1 and FS3, its spectrum will not flip.  

 

Figure 3.5. (a) DFT of [𝑛𝑛] , and (b) DFT of 𝑦𝑦[𝑛𝑛] for up-sampling 

For the process of DUC shown in Figure 3.3(c), a subcarrier channel at the lowest frequency slot 

needs to be translated to a higher frequency slot. Figure 3.5 shows an example of DFT spectra of 

the input data sequence 𝑥𝑥[𝑛𝑛] and the output data sequence 𝑦𝑦[𝑛𝑛] of the up-sampling unit with a 

sampling rate 𝐹𝐹𝑠𝑠  and an up-sampling factor of 𝑃𝑃 =  4 . Through up-sampling, the frequency 

range is expanded 4 times from (−𝐹𝐹𝑠𝑠/2,𝐹𝐹𝑠𝑠/2) to (−2𝐹𝐹𝑠𝑠, 2𝐹𝐹𝑠𝑠). The up-sampled DFT spectrum in 

this expanded frequency range consists of multiple copies of the original spectrum, and each of 

them falls into a different frequency slot. By applying a band pass filter on the up-sampled 

spectrum, a particular copy of spectrum at the desired frequency slot can be selected, which is 

equivalent to a frequency translation. Again, similar to the down-sampling process the 

frequency-translated spectra in even frequency slots such as FS2 and FS4 shown in Figure 

3.5(b), are flipped in comparison to the original spectrum in FS1. The flipped spectrum, although 

contains the full information, is a frequency conjugated version of the original signal, and thus 

another conjugate operation has to be performed when the baseband waveform needs to be 

recovered.   
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In comparison to I/Q mixing and filtering, the resampling and filtering technique shown in 

Figure 3.3(a) and 3.3(c) does not need LOs and mixers, and there is no need for carrier phase 

synchronization. Since the actual bandwidth of each frequency slot is determined by the 

sampling frequency and the resampling factor, it can be flexible to accommodate different data 

rates carried by different subcarriers. Suppose the sampling frequency is 𝑓𝑓𝑠𝑠  and the resampling 

factors are 𝐿𝐿1, 𝐿𝐿2 and 𝐿𝐿3, then the bandwidths of the frequency slot after resampling is 𝑓𝑓𝑠𝑠/(2𝐿𝐿1 ), 

𝑓𝑓𝑠𝑠/(2𝐿𝐿2 )  and 𝑓𝑓𝑠𝑠/(2𝐿𝐿3 ), respectively. The channel data rate granularity of DSXC can be made 

fine enough to address network efficiency requirements through the change of resampling factor.   

However, the major drawback of both DDC and DUC shown in Figure 3.3(a) and 3.3(c) is that 

the BPF still requires significant DSP resources of FPGA, similar to that based on I/Q mixing 

and filtering. A novel technique to solve this problem is to combine the resampling and BPF into 

a single resampling BPF as showing in Figure 3.3(b) and 3.3(d). Resampling BPF is a general 

term which includes decimation BPF for DDC and interpolation BPF for DUC.  

Resampling filters can be implemented as polyphase decimation or interpolation filters on FPGA 

hardware [51], which was proposed primarily for resampling of data sequences while avoiding 

spectral aliasing and rejecting spectral images. Although polyphase resampling filters have been 

previously used in wireless transceivers [52], they have not been used for DSXC switches which 

require the capability of handling asynchronous subcarrier channels with non-equal bandwidth 

and independent modulation formats. While the required DSP resources linearly increases with 

the number of subcarrier channels for both I/Q-mixing-and-filtering and resampling-and-

filtering, DSP resources required for resampling BPF is independent of the number of subcarrier 

channels. This significantly reduces the DSP resources requirement for FPGA implementation.  
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Digital frequency translation can be accomplished with resampling and filtering. As shown in 

Figure 3.3(a), DDC can be achieved by applying a band-pass filter (BPF) before a down-

sampling unit, so that the subcarrier channel selected by the BPF is down-converted to a lower 

frequency slot. Let 𝑄𝑄 be the down-sampling factor indicating that one of every 𝑄𝑄 output samples 

from the BPF is retained, while the other 𝑄𝑄 − 1 samples are discarded. The processing of these 

𝑄𝑄 − 1 discarded samples is in fact unnecessary and could be avoided to reduce the DSP cost. By 

combining down-sampling and filtering into a single decimation filter as shown in Figure 3.3(b), 

only one of every 𝑄𝑄 sampling operations is actually performed for BPF. Therefore, the total 

computation is effectively reduced by a factor of 𝑄𝑄, and the DSP cost of a decimation BPF is 

only 1/𝑄𝑄 of a conventional BPF with the same number of coefficients.  

Similarly, DUC can be achieved by using an up-sampling unit followed by a BPF, as shown in 

Figure 3.3(c), so that a subcarrier channel at a lower frequency slot is up-converted to a higher 

frequency slot and be selected by the BPF. For an up-sampling factor of 𝑃𝑃, 𝑃𝑃 − 1 zeros are 

inserted between every two samples of the input digital sequence in the up-sampling process. As 

the multiplication of these inserted zeros with filter coefficients always results in zeros in the 

subsequent digital filtering process, these operations are not necessary. By combining up-

sampling and filtering into a single interpolation filter as shown in Figure 3.3(d), unnecessary 

operations performed on the inserted zeros can be avoided by using only 1/𝑃𝑃  of the BPF 

coefficients during each convolution. Thus, the total computation is effectively reduced by a 

factor of 𝑃𝑃 and the DSP cost of the interpolation BPF is only 1/𝑃𝑃 that of a traditional BPF with 

the same number of coefficients. 

The frequency translation based on resampling filters and its DSP cost can be analyzed 

mathematically. In Figure 3(a) the input sequence 𝑥𝑥[𝑛𝑛] represents a digital multi-carrier signal. 



33 
 

Suppose that the BPF is an N-tap FIR filter with coefficients ℎ0,ℎ1, … ,ℎ𝑁𝑁−1, then the filter 

output is 

                 𝑦𝑦[𝑛𝑛] =  ∑ ℎ𝑖𝑖 ∙ 𝑥𝑥[𝑛𝑛 − 𝑖𝑖]𝑁𝑁−1
𝑖𝑖=0                             (3.2) 

which is the digital sequence of a selected subcarrier channel that needs to be down-converted. 

After down sampling by a factor of 𝑄𝑄, the output is  

               𝑧𝑧[𝑛𝑛] = 𝑦𝑦[𝑛𝑛𝑛𝑛]           (3.3) 

The Z-transform of 𝑧𝑧[𝑛𝑛] can be calculated as 

    Z(z) = ∑ 𝑧𝑧[𝑛𝑛] ∙ 𝑧𝑧−𝑛𝑛𝑛𝑛      (3.4) 

= �𝑦𝑦[𝑛𝑛𝑛𝑛] ∙ 𝑧𝑧−𝑛𝑛
𝑛𝑛

 

= �𝑦𝑦[𝑚𝑚] ∙ �
1
𝑄𝑄
�𝑒𝑒𝑗𝑗

2𝜋𝜋
𝑄𝑄 𝑝𝑝𝑝𝑝

𝑄𝑄−1

𝑝𝑝=0

� ∙ 𝑧𝑧−
𝑚𝑚
𝑄𝑄

𝑚𝑚

 

=
1
𝑄𝑄
��𝑦𝑦[𝑚𝑚] ∙ (𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑄𝑄 𝑝𝑝𝑝𝑝 ∙ 𝑧𝑧1/𝑄𝑄)−𝑚𝑚

𝑚𝑚

𝑄𝑄−1

𝑝𝑝=0

 

=
1
𝑄𝑄
�𝑌𝑌(𝑒𝑒−𝑗𝑗

2𝜋𝜋
𝑄𝑄 𝑝𝑝 ∙ 𝑧𝑧1/𝑄𝑄)

𝑄𝑄−1

𝑝𝑝=0

 

By letting z = 𝑒𝑒𝑗𝑗Ω in Equation (3.4), the discrete-time Fourier transform (DTFT) of the down-

sampled digital sequence 𝑧𝑧[𝑛𝑛] can be calculated as 

    Z�𝑒𝑒𝑗𝑗Ω� = 1
𝑄𝑄
∑ 𝑌𝑌(𝑒𝑒𝑗𝑗

Ω−2𝜋𝜋𝜋𝜋
𝑄𝑄 )𝑄𝑄−1

𝑝𝑝=0       (3.5) 

where Y�𝑒𝑒𝑗𝑗Ω� is the DTFT of 𝑦𝑦[𝑛𝑛]. 

According to Equation (3.5), Z�𝑒𝑒𝑗𝑗Ω�  is an expanded and shifted version of Y�𝑒𝑒𝑗𝑗Ω�  with an 

expansion factor 𝑄𝑄. Since the DTFT of a digital sequence is periodical with a period of 2𝜋𝜋, every 

spectral component with an original bandwidth 𝜋𝜋/𝑄𝑄  will be expanded to 𝜋𝜋. As a result, the 
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original spectrum which occupies a frequency slot (FS) with a bandwidth of 𝜋𝜋/𝑄𝑄  will be 

automatically expanded to 𝜋𝜋 , and frequency shifted by 2𝑝𝑝𝑝𝑝  into 𝑄𝑄  copies with 𝑝𝑝 =

 0, 1, 2 …𝑄𝑄 − 1.  

Although Y�𝑒𝑒𝑗𝑗Ω� is continuous and periodical, the DFT of 𝑦𝑦[𝑛𝑛], is one sampled period of its 

DTFT, which is sampled at discrete points Ω =  2𝜋𝜋𝜋𝜋/𝑀𝑀 , where Ω  is a normalized angular 

frequency, 𝑀𝑀 is the length of DFT, and 𝑘𝑘 =  0, 1, 2 …𝑀𝑀 − 1 is the index of sampling in the 

frequency domain. Thus, Ω ∈ (0, 2𝜋𝜋) for 𝑀𝑀 >> 1. If the sampling rate of 𝑦𝑦[𝑛𝑛] is 𝐹𝐹𝑠𝑠, the actual 

frequency range of its DFT, denoted by 𝑌𝑌(𝑓𝑓), is (−𝐹𝐹𝑠𝑠/2,𝐹𝐹𝑠𝑠/2).  

As described previously, it is unnecessary to calculate the values of the samples in 𝑦𝑦[𝑛𝑛] that are 

not used in the subsequent down-sampling process. The BPF and the down-sampling unit could 

be more efficiently implemented together as a decimation filter as shown in Figure 3.3(b). 

Consider Equation (3.2) and Equation (3.3), the output of the decimation BPF is 

                     𝑧𝑧[𝑛𝑛] =  ∑ ℎ𝑖𝑖 ∙ 𝑥𝑥[𝑛𝑛𝑛𝑛 − 𝑖𝑖]𝑁𝑁−1
𝑖𝑖=0                            (3.6) 

Compared with Equation (3.2), the amount of calculations in Equation (3.6) has been reduced by 

a factor of 𝑄𝑄. This is because the number of output samples of the decimation filter is 𝑄𝑄 times 

less than that of a traditional digital filter, and thus the DSP cost is reduced by a factor of 𝑄𝑄.  

Similarly, for the conventional up-sampling process shown in Figure 3.3(c), suppose the input 

digital sequence is 𝑥𝑥[𝑛𝑛], after up-sampling by a factor of 𝑃𝑃, the output is,  

              𝑦𝑦[𝑛𝑛] = �𝑥𝑥[𝑛𝑛/𝑃𝑃]      if n/p is an integer
0,               otherwise        (3.7) 

The Z transform of 𝑦𝑦[𝑛𝑛] can be calculated as 

   Y(z) = ∑ 𝑦𝑦[𝑛𝑛] ∙ 𝑧𝑧−𝑛𝑛𝑛𝑛           (3.8) 
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= �𝑥𝑥[𝑘𝑘] ∙ 𝑧𝑧−𝑘𝑘𝑘𝑘
𝑘𝑘

 

= 𝑋𝑋(𝑧𝑧𝑃𝑃) 

Based on the result of Equation (3.8), the DTFT of the up-sampled digital sequence 𝑦𝑦[𝑛𝑛] can be 

calculated by letting z = 𝑒𝑒𝑗𝑗Ω, we get 

    𝑌𝑌�𝑒𝑒𝑗𝑗Ω�  =  𝑋𝑋�𝑒𝑒𝑗𝑗ΩP�      (3.9) 

Where 𝑋𝑋�𝑒𝑒𝑗𝑗ΩP� is the DTFT of 𝑥𝑥[n/P]. In this up-sampling process, Y�𝑒𝑒𝑗𝑗Ω� is a compressed 

version of X�𝑒𝑒𝑗𝑗Ω�, and the compression factor is equal to the up-sampling factor 𝑃𝑃. 

This up-sampling process can be explained by the similar scaling rule between DFT and DTFT 

as described above for down-sampling. An up-sampling by a factor 𝑃𝑃 is equivalent to creating 𝑃𝑃 

equally spaced copies of DFT of 𝑥𝑥[𝑛𝑛], denoted by 𝑌𝑌(𝑓𝑓), in the expanded frequency range of 

(−P𝐹𝐹𝑠𝑠/2, P𝐹𝐹𝑠𝑠/2). 

As shown in Figure 3.3(c), 𝑦𝑦[𝑛𝑛] and 𝑧𝑧[𝑛𝑛] are the input and output of the BPF, respectively. 

Suppose this BPF is a N-tap FIR filter with coefficients ℎ0,ℎ1, … ,ℎ𝑁𝑁−1, the output of this BPF is 

                 𝑧𝑧[𝑛𝑛] =  ∑ ℎ𝑖𝑖 ∙ 𝑦𝑦[𝑛𝑛 − 𝑖𝑖]𝑁𝑁−1
𝑖𝑖=0                                  (3.10) 

As described previously, the up-sampling unit and BPF can be combined into an interpolation 

BPF to reduce the DSP cost. Consider Equation (3.7) and Equation (3.10), the output of this 

combined interpolation BPF is 

                𝑧𝑧[𝑛𝑛] =  ∑ ℎ𝑛𝑛−𝑘𝑘𝑘𝑘 ∙ 𝑥𝑥[𝑘𝑘]𝑁𝑁/𝑃𝑃−1
𝑘𝑘=0                                (3.11) 

Compared with Equation (3.10), Equation (3.11) only requires 𝑁𝑁/𝑃𝑃 , instead of 𝑁𝑁 , 

multiplications, so that the DSP cost is reduced accordingly by a factor of 𝑃𝑃.   
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3.3 Resource utilization of frequency translation 

In order to estimate the resource utilization of different frequency translation techniques, a 4 × 4 

DSXC is designed in Xilinx System Generator. In this design, the FPGA platform is based on 

Xilinx Virtex-7 690t [45].  

 

Figure 3.6 (a) spectrum of a[n], (b) DSP block of DSXC, and (c) spectrum of b[n] 

Figure 3.6(a) shows an example of input electrical signal spectrum which has 4 subcarrier 

channels each carrying a different data sequence (𝐷𝐷1~𝐷𝐷4). For simplicity, in this example each 

subcarrier channel has the same bandwidth. Figure 3.6(b) shows the block diagram of DSP used 

for this 4 × 4 DSXC. In this DSP block, the composite digital sequence including all 4 subcarrier 

channels at the input is first made into 4 equal copies. Each of the 4 DDC blocks down converts 

a channel from its subcarrier frequency to the baseband. The 4 × 4 cross-bar switch routes each 

down-converted baseband data sequence to a DUC block for frequency up-conversion. Channel 

add/drop is also possible at this stage before DUC. After up-conversion with each channel 

assigned a new subcarrier frequency, these subcarrier channels are combined at the output and 

sent to a DAC. The spectrum of the output electrical signal is illustrated in Figure 3.6(c) with the 

frequencies of subcarriers switched in comparison to the input spectrum. 
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Figure 3.7 FPGA resource cost of a 4 × 4 DSXC 

Two frequency translation techniques, one based on resampling BPF, and the other one based on 

I/Q mixing and filtering, are compared for this example. Both of them use 800MHz total analog 

bandwidth which is equally divided into 4 frequency slots with 200MHz bandwidth in each slot. 

40MHz is reserved as the guard band between adjacent subcarrier channels. 79th order finite 

impulse response (FIR) filters are used for both techniques with 60dB stopband attenuation. For 

the resampling-based frequency translation technique, the resampling factor is 4, and bandpass-

filtering in each DDC block is accomplished by a decimation BPF. Similarly, each DUC block 

also performs bandpass-filtering which is implemented as an interpolation BPF. For the 

frequency translation based on mixing with LO, each DDC is performed by I/Q mixing and 

filtering by two low-pass FIR filters for the I and the Q channels, and each DUC also uses a DDS 

and two mixers, as shown in Figure 3.2. In this configuration, LOs are implemented through 

DDS by using look-up table (LUT), and mixers are implemented as digital multipliers, they both 

cost FPGA resources in memories and DSP slices. Figure 3.7 shows the comparison of FPGA 

resource cost to build this 4 × 4  DSXC based on the two different frequency translation 

R
es

ou
rc

e 
ut

ili
za

tio
n 

(%
)

0

10

20

30

40

50

60

70

80

LUT LUTRAM FF BRAM DSP

  

Resampling and filtering I/Q Mixing and filtering

Number of Subcarriers

2 3 4 5 6 7 8

DS
P 

co
st

 (%
)

0

50

100

150
Resampling and filtering

I/Q mixing and filtering



38 
 

techniques. In order to achieve the same performance, DSXC based on I/Q mixing and filtering 

has more than twice DSP cost than that based on resampling filters.  

Here we used Xilinx Virtex-7 690t FPGA chip as the DSP hardware platform, and the total 

number of available DSP slices on this chip is 3600. As indicated by Figure 3.7, the bottleneck of 

the FPGA available resources in the design of DSXC is the DSP slices, and thus it is very 

important to minimize the cost of DSP slices in the design of DSP algorithms. The usage of DSP 

slices is mainly consumed by FIR filters, and the design of FIR filters is a tradeoff between the 

performance and resources cost. A higher order FIR filter has smaller passband ripple, sharper 

cutting edges, and higher stopband attenuation, but has higher resources cost. Passband ripple of 

a FIR filters causes frequency-dependent attenuation of the signal in the passband, which 

introduces signal waveform distortion.  

For a traditional FIR filter to be implemented on a Virtex-7 FPGA, and suppose the length of its 

coefficients is S and the coefficients are symmetric, if the degree of parallelism is R, then the 

DSP cost of this FIR filter is 𝑅𝑅 × (𝑆𝑆/2). Since a mixer is just a multiplier that supports parallel 

processing, it simply uses R DSP slices. For the I/Q mixing and filtering technique shown in 

Figure 3.2, the frequency translation of each subcarrier channel needs 2 filters and 4 mixers, so 

that it requires (𝑆𝑆 + 4)𝑅𝑅 DSP slices. If the number of subcarrier channels is L, the total DSP cost 

of a DSXC based on I/Q mixing and filtering is  

     𝐶𝐶1 ≈  (𝑆𝑆 + 4)𝐿𝐿𝐿𝐿          (3.12) 

Since usually 𝑆𝑆 >> 4 , the resources cost of this DSXC mainly comes from FIR filters. 

According to Equation (3.12), the total DSP cost increases linearly with the number of 

subcarriers. 
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Resampling BPF will cost less resource compared to a traditional FIR filter of the same 

coefficients. In order to compare with the frequency translation based on I/Q mixing and filtering 

with the number of subcarrier channels of 𝐿𝐿, we assume the total available bandwidth is B, and 

the bandwidths of subcarrier channels are 𝐵𝐵1,𝐵𝐵2, … ,𝐵𝐵𝐿𝐿 , so that ∑ 𝐵𝐵𝑖𝑖 = 𝐵𝐵𝐿𝐿
𝑖𝑖=1 . The resampling 

factor Mi of subcarrier channel i is inversely proportional to the bandwidth of that channel, 𝑀𝑀𝑖𝑖 =

𝐵𝐵/𝐵𝐵𝑖𝑖, thus an 𝐿𝐿 × 𝐿𝐿 DSXC could be built by using resampling filters with resampling factors 

𝑀𝑀1,𝑀𝑀2, … ,𝑀𝑀𝐿𝐿 . For a resampling FIR filter with a resampling factor 𝑀𝑀𝑖𝑖  and a length of 

coefficients S, if the degree of parallelism in the DSP system is R, the number of required DSP 

slices to build this resampling FIR filter is 𝑅𝑅 × 𝑆𝑆/𝑀𝑀𝑖𝑖. Since a DDC block needs a decimation 

BPF and a DUC block needs an interpolation BPF for each subcarrier channel, all together the 

DSXC needs L decimation BPF and L interpolation BPF. Therefore, the total DSP cost for 

building these resampling filters is 

   𝐶𝐶2 ≈ ∑ 2 × 𝑅𝑅 × 𝑆𝑆/𝑀𝑀𝑖𝑖
𝐿𝐿
𝑖𝑖=1 = 2𝑆𝑆 × 𝑅𝑅     (3.13) 

According to Equation (3.13), the total DSP cost of DSXC based on resampling filters for 

frequency translation is independent of the number of subcarrier channels. Basically, a higher 

channel count requires a larger resampling factor for resampling filters which reduces the DSP 

cost of each filter, and thus the total DSP cost does not increase with the number of channels. In 

comparison, for frequency translation based on I/Q mixing and filtering technique, each digital 

filter requires the same amount of DSP slices and thus the overall DSP cost increases linearly 

with the number of subcarrier channels.  

The inset of Figure 3.7, obtained through Equation (3.12) and Equation (3.13), shows the DSP 

cost of DSXC based on two different methods. Here we assume length of filter coefficients is 

𝑆𝑆 =  80  and the degree of parallelism is 𝑅𝑅 =  4 . The DSP cost of the DSXC based on 
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resampling filters remains unchanged when the number of subcarriers increases. Whereas the 

DSP cost increases linearly with the number of subcarriers for I/Q mixing and filtering, and there 

will not be enough DSP slices available on a Xilinx Virtex-7 690T FPGA if the number of 

subcarriers exceeds 5. 

Although we used 4 × 4 DSXC as the example with equal subcarrier channel spacing and equal 

data rate for each channel, unequal channel spacing and different bandwidth for subcarrier 

channels can also be used because the resampling factor for each channel can be independently 

set. This has been experimentally demonstrated and will be discussed in the next section.    

3.4 Experiments 

In order to demonstrate DSXC and test its performance experimentally, an optical system based 

on digital subcarrier multiplexing has been setup using an FPGA platform for real-time DSP and 

cross-connect switching.  

 

Figure 3.8 Experimental setup 

The experimental setup is shown in Figure 3.8, where an AWG generates an electrical waveform 

which has multiple subcarriers. A linear optical transmitter converts this multicarrier electrical 

waveform into optical domain through direct intensity modulation. The optical signal is 

transmitted through 25 km standard single mode fiber (SMF), and detected by an optical receiver 

which linearly converts the received optical signal into electrical waveform.  This detected 

electrical waveform is then sent into the DSXC for subcarrier level cross-connect switch. The 
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waveform at the output of the DSXC is sampled by a real-time digital oscilloscope (OSC, 

DPO72304DX) for analysis. 

This DSXC platform consists of three major parts: FPGA board (Hitech-global HTG700), 

analog-to-digital converter (ADC) (TI ADC12J4000EVM) and digital-to-analog converter 

(DAC) (TI DAC38RF82EVM). The resolutions of the ADC and the DAC are 12-bit and 16-bit 

respectively. Because a common clock is required, both the ADC and the DAC are running at an 

input sampling rate of 1.6 GSPS, so that the available analog bandwidth is 800MHz. The FPGA 

board is mounted with a Xilinx Virtex-7 690t FPGA chip. The FPGA clock frequency is 

200MHz, and thus the sampled data in FPGA is processed in eight parallel channels.  

Based on this DSP platform, an 8 × 8 DSXC has been implemented, which switches subcarrier 

channels with three different data rates. Only resampling filters have been used for frequency 

translation in the experiment. The available analog bandwidth of 800MHz is divided into 8 

frequency slots with three different widths: 200MHz, 100MHz and 50MHz, and 20MHz is 

reserved for the guard band between adjacent subcarrier channels. Thus, the bandwidth of the 

corresponding subcarrier channels are 180MHz, 80MHz and 30MHz, respectively, and in 

principle each can have an independent modulation format. Equiripple 108th order FIR filters are 

used in this experiment for DDC and DUC. The ripple in the filter passband is 0.5dB and the 

stopband attenuation is 30dB.  

Table 3.1 shows an example of the input signal to the 8 × 8  DSXC, in which 8 subcarrier 

channels, SC1, SC2, …SC8, are generated by the AWG. Each subcarrier is filtered to have 

rectangular spectral shape by using the method described in [53]. To demonstrate the capability 

of working with mixed modulation formats and data rates, Table I shows the bandwidth and 

modulation format assignment for the 8 subcarrier channels. 
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Table 3.1 AWG generated input signal to 8×8 DSXC 

Subcarrier #  Bandwidth (MHz) Modulation Format 

1 30 QPSK 

2 80 QPSK 

3 180 16QAM 

4 80 16QAM 

5 80 QPSK 

6 80 QPSK 

7 30 QPSK 

8 30 QPSK 

 

Figure 3.9 (a) shows the spectrum of the signal at the output of the optical receiver, where each 

subcarrier channel has almost equal amplitude. In order to characterize the effects of this DSP 

platform imposed on the signal, we measured the output of DSP platform without cross-connect 

switching, and the spectrum is shown in Figure 3.9 (b). Although most channels from SC1 to 

SC6 have nearly the same amplitude at the output for the frequency range of <700MHz, high 

frequency channels SC7 and SC8 experience large role-off of more than 5dB for the frequencies 

beyond 700MHz. This roll-off is mainly caused by ADC and DAC. 
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Figure 3.9 Spectra of output signal: (a) at optical receiver output which is DSXC input (b) after DSP platform but 

without switching (c) after DSP platform with switching assignment of DSXC1 (d) after DSP platform with 

switching assignment of DSXC2. 

Figure 3.9(c) and (d) show the spectra after subcarrier switching for two different output channel 

assignments. In Figure 3.9 (c) denoted as DSXC1, the original subcarrier channels [1 2 3 4 5 6 7 

8] have been switched to [7 4 6 5 3 2 8 1] at the output. While for the spectrum shown in Figure 

3.9 (d) denoted as DSXC2, the original subcarrier channels [1 2 3 4 5 6 7 8] are switched to [8 6 

1 7 2 3 4 5].  

To evaluate the impact of DSXC on the signal quality, the waveforms at DSXC input and output 

are processed to find the error vector magnitude (EVM) for each subcarrier channel. The EVM is 

calculated according to the method described in [54]. As the frequency response of the DSP 
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platform including ADC and DAC is deterministic as shown in Figure 3.9 (b, c, d), its impact 

can be digitally compensated in frequency domain at the transmitter and/or the receiver.  

 

Figure 3.10. Signal EVM of recovered subcarrier channels 

Figure 3.10 shows the EVM of the 8 subcarrier channels in 4 different scenarios. Open squares 

show the EVM measured at the input of DSXC, which is after 25km fiber transmission and 

detected by the optical receiver. Open circles show the EVM after passing through the DSXC 

platform but without cross-connect switching, and thus no digital filters are applied for each 

subcarrier channel. The EVM degradation compared to those shown by open squares is primarily 

due to the frequency-dependent transfer functions and high frequency roll-offs of ADC and 

DAC. Although we have applied slope compensation at the receiver, small amount of EVM 

degradation still exists, especially for high frequency channels. Open triangles in Figure 3.10 

show EVM values of all channels after cross-connect switching with two different output 

channel assignments corresponding to the spectra shown in Figure 3.9(c) and (d). The additional 
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EVM degradation compared to those without switching is mainly attributed to resampling filters. 

This includes the impact of passband ripple which directly contributes to the increase of EVM, 

and the inter-subcarrier crosstalk because of the insufficient stopband attenuation. Several 

representative constellation diagrams are shown in the inset of Figure 3.10, including channels 

with both QPSK and 16QAM modulation and at different frequency slots. 

Table 3.2 FPGA resource cost of DSXC 

Resource Utilization Available Utilization % 

LUT 38909 433200 8.98 

LUTRAM 18929 174200 10.87 

FF 60475 866400 6.98 

BRAM 96 1470 6.53 

DSP slice 2051 3600 56.97 

 

FPGA resources used to build this DSXC are summarized in Table 3.2. This includes 56.97% of 

the DSP slices usage which is often the bottleneck for this application. There would not be 

enough DSP slices available with a Xilinx Virtex-7 690t to build this DSXC if the I/Q mixing 

and filtering method was used.   

As mentioned in Chapter 3.3, higher order digital filters help reducing passband ripple and 

increasing stopband attenuation. FIR filters with lower ripple in the passband and higher 

suppression in the stopband would result in less EVM degradation. In fact, the EVM percentage 

of a signal constellation diagram is monotonically increases with the passband ripple. However, 

increasing the order of digital filters would increase the FPGA resources cost, especially the DSP 

cost. In addition, higher order digital filters would also introduce longer processing delays for the 

signal. 
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In terms of signal processing latency, the latency of this DSXC is mainly introduced by the FIR 

filters. In fact, the latency of a FIR filter is 𝑡𝑡𝐿𝐿 = 𝑇𝑇𝐶𝐶(𝑆𝑆 − 1)/2 , where 𝑆𝑆 − 1 is the filter order 

with 𝑆𝑆 the length of filter coefficients, and 𝑇𝑇𝐶𝐶 is the clock period. Latency caused by other utility 

logic such as cross-bar switch and data type converter is only a few clock periods which is 

negligible compared to 𝑡𝑡𝐿𝐿. With a clock period of 𝑇𝑇𝐶𝐶 = 5𝑛𝑛𝑛𝑛, the latency of each FIR filter as the 

function of the FIR filter order is shown in Figure 3.11. By sending an impulse to the DSXC in 

the simulation based on Xilinx system generator, the overall latency of DSXC in this system, 

including two Equiripple 108th order FIR filters and other utility logics, was found to be less than 

0.65 µs.  

 

Figure 3.11 Effects vs FIR filter order 

The simulation result also shows the impact of filter order on the EVM of the received signal. In 

the simulation, a subcarrier channel with QPSK signal is selected by an Equiripple FIR filter, and 

EVM is calculated as the function as filter order, as shown in Figure 3.11. With the increase of 

filter order, the passband ripple decreases and thus EVM improves. The inset of Figure 3.11 
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shows the calculated relation between passband ripple and the signal EVM, which indicates that 

the EVM increases monotonically with the increase of passband ripple. 

 

3.5 Conclusion 

We described a real-time DSP-enabled 8 × 8 digital subcarrier cross-connect (DSXC) test-bed 

implemented on a Virtex-7 FPGA platform. The functionality and performance of the 8 × 8 

DSXC test-bed are assessed in terms of signal quality, required FPGA resources, and cross-

connect data plane latency. Frequency translation of individual subcarrier channels while being 

routed through the DSXC is achieved through digital resampling filters, implemented on the 

FPGA. This solution reduces the required FPGA resources when compared to the more 

conventional I/Q mixing and filtering. To implement I/Q mixing and filtering the amount of 

required FPGA resources increases linearly with the number of subcarrier channels, while it 

remains constant when using digital resampling filters. 

The experimental results show that the 8 × 8 DSXC test-bed successfully switches the spectral 

location of each individual subcarrier channel while it is routed through the DSXC. Each 

subcarrier channel can be independently assigned a specific bandwidth, modulation format and 

position in the spectrum. In addition, the circuit-switching DSXC introduces a deterministic and 

relatively small delay (<1µs) in the data plane compared to the hard-to-predict delay and jitter of 

commercial packet switches, which depend on the link utilization and packet size. 

Due to its fine bandwidth granularity and high spectral efficiency (which cannot be achieve by 

today’s optical cross-connects), DSXCs are suited for access and metro area networks that 

support applications with stringent network round trip time requirements, like 5G, cloud assisted 

robotics, tele-surgery, and real-time gaming. For example, with its capability to mitigate 
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transmission impairments in the digital domain, offer bandwidth flexibility, and support multiple 

modulation formats, DSXC represents a valid solution to concurrently support and switch a 

variety of RoF channels in the mobile network fronthaul. Applications of such capabilities have 

also been discussed for DSP-based analog RoF systems [55-57].    
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Chapter 4: DA based real-time DSP-enabled DSXC 

In this chapter, a real-time DSXC based on distributed arithmetic (DA) architecture is presented. 

The experimental demonstration of this DSXC is presented in [31]. Compared with the DSXC 

presented in Chapter 3, the DA-based real-time DSXC has lower latency, lower resource cost 

and potential lower energy consumption. 

4.1 Distributed Arithmetic 

First proposed in the early 1970s [58], DA has been used to efficiently implement sum-of-

products without using any multipliers [59-61]. In DA architecture, multiplication and 

accumulation are jointly achieved by using adders, look-up tables (LUTs), and shifters, so that 

conventional multipliers are not needed. Considering that multipliers are usually the most 

expensive type of resource in real-time DSP platform, DSP design based on DA architecture can 

be an advantageous alternative. As a kind of multiply-accumulate circuitry (MAC), FIR filter can 

be implemented using DA by pre-computing and storing all of the possible results in a LUT. As 

a consequence, the major drawback of DA-based FIR filter is that the size of its LUT, which 

must contain the number of possible outcomes, increases exponentially with the number of filter 

taps. For a FIR with large a number of taps, the LUT size may be too large to be practical. LUT 

partitioning can significantly reduce the total size of LUT, but at the cost of increased adder 

complexity and signal latency [61]. With that said, the design of DA FIR filter usually results to 

be a tradeoff between memory size on the one hand, adder complexity and processing latency on 

the other [61]. Techniques such as antisymmetric product coding (APC) and odd-multiple-

storage (OMS) have been proposed to reduce the LUT size by a factor of two. Another approach, 

which combines APC and OMS, can further reduce the size of LUT by a factor of four [62]. FIR 

filter based on DA can be efficiently implemented on hardware such as FPGA or ASIC to 
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support real-time processing [63]. DA-based reconfigurable FIR filters can also be efficiently 

implemented in FPGA or ASIC [64].  DA-based FIR filters have been implemented to save DSP 

resources of FPGA for real-time Nyquist pulse generation in the transmitter of an optical 

communication system [9]. The comparison between real-time Nyquist pulse generation based 

on DA and real-time OFDM waveform generation based on multipliers showed that DA can 

greatly reduce the FPGA required resources [9, 14]. 

In principle, DSP functions such as FIR filters, discrete cosine transform (DCT), FFT, discrete 

wavelet transform (DWT), image and video processing functions can be implemented using DA 

architectures [58], and DA-architectures have been used to build traditional filters such as pulse 

shaping, low-pass and bandpass filters [9, 14].  However, to our best knowledge, DA based 

resampling filters have not been reported as a technique to simultaneously achieve channel 

frequency translation and channel selection which are two key functions required in DSXC. We 

have previously demonstrated digital filtering and frequency translation and channel selection 

based on resampling filters to reduce DSP resources requirement for DSXC compared to I/Q 

mixing and filtering [30]. Here we show that DA architecture can further reduce DSP resource 

consumption and significantly reduce DSXC latency.  

In the remainder of this chapter, we demonstrate the implementation of DA-based bandpass 

resampling filters to achieve simultaneous digital filtering (for channel selection) and frequency 

translation of a DSXC. In order to support the relatively high data rate optical system 

applications with GS/s sampling rates provided by ADC and DAC, parallel processing must be 

applied in the relatively low rate FPGA platform. Processing is achieved through polyphase 

decomposition, in which a super-sample rate FIR filter is composed of multiple low sample rate 

sub-filters. LUT partitioning is then applied to each sub-filter implemented in DA to further 
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reduce the LUT size. The major contributions are: 1) the efficient implementation of resampling 

filters on FPGA hardware through DA architecture to eliminate the need of DSP slices; 2) the 

use of DA-based resampling sub-filters to support parallel processing of high-speed signals and 

reduce the LUT size; and 3) the use of DA-based resampling filter algorithm to achieve 

simultaneous bandpass filtering and frequency translation. Both system performance and 

hardware resource cost of a DSXC making use of DA-based resampling filters are investigated. 

For the reader’s convenience the principle of DA-based FIR filter design is reviewed in Chapter 

4.1.1, and the principle of polyphase decomposition to realize super-sample rate FIR filter is 

reviewed in Chapter 4.1.2. By utilizing resampling filters, which combine DA architecture and 

polyphase decomposition, the DA-based DSXC is able to support subcarrier level switching of 

high-speed signals through parallel processing, subcarrier channel selection, and frequency 

translation.  

4.1.1 Principle of DA 

The DA principles are discussed in [59, 63]. For the reader’s convenience, we briefly describe 

the main principle of DA and its application to DA-based FIR filters. 

Let 𝐴𝐴 and 𝐵𝐵 be two 𝑁𝑁-element vectors. Let R be the bit width of each element in vector 𝐵𝐵. The 

elements in 𝐴𝐴 can have any bit width. The elements in 𝐴𝐴 are constant values while the elements 

in 𝐵𝐵 change over time. Equation (4.1) shows the inner-product computation of 𝐴𝐴 and 𝐵𝐵, which 

can be obtained using DA as described next. 

                                    𝐶𝐶 = ∑ 𝐴𝐴𝑘𝑘 ∙ 𝐵𝐵𝑘𝑘𝑁𝑁−1
𝑘𝑘=0      (4.1) 

Suppose each value in 𝐵𝐵 is represented in the format of 2’s complement and is scaled to be |𝐵𝐵| <

1, then 𝐵𝐵 can be decomposed as shown in Equation (4.2). 

                            𝐵𝐵𝑘𝑘 = −𝑏𝑏𝑘𝑘0 + ∑ 𝑏𝑏𝑘𝑘𝑘𝑘 ∙ 2−𝑟𝑟𝑅𝑅−1
𝑟𝑟=1                   (4.2) 
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Substituting Equation (4.2) into Equation (4.1), the inner-product of 𝐴𝐴 and 𝐵𝐵 can be expanded as 

in Equation (4.3). 

            𝐶𝐶 = −∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘0𝑁𝑁−1
𝑘𝑘=0 + ∑ 𝐴𝐴𝑘𝑘 ∙ [∑ 𝑏𝑏𝑘𝑘𝑘𝑘 ∙ 2−𝑟𝑟𝑅𝑅−1

𝑟𝑟=1 ]𝑁𝑁−1
𝑘𝑘=0         (4.3) 

Taking the 2−𝑟𝑟 component out of the bracket in Equation (4.3), we get 

        𝐶𝐶 = −∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘0𝑁𝑁−1
𝑘𝑘=0 + ∑ 2−𝑟𝑟 ∙ [∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘𝑘𝑘𝑁𝑁−1

𝑘𝑘=0 ]𝑅𝑅−1
𝑟𝑟=1          (4.4) 

Signed 2’s complement and unsigned offset binary format have the same resource cost if they 

have the same word size. Without loss of generality, the samples in vector B can be assumed to 

be unsigned words of size R. Equation (4.4) can be re-written as in Equation (4.5), where the 

expression of 𝐶𝐶𝑟𝑟 is shown in (4.6). 

                                 𝐶𝐶 = ∑ 2−𝑟𝑟 ∙ 𝐶𝐶𝑟𝑟𝑅𝑅−1
𝑟𝑟=0               (4.5) 

                        𝐶𝐶𝑟𝑟 = ∑ 𝐴𝐴𝑘𝑘 ∙ 𝑏𝑏𝑘𝑘𝑘𝑘𝑁𝑁−1
𝑘𝑘=0             (4.6) 

As shown in Equation (4.6), every 𝐶𝐶𝑟𝑟 of 𝑟𝑟 =  0, 1, … ,𝑅𝑅 − 1, can only be assigned one of 2𝑁𝑁 

possible values obtained from all possible permutations of the 𝑏𝑏𝑘𝑘𝑘𝑘 values. The 2𝑁𝑁 possible values 

for 𝐶𝐶𝑟𝑟 can be pre-computed and stored in a LUT. 

A DA based FIR filter has a structure similar to the previously depicted inner-product 

computation between a constant vector A (the filter impulse response) and a time-varying vector 

B (the input signal). Suppose the impulse response vector of the FIR filter is {ℎ(𝑘𝑘), 𝑘𝑘 =

 0, 1, … ,𝑁𝑁 − 1} and its input vector is {𝑠𝑠𝑛𝑛(𝑘𝑘), 𝑘𝑘 =  0,1, … ,𝑁𝑁 − 1}, then the output of this FIR 

filter can be given by Equation (4.7). 

                          𝑦𝑦(𝑛𝑛) = ∑ ℎ(𝑘𝑘) ∙ 𝑠𝑠𝑛𝑛(𝑘𝑘)𝑁𝑁−1
𝑘𝑘=0               (4.7) 

Here we assume the input sample of the filter is 𝑥𝑥(𝑛𝑛), and 𝑠𝑠𝑛𝑛(𝑘𝑘) = 𝑥𝑥(𝑛𝑛 − 𝑘𝑘). Comparing with 

Equation (4.6), Equation (4.7) can be rewritten as 

                       𝑦𝑦(𝑛𝑛) = ∑ 2−𝑟𝑟 ∙ 𝐶𝐶𝑟𝑟𝑅𝑅−1
𝑟𝑟=0               (4.8) 
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where 

                         𝐶𝐶𝑟𝑟 = ∑ ℎ(𝑘𝑘) ∙ (𝑠𝑠𝑛𝑛(𝑘𝑘))𝑟𝑟𝑁𝑁−1
𝑘𝑘=0            (4.9) 

with (𝑠𝑠𝑛𝑛(𝑘𝑘))𝑟𝑟 being the 𝑟𝑟th bit of 𝑠𝑠𝑛𝑛(𝑘𝑘). 

Equation (4.8) and (4.9) can be directly implemented by pre-computing all of the possible 

multiplication results and storing them into a LUT. However, since the number of possible 

values in the LUT (its size) is 2𝑁𝑁, which increases exponentially with the filter length 𝑁𝑁, this 

approach is impractical when 𝑁𝑁 is large. In order to reduce the LUT size, the filter length 𝑁𝑁 can 

be partitioned to form a set of 𝑃𝑃 shorter vectors of coefficients, which require only 2𝑁𝑁/𝑃𝑃 values 

to be stored in the LUT. 

Let 𝑁𝑁 =  𝑃𝑃𝑃𝑃 (𝑃𝑃 and 𝑀𝑀 are positive integers), the index 𝑘𝑘 can be mapped into (𝑚𝑚 + 𝑝𝑝𝑝𝑝) for 

𝑚𝑚 =  0,1, … ,𝑀𝑀 − 1 and 𝑝𝑝 =  0,1, … ,𝑃𝑃 − 1. In this case, Equation (4.8) can be rewritten as 

                       𝑦𝑦(𝑛𝑛) = ∑ 2−𝑟𝑟 ∙ (∑ (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝
𝑃𝑃−1
𝑝𝑝=0 )𝑅𝑅−1

𝑟𝑟=0        (4.10) 

where 

       (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝 = ∑ ℎ(𝑚𝑚 + 𝑝𝑝𝑝𝑝) ∙ (𝑠𝑠𝑛𝑛(𝑚𝑚 + 𝑝𝑝𝑝𝑝))𝑟𝑟𝑀𝑀−1
𝑚𝑚=0      (4.11) 

for r = 0,1, … , R − 1 and p =  0,1, … , P − 1. 

Since each (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝  has 2𝑀𝑀  possible values this approach requires 𝑃𝑃  relatively small LUTs. 

Equation (4.10) can be re-written using the memory-read operation of LUT as 

                    𝑦𝑦(𝑛𝑛) = ∑ 2−𝑟𝑟 ∙ (∑ ℱ(𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝
𝑃𝑃−1
𝑝𝑝=0 )𝑅𝑅−1

𝑟𝑟=0        (4.12) 

where ℱ  is the memory-read operator and ℱ(𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝 = (𝑆𝑆𝑛𝑛)𝑟𝑟,𝑝𝑝 . Bit vector (𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝  is used as 

address word and  (𝒃𝒃𝑛𝑛)𝑟𝑟,𝑝𝑝 = [�𝑠𝑠𝑛𝑛(𝑝𝑝𝑝𝑝)�
𝑟𝑟
  , �𝑠𝑠𝑛𝑛(1 + 𝑝𝑝𝑝𝑝)�

𝑟𝑟 
 ,⋯ , (𝑠𝑠𝑛𝑛(𝑀𝑀− 1 + 𝑝𝑝𝑝𝑝))𝑟𝑟]  for 0 ≤

r ≤ R − 1 and 0 ≤ p ≤ P − 1. 
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4.1.2 Polyphase decomposition of DA resampling filter 

Since the sampling rate of high-speed data converters is much higher than the FPGA clock rate, 

it is necessary to process data in parallel using polyphase decomposition. 

A super sample rate FIR filter is a filter whose sampling rate is higher than its clock rate. The 

purpose of polyphase decomposition is to support parallel processing, in which a high sampling 

rate data can be processed with a relatively low speed clock [65]. Here we briefly describe the 

steps of constructing a super sample rate FIR filter and the steps of constructing super sample 

rate resampling filters based on the former. 

For a FIR filter with N taps, its output can be expressed as in Equation (4.13). 

                                𝑦𝑦𝑘𝑘 = ∑ 𝑥𝑥𝑘𝑘−𝑖𝑖 ∗ ℎ𝑖𝑖𝑁𝑁−1
𝑖𝑖=0               (4.13) 

where ℎ =  [ℎ0, ℎ1,ℎ2, … ,ℎ𝑁𝑁−1] is the impulse response of the FIR filter, 𝑥𝑥 is the input vector 

and 𝑦𝑦 is the output vector. Suppose the degree of parallelism is 4, then the parallel filter structure 

can be derived as in (4.14). 

𝑦𝑦0 = 𝑥𝑥0 ∗ ℎ0 + 𝑥𝑥−1 ∗ ℎ1 + 𝑥𝑥−2 ∗ ℎ2 + 𝑥𝑥−3 ∗ ℎ3 + 𝑥𝑥−4 ∗ ℎ4 + 𝑥𝑥−5 ∗ ℎ5 + 𝑥𝑥−6 ∗ ℎ6 + 𝑥𝑥−7 ∗ ℎ7 +⋯ 

𝑦𝑦1 = 𝑥𝑥1 ∗ ℎ0 + 𝑥𝑥0 ∗ ℎ1 + 𝑥𝑥−1 ∗ ℎ2 + 𝑥𝑥−2 ∗ ℎ3 + 𝑥𝑥−3 ∗ ℎ4  + 𝑥𝑥−4 ∗ ℎ5 + 𝑥𝑥−5 ∗ ℎ6 + 𝑥𝑥−6 ∗ ℎ7 + ⋯ 

𝑦𝑦2 = 𝑥𝑥2 ∗ ℎ0 + 𝑥𝑥1 ∗ ℎ1 + 𝑥𝑥0 ∗ ℎ2 + 𝑥𝑥−1 ∗ ℎ3 + 𝑥𝑥−2 ∗ ℎ4 + 𝑥𝑥−3 ∗ ℎ5 + 𝑥𝑥−4 ∗ ℎ6 + 𝑥𝑥−5 ∗ ℎ7 +⋯ 

𝑦𝑦3 = 𝑥𝑥3 ∗ ℎ0 + 𝑥𝑥2 ∗ ℎ1 + 𝑥𝑥1 ∗ ℎ2 + 𝑥𝑥0 ∗ ℎ3 + 𝑥𝑥−1 ∗ ℎ4 + 𝑥𝑥−2 ∗ ℎ5 + 𝑥𝑥−3 ∗ ℎ6 + 𝑥𝑥−4 ∗ ℎ7 + ⋯ 

(4.14) 

Equation (4.14) can be re-written as Equation (4.15) by re-arranging and re-grouping the 

multiplications. 

𝑦𝑦0 = [𝑥𝑥0 ∗ ℎ0 + 𝑥𝑥−4 ∗ ℎ4 + 𝑥𝑥−8 ∗ ℎ8 + ⋯ ] + [𝑥𝑥−1 ∗ ℎ1 + 𝑥𝑥−5 ∗ ℎ5 + 𝑥𝑥−9 ∗ ℎ9 + ⋯ ]

+ [𝑥𝑥−2 ∗ ℎ2 + 𝑥𝑥−6 ∗ ℎ6 + 𝑥𝑥−10 ∗ ℎ10 + ⋯ ] + [𝑥𝑥−3 ∗ ℎ3 + 𝑥𝑥−7 ∗ ℎ7 + 𝑥𝑥−11 ∗ ℎ11

+ ⋯ ] 
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𝑦𝑦1 = [𝑥𝑥1 ∗ ℎ0 + 𝑥𝑥−3 ∗ ℎ4 + 𝑥𝑥−7 ∗ ℎ8 + ⋯ ]   + [𝑥𝑥0 ∗ ℎ1 + 𝑥𝑥−4 ∗ ℎ5 + 𝑥𝑥−8 ∗ ℎ9 + ⋯ ] + [𝑥𝑥−1 ∗ ℎ2

+ 𝑥𝑥−5 ∗ ℎ6 + 𝑥𝑥−9 ∗ ℎ10 + ⋯ ] + [𝑥𝑥−2 ∗ ℎ3 + 𝑥𝑥−6 ∗ ℎ7 + 𝑥𝑥−10 ∗ ℎ11 + ⋯ ] 

𝑦𝑦2 = [𝑥𝑥2 ∗ ℎ0 + 𝑥𝑥−2 ∗ ℎ4 + 𝑥𝑥−6 ∗ ℎ8 + ⋯ ] + [𝑥𝑥1 ∗ ℎ1 + 𝑥𝑥−3 ∗ ℎ5 + 𝑥𝑥−7 ∗ ℎ9 + ⋯ ] + [𝑥𝑥0 ∗ ℎ2

+ 𝑥𝑥−4 ∗ ℎ6 + 𝑥𝑥−8 ∗ ℎ10 + ⋯ ] + [𝑥𝑥−1 ∗ ℎ3 + 𝑥𝑥−5 ∗ ℎ7 + 𝑥𝑥−9 ∗ ℎ11 + ⋯ ] 

𝑦𝑦3 = [𝑥𝑥3 ∗ ℎ0 + 𝑥𝑥−1 ∗ ℎ4 + 𝑥𝑥−5 ∗ ℎ8 + ⋯ ] + [𝑥𝑥2 ∗ ℎ1 + 𝑥𝑥−2 ∗ ℎ5 + 𝑥𝑥−6 ∗ ℎ9 + ⋯ ] + [𝑥𝑥1 ∗ ℎ2

+ 𝑥𝑥−3 ∗ ℎ6 + 𝑥𝑥−7 ∗ ℎ10 + ⋯ ] + [𝑥𝑥0 ∗ ℎ3 + 𝑥𝑥−4 ∗ ℎ7 + 𝑥𝑥−8 ∗ ℎ11 + ⋯ ] 

(4.15) 

According to Equation (4.15), the coefficients of the original FIR filter can be polyphase 

decomposed into four sub-filters, whose coefficients are in Equation (4.16). 

𝐻𝐻0 = [ℎ0,ℎ4,ℎ8,ℎ12,⋯ ] 

𝐻𝐻1 = [ℎ1, ℎ5,ℎ9,ℎ13,⋯ ] 

𝐻𝐻2 = [ℎ2,ℎ6,ℎ10,ℎ14,⋯ ] 

𝐻𝐻3 = [ℎ3,ℎ7,ℎ11,ℎ15,⋯ ]     (4.16) 

As shown in Equation (4.16), the original FIR filter has been decomposed into 4 sub-filters and 

the length of each sub-filter is only 1/4 of the original filter. 

Note that it is very important to make sure that all sub-filters (H0, H1, H2 and H3) have the same 

latency. According to Equation (4.15) and (4.16), the block diagram of this super sample rate 

FIR filter with a degree of parallelism of 4 is depicted in Figure 4.1. 
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Figure 4.1 A super sample rate FIR filter with a degree of parallelism of 4. 

As shown in Figure 4.1, both the input and output of this super sample rate FIR filter have a 

degree of parallelism of 4, for which the data rate is 4 times the FPGA clock rate. A resampling 

filter which supports super sample rate can also be derived from the principle of super sample 

rate FIR filter as shown above. In principle, an interpolation FIR is equivalent to a cascaded 

process of up-sampling and filtering, while a decimation FIR is equivalent to a cascaded process 

of down-sampling and filtering. As described in [30], in a resampling filter, the number of 

operations can be greatly reduced by avoiding the calculation of unnecessary output and the 

multiplication of a number with zero. For simplicity, we assume the resampling factor 𝐿𝐿 to be 

equal to the degree of parallelism as depicted in Figure 4.1. For an interpolation FIR filter with 
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the same coefficients as the FIR filter in Fig. 6, its block diagram can be modified as in Figure 

4.2. 

 

Figure 4.2 Block diagram of an interpolation FIR filter 

As shown in Figure 4.2, the output rate of this FIR filter is four times of its input data rate, and 

the number of sub-filters is 4, which is only 1/4  of the FIR filter depicted in Figure 4.1. 

Similarly, for a decimation FIR filter with the same coefficients as the FIR filter in Figure 4.1, its 

block diagram can be modified into the block diagram of a decimation FIR filter as in Figure 4.2. 

As shown in Figure 4.3, the output data rate of this decimation FIR filter is one fourth of its input 

data rate, and its number of required sub-filters is 4, which is one fourth of the FIR filter depicted 

in Figure 4.3, so the LUT size is also reduced by a factor of 4. In conclusion, compared with 

super sample rate FIR filters, the resource cost of a resampling FIR filter decreases by a factor 

equal to the resampling factor. 

 

Figure 4.3 Block diagram of a decimation FIR filter 
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4.2 Experiment 

 

Figure 4.4 Experimental setup 

The DA architecture ability to perform subcarrier channel frequency down-conversion, up-

conversion and digital filtering is tested out using the DSXC node and fiber-optic system shown 

in Figure 4.4. The composite DSCM signal used as input to the optical transmitter consists of 

multiple digital subcarriers generated by an arbitrary waveform generator (AWG). The AWG-

generated composite DSCM signal is filtered by an analog low-pass filter (LPF) whose 3dB 

bandwidth is 1.1GHz. The filtered DSCM signal is then converted into an optical signal at 

1310nm wavelength by intensity modulation of an optical transmitter with approximately 1mW 

average optical power. After propagation over 25km of single mode fiber (SMF), the optical 

signal is detected by an optical receiver with direct-detection, and converted back in to a RF 

signal before being sent to the DSXC. In the DSXC, the electrical signal is digitized by an ADC 

with a sampling rate of 1.6GS/s and a resolution of 12 bits per sample. Then the digitized signal 

is transferred to a FPGA for subcarrier level cross-connect switching, which includes subcarrier 

de-multiplexing, cross-bar circuit switching, and subcarrier multiplexing. At the DSXC output 

the processed data is sent to a DAC where it is converted to form an analog waveform. The DAC 
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has an input sampling rate of 1.6GS/s and a resolution of 16 bits per sample. The waveform at 

the DAC output is recorded by a real-time digital oscilloscope (OSC) for offline processing and 

evaluation of the signal quality after the DSXC. 

In this experiment, the DSCM signal generated by the AWG consists of eight subcarriers (SCs), 

and each SC carries a 16QAM signal that occupies a bandwidth of 80MHz. 20MHz is reserved 

as the guard band between adjacent SCs. Since the available bandwidth of the ADC is 800MHz 

(according to the Nyquist theorem), up to 8 DSCM channels can be supported. In the design of 

the resampling filters, a resampling factor of 8 is used, which equally divides the total available 

bandwidth of 800MHz into 8 frequency slots (FSs) each with 100MHz bandwidth. More in 

general, the resampling factor may vary from SC channel to SC channel depending on the 

bandwidth that is assigned to each SC channel to match its individual data rate and modulation 

format. 

Channel selection, frequency translation, and switching of all 8 subcarrier channels are 

performed using 8 pairs of FIR filters implemented at the input and output of the DA-DSXC. 

Each pair of FIR filters consists of one decimation (input) and one interpolation (output) filter to 

perform down-conversion and up-conversion, respectively. In this experiment, equiripple FIR 

filters are used at 1.6 GS/s sampling rate, with 80MHz width of passband and 20MHz width of 

transition band. In order to achieve desirable performance, the FIR filter is designed to have a 

passband ripple Apass = 0.5dB, and a stopband attenuation Astop = 40dB. With the above filter 

specifications, the FIR filter order is 134 (unless otherwise specified) as determined by a filter 

design tool available in Matlab. Coefficients of the FIR filters are obtained using the FIRPM 

function in Matlab. 
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Figure 4.5 Spectrum of (a) output of optical receiver (b) output of DAC without cross-connect switching (c) output 

of DA-DSXC1 (d) output of DA-DSXC2 

For tracking purposes, each SC channel generated by the AWG is assigned a unique identifier [1 

2 3 4 5 6 7 8], counting from the lowest frequency to the highest frequency as marked on the 

spectrum shown in Figure 4.5 (a). All the SC channels are assigned the same power at the AWG. 

Since the channel has a flat frequency response in the signal band, the SC channels at the DA-

DSXC input also have same power. Through the DA-DSXC, these SC channels can be switched 

from any input FS to any output FS. Figure 4.5 (b) shows the spectrum measured at the DA-

DSXC output when the SC channels relative positions are not changed, i.e., channel selection 

and frequency translation are not applied yet. There is approximately a 10dB roll-off at the 

highest frequencies, which accounts for the combined transfer function of the optical transmitter, 

receiver, ADC and DAC circuits.Two distinct channel reassignments at the DA-DSXC output 

are tested, i.e., DA-DSXC1 [7 4 6 5 3 2 8 1] and DA-DSXC2 [8 6 1 7 2 3 4 5], respectively.  
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Figure 4.5 (c) and (d) show the post-compensated spectra of the DSXC output for the 

configurations of DA-DSXC1 and DA-DSXC2, respectively. In these two experiments the roll-

off effects of the transmission system are post-compensated offline at the receiver for ease of 

implementation. However, this compensation can also be performed in real-time by 

incorporating in the FPGA design filters with frequency responses that are inverse to the roll-off 

effects. 

For the purpose of comparison, we also built a DSXC using resampling filters based on 

multipliers [30], which has the same switching capabilities as the DA-based DSXC. We refer to 

this multiplier-based DSXC as MULT-DSXC. Both DA-DSXC and MULT-DSXC are 

implemented in the same Virtex-7 FPGA platform and employing the same type of resampling 

FIR filters in terms of orders and coefficients. The output of MULT-DSXC is chosen to match 

the same two channel switching patters defined earlier. i.e., MULT-DSXC1 [7 4 6 5 3 2 8 1] and 

MULT-DSXC2 [8 6 1 7 2 3 4 5]. 

 

Figure 4.6 Signal EVM of recovered subcarriers 
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Figure 4.6 shows the error vector magnitude (EVM) for each of the eight subcarrier channels 

under six different configurations. Open squares show the subcarrier EVM after 25km of SMF 

transmission at the input of the DSXC. Due to the transceiver low frequency cut-off at 30MHz, 

the lowest frequency subcarrier channel has an abnormally high EVM. Open circles show the 

subcarrier EVM at the DSXC output in the absence of any digital processing (simple pass-

through). The comparison between open squares and open circles indicates that the EVM values 

increase by an average of about 1%, due to both the digitizing noise and the non-flat frequency 

response of the ADC and DAC. When the switching functionality of DSXC is activated, 

resampling filters are applied to the signals to allow subcarrier frequency up- and down-

conversion. Triangles show the EVM values at the DSXC output in four configurations: left- and 

right-pointing triangles show the EVM values of DA-DSXC1 and DA-DSXC2, while upward- 

and downward-pointing triangles show the EVM values of MULT-DSXC1 and MULT-DSXC2, 

respectively. These results clearly indicate that DA-based and multiplier-based resampling filters 

yield similar performance, as the EVM values for DA-DSXC1 and DA-DSXC2 are essentially 

the same as those for MULT-DSXC1 and MULT-DSXC2. 

In our experiment, each subcarrier channel carries a set of independent data with a modulation 

format of 16QAM. According to [66, 67], the required EVM threshold for LTE-A is 12.5% for 

16QAM. Figure 4.6 shows that this DSXC implementation meets this EVM requirement. In 

addition to avoid frequency cut-off by the optical transceiver, the signal quality can be further 

improved by increasing the order of the DA FIR filter, which results in a lower passband ripple 

and higher stopband attenuation of the FIR filter. However, a higher order DA FIR filter costs 

more LUTs in the FPGA. A tradeoff between the filter performance and resource consumption 

has to be found in the design. Both passband ripple and stopband attenuation are dependent on 
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the filter order, and they affect the signal quality. More specifically, passband ripple introduces 

frequency dependent loss of the signal spectrum, while non-adequate stopband attenuation would 

introduce crosstalk between closely spaced subcarrier channels. Both of these two effects can 

significantly deteriorate signal EVM.  

 

Figure 4.7  (a) EVM vs Passband Ripple, and (b) EVM vs Stopband Attenuation 
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Figure 4.7 (a) shows the EVM of a subcarrier channel after passing through a FIR filter with 

different values of passband ripple. The simulation has been conducted by sending a signal with 

8 subcarriers into the bandpass FIR filter. The stopband attenuation is kept constant at Astop = 

40dB while changing the passband ripple through the change of the filter order. Figure 4.7 (a) 

indicates that EVM increases linearly with the increase of the passband ripple. The positions of 

frequency peaks and notches in the passband ripple also have a minor impact on the EVM. 

Consequently the calculated EVM does not exactly follow a straight line in Figure 4.7 (a). The 

major impact of insufficient stopband attenuation is the crosstalk from other subcarrier channels. 

In the frequency down-conversion process, the resampling FIR filter selects a particular 

subcarrier channel, rejects other subcarriers, and shifts the selected subcarrier to the lowest 

frequency slot. If stopband attenuation is not high enough, the leakage from all other 7 

subcarriers will be shifted to the lowest frequency slot, generating crosstalk. In the frequency up-

conversion process, after up-sampling, every selected subcarrier has 8 copies equally spread 

across the 8 frequency slots. After bandpass filtering with insufficient stopband attenuation, the 

leakage from all other 7 subcarriers would contribute to crosstalk. To evaluate the impact of 

stopband attenuation Astop in the DSXC node, simulation is carried out with a fixed passband 

ripple of 0.5dB, and Astop is varied by changing the filter order. Figure 4.7 (b) shows the 

calculated EVM as a function of stopband attenuation. For Astop < 40dB, EVM improves rapidly 

with the increase of Astop due to the significant reduction of inter-channel crosstalk. The EVM 

improvement saturates when Astop approaches 40dB, at which point the crosstalk impact becomes 

insignificant. With a fixed passband ripple, the stopband attenuation increases linearly with the 

filter length (number of taps) as indicated by the right vertical axis of Figure 4.7 (b). As 
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previously mentioned, by setting Apass = 0.5dB and Astop = 40dB, the order of the FIR filter is 

134, which is the value chosen in this study. 

 

4.3 Resource requirement and discussion 

Compared with MULT-DSXC, DA-DSXC has three advantages: 1) it does not require expensive 

DSP slices in the FPGA implementation; 2) the DSP-induced latency is only a few FPGA clock 

periods and is independent of the filter order; and 3) power consumption is reduced as massive 

DSP multiplications are avoided. These three aspects are discussed. Most of the terms used in 

this section are defined in Section 4.1.1 and 4.1.2. 

4.3.1 Resource Utilization 

The major resource cost of a DA-based FIR filter is the lookup table (LUT). Consider a FIR filter 

with 𝑁𝑁 taps and 𝑊𝑊 bit width of LUT data. Let 𝐺𝐺 be the bit width of the input data. A fully serial 

implemented DA FIR filter processes 1 bit per clock period (equivalent to process 1 sample per 

𝐺𝐺 clock periods), which means its latency is 𝐺𝐺 clock periods. For a FIR filter with asymmetric 

coefficients, its LUT size (without LUT partition) is 𝑊𝑊 ∙ 2𝑁𝑁  bits. Partitioning the LUT can 

reduce its size by subdividing a LUT into several smaller LUTs. If we perform a M-fold LUT 

partition, such as 𝑁𝑁 =  𝑁𝑁1 + 𝑁𝑁2 + ⋯+ 𝑁𝑁𝑀𝑀 , then the total LUT size becomes 𝑊𝑊1 ∙ 2𝑁𝑁1 + 𝑊𝑊2 ∙

2𝑁𝑁2 + ⋯+ 𝑊𝑊𝑀𝑀 ∙ 2𝑁𝑁𝑀𝑀 bits, where 𝑊𝑊𝑖𝑖 is the bit width of the LUT data which is obtained through 

the multiplication of coefficients and allowed input data. The value of 𝑊𝑊𝑖𝑖, which is determined 

by the bit width of input data, bit width of coefficients, and the LUT partition, is typically 

smaller than the bit width of the output data. The LUT size can be further reduced by skipping 

the zero-valued coefficients [61]. In this case the zero-valued coefficients are ignored when LUT 

partition is performed. If this DA FIR filter is fully parallel implemented, in which it processes 𝐺𝐺 
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bits per clock period (equivalent to process 1 sample per clock period), its LUT size is 𝐺𝐺 times 

that of the fully serially implemented DA FIR filter. In this case, the LUT size of a fully parallel 

DA FIR is (𝑊𝑊1 ∙ 2𝑁𝑁1 + 𝑊𝑊2 ∙ 2𝑁𝑁2 + ⋯+ 𝑊𝑊𝑀𝑀 ∙ 2𝑁𝑁𝑀𝑀) ∙ 𝐺𝐺. For example, consider a FIR filter with 

12 taps and 12 input bit width, LUT partition of [6 6 2] and corresponding data bit widths of [11 

14 8]. If fully serially implemented, its LUT size is 11 × 26 + 14 × 26 + 8 × 22 = 1,632 bits. If 

fully parallel implemented, its LUT size is (11 × 26 + 14 × 26 + 8 × 22) × 12 = 19,584 bits. 

For a super sample rate FIR filter based on DA architecture, the estimation of its LUT needs to 

consider its polyphase decomposition, which is determined by the degree of parallelism. The 

polyphase decomposition process decomposes this FIR filter into multiple sub-filters, as 

described in Chapter 4.1.2. Each sub-filter can be treated as a small FIR filter and its LUT size 

can be estimated by the method described in the previous paragraph, so that the LUT size of the 

super sample rate FIR filter can be estimated by summing up the LUT sizes of all sub-filters. For 

example, suppose the super sample rate FIR filter has 𝑁𝑁 taps and has a degree of parallelism of 

𝐿𝐿, then the number of taps of each sub-filter is 𝑁𝑁/𝐿𝐿. For simplicity, we assume 𝑁𝑁 is an integer 

multiple of 𝐿𝐿 and there are no zero-valued coefficients. As described in Chapter 4.1.2, this super 

sample rate FIR filter consists of 𝐿𝐿2 sub-filters with 𝑁𝑁/𝐿𝐿 taps in each sub-filter. Suppose LUT 

partition is not performed and the bit width of LUT data is 𝑊𝑊 and each sub-filter is fully parallel 

implemented, then the LUT size of each sub-filter is 𝑊𝑊 ∙ 2𝑁𝑁/𝐿𝐿 ∙ 𝐺𝐺  and the LUT size of this super 

sample rate FIR filter is 𝑊𝑊 ∙ 2𝑁𝑁/𝐿𝐿 ∙ 𝐺𝐺 ∙ 𝐿𝐿2. However, the LUT size might be too large if the value 

𝑁𝑁/𝐿𝐿 is relatively large, so the LUT size can be further reduced through LUT partition. 

For a resampling filter which has a degree of parallelism of 𝐿𝐿, suppose the resampling factor is 

𝑀𝑀, then the resource cost of a resampling FIR filter is only 1/𝑀𝑀 of that of a FIR filter with the 

same coefficients, so its LUT size is 𝑊𝑊 ∙ 2
𝑁𝑁
𝐿𝐿 ∙ 𝐺𝐺 ∙ 𝐿𝐿2/𝑀𝑀. In our DSXC design, the degree of 
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parallelism is 8 and the resampling factor is 8, so the LUT size of each DA based resampling 

filter is 𝑊𝑊 ∙ 2
𝑁𝑁
8 ∙ 𝐺𝐺 ∙ 8. In our system, the ADC resolution is 12 bits, W = 12, the length of 

coefficients is N = 134. In this case, the filter’s LUT size without LUT partition is 12 × 2
134
8 ×

12 × 8 =  1.27 × 108 bits, which is too large and not practical for hardware implementation. 

Since N/8 = 16.75, the length of each sub-filter is approximately 17. If LUT partition is 

performed as [6 6 5], then the LUT size of a resampling filter becomes(12 × 26 + 12 × 26 +

12 × 25) × 12 × 8 =  184,320 bits. After the LUT partition, the LUT size is scaled down to a 

value that is practical for implementation and this resampling filter can be efficiently 

implemented with FPGA. 

However, there is no analytic formula to accurately estimate the amount of LUTs that are exactly 

used in FPGA hardware. This is because the mapping from HDL design of DA filter to hardware 

implementation is a complicated process that is affected by many factors such as the architecture 

of DA filter, the FPGA tool, and the type of targeted device. Nevertheless, Xilinx Vivado, which 

conducts the process of this mapping, can provide estimations of resource cost of the design for 

the targeted device. The mapping performed by Xilinx Vivado consists of two stages: synthesis 

and implementation. The synthesis process maps the HDL design to netlist, and the 

implementation process maps the synthesized netlist to the available resources on the targeted 

device and generates bit-stream file to be downloaded to FPGA hardware. The Xilinx Vivado 

reports the FPGA hardware resource utilization after synthesis and implementation, respectively. 

Only the post-implementation resource utilization reveals the actual hardware cost on FPGA. In 

our experiment, there are 433,200 available 6-input LUTs on a Virtex-7 690T FPGA chip. For 

convenience, the term LUT cost refers to the number of needed LUTs on the FPGA hardware 
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after synthesis and implementation. The resource utilization is then evaluated through Xilinx 

Vivado after synthesis and implementation.  

Table 4.1 FPGA resource utilization of DA DSXC IP and MULT DSXC IP 

FPGA 

Resource 

Available 

resource 

Post-synthesis 

DA DSXC IP MULT DSXC IP 

Utilization Utilization % Utilization Utilization % 

LUT 433,200 111,711 25.79 29,435 6.79 

LUTRAM 174,200 0 0 26,904 15.44 

FF 866,400 108,412 12.51 30,923 3.57 

BRAM 1,470 0 0 0 0 

DSP slice 3,600 0 0 2,147 59.64 

 

Since the designed DSP unit of DSXC is packaged into an intellectual property (IP) that can be 

conveniently imported into a Vivado project, we use the term DSXC IP to refer to the design of 

DSXC inside FPGA. Table 4.1 shows the FPGA resource utilization for both DA DSXC IP and 

MULT DSXC IP, which mainly consists of FIR filters. Before importing the DSXC IP into the 

FPGA project that contains all other logics, we estimated its resource cost by running synthesis 

under Xilinx Vivado. The post-synthesis results show that compared with MULT DSXC IP, DA 

DSXC IP consumes more LUTs and flip-flops (FFs), but it does not consume any DSP slice 

which is most often the bottleneck of the hardware resources.   

It is important to point out that for MULT-DSXC, the number of DSP slices is equal to the 

number of required multipliers in the design of FIR filters. Instead of using DSP slice, a 

multiplier can also be built by only using LUTs. According to the synthesis results of the LUT 

based multiplier IP in Vivado, a 12 × 16 bit multiplier consumes 204 LUTs in the Virtex-7 690T 

FPGA chip. Since the number of required multipliers in the MULT DSXC IP is 2147, a total of 
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2,147 × 204 LUTs would be required if all multipliers are implemented with LUTs. So, the total 

cost of LUTs for this MULT DSXC IP would be 2,147 × 204 + 29,435 = 467,423, which 

exceeds the number of total available LUTs on Virtex-7 690T FPGA. Another problem with this 

FIR filter implementation is its linear dependence on the filter order. Therefore, it is more 

efficient to implement DA based FIR filters on hardware instead of implementing FIR filters 

based on multipliers, even when each multiplier is implemented by LUTs. 

Table 4.2 FPGA resource utilization of DA DSXC and MULT DSXC 

FPGA 

Resource 

Available 

resource 

Post-synthesis Post-implementation 

DA DSXC MULT DSXC DA DSXC MULT DSXC 

Utilization % Utilization % Utilization % Utilization % 

LUT 433,200 31.17 12.18 29.52 9.12 

LUTRAM 174,200 1.37 16.81 1.10 11.34 

FF 866,400 16.08 7.13 15.58 6.60 

BRAM 1,470 6.53 6.53 6.53 6.53 

DSP slice 3,600 0 59.64 0 59.64 

 

Table 4.2 shows the FPGA resource utilization of MULT DSXC and DA DSXC, which contain 

all other utility logics, after synthesis and implementation. Since the DSXC design includes 

utility logics such as the Microblaze IP for controlling and JESD204B IPs for interfacing ADC, 

DAC, and FPGA, we can run synthesis and implementation in Xilinx Vivado to estimate the 

overall resource cost. It shows that in both cases of post-synthesis and post-implementation, DA 

DSXC does not consume DSP slices. The table shows that the MULT DSXC consumes nearly 

60% of the total available DSP slices on a Virtex-7 690T FPGA. This means that increasing the 

filter order may quickly use up all the available DSP slices. With the same functionality and 

performance, the DA DSXC requires 0 DSP slice, but increases the use of LUTs from 9.12% to 
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29.52%, allowing for more room to increase the switching capability with the remaining 

hardware resources. Increasing the available memory in digital hardware is also significantly 

cheaper than increasing the highly specialized DSP slices in FPGA.   

4.3.2 Latency 

If we define the latency of a FIR filter as the delay between the time of occurrence of the first 

non-zero input and the first non-zero output of the FIR filter, then traditional direct-implemented 

FIR filter based on multipliers has a latency which is proportional to its filter order. Whereas the 

latency of a DA-based FIR filter is mainly introduced by the reading operation of LUTs and the 

shifting and adding operation of digital sequence, which is fixed and is independent of the filter 

order.  

In order to have a filter with linear phase, we need to design a FIR filter whose coefficients are 

symmetric around its center.  Theoretically, for a direct-implemented FIR filter with symmetric 

coefficients and a filter order of 𝑁𝑁, its latency is 𝑁𝑁 ∙ 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐/2, where 𝑇𝑇𝑐𝑐𝑐𝑐𝑐𝑐 is the clock period of the 

digital circuit. For the DA filter used in our DSXC, its latency is 2 clock periods if implemented 

in fully parallel architecture without pipelining. In order to meet the timing constraint of the 

FPGA design, the DA FIR has been pipelined and its latency is increased to 7 clock periods. 

According to the block diagram in Figure 4.1, the time shift delay and summation operation add 

an additional delay of 2 clock periods, so that a DA FIR filter in our design has an overall latency 

of 9 clock periods. Since each subcarrier needs a down-conversion and an up-conversion which 

require two resampling filters, the filter induced latency of a DA DSXC is 19 clock periods 

including the 1 clock latency introduced by the multiplexer. With the clock period of 5 𝑛𝑛𝑛𝑛 in the 

FPGA platform that we used, the accumulated latency of this DA DSXC is about 0.1 𝜇𝜇𝜇𝜇 due to 

DSP. For the MULT DSXC, the filter induced latency is (𝑁𝑁 + 1) ∙ 𝑇𝑇𝑐𝑐𝑙𝑙𝑙𝑙, where N = 132 is the 
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order of filter used in our design. Thus, the total filter-induced latency of MULT DSXC is 

approximately 0.67 𝜇𝜇𝜇𝜇. Note that the actually latency due to DSXC IP might be slightly longer 

than the theoretical estimation, since there are some other utility logics that may increase the 

latency by a few clock cycles. 

As a circuit-based cross-connect, the DSXC has a deterministic latency. The DSXC latency 

mainly comes from the data converters (ADC/DAC), the data interfaces between converters, 

FPGA, and the DSXC IP inside FPGA. In order to measure the DSXC actual latency, we built 

three FPGA projects: in the 1st project the signal passes through the system without any DSP 

processing; in the 2nd project the signal passes through MULT DSXC; and in the 3rd project the 

signal passes through DA DSXC. For each project, we sent a triangular waveform with relatively 

long period (5  𝜇𝜇𝜇𝜇 ) and compared the delay between the falling edges of the transmitted 

waveform (input) and received waveform (output). The measured latency of the 1st project is 

1.82 𝜇𝜇𝜇𝜇, which is caused by the signal path between the input of ADC, output of DAC, and the 

interfaces between ADC, DAC, and FPGA board. This latency can be greatly reduced by 

integrating ADC, DAC and FPGA onto a single chip. The measured latencies of the 2nd project 

(MULT DSXC) and the 3rd project (DA DSXC) are 2.75 𝜇𝜇𝜇𝜇 and 1.96 𝜇𝜇𝜇𝜇, respectively. Both of 

them are longer than the latency of the 1st project because of the additional processing latency 

introduced by the DSXC IP. In this experiment, the additional latency introduced by DSXC IP of 

MULT DSXC is 0.93 𝜇𝜇𝜇𝜇 while the latency introduced by DSXC IP of DA DSXC is 0.14 𝜇𝜇𝜇𝜇, both 

slightly longer than the corresponding theoretical estimations presented earlier. Nonetheless, the 

achievable reduction of processing latency through the use of DA-based resampling filters is 

confirmed.  
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4.3.3 Power Consumption 

In terms of electrical power consumption, the post-implementation results of the FPGA project 

show that the on-chip power consumption of MULT DSXC and DA DSXC are both 

approximately 12W. In practical applications, FPGAs are usually used for DSP prototyping, 

while the final designs are often integrated into task specific ASICs. As discussed in [65], for a 

generic DSP design there is a mapping relation between the integrated circuit (IC) area required 

in FPGAs and the IC area required in ASICs. According to [65], the area required to implement 

LUT in ASICs is on average 35 times smaller than that in FPGAs, while the area required to 

implement multipliers in ASICs is on average only 25 times smaller than that in FPGAs. As 

MULT-DSXC uses a large number of multipliers while DA-DSXC only uses LUTs, after 

converting from the FPGA design to ASIC design, the IC area required to implement DA-DSXC 

is estimated to be on the order of 70% of that required to implement MULT-DSXC, and thus, 

there is a potential for the reduction of power consumptions in ASIC design. 

 

4.4 Conclusion 

We demonstrated the use of DA-based resampling filters for both frequency translation and 

channel selection in DSXC. Compared with traditional FIR filters, which are based on 

multipliers and require costly DSP slices to be implemented in FPGA, the DA algorithm makes 

use of look-up-tables, which require only digital memories that are usually more abundant and 

less costly. DA-based resampling filters provide a hardware resource-efficient solution for 

implementing DSXC, which must be able to switch multiple digital subcarrier channels from any 

input to any output port. In addition, a DA-based resampling filter has reduced processing 

latency compared with a multiplier-based FIR filter with same transfer function. We have 
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experimentally implemented a real-time 8x8 DSXC in a Xilinx Virtex-7 FPGA platform, and 

investigated the signal EVM penalties introduced by the DSXC. A comparison based on both 

required hardware resources and introduced processing latency was presented between a DA-

based DSXC implementation and a multiplier-based DSXC implementation. The experimental 

results show that a DSXC using DA-algorithm for frequency translation and channel selection is 

a suitable technology to provide subcarrier circuit switching cross-connection in optical 

networks, and may find useful applications in 5G mobile fronthaul, where improved spectral 

efficiency and flexibility are of the essence. 
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Chapter 5: Conclusion and Future work 

5.1 Conclusion 

This dissertation focuses on the investigation of real-time DSP-enabled DSXC that aims to 

improve the spectral efficiency and provide a more flexible schemes of cross-connect switching 

in future optical networks. We presented the principle of DSXC and demonstrated two different 

implementations of them.  

The main contribution of this research work consists of three parts: 1) investigated and 

experimentally demonstrated the first real-time DSP-enabled DSXC; 2) introduced resampling 

filters in the design of DSXC to reduce the computational cost of the expensive multipliers, and 

to limit the resource cost increment with the number of subcarriers; 3) introduced DA 

architecture in the design of DSXC based on resampling filters to eliminate the use of multipliers 

and reduce the processing latency and potential power consumption. 

 

5.2 Future work 

There are many other interesting topics worth further investigation.  

The DSXC presented in this dissertation is based on Nyquist-FDM. Since DSCM can also be 

based on OFDM, it is possible to implement OFDM-based DSXC, and to analyze its resource 

cost, power consumption and performance, and to compare it with its Nyquist-FDM-based 

counterpart.  

Limited by the capability of hardware platform, we mainly demonstrated the function of 

frequency translation and channel selection of one DSXC. It would be interesting to investigate 

the performance of multiple DSXC nodes, and to evaluate their performance in optical networks. 

The performance of DSXCs with high number of subcarriers can also be investigated. For 
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example, a ZCU111 FPGA board has eight ADCs, each with a maximum sampling rate of 4.096 

GSPS, and eight DACs, each with a maximum sampling rate of 6.4 GSPS. With a new hardware 

platform based on the ZCU111 FPGA board, a DSXC with more wavelength channels, as well as 

more subcarriers, can be implemented. The increasing number of subcarriers may lead to a high 

peak to average power ratio (PAPR), which mandates further investigation.  This new platform 

also has more hardware resources (DSP, BRAM, LUT, etc.) that may enable implementing a 

DSXC with higher performance powers. The hardware imperfections, such as ADC nonlinearity 

and DAC spectral roll-off, can also be compensated by using low order FIR filters implemented 

within the FPGA. 
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DTFT  discrete-time Fourier transform 

DXC  digital cross-connect 
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EON  elastic optical networking 

EVM  error vector magnitude 

FDM  frequency division multiplexing 

FFT  fast Fourier transform 

FIFO  first in first out 

FIR  finite impulse response 

FMC  FPGA mezzanine card 

FPGA  field programmable gate array 

FS  frequency slot 

GSPS  giga samples per second 

HDL  hardware description language 

IP  intellectual property 

LPF   low-pass filter 

LO  local oscillator 

LUT  look-up table 

LUTRAM LUT random access memory 

LSB  least significant bit 

MAC  multiply-accumulate circuitry 

OFDM  orthogonal frequency division multiplexing 

OMS   odd-multiple-storage 

OOK  on-off key 

OSC   oscilloscope 

OXC  optical cross-connect 

QAM  quadrature amplitude modulation 

QPSK  quadrature phase shift keying 
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PAPR  peak to average power ratio 

RAM  random access memory 

RF  radio frequency 

ROADM reconfigurable optical add/drop multiplexing 

RRH  remote radio head 

SC  subcarrier 

SCM  subcarrier multiplexing 

SE   spectral efficiency 

SMF  single mode fiber 

UART  universal asynchronous receiver-transmitter 

WDM  wavelength division multiplexing 
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Appendix I 

Design of DSXC in Xilinx Vivado 

 

Figure 1 Block design in Xilinx Vivado 

Figure 1 shows the block design in Xilinx Vivado 2015.4, each block is an intellectual property 

(IP). The IPs can be Vivado built-in IP, user packaged IP or thirty party IP.  

 

Figure 2 Microblaze IP 
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Figure 2 shows the Microblaze IP, which is a softcore processor that can be programmed in C 

language. In this design, this processor is used to configure and monitor IPs such as JESD204B 

IP through AXI interface. Microblaze can communicate with a computer through the UART 

interface, which can be used for debugging. 

 

Figure 3 (a) JESD204B TX IP and (b) JESD RX IP 

Figure 3 shows the blocks of JESD204B TX IP and JESD204B RX IP in the block design in 

Xilinx Vivado. As shown in Figure 3(a), the JESD204B TX IP has 8 differential pairs of serial 

lanes, which transmits data from FPGA board to DAC board. The DAC board is operating in 

dual-channel mode, and each DAC has an input data rate of 1.6 GSPS and 16 bits resolution. 

Considering the 8B/10B encoding, the line rate of this JESD204B TX IP core is 1.6GSPS × 16 

bits × 10/8 × 2 × 1/8 = 8 Gbps. Figure 3(b) shows the JESD204B RX IP which receives data 
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from an ADC board and sends to FPGA logic for processing. Since the ADC is operating in 

single channel mode with output data rate of 1.6 GSPS and 12 bits resolution. The ADC 

aggregates every 5 samples and add 4 bits overhead to form a frame of 64 bits. Considering the 

overhead and 8B/10B encoding, the line rate of this JESD204B RX IP core is 1.6 GSPS × 12 bits 

× 64/60 × 10/8 × 1/8 = 3.2 Gbps. 

 

Figure 4 Configuration of (a) compilation and (b) clocking in System Generator 

Figure 4 shows the configurations of compilation and clocking in Xilinx System Generator. As 

shown in Figure 4 (a) the target device is Virtex7 xc7vx690t-2ffg176, and the targeted hardware 

description language of generated IP is Verilog. As shown in Figure 4 (b), both the FPGA clock 

period and the Simulink system period are set to be 5 ns. 
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Figure 5 (a) Input data path and (b) output data path of design in System Generator 

As shown in Figure 5, both the input data path and output data path consist of eight parallel data 

channels. Since the clock rate of FPGA is 200MHz, the overall sampling rate of eight parallel 

data channels is 1.6GHz. The design of DSXC between the input data path and output data path 

can be packaged into an IP that can be imported into the Vivado project in Figure 1. 

 

Figure 6 DSXC IP generated by System Generator 

Figure 6 shows the DSXC IP that is generated and packaged in System Generator. As shown in 

Figure 6, the input of DSXC IP has eight parallel data channels with 12 bits width in each 
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channel, which is equal to the bit resolution of ADC. The output of DSXC IP also has eight 

parallel data channels with 16 bits width, which is equal to the bit resolution of DAC. 

After the design in Figure 1 is completed and bitstream is generated, the hardware, including 

bitstream, can be exported into the Xilinx Software development Kit (SDK) environment for 

software development. C programs for Microblaze can be developed in SDK.  

 

Figure 7 Address Map 

Figure 7 shows the address map of IPs in Vivado Design, each IP has its own unique offset 

address which can be used as its base address in SDK. With the knowledge of SDK and C 

functions, Microblaze is able to configure and monitor IPs such as JESD and UART through the 

AXI interface.  

In conclusion, both the design and simulation of DSXC can be accomplished in Xilinx System 

Generator, which is a development environment similar to Simulink.  
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