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Abstract - A new class of architectures for an all-digital modem is presented

in this report. This architecture, referred to as the parallel receiver (PRX), is

based on employing multirate digital filter banks (DFBs) to demodulate,

track, and detect the received symbol stream. The resulting architecture is

derived, and specifications are outlined for designing the DFB for the PRX.

The key feature of this approach is a lower processing rate than either the

Nyquist rate or the symbol rate, without any degradation in the symbol error

rate. Due to the freedom in choosing the processing rate, the designer is able

to arbitrarily select and use digital components, independent of the speed of

the integrated circuit technology. PRX architecture is particularly suited for

high data rate applications, and due to the modular structure of the parallel

signal path, expansion to even higher data rates is accommodated with ease.

Applications of the PRX would include gigabit satellite channels, multiple

spacecraft, optical links, interactive cable-TV, telemedicine, code division

multiple access (CDMA) communication, and others.
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I. Motivation

With the evolution of high speed satellite and terrestrial communications, the

applications of high data rate communication systems are becoming abundant.

Existing earth orbital missions such as the Telecommunication and Data Relay

Satellite System (TDRSS) support data rates of up to 300 Mbps. Comm-

unication systems must today process faster and handle an ever rising data

throughput.

Advances in digital integrated circuit (IC) technology have made switching

speeds close to 1GHz possible. However, the widespread use of high speed

components is costly both in price and power consumption. One of the key

bottlenecks in DSP design for an all-digital receiver is the availability of

components (e.g. multiply-accumulator) that process each sample at the input

sampling rate, when the latter exceeds 200 MHz or so. The objective here is

to explore a cost effective solution to this problem. The ideal solution is to

employ lower speed (50-70 MHz) components using IC technologies such as

the Complementary Metal Oxide Semiconductor (CMOS) technology. CMOS

has many known advantages such as low cost, low power, and high density.

The data acquisition technology also has undergone rapid advancements,

where today, one giga-sample per second analog-to-digital (A/D) converters

are emerging. By using a single high speed A/D component and a low

number of high speed components (e.g. multiplexers only), a fundamental

question is posed:

Is it possible to architect a digital receiver such that the processing rate is

slower than both the sampling and the symbol rate?

The answer to the above question is "yes". In this work, we devise a new

approach for designing a digital receiver that trades off processing rate with

parallelism. Our presentation is largely based on the evolving disciplines of

multirate signal processing and digital filter bank (DFB) theory. Classically,

the filter banks have been used for subband coding applications. Using the

filter bank theory for designing the digital receiver, the resulting system is an

all-purpose receiver which is suited for a variety of different modulation
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formats for high data rate channels. Our general approach is also suited for

other multi-channel communication applications such as multi-carrier

modulation systems, multiple spacecraft communication (or users), and

spread spectrum communication systems.

Another important by-product of our approach is that the overall architecture

of the receiver is modular in the sense that if a higher data rate is desired,

the same hardware (at IC or board level) may be replicated and deployed

without the need to redesign the whole system. In our previous work [1], we

succeeded in formulating a parallel digital phase locked loop (PDPLL). This

work formed the basis of the results presented here, and it was expanded to

provide a cohesive approach to designing a digital receiver.

2
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II. Introduction

With the rapid growth of the VLSI technology coupled with the flexibilities of

digital signal processing techniques, a key objective in the design of the

receiver is to implement the system digitally. However, it is generally not

feasible (even though more desirable) to sample the received signal directly at

the radio frequency (RF). Thus, we assume the availability of an

intermediate stage for open loop down-conversion of the RF signal to a

convenient frequency for the A/D conversion, referred to as the intermediate

frequency (IF).

An all-digital receiver is understood here as a receiver that performs:

demodulation, matched filtering, carrier synchronization, and symbol timing

recovery. All other required functions (e.g. lock indicators, power estimators,

etc.) in a conventional receiver use either the in-phase and quadrature

components, or the output of the matched filters derived from these

components. The in-phase and quadrature components of the receiver form

the sufficient statistics for other estimators and lock detectors. Thus, we do

not outline the implementation of these functions. The merits of an all-

digital approach versus the analog implementation are widely known. A new

generation of all-digital systems has been successfully deployed in NASA's

Deep Space Network [2]. These receivers support a symbol rate of up to a few

mega-symbols per second. Here, we propose a new approach for the design of

the future generation of receivers, that could be potentially used for high data

rate applications up to giga-symbols per second.

A typical digital receiver is shown in Fig. 1. The input signal x(t) is sampled

and converted to a discrete time sequence by an analog-to-digital (A/D)

converter with a uniform sampling period of Ts seconds. The output of the

matched filter in this block diagram is the estimated symbol sequence

(complex or real). In a coded communication system, this sequence is used by

the channel decoder (e.g., Viterbi decoder) to estimate the transmitted bit

stream.
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The symbol duration hereon is denoted as T seconds, the sampling period is

denoted by T_ seconds, and the single-sided input bandwidth of the

equivalent lowpass prefilter prior to A/D conversion in the receiver is denoted

by W in Hz as shown in Fig. 2. We assume a soft decision symbol output for

generality.

Some fundamental choices we made in the architecture of the digital receiver

depicted in Fig. 1 are:

1. The receiver employs bandpass sampling for AfD conversion of the

received signal. It is noted that there are other alternative versions of this

I&Q receiver structure. A widely used alternative (baseband sampling) is

used to perform the demodulation in the analog domain, prior to A/D

conversion, and then sample the I&Q components separately in the

baseband, using two separate A/Ds. In bandpass sampling, a single A/D

converter is used. In reference [3], these alternative approaches are

investigated, and it is concluded that bandpass sampling is more suited

for space communication. In bandpass sampling (see Fig. 2), the

minimum sampling rate is f_ = 4Wand the center frequency of the anti-

aliasing filter prior to the A/D conversion is positioned at fJF = (2k + l) W

for some integer k. Usually the integer k is chosen to result in a

convenient center frequency for designing the anti-aliasing filter. Due to

practical limitations in filter design [e.g. surface acoustic wave (SAW)],

off-the shelf filters are only available in a finite range of center

frequencies.

2. The phase tracking loop is closed in the digital domain. The merits for

this loop closure versus the digital-to-analog conversion and closing the

loop in the IF section are discussed in [3].

It is noted that our approach can also be applied with minor modification

when baseband sampling is employed for A/D conversion, or the phase

tracking loop is closed in the analog domain. The processing rate in our

scheme is not limited by the minimum sampling rate, as exhibited later in

this report. In the conventional approach, the processing rate (shown as a

one sided arrow in the bottom left hand side of Fig. 1) in the digital signal

processing building blocks following the A/D converter is at the minimum

4
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processing rate 1/(2T_). We seek to parallelize the structure shown in Fig. 1

such that the processing rate throughout the receiver can be arbitrarily

selected by the designer. This selection is only limited by the amount of

resources (hardware) available for fabricating the receiver, and it is not

dictated by the input sampling rate or the speed of the ICs used in the signal

path.

The architecture of PRX derived in this paper is of the form depicted in Fig. 3.

Here M denotes the decimation rate in each subband. In this architecture the

input signal is parallelized into 2M separate signal paths. The input signal is

filtered using a Discrete Fourier Transform (DFT) based analysis and

synthesis filter bank, augmented with parallel equivalent of the matched

filtering operation. The resulting output of the overall system is the detected

output symbol sequence. The key feature of this implementation is the

parallelization of the input signal and processing of the input samples at the

rate of 1/(MT_), illustrated in Fig. 3 as a single sided arrow. In the foregoing,

we outline the derivation and the design of the filter banks for transforming

the structure shown in Fig. 1 into the final form depicted in Fig. 3.

5

Section II.2 begins with an introductory section on detection of signals in

additive white Gaussian noise (AWGN) channel. Section II.3 contains some

relevant results from multirate signal processing that are used in the sequel.

Sections II.2 and II.3 may be skipped by those readers familiar with

these subjects. Section III describes the design and architecture for the

parallel implementation of the demodulation and filtering using multirate

filter banks. In Section IV, the derivation of and our approach to combined

digital matched filtering and demodulation are discussed. Section IV.2

contains a design approach for digital matched filtering using interpolated

finite impulse response filtering; this section is independent of the other

section in Section IV and may be used independently of other results in this

report. Sections V and VI contain the design for the symbol timing recovery

and carrier tracking in the PRX, respectively. Section VII discusses

alternative architectures. Section VIII contains a brief discussion of the

processing delay of the PRX. In Section IX, simulation results for a 16-
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channel PRX are provided. Section X outlines some future direction for

research in this area. Section XI includes some concluding remarks. The

four appendices, namely A,B,C, and D contain respectively the MathCad TM

software for generation of the filter banks, interpolated finite impulse

response (IFIR) filter design for matched filtering, the receiver block diagram,

and the C-source code programs for generating the polyphase components of

the filter banks used in simulation of the PRX.

6

II.2 Detection of Signal in AWGN

The received waveform x(t) = s(t) + n(t) is composed of signal s(t) plus noise

n(t ), specifically

x(t) = _ a k p(t - kT) cos(2Zfct + O) + n(t) (1)
k

where ak e U is the symbol sequence and for binary phase shift keying

(BPSK) U = {-1,+l}. We assume full response signaling where the pulse

shape p(t) satisfies p(t) = 0 for t _ [0, T). Here n(t) is additive white Gaussian

noise (AWGN) with a single sided spectral density No. The optimum coherent

receiver for this received signal is well known [5]. We outline here some of

the results used in the sequel that follows.

The optimum receiver for detection of signals, with a known waveform, in

AWGN is based on maximizing the cross correlation of the known waveform and

the received waveform. Formally, it can be shown that maximizing the a-

posterior probability density of the received signal Pr(a k = am Ir(t),t _ [kT,(k + 1)T))

for equally likely and independent symbols results in maximizing the metric

p(a m) during the k-th signaling interval [5], where in general m = 1,...,I U I (the

notation"[.[" used on a set denotes the cardinality of the set). Formally, the

metric P(am) is

]-t(Otm) = Re[e -j° < x, sm >] (2)

where Re[.] stands for taking the real part, and the inner product is defined

by
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(k+l)T

< x,s m >= |x(t)Sm(t)dt

kT

(a)

Both x(t) and Sm(t ) are represented in complex baseband. Each possible

transmitted signal waveform sin(t) is

s,,, (t) = a,,,p(t - kT) for each t_= • U, (4)

for t • [kT,(k + 1)T), and for BPSK m = 1,2... The optimum detector formally

computes (3) during the k-th signaling interval for each value of am, and picks

the maximum, i.e. the detected symbol is _k = max-I p(a). The matched filtering
otEU

as defined in (3) for computing #(a=) is depicted in Fig. 4. For BPSK signals

with a k • U, the correlation is performed only once for each symbol, since Srn(t)

differs only in sign during each signaling interval. In the remaining part of this

report, we usep(3 k) to denote the matched filter output during the k-th

signaling period.

The carrier phase O(t) = 0 in the received signal is a slowly varying random

process and is estimated using a Costas loop [5]. This estimate is used in the

voltage controlled oscillator (VCO) for generating the reference signal,

j(Ez fct+O)
e , as depicted in Fig. 5. The Costas loop inputs are the in-phase and

quadrature components of the received signal, which respectively are

ylm(t)ARe[a_:p(t-kT)e)° + n(t)] yQ(t)A-Im[akp(t-kT)eJ° + n(t)], (5)

for t • [kT, (k + 1)T). The Costas loop for tracking the phase of the BPSK

signal is shown in Fig. 5a. Throughout this document, we assume that all

signal paths are complex. The equivalency of the complex version and the

classical model is evident from Fig. 5b.

In the digital counterpart of the above formulation for the optimum receiver

[6,7], when the time bandwidth product of the system is large (i.e WT>>I is

equivalent to high sampling rate), the inner product in (3) can be approxi-

mated by

< x, sm >= Ex. (6)
nEF

7
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where F = {n :kT < nT s < (k + 1)T}, x n = x(nTs) and w_ : p(nT s - kT). The

dimension of this summation, N= IF I is the number of samples per symbol

and is bounded by N_ = IT/T_]. For simplicity, assume that the symbol

period is an integer multiple of the sampling period so N = Nma_ = T/T_. In a

digital system, the input bandwidth W and the sampling frequency fs must

be chosen such that the number of samples per symbol N >2WT. In the

baseband model, the received signal is sampled and processed as shown in

Fig. 6. An anti-aliasing filter, with bandwidth W-Hertz, is used for

prefiltering the signal. Subsequently, an A/D converter converts the signal

into a discrete time sequence x n = x(nTs). Due to prefiltering and A/D

conversion errors, particularly when the time bandwidth product of the

system is small, the sampled signal waveform which must be used in

equation (6) is different from the one derived from the ideal pulse shape p(t).

When the pulse shape p(t) is bandlimited by the prefilter, the filtering

operation manifests itself as amplitude distortion. In particular, this

distortion is significant when using a rectangular pulse shape for non-return-

to-zero (NRZ) or bi-phase (also referred to as Manchester) signals. In

general, the effect of prefiltering, amplitude, or phase distortion can be

compensated for by the discrete time sampled version of the matched filter as

discussed in [7].

Bandpass sampling is employed in our approach as motivated earlier in this

section. In Fig. 7, the input signal is prefiltered by the anti-aliasing filter

with the analog frequency response Ha(s). The filtered signal is converted by

a single A/D converter to a discrete time sequence x, = x(nTs). Demodulation

is performed by the multiplication of the reference carrier signal and the

input signal, which is then filtered by the lowpass filter Hd(z) to reject the

double frequency components [4]. In the remaining part of this report we

drop the superscript d and simply refer to this filter as H(z). The output of

this filter is used by the matched filter for detecting the transmitted symbols.

Hence, the structure of the optimum detector is performed in two separate

stages, namely the demodulation and matched filtering stages. The purpose

of the decimator at the output of the demodulation filter and more detailed

discussion of the structure in Fig. 7 can be found in Sections III and IV.
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Our results to parallelize the signal path and utilize an efficient receiver

architecture can be expanded to various I&Q modulation formats, including

higher dimensional modulation schemes for bandwidth efficient modulations

such as multiple phase shift keying (MPSK), continuous phase modulation

(CPM), and partial response signaling techniques. These other schemes could

all be cast into a framework to use our methodology for parallelizing the

receiver.

9

II.3 Multirate Siarnal Processin_ and DFB Preliminaries

In this section, a brief overview of the results used in this work from multirate

signal processing is presented. Our notations and approach to multirate

systems and filter bank theory follow [8].

Dcqimation and Expansion

Decimation and expansion are basic operations in multirate digital systems,

as shown in Fig. 8. The output of the decimator xd(n), and the output of the

expander xe(n) in frequency and time domain respectively are [8]:

xe(n)={X(oIL)

xd(n) = x(Mn)

where WM = e
M

if n is multiple of L

otherwise
xe(z) = X(z L)

M-1

1 X(zl/MW )
Xd(z) = M k=O

(7)

When expanding a signal, the original sequence is padded

with L-1 zeros in the time domain between each sample of the original

sequence, which is equivalent to compressing the original spectrum by a

factor of M. This is immediately evident when z is replaced by e j_, as

illustrated in Fig. 9. The process of decimation or discarding of M-1 samples

in the time domain is equivalent to stretching the original spectrum X(e j_')

by an amount M; creating M-1 copies of this stretched version, shifting it

uniformly by multiples of 2z, and then adding the stretched and shifted

versions (divided by l/M).
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In this paper, all decimation and expansion rates are positive integers, and

the notation A(Z)_M denotes the z-transform of the decimated sequence a(nM)

and A(Z)_M denotes the z-transform of the expanded sequence a(_n _.
\MY

10

Blocking of a discrete time sequence is the key to parallelizing digital

filtering operation. The idea behind blocking of a discrete time sequence is

illustrated in Fig. 10.

This is referred to as the "commutator" model. The commutator is simply a

switch (or a multiplexer) that rotates at a uniform rate and takes M positions

periodically. That is,each subsequence x,(n)can be written in terms of x(n)as

follows

xi(n)= x(nM + M-i) , (8)

for i = 1,..., M. The blocking approach for the commutator model is shown for

both the decimator and the expander model. The equivalency of the

switching model and the delay chain operation is evident for clockwise and

counterclockwise operation in each case. The "blocked version" is denoted by

the vector

[x(nM+M- ]
x_(n) = . =

k

xl(n) ]

x21n )[.

XM(n)J

(9)

Following the same notation as in [8], the z-transform of x,(n) is defined as

Xa(z) = _xn(n)z-". (10)

A useful result for our application in the demodulation stage is to

interchange the operation of multiplication with the decimation operation

as shown in Fig. 11. This commutative property is a direct consequence of

blocking operation shown in Fig. 10.
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Notation and Abbreviation for Multi-Input and Output Systems

Let H(z) denote the transfer function of an arbitrary digital filter, i.e.

H(z) = _z-_h(n),

n

(11)

where {...,h(-2),h(-1),h(O),h(1),h(2),...} is the impulse response of the filter.

The input and output of this filter are related by Y(z) = H(z)X(z), where X(z)

and Y(z) are the z-transforms of the input and the output respectively.

Boldface symbols represent matrices and vectors. The notations A r, A', and

A ÷ represent respectively, transpose, conjugate, and transpose conjugate of

A. An M-input-M-output system with the transfer function matrix [8]

H(z) = _h(n)z -n can be defined such that input and output of the system are

related by Y,(z)=H(z)Xn(z). We use the notation "~"

l=l(z) = H+(l/z *) = '_, h+(-n)z -" . (12)

which stands for transposition ,'T", followed by conjugation "*" of coefficients,

followed by replacement ofz with (z*) -l.

Polyphase Components

Two important results from multi-rate signal processing are the Noble

identity and the polyphase decomposition. It is possible to represent H(z) as

defined in (11) in terms of its M-component polyphase form

M-1

H(Z)= _ z-IE_(zM).
/=0

(13)

Here El(z ) is called the l-th polyphase component of H(z). The sequence el(n),

the inverse z-transform of E l (z), is defined as follows

el(n) = h(nM + l) = ht(n) , (14)
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with 0<_ l <_M-1. The expansion in (13) is simply the decomposition of {h(n)}

into M sub-sequences el(n). For example, by grouping the impulse response

coefficients h(n) into even- and odd-numbered samples, i.e., eo(n) = h(2n) and

el(n)=h(2n+ 1), the transfer function H(z) may be represented as

where

and

H(z) = Eo(Z 2) + z-lEl(Z2), (15)

Eo(z) = _ h(2n)z -n , (16)
n

El(z)= _h(2n+l)z -_ . (17)

An important consequence of this representation is that when the polyphase

component is followed by a decimation operation, then the filtering operation

and the decimation can be commuted. This property, known as the Noble

identity, is depicted in Fig. 12.

Applying the Noble identity to the polyphase representation of (13), the filter

H(z) followed by a decimator can be re-drawn, as shown in Fig. 13.b. In the

model shown in Fig. 13.b, the processing rate in each polyphase component is

a factor of M slower than the sampling clock. The polyphase representation

results in an efficient rearrangement of the computations of the filtering

operation. This effectively distributes the computations into a set of parallel

filters operating at a lower speed. This in turn, reduces the speed constraints

on the digital signal processing hardware, thereby enabling it to process

samples at a much lower rate than the sampling rate.

The polyphase identity is depicted in Fig. 13.c. This identity is used when the

filter H(z) is preceded by an expander and then followed by a decimator, such

that the expansion and decimation rates are equal. The cascaded system is a

linear time-invariant (LTI) system. For verifying the LTI property note that

the input to the decimator has the z-transform X(zM)H(z) and the output

signal has the z-transform [X(zM)H(z)] LM = X(z)[H(z)LM] = X(z)Eo(z)' where

Eo(z) is the 0-th polyphase component of H(z).
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Digital Filter Bank

A digital filter bank [8] is a collection of digital filters, with a common input

or a common output. Classically, applications of filter banks have mainly

concentrated in the areas of signal compression. In these applications, the

output of the system is a reconstructed signal _(n) from the subband signals.

The M decimated subband signals x k (n) are derived from the decimated

input signal x(n). Filter banks may typically have overlapping or non-

overlapping bandwidths, depending on the desired characteristics. The

system in Fig. 14 is called a maximally decimated [8] analysis / synthesis

filter bank, and the set of filters {Hk(z ), k = 0,...,M- 1} are the analysis filters

and the set of filters {Fk(z), k = 0,...,M - 1} are the synthesis filters.

The output z-transform of the filter bank can be written as a function of the z-

transform of the input as follows:

1 M-l M-I

M t=o k=o
(18)

where WM = e -j2_/M. This can be written more compactly as

M-1

^ M-I 1 VH,(zWqFL(z .
X(z) = t=o_'_X(zWI) At(z)' where At(z) = _ k--o

(19)

It is clear that if At(z) = O, Vl > O, then aliasing is canceled and X(z) = T(z)X(z),

where T(z) is referred to as the distortion function and it is given by

1 M-I

r(z) Affi-  ,Hk(z)Fk(z). (2O)
k=0

For a perfect reconstruction filter bank T (z) = c z-n°. In this case the

distortion function is simply a delay and a gain, and the system is free from

aliasing, amplitude distortion and phase non-linearity (or distortion).
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The filter bank as depicted in Fig. 14, is called a maximally decimated filter

bank when the number of subband filters is equal to the decimation and

expansion rate M. The input and output of this system are related by the

polyphase decomposition of each subband filter. Let

14

h(z) " , E(zM)= , (21)

LH_-'(z)J LEM_,o(ZM) EM_,,M_,(zM)J

where Ei,j (z) denotes the j-th polyphase component of the i-th analysis filter

H,(z). Accordingly, for the synthesis filter bank, define

[ _o(z)]f(z)= " ,

LFM-,(z)J

R(z M) =

Roo(ZM) Rot(ZM)

RM__,o(ZM)
"''"' RRo,u_t(zM)M1

M-_,_-I(z )

(22)

and let the delay chain be denoted by e(z) where

Then, we can write

[']zf _

etz) = . •

Lz-L,j

h(z) = E(zM)e(z)

fr(z) = z-<M-_)er(z-l) R(z M)

(23)

(24)

The equivalent polyphase representation of the filter bank is illustrated in

Fig. 15.

In general, to design filter banks free of any distortion, perfect reconstruction

property is desired. The necessary and sufficient condition [8] for perfect

reconstruction is that R(z) and E(z) must be of the form
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- ofo I,,,_r]
R(z)E(z):cz Lz_II r 0 ]'

(25)

for some r such that 0 < r < (M - 1). It is noted here when the polyphase

matrix E(z) is paraunitary, it satisfies

E(z)_:(z) - I, (26)

and if R(z) = E(z), then (25) is automatically satisfied.

15

DFT Filter Bank

The Discrete Fourier Transform filter bank is a special class of filter bank.

This class of filter banks can be viewed as a set of equally spaced bandpass

filters obtained by modulating a prototype lowpass filter. The M x M DFT

matrix W has elements [W]k m = W _ where W = e -j2zIM A DFT filter bank is

defined such that every filter Hk(z) is related to a single prototype Ho(z) via

Hk(z) = Ho(zWk). Around the unit circle, the k-th subband filter is the shifted

version H(e j(°_-(2zk/M))) of H(eJ'°). We can express the set of the M impulse

responses hk(n) as

hk(n ) = ho(n ) W _ . (27)

The simplest DFT filter bank is simply an analysis filter bank with

where

Ht(z)= Ho(zWk), (28)

Ho(z)= l + z -l +...+ z -M+I, (29)

as shown in Fig. 16.

For an arbitrary prototype filter with a polyphase decomposition as in (13),

the polyphase decomposition of the DFT filter bank is

M-I M-I

..(z)=.0(zW'):Z(:w-')'e.(:)- w-".
I=0 I=0

(30)
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Equation (30) is realized by using the structure shown in Fig. 17. It should

be noted that the DFT here is performed on each block, where each block is a

single input vector as in (8), corresponding to each time index of the subband

signals. By taking advantage of radix-2 choice for M, it is possible to use the

fast Fourier transform (FFT) to perform the matrix multiplication shown in

Fig. 17. Another important advantage, evident from (30), is that only one

prototype filter is designed and the subband filters are simply the modulated

versions of the same prototype.

Blocked Diuital Filter

Another structure to realize a digital filter is the Blocked Digital Filter.

Consider the scheme of Fig. 18, where H(z) is an M × M transfer function

matrix [8], and Y,(z)=H(z)X,(z). It can be shown that this system is a linear

time invariant system, and can be described by a scalar transfer function H(z)

iff H(z) is a pseudo circulant matrix. That is

H(z) =

Eo(z) E (z) ... Eu_,(z)]

z-IEM_I(Z) z-IEM_2(Z) ... Eo(Z ) J

(31)

The pseudo circulant property means that H(z) is constructed such that every

row of the matrix is obtained from a circular shift of the previous row, and

the elements below the main diagonal are multiplied by z-'. Notice that Fig.

18 also represents a general maximally decimated filter bank (compare with

Fig. 15). In filter bank language, we can therefore say that the system is

alias free if and only if R(z)E(z) is pseudo-circulant. In this case the input-

output relation is Y(z) = H(z) X(z) where

H(Z) :z-(M-I) (Mi____z-i Ei(zM) )
(32)

In block filtering, we can refer to the block filter of Fig. 18 as an imple-

mentation of the scalar filter H(z).
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The block digital filtering formalism provides a possible realization of a filter

for moving the filtering operations to a lower rate. This structure can also be

used when there is no rate conversion preceding or following the filtering

operation. However, it is difficult to fabricate hardware for a set of digital

filters to perform block digital filtering in the matrix form. Block digital

filtering is an expensive operator due to matrix filtering operations, partic-

ularly when the number of subbands M is large. The complexity of block

digital filtering applied to our problem is assessed in Section VII. 1.

Subband Convolution Theorem

17

The analog of the convolution theorem for using filter banks is outlined in [9]

and the idea is illustrated in Fig. 19. The subband convolution theorem for filter

banks permits the convolution of two signals using the subband signals. In

using this approach for computing the convolution, the decimated version of the

convolution results is obtained as shown in Fig. 19. Given an analysis/synthesis

filter bank {Hk,Fk} for 0 < k _<M - 1 that forms a perfect reconstruction (e.g., bi-

orthonormal) system, the theorem states that using the set of filter banks

{H_, Fk}, the M-fold decimated version of convolution x(n)*y(n) can be computed

by computing the convolutions xk (n) * Yk (n) for all k = 0,..., M - l, and then

summing the results. That is

M-i

(x(n) * y(n))$M = _ (x k(n) * Yk (n))$M
k=O

(33)

The interested reader may refer to [9] for detailed discussion of properties of

the subband convolution theorem. This concludes our preliminaries and now

we can begin to consider the problem of parallelization of our receiver.
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III. Parallel Architecture for Demodulator

Digital filter bank theory offers a number of different methods for realizing a

digital filter with a transfer function H(z), at a lower processing rate than the

input sampling rate. Here, we begin by describing the underlying problem,

and then a class of digital filter banks are derived that are well suited for our

application.

The demodulation and filtering operations are performed as shown in Fig. 20.

The heterodyning receiver uses a mixer, shown here as a multiplier, to

translate the signal to baseband, and the filter H(z) is used to filter the double

frequency images produced by the mixing operation. In this figure, fc is the

estimated carrier frequency. In the PRX, the mixing operation is performed in

the subbands, as illustrated in Fig. 11.

It is possible to decimate the output of the filter, since the bandwidth of the

filter is always less than the total bandwidth of the input signal x(n). When

bandpass sampling is used and the minimum rate (fs = 4W) is used to sample

the input signal, it is shown in [4] that J=2 can be used, in conjunction with

half band filter for implementing H(z). Here we present the parallel

implementation of the demodulator of Fig. 20. This implementation must

satisfy the properties listed in Table III. 1.
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Filter Design Requirements

(1). Phase linearity of the filter is essential for tracking

the phase, and extracting information such as the Doppler
effects.

(2). Minimal distortion of the signal while maximally

rejecting the double frequency images; with no additional

loss in the new structure when compared to the

traditional filtering approach.

(3). Facilitate mixing and filtering operation at the lowest

possible rate; i.e., all arithmetic operations (additions and

multiplications) are performed at the lowest possible rate.

(4). Another desirable (but not necessary) property of the

parallel demodulator is to provide a discrete time
sequence corresponding to each subband. The signal

bandwidth is divided to evenly spaced subbands. This

requirement translates into a set of analysis filter banks

which are essentially a set of bandpass filters tuned to

equally spaced center frequencies and which have equal
bandwidth.

Table III. 1. Filter Design Requirements

The fourth requirement broadens the scope of application of the demodulator

particularly for multi-carrier modulation systems, or existing deep space

mission modulation format in which a subcarrier is present. By having

access to the subband signals, with linear phase property, a carrier signal can

be directly accessed from the subband, and fed to a DPLL for tracking

purposes. Returning to the parallelization of the demodulator, in Table III.2

the various approaches, their merits, and shortcomings are summarized.
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Possible Aooroaches

(1). Blocked digital filtering method described in Section II.b,
can be applied for parallelizing the computation, which results in

a matrix faltering operation using the pseudo-circulant matrix in

equation (31). This method entails a matrix filtering operation.
However, the fourth design requirement in Table III. 1 cannot be
fulfilled here at all.

(2). Digital filter bank approach has been classically employed
in applications of subband coding [8]. In these applications of

filter banks, an allpass function is the desired frequency response

of the system. In our case of interest, a lowpass function is the

desired frequency response of the system. Here the fourth

property is readily fulfilled as an added feature at no extra cost to
the overall system.

(3). Use the sub-band convolution theorem which is another

digital filter bank approach. The application of this filter bank is

computationall_, even more complex than the second approach.

Table III.2. Possible Approaches to Parallel Realization of Demodulator

Based on the arguments listed in Table III.2, we are led to consider the digital

filter bank solution based on the second approach. Typically, there are three

sources of distortion in filter banks, these are: aliasing, amplitude distortion,

and phase distortion. In a maximally decimated filter bank, the input signal is

split into M subband signals xk(n) by M analysis filters Hk(z) as shown in Fig.

14. In the case of maximally decimated filter banks, it can be shown that there

exists a class of perfect reconstruction filters, referred to as M-channel

Quadrature Mirror Filters (QMF) [8] which eliminate all three distortions for

full band reconstruction. However, all our four design criteria cannot be

simultaneously met by the QMF filter bank and maintain perfect

reconstruction.

We refer to our filtering problem here as a "partial band reconstruction" as

opposed to perfect reconstruction in which case the objective is to reconstruct

the signal around the whole unit circle. This may be accomplished by

considering the filter banks in Fig. 14, covering the full band [0,2z), and simply

keeping a subset of the synthesis filters and discarding the rest as shown in

Fig. 21. The remaining subset constitutes the passband of the overall system,

and the discarded set constitutes the stopband.
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Let fl = [0,2 z) denote the frequency domain, and E = {H o(z), Hl(Z),'..,Hu_ i (z)}

denote the set of M real-valued analysis filters, and let the non-overlapping

[-ZkZk )frequency interval /k = [_ ,_(+l) denote the frequency support of the k-

It Z

th filter with the center frequency fkc = _ (k + l) - _--_, for k >0 where

M-l

k=O

operation

By discarding the output of the analysis filters k = j,...,M - 1, this

is equivalent to a lowpass filter, i.e., weighting the frequency
M-l

response over the interval U Ik with zero. The filter bank shown earlier in
k=j

Fig. 14 is re-drawn in Fig. 22 to demonstrate the idea of dropping a subset of

inputs to the synthesis bank for realizing a low pass frequency response.

In applying maximally decimated filtering, aliasing effects must be

considered. In a perfect reconstruction filter bank, this aliasing is effectively

canceled. Aliasing error due to dropping a subband is illustrated in Fig. 23.

In Fig. 23 a subset of synthesis filter banks F,(z) for i > k + 2 and i < k are

discarded. The aliasing error in the signal is not canceled in the frequency

bands where the adjacent synthesis filters are discarded. This effect is

exhibited in Fig. 23 in the frequency intervals Ik and Ik+2.

In order to deal with the aliasing we can use an oversampled filter bank, i.e.,

use more filters without increasing the decimation rate. This choice

translates into decreasing the bandwidth of the analysis filters compared to

the maximally decimated case. This class of filter banks is referred to as non-

maximally decimated filter banks [8]. We begin by assigning a frequency

supp°rt (passband)t° eachfilter Ik =[_ k 2M'MZZk+_M) forcomple x

z k, where
subbands with t2 = [0, 2 z), with center frequency f[ =

k = 0,..., 2M - 1. This frequency allocation (or filter stacking) doubles the

number of analysis and synthesis filters. However, since the decimation rate

is kept at M, the separation between the center frequency of the images of

each analysis filter relative to its passband is doubled. The idea of using the

non-maximally decimated filter bank is demonstrated in Fig. 24 for the case

when M=3. An example for obtaining a lowpass filter by dropping subbands
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in a non-maximally decimated filter bank for M=3, and 2M=6 is shown in Fig.

24. The DFT filter bank provides an efficient realization for the non-

maximally decimated filter banks. In the DFT filter bank the subbands are

complex valued signals.

22

In a non-maximally decimated filter bank aliasing is not canceled but it is

suppressed for all practical purposes. For applications of detection of signal

in noise, a wise choice for the amount of this suppression is to assure that the

aliasing level is far below the thermal noise level. The input and output of

the filter bank (with a single channel shown in Fig. 25b) are related by

M-1 2M-I

k=O

(34)

Note that the decimation ratio in this case is M and is half the number of

subband channels 2M. The distortion function for a full band reconstruction

of a non-maximally decimated filter bank, assuming that the aliasing can be

neglected, is

2M-I

T (z) = (z)Fk(z) . (35)

A by-product of this approach is the wider spaces between the images and the

main signal, thereby providing ample room to eliminate the images. This

enables the application of synthesis filters that may have a wider transition

bandwidth than their analysis counterparts. The synthesis filter F_(z) may be

designed to have a wide transition bandwidth and thus can be implemented

with lower complexity. If {H k(z)} is a set of ideal brickwall filters, then the

passband°f Fk(eJ_) istheinterval lk =[Mk 2M'MZZk+_M) andthetransitio n

band is accordingly

2M,M:(k+I)- U k 2M'- _(k-1)+ . (36)

The frequency support and the inter-relationship of the transition and

passband support of a non-maximally decimated analysis/synthesis filter
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bank is depicted in Fig. 25. In Fig. 25a, the frequency domain support of each

analysis filter is depicted. An end-to-end single channel of the non-maximally

decimated filter bank is shown in Fig. 25b, the transition bandwidth of the

synthesis filter is shown in Fig. 25c, with the frequency support expressed in

equation (36).

We choose a 2M non-maximally decimated DFT filter bank and recall that all

the subbands are obtained by a set of uniformly shifted versions of a single

prototype filter, i.e. Hk(z) = H(zW_M) and Fk(z) = F(zW2tM). Ideally, Hk(z) and

F, (z) are designed such that the distortion function in (35) reduces to a

constant value. This can be achieved if the sum of the frequency responses of

the analysis filters Hk(z) is a constant and the synthesis filter Fk(z) is

designed with linear phase and a wide enough passband to pass the subband

signal undistorted. The condition imposed on the distortion function in (35) is

reduced to

2M-I 2M-I

___Hk(z)Fk(z)--- Z Hk(z)= 2Mc.
k=O k=O

(37)

23

It can be shown that this condition is satisfied by a special class of filters

referred to as Nyquist filters. These filters are obtained by choosing an

impulse response for the prototype filter such that

{_ n=Oh(n 2M) = Otherwise (38)

The Nyquist filters as defined in (38) are also referred to as 2M-th band

filters. The condition in equation (37) requires the impulse response of the

filter to have periodic zero crossings separated by 2M-samples.

In summary, our design guidelines for implementation of the filtering

operation are listed in Table III.3.
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Desia_n Guidelines

(1). Ho(z) must be linear phase and Nyquist (2M).

(2). Fo(z) must be linear phase and may have a large

transition bandwidth as specified in equation (36). The

passband of Fo(z) must contain the passband of Ho(z) plus

its transition band.

(3). Both the analysis and synthesis filter banks are

implemented using a DFT filter bank, i.e. Hk(z) = Ho(ZW_M)

and Fk (z ) = Fo(ZW_M ) .

Table III.3 Design Guidelines for Design of Filter Bank

A more detailed discussion of the filter design for both analysis and synthesis

bank using the above design guidelines can be found in Section IX. We can

now draw the overall block diagram of the demodulator as shown in Fig. 26.b.

In Fig. 26a, the original model is shown as a reference to compare these two

structures.

An example of a filter bank for the case when M=16 is considered as

satisfying the design guidelines is outlined in this section. The frequency

response of Hk(z) and Fk(z) is illustrated in Fig. 27 for the three filters

(k = 0,1 and 31). In these figures, the horizontal axis is co/(2z).
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IV. DiStal Matched Filterin_

The ideal digital matched filter for detection of signals in AWGN is the

classical correlator shown in Fig. 7. In the digital implementation, an

integrate-and-dump filter (IDF) is used to approximate the correlator output,

as shown in Fig 28. The number of samples per symbol for full response

signaling (i.e. when p(t- kT) = 0 for t ¢_[kT,(k + 1)T)) is N=T/Ts.

The digital IDF detects the k-th symbol by summing all the N samples taken

from t=kT + Vo to t=(k +I)T+ Vo. When sampling the received signal at a

constant sampling rate, the i-th sample occurs at time iTs. For the k-th

symbol the "offset in sampling" is defined by the length of time after the start

of the symbol to when the first sample in the symbol occurs. This time is

5=iTs -(kT+r.o), where i is the smallest integer such that iTs -(kT+ro), is non-

negative, and v o < Ts is the timing offset. The first sample of each symbol may

occur anywhere between 0 and Ts seconds after the beginning of the symbol.

A typical symbol waveform and the sampling points are shown in Fig. 29 for

the case when a rectangular pulse shape is the transmitted waveform.

There are two ways to deal with the offset. The first approach is to

synchronize the sampling clock with the symbol clock. This is not desirable

in space communication applications since the sampling clock is synchronized

with an ultrastable clock source (such as a MASER) and is used to time tag

the carrier phase estimate for ranging applications. The second and more

versatile approach is to virtually use a finer granularity in the time domain

than the sampling period. The finer resolution in time is only used for pre-

computing the matched filter coefficients during the design phase.

Conceptually, we begin by expanding the input signal by L and obtain a

matched filter with a higher resolution and then decimate by L. The

derivation leads to a matched filter which is time varying. The weight

sequence is matched to the transmitted pulse shape p(t), i.e.

w i = p((iT_ / L) - kT+ 6). Note that the discrete time index i of the weight

sequence w, varies at the rate 1/L Ts. The output rate of the matched filter is

at the symbol rate, hence, the expanded rate is decimated to the input rate by

L and then to the symbol rate by D (note that here D=N ). The integer delay

d = LS translates into a fraction of the sampling period from the beginning of
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a symbol period. This delay is estimated by measuring the offset of the

expanded sampling clock with respect to the phase of the NCO in the symbol

synchronization loop. This delay varies much more slowly than the symbol

rate. For every value of d, we can formulate the matched filter as a linear

time invariant (LTI) system denoted by Qd(z), as illustrated in Fig. 30. The

application of the polyphase identity of Fig. 13.c (since the decimation and

expansion rates are equal in Fig. 30) enables us to model the matched filter

as an LTI system with the transfer function denoted as Qd(z) and the inverse

z-transform qd(n). In the following section, the parallelized version of the

matched filtering operation in Fig. 30 is considered.
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IV. 1 Combined Demodulator and Matched Filter

An efficient implementation of the matched filter is obtained by combining

the matched filtering operation with the demodulator filter bank. The key

advantage in combining the demodulation filter bank with the matched filter

is to use the same subband signals produced in the demodulation stage,

which are already parallelized and sampled at the lowest rate. For simplicity

in illustrating the combined structure, we ignore the mixing operation for

converting the input signal x(n) to baseband, which has already been

outlined in Section III. The methodology here is first to design the subband

matched filters assuming an allpass characteristic of the demodulation filter

bank, and then later we revert to the previous approach of discarding the

subbands for synthesizing a lowpass characteristic.

In what follows, the derivation of combined demodulator and matched filter is

presented step-by-step. We begin by considering the allpass filter bank

followed by the matched filter in Fig. 3 la. The analysis, matched, and

synthesis filters are shown in Fig. 31a, with transfer function Hk(z), Qd(z)

and Fk(z) respectively (recall that r(n) was originally defined in Fig. 7). The

matched filtering operation can be commuted with the synthesis banks as

shown in Fig. 3 lb.

Let qd(n) denote the impulse response of the matched filter with the z-

transform Qa(z). It can be shown that the block diagram shown in Fig. 32 is

equivalent to the one shown in Fig 31.b. Note that any other filter with
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appropriate design criteria may be used for computing this convolution.

Hence, the synthesis filters have been replaced from F k(z) to Fj[(z), even

though the designer may select to use the same filters. The Fourier

transforms at points _ and _ in Fig. 32 are shown in Fig. 33. In Fig. 33, the

output of Fk'(z) is denoted byPk(z) wherePk(z)= Q#(z)Fk'(z).

27

The next step in the derivation is the inclusion of a decimator-interpolator

pair prior to the convolution and the addition of the synthesis filter Fk(z) for

demodulation after the convolution, as shown in Fig. 34. In Fig. 33, the

frequency characteristics of the signals at various points of Fig. 32 and Fig. 34

are illustrated. When Fk'(z) and H k(z) have sufficient stopband attenuation

and appropriate passband width and ripple, then for all practical purposes the

systems in Fig. 34 and Fig. 32 produce the same output. The Fourier

transform at point _ is the product of the Fourier transforms of the signals at

points _ and _. It is clear that at point 6 the frequency support of the

signal is similar to that of the analysis filter. In the same way, the Fourier

transform at point 5 is the product of the Fourier transforms at points _ and

6. Then, the k-th image in point 6 is equal to the signal in point 6. The

filter Fk(z) will only pass the k-th subband signal and reject the remaining

images, making the signal at points 6 and _ approximately equal.

Inaccuracies may only result from non-ideal frequency responses of the filters.

The idea now is to apply the convolution identity shown in Fig. 35 for moving

the expansion operation to the last stage. The application of this identity

results in performing all arithmetic operations at the lowest possible rate,

prior to rate expansion. In Fig. 35, the convolution operation of the two

signals xl(n) and x2(n) performed at the high rate is reduced to convolution at

the lower rate by a factor of M. Applying this multirate identity to the

scheme of Fig. 34, we obtain the subband version of the matched filter shown

in Fig. 36.

We use the efficient implementation of a DFT filter bank as shown in Fig. 17.

In a non-maximally decimated filter bank, the 2M filter bank output is

decimated by M. This in turn requires z to be replaced by z 2 in the polyphase

filters. The resulting structure is shown in Fig. 37a. In this figure
H

Ri(z) = E_'M_I_i(Z) , where E i (z) is the i-th polyphase component of the
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synthesis filter F0(z) , El(Z) denotes the i-th polyphase component of the

analysis filter and E i (z) denotes the i-th polyphase component of the filter

bank used for performing the subband convolutions.

The computations leading to the set of signals sk(n)can be performed off-line,

if desired. That is, Qd(z)Fk(z) is computed and the result is decimated and

stored in the time domain. In Fig. 37.b, the convolution in the subband

signals is replaced with a subband matched filter denoted here as Gk(z) for

k = 0,...,2M- 1, where Gk(z) is a filter with impulse response sk(n).

28

The synthesis part can be further simplified by noting that the output of the

DFT (matrix multiplication by W) is composed of 2M points and the

expansion rate is M. Hence, we can now re-organize the system of Fig. 37 as

shown in Fig. 38, where the addition of the output sequence of the synthesis

bank is performed at the lower rate. For effective implementation of the

interleaver structure in Fig. 38, the interleaver can also be reduced to a

multiplexor, whereby each symbol output _k is associated with a specific

subband. This is the subject of the next section.

IV.l.a Filter Bank Outout Multiulexina to Symbols

Let g denote the greatest common divisor of M and D (shown in Fig. 39a),

i.e. g =gcd(M,D), then there exist _/and b such that M =gM, D=gD, where

and D are relatively prime. So there exist integers no and n I such that

n f4 +nlD = 1. It can be shown then that the expander followed by the delay

chain and decimator shown in Fig. 39a is equivalent to Fig. 39b.

Let i denote the channel number corresponding to the i-th subband, and

define l, and ri such that z -¢_M+_) = z-in'; i.e., _ = i n I Modulo M is the

remainder part and li is the integer part of in_. Since gcd(npM)=l then q #
M

for all i _ j, i.e., each q is unique. Using the multirate identity depicted in

Fig. 39, the overall structure may be drawn as shown in Fig. 40. It is noted

that for a fixed symbol rate the delay length for each subband is fLxed, hence

reducing the interleaver to a multiplexing circuit, and a routing switch.
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IV.l.b Efficient DFT Comoutation of Synthesis Filters

29

Further reduction in the FFT computation of the matrix multiplication with

W can be attained by noting that only a subset (2_/-branches) of the output

branches are needed for obtaining the output symbol sequence. Let

x(k) =
2M-I

nffi0

where k = g - 1, 2g - 1,..., 2M - 1, and M = g/Q, i.e., k = mg - 1 when

m = 1,2,.-.,2A7/. Then, it is easy to verify that the FFT may be decomposed into

two parts, that is

X(mg - 1) = _-_ wm_J IM-(2Mn°+vh) X(2_fr/0 +tll)
Z__ "'27_/ ] "2M

nl =0 [no:0

In which case, a g-point FFT can be used to compute the inner DFT for each

nl, and then a 2 M FFT is performed to compute the final product. This

concludes our discussion of combined demodulation and digital matched

filtering.

1V.2 IFIR ADoroximation for DiStal Matched filterin_

The results of this section can be used independently of the results in other

sections of this report. The following method may be incorporated in the

falter bank structure when the matched filter has a high order and requires a

large number of taps. This method effectively reduces the number of taps at

the input rate by realizing an equivalent filter as described here in this

section.

We begin by considering the filtering operation shown in Fig. 41. Our

approach here is based on using the interpolated finite impulse response

(IFIR) filtering. This means that we use the following decomposition to

realize an FIR approximation to the matched filter in the frequency domain,

HMA(z) = G(z LI2) /(z), (39)
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where L is an integer referred to as the stretch factor. This decomposition

results in an efficient implementation of a narrow band lowpass filter. Let N

represent the order of filter required to meet the specification to implement

HuA(D. The stretched filter G(z L/2 ) has transition bandwidth LAf/2, so the

order of the filter is reduced by a factor of N/2L, where Af is the transition

width of the original filter. This translates into substantial savings in

multiply accumulate operations by a factor of L/2. The unwanted shifted

version of G(z L/2 ) is then suppressed with a filter denoted here as I(z). This

filter has a very wide transition bandwidth [8] and it requires a low order.

The overall filter is shown in Fig. 42.

It is possible to decompose the stretched filter G(z) into even and odd

polyphase components and re-draw the system shown in Fig. 42a as depicted

in Fig. 42b, and after some manipulation we can arrive at the system shown

in Fig. 43, where the even and odd polyphase components of GGz) are denoted

respectively as Go(z) and Gl(z), and the L/2 polyphase components of I(z) are

denoted as Io(z),.. ',IL/2_I(Z ).

The IFIR digital matched filter described here is designed by considering the

impulse response of the digital matched filter denoted here as h(n). The

problem can be formulated as a least squares optimization problem as

follows: given an arbitrary impulse response h(n) of order N, find/_(n) such

that

_ l [_(n) - h(n) I:, (40)
n

is minimized, subject to the constraint

H(z)=G(zL/Z)I(z), (41)

where the impulse response of G(z) is g(a) of order N and the impulse

response of I(z) is i(n) of order NI, and N = Nf +(L/2)Ng. We begin by re-

writing the constraint (41) in the time domain and use the fact that

multiplication in the frequency domain is equivalent to convolution in the

time domain. Let
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and define matrices

-. g(o)i ]

g(N,- 1)J

9
(42)

and

K

-1

0

S=O

0

0

" i(o) o o
i(1) i(0) 0

i i "'.

i(N: - 1) i(N/- 2)

o i(N,_l) ...

0

: "°
°

•°°

0 "••

" "'. 0

0 0 0

1 0 ...

.°, °

.

o}0 L/2-1

0

1

°.°

°,.

i(1)

i(N/- 1)

rows of

0

0

i(o)

i(1)

zeros

(43)

, (44)

Then, we can write

= KSg. (45)

Thus, minimizing equation (40) is equivalent to minimizing

I h- U--IIh-KSgll (46)

When the matrix columns of the K S are linearly independent and

(K S) T (KS)is nonsingular, the least squares solution is given by the relation:

g = ((KS) T(KS))-l(K s)T h (47)
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The matrix ((KS)T(KS))-I(KS)Tis referred to as the pseudo-inverse or the

Moore-Penrose generalized inverse of matrix KS. Due to the construction of

matrix KS in our problem, the existence of a solution is always guaranteed.

Similarly, from equation (47), we can find the best g such that the objective

function __1 h(n) - h(n) I_is minimized. Let

_.

g(O) o o ... o

g(1) g(0) 0 ... 0

: : '.. :

g(N -1) g(N,-2) ... g(0)

0 g(N - 1) ... g(1) g(1)

: g(N -1)

0 0 ... g(N - l)

and f =
(48)

32

then the objective function in (46) is minimized and

f = (D TD)-' DTh * (49)

The optimization procedure is summarized below:

Desi_n Al{_orithm for IFIR Matched Filter:

(1). Pick initial guess for/_n), e.g. f(n) = 1 for all 0 < n < N:.

(2). Use equation (47) to optimize g.

(3). Use equation (49) to optimize f.

(4). If _1/_(n) - h(n) [2is not acceptable go to 2.
n

Suppose h(n) has stopband edge of about z/o_ Then L is chosen between a/2

and 3a/2 and the optimization solution is good in general.

*Formulation of this iteration algorithm is due to Yuan-Pei Lin, graduate student, California
Institute of Technology.
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In Fig. 44, an example is provided for a rectangular pulse. The filter order is

chosen to be N=90, L=4, Ng=24 and the original impulse response h(n) is

simply a square pulse with the first twenty and the last twenty samples set to

zero. The approximation of this impulse response is difficult and rather

interesting, due to Gibbs's phenomena. The approximation error, in equation

(46) in this example after 10 iterations is only 1.4 x 10-_, which is a relatively

small value.

We conclude from this example that for even a small number of iterations,

this algorithm yields a small error for IFIR approximation of the original

filter.
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V. Symbol Timin_ Recovery

Symbol timing recovery is accomplished here by using a digital transition

tracking loop (DTTL). The DTTL utilizes a matched filter over the duration

of the transition epoch of a symbol, giving rise to the name mid-phase

matched filter. The block diagram for the DTTL is shown in Fig. 45. The

product of the output of the mid-phase matched filter with the output of a

transition detector (as will be defined shortly) provides the timing phase

error. This error is further averaged, filtered and used by the NCO to

generate a square wave which is used as the reference recovered symbol

clock.

The timing phase error is ek = bkvk, where v k is the output of the midphase

matched filter, that is vk = 1 _ wnx,, here the set • = {n " kT + A < nT s < kT- A}, with
N n_,,,,

the cardinality N= I • I, 2 A is the window size, and the transition detector output

is

if ak = ak-I

if3 k =--1 ak-l --+1

if ak = + 1 ak-1 = - 1

The output of the transition detector determines the sign of the phase error.

The timing phase error ek is averaged over many symbols and further filtered

as shown in Fig. 45. The steady state and transient behavior of this loop can

be found in [ 11].

The ideal output of the integrate-and-dump filter (IDF), and the mid-phase

IDF are illustrated in Fig. 46 for an-all-one symbol sequence. The saw-tooth

behavior in the ideal case, is due to 'dumping' the content of the IDF at the

end of each integration period. The digital matched filtering operation can be

implemented as a convolution like an FIR filter. When no windowing is used,

the output of the mid-phase matched filter (length T seconds) can be obtained

from the continuously running matched filter, by simply sampling the

matched filter output each T/2 seconds, as shown in Fig. 46.
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It has been shown that the loop SNR [11] of the DTTL can be improved, by

applying a matched filterover a narrower time epoch than the fullsymbol

duration. This is achieved by windowing the input sequence around the

transition epoch of the samples within a symbol period. In general, the

duration of the window A is defined as an even sub-multiple (e.g.1/2, 1/4, 1/8,

etc.)of the symbol period. Thus, the window sequence becomes

(50)

The mid-phase matched filter, in the windowed case, is implemented

separately from the matched filter with an impulse response given by

hMP(n) = I-l(n,k)hMa(n) (51)

With using the truncated impulse response of the new matched filter hUe(n)

derived from h MA(n) according to equation (51), the results of parallelization

of the matched filter in Section IV become directly applicable here by

replacing Wn with hue(n) in equation (51).

In view of the above facts, we can summarize here our results and state that

the mid-phase matched filter can be obtained by simply sampling the matched

filter output at the half symbol time period when no windowing is applied, and

for the windowed case, the problem reduces to that parallelization of a

separate matched filter which was addressed in Section IV. The DTTL can be

incorporated into the subbands as shown in Fig. 47. In this figure, M" is used

to denote the decimation rate of each parallel path. The parameter M" is

essentially the ratio of the symbol rate to the desired processing rate of the

parallel DTTL. The designer may select M" = D, if desired.
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VI. Carrier Phase Estimation and Costas Loov

We begin by considering a Costas loop for phase estimation and tracking.

The basic structure of a Costas loop is shown in Fig. 48. The performance of

the Costas loop is available in many textbooks such as [5]. The squaring loss,

tracking error variance, and the S-curve associated with using this loop are

discussed in [ 10].

Let h_ = (0 - 0) represent the phase error between the actual and the

estimated carrier phase. The in-phase and quadrature components of the

output of the matched filter (P(_k)), respectively can be written as:

y_(n) = (ilk + n_)cos(Aq_) + n_ sin(A0)

y_(n) = (gtk + n_)sin(A0) - n_ cos(Aq_) (52)

The bandpass discrete time noise terms n_, n_ in (52) are defined in [5]. The

output of the phase detector is the product of the two sequences yc(n), and

Ys (n); which can be approximated as _k = ak2 sin 2 (0- 0). For a binary signal

and small phase error _ -- 2 (0 - 0). The phase error is further integrated and

filtered by an infinite impulse response (IIR) filter to track the phase

perturbations in the carrier phase of the received signal. This phase estimate

is then used by the NCO to generate the reference in-phase and quadrature

components.

The loop update rate is the rate at which the output of the phase detector is

fed into the loop filter. It has been shown in [10] that the digital

implementation of the phase locked loop requires the product of the update

period and the loop bandwidth to be larger than ten. As an example, for a loop

bandwidth of 50 Hz, a minimum update rate of 500 Hz is necessary.

Otherwise, the loop behavior will be different from its analog counterpart.

The structure shown in Fig. 49 for parallelized Costas loop architecture

corresponds to a loop update rate of 1/M" of the symbol rate. It is noted that

the loop bandwidth in most applications is much lower than the data rate. In

this figure, M" is used to denote the decimation rate of each parallel path.

The parameter M" here is the ratio of the symbol rate to the desired
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processing rate of the parallel Costas loop.

if desired.

The designer may select M" = D,

37
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VII. Alternative Architectures

In this section, three different approaches to parallelization of a single filter

followed with a decimator, as shown in Fig. 50, are re-examined. Let M

denote the decimation ratio between the input sampling rate and the

processing rate, let D denote the output decimation rate (which in matched

filtering is equivalent to the number of samples per half symbol), and for

simplicity we assume M is a multiple of D; and L denotes the filter length of

H(z). Here, we consider three options, namely:

(1). Direct Parallel Architecture: based on the blocking method for a digital

filter as described in Section II, and illustrated in Fig. 18.

(2). Frequency domain convolution: using a DFT to perform the convolution

of H(z) with X(z) as shown in Fig. 51. This approach has been classically used

[8] to compute linear convolution and is referred to as the "overlap and save"

method.

(3). Filter Bank Approach: based on the filter bank structure derived in

Sections III and IV.

VII.1. Complexity and Computational Analysis

The computational complexity of the three options for parallelization of the

digital filter followed by the decimator is assessed. The computational

complexity of each option is stated in terms of the number of real

multiplication operations needed at the low sampling rate.

In option 1, the matrix filtering entails a total of ML real multiplications

when all the coefficients are non-zero. Here, only 1/D of the rows need to be

implemented, leading to a reduction of the complexity by the same factor.

In option 2, the frequency domain convolution requires two FFT's of size

M+L, and M+L complex additional multiplications as shown in Fig. 51. The

total complexity for this option is depicted in the second row of Table VII. 1.
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In option 3, the complexity of the filter bank approach is approximated by

assuming that the order of the synthesis filter bank as well as the bank used

for generating the subband filters is 8M, and the order of the analysis filter

bank is 12M. These approximations have been derived empirically and

represent a rough figure for the order of the filter bank. The total complexity

of the polyphase components of the analysis filter Ho(z) is equal to the

complexity of implementing Ho(z) , i.e. 12M multiplications. The same applies

to Fo(z) , but only 1/D of the polyphase components need to be implemented.

The order of each subband's filter is about (SM+ L)/M. There are M such

filters with complex coefficients. There are also two FFT's of size 2M. The

result is summarized in Table VII. 1.

39

Option

I. Block Digital Filtering

II. Frequency Domain

III. Filter Bank

Operations
M
_.L

D

2(M + L) + 2(M + L) log2(M + L)

R
4M log2(2M) + 28M + "M+ 2L

D

Table VII.1. Complexity of Each Option

The expressions for the number of operations of these three options are

plotted in Fig. 52. In Fig. 52, each option is represented as a subspace in the

two dimensional plane whose coordinates are L and M. Each subspace

represents the range of variables L and M that yield minimal complexity

among the three options. It is interesting to note that for small L, the block

digital filtering results in the lowest number of operations.
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The total delay of the receiver is composed of group delay, plus the processing

delay. Our proposed structure of the PRX employs only FIR prototype filters

with linear phase. Hence, the overall system group delay for carrier and

timing synchronization is constant.

The processing delay in a digital demodulator plays an important role. If the

delay is too large, it can lead to faulty behavior in the synchronization loops

(carrier or timing). The processing delay of the PRX structure is composed of

the delays caused by the analysis and synthesis filter bank, plus the delay in

FFT and inverse FFT computation, plus the delay in the subband matched

filters. Each FFT corresponds to a delay of logz(2M); the delay for analysis

and synthesis filters used in PRX is the delay of each prototype respectively.

The delay of the matched filtering in the subband is the sum of the delays

caused by the matched filter prototype and the delay of F(_(z). The total delay

in the PRX is the sum of the individual delays for analysis, synthesis, FFT

and FFT inverse, and matched filtering operation.
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IX. Simulation of PttX

In this section, the performance of the PRX architecture is verified by

simulation. The model simulated here is shown in Fig. 37b, with synthesis

section as depicted in Fig. 38. In this section r(n) is the complex output of the

IF demodulator, as shown in Fig. 7. The real part of output of the filter bank

matched filter after decimation by the integer D is used for detecting the

symbol sequence. Both real and imaginary parts of the output of the matched

filter are used for obtaining the phase error estimate for closing the Costas

loop. The Costas loop implementation is similar to the classical model shown

in Fig. 5.

IX. 1. Filter desi_rn.

In implementing the PRX architecture, three filters have to be designed, as

shown in Fig. 37b. The filters are Ho(z ) and Fo(z) , which are the prototypes

for all the filters Hk(z) , Fk(z) , and the matched filters Gk(z), for k=O,...,2M-1.

The filters Ek(z) are the type-I polyphase components (refer to equation (13))

of Ho(z) , and Rk(z) are the polyphase components ofFo(z),with change of index

such that _(n) = h(nM - 1).

The filter Ho(z) must be designed under the constraint of being Nyquist (2M)

(refer to equation (37)). By considering the support of each of the signals in

Fig. 33, the filter Hk(z) must reject the images of Pk(z) which is derived from

the convolution of Fk(z) and the matched filter. Since we have no control on

the matched filter, we will assume that Pk(z) = F_(z). This is equivalent to

assuming that the matched filter bandwidth is wider than the synthesis filter

bandwidth. Hence, the stopband of Hk(z) must include the transition band of

the adjacent images of Fk(z). This requirement is equivalent to setting a limit

of z/M for the sum of the transition regions of Ho(z) and Fo(z) as shown in

Fig. 53. The effect of F0(z) on the complexity of the system is more

significant, since it also impacts the length of the impulse response of the

subband matched filters Gk(z), which have the highest number of taps among

all the filters used in the PRX. Effective reduction of the order of Fo(z) can be

achieved if the prototype analysis filter Ho(z) is designed with a sharp
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transition band. This choice of Ho(z) allows for F0(z) to have a wider

transition and thus be lower in complexity. An additional property of the

synthesis filter Fo(z) is to possess a wide enough passband with low ripple

that covers the transition region of Ho(z). We have chosen the order of Ho(z)

to be 12M and the order of Fo(z) to be 8M. Then each polyphase component of

Ho(z) has length six and of Fo(z) has length four. These orders are not a

minimal choice. It is possible to reduce the length of Ho(z) and Fo(z) by better

filter design optimization techniques.

The approach taken here for designing Ho(z ) is by windowing the impulse

response of an ideal filter. The window chosen here is the Hamming window

to provide smooth response and a non-equal ripple stop band. In our

application, monotonically increasing stop band attenuation (or equivalently

non-equal ripple) is a desired property, since it results in further rejection of

distant images from the filter cut-off frequency. This property insures that

only the neighboring filters contribute to the aliasing distortion. It must be

noted that by choosing the bandwidth to be z/2M, the resulting filter is

forced to be Nyquist-2M, independent of the window shape used for designing

the filter bank.

42

The filter Fo(z) must have a symmetric impulse response for linear phase

property. It must also have a wide enough bandwidth to preserve the

Nyquist property of Ho(z). Recall that Fo(z) should also satisfy, together

with Ho(z) , the requirement illustrated in Fig. 53. In our design example, the

stop-bands of both Ho(z) , and Fo(z) provide better than 60-dB attenuation.

The construction of subband matched filter Gk(z) is as follows. Let qd(n) be

the desired matched filter impulse response. Let sk(n) be the impulse

response of Gk(z). The complex valued sequence sk(n) is obtained by passing

the sequence qd(n) through the filter Fk'(z) and decimating the output by M.

This idea is shown in Fig. 36. Here, we have chosen Fk'(z)= Fk(z ) for

simplicity. The computation of sk(n) begins by computing fk(n) which is the

impulse response of Fk(z). The impulse response fk(n) is calculated by

multiplying fo(n) with WEM_ . Then qd(n) is convolved withfk(n ) and the result

is decimated by M to obtain sk(n).
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IX. 2. Generation of Input Simaal.

The RF input to the receiver is filtered by an analog band-pass filter and then

sampled by an A/D converter, forming the input to the digital portion of the

receiver. Since the simulation software can only simulate discrete time

systems, we have used in the simulation of the analog portion a much higher

sampling rate than the one used in the actual receiver, e.g. 100 times. In

order to have a different sampling rate in each portion, the simulation of the

analog part is executed separately and its output is saved into a file. This file

is then used as the input to the simulation of the digital portion. The

implementation of the input generation system is illustrated in Fig. 54, where

an example with 4 samples per symbol is shown. A Gaussian filter was

chosen to model the analog filter. This choice of filter was made for

introducing low distortion of the transmitted pulses. The system generates

base-band samples, but in the receiver portion these samples are up-

converted to IF frequency and then demodulated to baseband again to fully

model the IF downconversion stage needed in real applications.

IX. 3. Descrivtion of PRX used in the simulation.

This input signal (from a file) is up-converted and the IF signal is formed by

multiplying the input signal with a sinusoid of frequency f,/4. This signal,

which is the input to the receiver, is demodulated by an NCO (Numerically

Controlled Oscillator) to construct the real and imaginary components (or I

and Q) of the demodulated base-band signal. This signal is then vectorized to

a length 2M -vector by a serial to parallel converter. Note that there is an

overlap of M samples between every two consecutive vectors, where the M

first components of the n-th vector are the M last components of the n-l'th

vector. In our Signal Processing Workstation (SPW) simulation, the number

of filter banks is 2M=16, hence, the decimation rate is M=8. In a system

with 100 MHz sampling rate, the processing rate would be 12.5MHz.

The vectors are processed at the low sampling rate which is fJM. Each of the

components of the vector is filtered by the appropriate polyphase components

of H0(z). Altogether, these filters are referred to here as the vector filter H.
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The resulting sequence of vectors output by H is processed by an FFT block,

one at a time. The subbands (altogether consisting of a vector sequence) are

masked such that only seven (7) bands are fed through the synthesis bank.

This mechanism results in realizing a lowpass frequency characteristic from

the filter bank, as described earlier in Section III. These seven bands cover

the frequency region -0.44_ to 0.44u and reject all the frequencies Ifl >0.5_

(in our 100 MHz example, this bandwidth corresponds to a 22 MHz band).

This symmetric arrangement of the subbands around the zero frequency (d.c.)

manifests itself in a symmetric frequency response of the subband matched

filters. The subbands are further processed by a vector filter G for subband

matched filtering, as described in Section IV. The output of G is transformed

back by an IFFT and processed by the synthesis vector filter F. The output

vector of length 2M samples is combined to form a length M vector by

delaying half of the components, and summing the latter half to the other

half as depicted in Fig. 38. This forms the parallel output of the matched

filter. The output of the combined demodulator and the matched filter is

generated in parallel at the lower rate. A subset of these parallel outputs,

specifically lID of these outputs are used for detecting the symbols, and for

closing the Costas carrier tracking loop. Recall that when M is a multiple of

D, the symbol sequence has a one-to-one correspondence with the subband

signals ( refer to Section IV.l.a).
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In the following section, simulation results are presented for both the bit

error rate (BER) and the mean square error (MSE) associated with the

system described here.

IX. 4. Simulation results.

The set of experiments is summarized here as follows.

1. Partial band reconstruction,

This test is intended to verify the reconstruction of a desired band by

selection of the appropriate subbands. In this test, the filters G,(z) are

set to unity (no subband matched filtering). One or more subbands'

responses are computed by masking out (multiplying by zero) all the

other bands. The frequency response of the system is obtained by
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applying a delta function at the input and computing the FFT of the

output sequence from the filter bank. The results are shown in Fig. 55.

In Fig. 55a, the response of the seven bands is shown. In Fig. 55b,c two

individual subbands are shown. The response in Fig. 55a is the

summation of seven such individual responses. This experiment

verifies the partial band reconstruction property of our filter bank used

for demodulation.
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2, Combined demodulation and matched filtering.

Here we demonstrate the impulse response of an integrate-and-dump

filter, implemented by the filter-bank, with subband masking included.

A low-pass response is formed by allowing only seven sub-bands to be fed

through as described earlier in the first experiment. The integrate-and-

dump response when incorporated into the filters G k (z) is depicted in

Fig. 56. In this experiment, the proper operation of our structure for

combined demodulation and matched filtering is confirmed.

3, BER dearadation of baseband filter-bank implementation.

In this simulation our goal is to assess any losses associated with

parallel realization of the matched filter. Here the Bit Error Rate (BER)

is measured by simulation at the baseband. In the baseband implem-

entation, there is no demodulation stage and the subbands are not

masked, since there are no double frequency images to reject. In this

simulation, we compared the BER performance of the ideal matched

filter (integrate-and-dump) operating on a random BPSK signal in

AWGN channel, and the filter-bank implementation of the same filter

using the same signal. The analysis and synthesis filter lengths were

chosen 12M and 8M respectively. The result indicates that the difference

between the two systems is too small to be observed even in very long

runs (e.g. l0 7 symbols at low SNR), thus the parallel realization results

in negligible loss of performance.
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4, Mean Square Error (MSE) measurement.

In order to further quantify the implementation error, in this simulation

we use the Mean Square Error (MSE) criterion.The filterbank imple-

mentation error of the matched filterwas measured by simulation.

Having a matched filter(integrate & dump) operating on a random

signal and the falter-bank implementation of the same filteroperating in

parallel on the same input signal,we measure the average power in each

realization. This constitutes the MSE measurement here, when the

output power of the matched filteris normalized to unity. The very small

MSE affirms the negligible loss in the BER measurement. The MSE is

tabulated in Table IX.4.1.

46

Order- Ho(z) Order- Fo(z) MSE

16M 12M 8.17"10^-6

12M 8M 1.27"10A-5

Table IX.4.1 MSE Measurements

5. BER measurement in IF simulation.

The IF simulation arrangement was described earlier. In this

simulation, the BER result is compared to the ideal theory when only

four (4) complex samples per symbol are used for detecting the symbols.

The Bandwidth-bit-time (BT) product of the simulated analog filter is

1.5. The results axe shown in Fig. 57. Note that the degradation shown

in Fig. 57 is due only to the low number of samples per symbol [7].
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X. Future Direction for Research and ADDlications

The effect of quantization and finite bit arithmetic on the overall system has

to be further investigated. The need may arise that more specific design

procedures have to be formulated for low sensitivity filter bank design.

A second area of interest is to investigate and study possible approaches for

efficient hardware realization of the receiver. Here, the merits of coarse (e.g.

board level) or fine computational processes (e.g. using systolic arrays,

custom VLSI chips, ASICs or others) for this application are assessed.

A third area of interest is to tailor the architecture of PRX for multiple

spacecraft applications. Missions involving multiple spacecraft within the

same line of sight (or beam width of the antenna) could effectively employ a

single receiver using our methodology. This is due to natural decomposition

of the input signal into non-overlapping frequency bands in the PRX.

In applications with low-to-medium data rates, the PRX can be used to

directly record the subband sequences from each filter bank onto a low speed

recording medium (such as magnetic tape). The quantized subband

sequences could then be transported over a communication link for further

software processing at a remote site. The key to this utilization is that the

subband sequences are output at a reduced rate, arbitrarily selected by the

designer, without prohibitive constraints on the recording rate.

Another area of future research is to augment this structure and derive a new

class of architectures tailored for direct sequence spread spectrum commu-

nication using the multirate systems approach.

Jet Propulsion Laboratory PRX Report August 15, 1994



48

XI. Conclusion

In this report, we succeeded in formulating and devising an architecture for a

digital receiver such that the processing rate in the digital signal processing

hardware is arbitrarily selected by the designer. A brief overview of

multirate and filter bank systems was presented. Each subsystem for a

digital receiver was addressed, demodulation, matched filtering, and carrier

and symbol synchronization. Specifically, an architecture was devised that

operates at the low rate, and the detected symbol stream is directly output

from the subbands. Various options for the implementation of the overall

receiver were studied and their associated complexities were assessed.

Simulation and numerical analysis of the PRX architecture were undertaken,

and the symbol error rate obtained in this simulation indicates that there is

no loss associated with the PRX when compared to the classical

implementation of the receiver.
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500
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Figure 52. Complexity of Various Options for parallelization of Filtering

Operation versus L (Filter Order) and M (Number of Banks)
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Figure 53. Filter Design Specifications

BINARY
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RATE = 1/25

NOISE
GENERATOR

FILE

Figure 54. Input Generation For Simulation
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Appendix A: Filter Bank Receiver -- Generation and Testing.

A.1

B := 16

M:=8

N h :=B'6- 1

setwindow(5 ) = 5

i := 1 .. length(h)

Filter Design.

Number of filters in the filter bank

Decimation ratio (B=2M)

Analysis filter design:

Length of analysis filter. 6 can be replaced by any even number, else fix the

delays.

Set the window to Hamming

This makes a B-band filter. The function Iowpass generates a FIR by the

windowing method.

k :=0..B - 1

Nh=95

h0 :--h
t t-I

h0o :=0

Position the center of the impulse response at a multiple of B, for obtaining a

delay which is a multiple of B.

0.1

0.05 --

hOi

0

-0.05'
0

I I I I

I I I I
20 40 60

i

80 100

Figure A.1: Analysis filter H0(z) Impulse response.

n :=0_99
n

f ::--
n 100

H0(z) :: _-'1 z- i'h0i

i

a :: 1.45 + 0.52j

H(k,z) := H0(z'W B-k)

verifying that the filters sum to z-3'B so they are indeed Nyquist filters, et

is an arbitrary number.

_"_H(k, ot) =-6.71718"10 -I° +7.19988'10-1°i

k

-3.Bot =-6.71718" 10 -m +7.19988" 10-1°i



Synthesis filter design:
88

sctwindow(5)= 5

N fi=B.4- 1

, :,owp s( 
N f--63

Length of synthesis filter, same remarks as above.

j -- l..length(if)

f0j := tf.j__ Put the middle at a multiple of B, for having a delay which is a multiple of B.

fO0 :=0

F0(z) i= Z z-J'f0., F(k, z)'-- F0(z'W B -k)

J

Save prototypes in file for SPW simulation:

WRrrEPRN(f) = if
WRrlE, PRN(h) :--h0

0.15 I I I I I I

0.1

fl3j 0.05

0

--o.o_ I II I I I
10 20 30 40 50 60

J

7O

Figure A.2: Synthesis filter F0(z) Impulse response.

Generating Gk(z}:

i i=0..7

x.:--1
I

x is the desired bank response. In this case x is an integrate&dump of 8 samples.

Ak. j := f0..Wj B-j'k Generate all Fk(z) coefficients

In8 := length(if)) + length(x) - l

Convolve Fk(z) with x.

T <:k>



gdm, k :=gomM,k

WRITF_RN(gi) :=Im(gd)

WRHEPRN(gr) := Re(gd)

z, '.= exp(j .2.n.f)

Decimate the result.

Write to file.

89

A.2 Freauencydomain tests.

The frequency response of several analysis filters and one synthesis filter is shown in Figure A.3.

1o

1

0.1

O.Ol

0.001

1.10"-4

l.l_ 5

i.lo-6
0

I I I I

I I I I
0.2 0.4 0.6 0.8

Figure A.3: Frequency response of H0(z)...H3(z) and of F0(z)

A test that the combined filters Hk(z)*Fk(z) do sum to a constant (the filters Fk(z) distort the

Nyquist property of the filters Hk(z) ) is shown in Figure A.4. In this figure, we also demonstrate

how a frequency band is constructed out of a few subbands.

V(k,z) := F(k,z).H(k,z)

p :=0..4



Iv(°.,,)l
Iv(','.)1

Iv(,...)l

Iv(,.,,)l

_v(,.,.)

0.8

0.6

0.4

0.2

1 ! l" l"

"_1 II II

,° ,, ,,

II 11 il

II II II

-U i W

m • m

-- II 6 II

--I I II J I

 Liit,1__
0 0.2 0.4 0.6 0.8 1

Figure A.4: Frequency band composition from several subbands.
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Adding decimation-interpolation to the picture.

Computing the frequency response of Hk(z) and Fk(z) followed by decimation by M and then

Interpolation by M.

HH(k, z):: _-"_,H(k,z-W M m)

m

HHFF(k, z):= HH(k,z).FF(k,z)

HHFF_F(k, z) := HH(k,z).FF(k,z).F(k,z)

FF(k,z) ::_-'_F(k,z.WM m)

m

The combined response with all the images.

The filter Fk(z) removes all the undesired images.
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0.001
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I

t
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l
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Figure A.5: Frequency response of • subband after
decimation-Interpolation by M.

F
I
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The response of the complete system. The system is supposed to compute the convolution of X and
Q, both may be arbitrary signals. In reality X is the input to the receiver and Q is the matched filter
response. We set here F'k(z)=Fk(z).

Arbitrary choice of X and Q

Q(z) ::3- z-l÷ 5.z-2+ 8j-z-3

X(z) :: I ÷z -l- 3.z -4

HX(k, z):: H(k, z).X(z)

FQ(k,z) :: F(k,z).Q(z)

HXI(k,z) ::_"tHX(k,z.WM m)

m

1
nl

X passed through each one of Hk(z).

Q passed through each one of Fk(z).

Decimation-interpolation by M.

Decimation-interpolation by M.

Od(z) ::X(z).Q(z) The desired response (convolution of X with Q).

O3(z) ::_-'_F(k, z)-HX1 (k, z).FQl(k, z)

k

The filter bank output. Here each subband is convolved,
and then passed through the synthesis filter Fk(z). The
result is summed to provide the output.
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i I I I -

I_,(-o}l

20 F/

_ I I I I
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f_

Figure A.6: Comparison of desired output and bank

output (the two curves are almost exactly one atop
the other).
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AoDendlx B. SPW block diagrams
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In

E_

VECTOR _n
FILTER Y

HOLD

%_/

M_CLK

VECTOR
FILTER

HOLD

O
M_CLK

y .__L___
VECTOR

MUL y_
BYJ

HOLD

O
M_CLK

L
x

COMPLEX

Y
HOLD

Out

Figure B-3. Complex Vector Filter Block
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FILE NAME: 'file'

COMPLEX
TO

REAL/IMAG

HOLDx IMAG _

FILTER

/__x
REAL

HOLD RESET

FILTER
x y

HOLD RESET

HOLD RESET

REAL
MAKE

COMPLEX

IMAG HOLD

X

Out

Figure B-4. Complex FIR Filter Block
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VECTOR LENGTH

In

COMPLEX REAL
VECTOR

TO
REAL/IMAG

IMAG
HOLD

<3>
M_CLK

C

MULTIPLY
SCALAR WITH

VECTOR

X a

VALUE: -1.0

_m v REAL

MAKE
COMPLEX
VECTOR

IIMAG
HOLD

i 0

Out

M_CLK

Figure B-5. Vector Multiply by _ Block
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/kvvendix C. Receiver Block Diagram
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Appendix D. C-Programs for Designing PRX
Filter Banks

Appendix D.1 Generating the Polyphase filters

I. 'poly_gen.c', C program for generating the polyphase filters" files for SPW

from the ASCII files of the coefficients of riO(z) or FO(z).

Appendix D.2 Generating the Subband Matched filters

II. 'fil_arr.c', C program for generating the Gk(z) filters" files for SPW from

one ASCII file.

Appendix D.3 Designing the IFIR Matched Filter

III. "ifir.c', C program for Designing �FIR Filters
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