466 research outputs found

    Prefetching techniques for client server object-oriented database systems

    Get PDF
    The performance of many object-oriented database applications suffers from the page fetch latency which is determined by the expense of disk access. In this work we suggest several prefetching techniques to avoid, or at least to reduce, page fetch latency. In practice no prediction technique is perfect and no prefetching technique can entirely eliminate delay due to page fetch latency. Therefore we are interested in the trade-off between the level of accuracy required for obtaining good results in terms of elapsed time reduction and the processing overhead needed to achieve this level of accuracy. If prefetching accuracy is high then the total elapsed time of an application can be reduced significantly otherwise if the prefetching accuracy is low, many incorrect pages are prefetched and the extra load on the client, network, server and disks decreases the whole system performance. Access pattern of object-oriented databases are often complex and usually hard to predict accurately. The ..

    Metadata And Data Management In High Performance File And Storage Systems

    Get PDF
    With the advent of emerging e-Science applications, today\u27s scientific research increasingly relies on petascale-and-beyond computing over large data sets of the same magnitude. While the computational power of supercomputers has recently entered the era of petascale, the performance of their storage system is far lagged behind by many orders of magnitude. This places an imperative demand on revolutionizing their underlying I/O systems, on which the management of both metadata and data is deemed to have significant performance implications. Prefetching/caching and data locality awareness optimizations, as conventional and effective management techniques for metadata and data I/O performance enhancement, still play their crucial roles in current parallel and distributed file systems. In this study, we examine the limitations of existing prefetching/caching techniques and explore the untapped potentials of data locality optimization techniques in the new era of petascale computing. For metadata I/O access, we propose a novel weighted-graph-based prefetching technique, built on both direct and indirect successor relationship, to reap performance benefit from prefetching specifically for clustered metadata serversan arrangement envisioned necessary for petabyte scale distributed storage systems. For data I/O access, we design and implement Segment-structured On-disk data Grouping and Prefetching (SOGP), a combined prefetching and data placement technique to boost the local data read performance for parallel file systems, especially for those applications with partially overlapped access patterns. One high-performance local I/O software package in SOGP work for Parallel Virtual File System in the number of about 2000 C lines was released to Argonne National Laboratory in 2007 for potential integration into the production mode

    Improving I/O performance through an in-kernel disk simulator

    Get PDF
    This paper presents two mechanisms that can significantly improve the I/O performance of both hard and solid-state drives for read operations: KDSim and REDCAP. KDSim is an in-kernel disk simulator that provides a framework for simultaneously simulating the performance obtained by different I/O system mechanisms and algorithms, and for dynamically turning them on and off, or selecting between different options or policies, to improve the overall system performance. REDCAP is a RAM-based disk cache that effectively enlarges the built-in cache present in disk drives. By using KDSim, this cache is dynamically activated/deactivated according to the throughput achieved. Results show that, by using KDSim and REDCAP together, a system can improve its I/O performance up to 88% for workloads with some spatial locality on both hard and solid-state drives, while it achieves the same performance as a ‘regular system’ for workloads with random or sequential access patterns.Peer ReviewedPostprint (author's final draft

    Adaptive Prefetching for Device-Independent File I/O

    Get PDF
    Device independent I/O has been a holy grail to operating system designers since the early days of UNIX. Unfortunately, existing operating systems fall short of this goal for multimedia applications. Techniques such as caching and sequential read-ahead can help mask I/O latency in some cases, but in others they increase latency and add substantial jitter. Multimedia applications, such as video players, are sensitive to vagaries in performance since I/O latency and jitter affect the quality of presentation. Our solution uses adaptive prefetching to reduce both latency and jitter. Applications submit file access plans to the prefetcher, which then generates I/O requests to the operating system and manages the buffer cache to isolate the application from variations in device performance. Our experiments show device independence can be achieved: an MPEG video player sees the same latency when reading from a local disk or an NFS server. Moreover, our approach reduces jitter substantially

    Effective data parallel computing on multicore processors

    Get PDF
    The rise of chip multiprocessing or the integration of multiple general purpose processing cores on a single chip (multicores), has impacted all computing platforms including high performance, servers, desktops, mobile, and embedded processors. Programmers can no longer expect continued increases in software performance without developing parallel, memory hierarchy friendly software that can effectively exploit the chip level multiprocessing paradigm of multicores. The goal of this dissertation is to demonstrate a design process for data parallel problems that starts with a sequential algorithm and ends with a high performance implementation on a multicore platform. Our design process combines theoretical algorithm analysis with practical optimization techniques. Our target multicores are quad-core processors from Intel and the eight-SPE IBM Cell B.E. Target applications include Matrix Multiplications (MM), Finite Difference Time Domain (FDTD), LU Decomposition (LUD), and Power Flow Solver based on Gauss-Seidel (PFS-GS) algorithms. These applications are popular computation methods in science and engineering problems and are characterized by unit-stride (MM, LUD, and PFS-GS) or 2-point stencil (FDTD) memory access pattern. The main contributions of this dissertation include a cache- and space-efficient algorithm model, integrated data pre-fetching and caching strategies, and in-core optimization techniques. Our multicore efficient implementations of the above described applications outperform nai¨ve parallel implementations by at least 2x and scales well with problem size and with the number of processing cores

    On the classification and evaluation of prefetching schemes

    Get PDF
    Abstract available: p. [2
    • …
    corecore