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This paper presents two mechanisms that can significantly improve the I/O performance of both
hard and solid-state drives for read operations: KDSim and REDCAP. KDSim is an in-kernel
disk simulator that provides a framework for simultaneously simulating the performance obtained
by different I/O system mechanisms and algorithms, and for dynamically turning them on and
off, or selecting between different options or policies, to improve the overall system performance.
REDCAP is a RAM-based disk cache that effectively enlarges the built-in cache present in
disk drives. By using KDSim, this cache is dynamically activated/deactivated according to the
throughput achieved. Results show that, by using KDSim and REDCAP together, a system can
improve its I/O performance up to 88% for workloads with some spatial locality on both hard and
solid-state drives, while achieves the same performance as a “regular system” for workloads with

random or sequential access patterns.
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1. MOTIVATION

Over the years, advances in disk technology have been very
important. Despite that, the disk I/O subsystem still remains
a mayor performance bottleneck in many computers, since
both hard disks (HDD) and solid state drives (SSD) are
rather slower, regarding latency and bandwidth, than other
components, such as CPU, RAM or GPU [1].

There are several mechanisms that can improve the I/O
performance, being the cache hierarchy one of the most
important parts. This hierarchy consists of several caches
that take advantage of the temporal locality, but that usually
exploit different spatial localities. For instance, while the
page cache can exploit the spatial locality at a file level,
the caches built in the disk drives (disk caches) exploit that
locality at a disk-block level. The former can overlap I/O and
computation by prefetching blocks of sequentially-accessed
files, while the latter can reduce the I/O time by reading
ahead several disk blocks in the same operation.

In this paper, we propose to improve the disk I/O
performance by increasing the performance of the disk
caches, what we achieve by increasing their effective sizes.
The size determines the hit rate of a cache to a large
extent [2]. For instance, disk caches are usually split
into segments to allow prefetching on multiple sequential
streams [3]. Each I/O stream can be treated as having its own
cache by assigning it to a segment. I/O performance can be
efficiently improved when the number of concurrent streams
is smaller than the number of cache segments. But, if the
number of streams exceeds the number of segments, there is
no benefit. So a bigger cache means more segments or larger

segments and thereby a better throughput. System designers
generally consider that a disk cache should be 0.1%-1.0% of
the total disk capacity to improve I/O performance [4, 5].
But, though manufactures tend to integrate larger caches,
sizes are still rather small compared to the disk capacities.
For example, a 4 TB disk usually has 128 MB of cache, only
0.003% of its capacity. Current technology also indicates
that this imbalance will not change in the short term.

Since operating systems have no control over disk caches,
we propose to improve their performance by adding a new
level to the cache hierarchy. The new level, called REDCAP
(RAM Enhanced Disk Cache Project), is a cache of disk
blocks in RAM whose aim is to reduce the I/O time of
read requests by mitigating the problem of a premature
eviction of blocks [6, 7]. Its essential ideas are: enlarging
a disk’s cache, emulating its behavior with the purpose of
improving the read I/O time, and profiting the disk’s read-
ahead mechanism by prefetching some disk blocks. Note
that a modern computing system usually has a large main
memory, and that REDCAP will only use a small percentage
of that memory.

A problem of the caches (and many other I/O mecha-
nisms) is that, although they can significantly reduce I/O
times, they are not optimal because their benefits depend on
the current workload, file system, etc. They even have one
or more worst-case scenarios that can downgrade the perfor-
mance. For instance, for workloads where data is accessed
only once, a buffer cache provides no benefit from keeping
data in memory, and it can even downgrade the system per-
formance due to the eviction of pages of running processes.
REDCAP is not oblivious to this problem. However, we can
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avoid these worst-case scenarios by activating/deactivating a
mechanism, or changing from one to another, depending on
the expected performance. To achieve this dynamic behav-
ior, we need a means to simultaneously evaluate several I/O
strategies. Obviously, only one would be active at a specific
moment, and the rest should be simulated.

To obtain such a general system-wide simulation, we
propose KDSim, an in-Kernel Disk Simulator that fulfills the
above requirement. KDSim is implemented inside the Linux
kernel by creating a virtual disk that captures the behavior
of HDDs and SSDs, and helps to simulate part of the I/O
subsystem. Unlike other simulators [8, 9, 10, 11], which take
into account almost all the internal elements, and provide a
high-precision simulation, KDSim gives reliable estimations
of I/O times per group of requests without making an exact
simulation per request. By working this way, our simulator
is valid for whatever HDD and SSD drives and gets rid of
two important shortcomings of existing simulators: they are
valid only for some specific disk models, and/or they run in
user-space.

In this paper, we use KDSim for controlling REDCAP’s
performance, turning it on/off accordingly. Therefore,
we design, implement and evaluate both proposals. We
analyze the benefits of REDCAP and KDSim by using two
HDDs and two SSDs, several workloads, and different I/O
schedulers. Results show that, by using KDSim, REDCAP
is correctly turned on/off, depending on the workload, to
achieve the maximum performance. For workloads with
some spatial locality, REDCAP gets improvements of up to
80% for HDDs and 88% for SSDs. For random or sequential
workloads, it roughly has the same performance as a regular
system. Results also show that, although our disk model
is quite simple, it is “good enough” to allow us to control
REDCAP’s performance.

This paper is organized as follows. Section 2 describes
how a disk cache works and what can be done to improve its
performance. Section 3 presents KDSim, our disk simulator.
Section 4 describes REDCAP, our RAM-based disk cache,
and how we use KDSim to control the performance of
REDCAP. Sections 5, 6, and 7 evaluate our proposals.
Section 8 discusses related work and Section 9 draws our
conclusions.

2. RATIONALE

Many secondary storage devices, such as hard drives, have
a disk cache. These cache usually acts as a block cache
and speed-matching buffer [12, 13], and plays a crucial role
in improving the performance of the I/O subsystem [1].
Although the exact working of a disk cache is unknown
(manufactures do not disclose many internal details of their
drives), several important mechanisms used by these devices
are public. Next paragraphs describe some of them.

A disk usually prefetches several sectors into its cache
when serving a read request. The goal of this read-ahead
of data [3, 4, 8] is to avoid cache misses by anticipating
future read requests. Thus, the I/O performance improves
because many read requests are served without accessing

the disk media. Disk caches exploit spatial locality since
prefetched sectors are adjacent on disk. As a consequence,
disk caches usually improve sequential access patterns and
access patterns with some spatial locality. However, for
random access patterns or without spatial locality, disk
caches do not provide any improvement.

In addition, a disk cache is usually split into several
segments. The number of segments can be static or dynamic,
depending on the drive [3]. Ideally, each segment can
be assigned to an independent I/O stream, so each stream
believes it has its own disk cache. However, when there
are more I/O streams than segments, the disk cache could
provide no improvement.

Write requests are also affected by disk caches, since they
usually use a write-back policy and immediate reporting [3].
Write-back policy means that data is written to the disk
cache first, and then to the disk media. Immediate reporting
makes a write request be considered “done” as soon as it is
in the cache (but not necessarily in the disk media), so the
issuing application will not block.

As we can see, in any of the above techniques, the size
of the disk cache is important, specially for read requests,
because the size determines the hit rate of the cache to a large
extent [2]. A larger cache means more prefetched blocks,
less evictions, more segments, more immediate reportings,
etc. Unfortunately, disk caches are small compared to their
disks’ capacities, and they have not been as effective as
expected.

Since the cache size is important, we aim at improving the
read performance of the disk drives by effectively making
their caches larger. Since disk caches already existing in
the drives cannot be modified, we propose to achieve this
by introducing a new large disk cache in main memory.
This new cache will prefetch a large number of adjacent
disk sectors on every read miss. This way, we will profit
the underlying read-ahead performed by the drives, and
reduce the overhead imposed by every disk transfer (may
small reads will become a single large read). Our new
cache will work as long as the current workload presents
some spatial locality. This locality is usually common
for applications [14, 15] and for file systems that split the
disk blocks into several groups [16, 17, 18]. However,
since spatial locality can temporally disappear in the current
workload, we will need a mechanism to detect these
situations and deactivate our cache until the spatial locality
comes back again.

3. KDSIM

KDSim is a disk simulator implemented inside the Linux
kernel [19]. It creates a virtual disk that works as both a
driver and a disk device. It has its own I/O scheduler to
sort incoming requests, and manages its own request queue.
This virtual disk serves virtual requests, which are generated
from the corresponding real requests by using the same
parameters (process id, type, sector and size) but no data.

KDSim works as follows: 1) move some virtual requests
from its auxiliary queues to its scheduler queue; 2) fetch the
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next virtual request from the scheduler queue; 3) get the I/O
time to serve the request from a table-based model of the real
disk; 4) sleep this time to simulate the disk operation (this
sleep simulates the scheduler effect in the request arrival
order); and 5) complete the request, and delete it.

3.1. Disk model

We model the behavior of a disk drive with a dynamic-
table. Although the time of a disk operation depends on
several factors [8, 20], for simplicity reasons, our table-
based model only uses three input parameters: request type
(read or write), size, and inter-request distance from the
previous request.

Request type has been considered since reads and writes
have different I/O times [8, 20, 21, 22]. Especially for SSDs,
writes are often slower than reads, although SLC models
may have a balanced read/write performance.

We have also considered the request size as a parameter
for two reasons. Firstly, transfer time of an I/O request
is usually proportional to its length, specially in SSDs.
Secondly, our model indirectly takes into account disk
caches, and I/O time significantly depends on the request
length in a cache hit. Results in Section 6 show that
considering the size is fundamental for the accuracy of the
model.

Finally, the inter-request distance is important for hard
disks because the I/O time of a request depends on the
logical distance from the previous one [8]. For SSDs, since
they do not have seek or rotational delays, this distance could
be dismissed as an input parameter. However, according to
our tests, inter-request distance is important in these devices
too since there are small differences in I/O time between
sequential and non-sequential access patterns.

We are aware that, with only these parameters, the
estimated I/O time for each individual request is not going
to be very precise. However, we are interested in estimating
the total I/O time for a large set of requests. Section 6 shows
that these three parameters, along with the dynamic behavior
of the table, are enough to accurately model the real disk.

Our model manages a table for reads and a table for
writes. Rows represent request sizes. Each table has thirty
two rows for sizes from one block (4 kB) to 32 blocks
(128 kB), the minimum and maximum request sizes allowed
by the file system, respectively. Although the scheduler can
merge requests and produce one larger than 128 kB, these
requests are rare and have not been considered (they are
treated as 128 kB requests). Columns represent ranges of
inter-request distances. Column 0 corresponds to a distance
of 0 kB; it captures many disk cache hits. Columns from
n = 1 to n = 18 represent small inter-request distances, from
4 · 2n−1 kB to less than 4 · 2n kB. The other columns
corresponds to large distances: [1 GB, 2 GB), [2 GB, 3 GB),
etc. Cells store estimated I/O times.

3.1.1. Dynamic behavior
To model the disk behavior in a precise way, to adapt the
model to the current workload, and to catch the effects of

FIGURE 1. Auxiliary and I/O scheduler queues and table of the
virtual disk.

the disk cache, we make tables dynamic. For each request
dispatched by the real disk, its I/O time is calculated, and
the corresponding cell (either in the read or write table)
is updated. Since the update does not take into account
any disk-specific feature, this approach is able to model the
behavior of both hard and SSD drives.

Each cell stores the last S observed I/O times for the cell,
and returns the average of these values. Our model forgets
past times that depend on past workloads, and keeps values
that depends on the current workloads. We choose S = 64
after analyzing the sensitivity to the number of averaged
values per cell (see Section 6).

We are aware that our model does not explicitly consider
several disk features, such as zoned recording, track/cylinder
skew, and bad sector remapping. The impact of these
features, however, is indirectly modeled through the I/O
times obtained from the real disk during the dynamic update
of the tables.

3.2. Request management

For a right scheduling, the virtual disk should know the order
in which requests were issued, and whether a request was
issued when the previous one was complete or not. The
virtual disk has to schedule requests of a process in the same
order as the system had scheduled them. To fulfill these
requirements, the virtual disk controls the arrival order of
requests and dependencies between them.

Read requests are usually synchronous with respect to
their corresponding applications (they block the application
until they are served). Hence, they introduce dependencies
among requests of the same process. Dependencies due
to synchronous reads appear among requests of related
processes too. For instance, if a parent waits for a child,
dependencies among their requests arise. There also exist,
however, asynchronous read requests issued by applications
or by the Linux kernel itself to support sequential file
prefetching [23]. Thus, KDSim distinguishes between two
kinds of read requests: synchronous reads and asynchronous
reads.

Write requests are usually asynchronous with respect to
applications because the operating system defers them in
memory. So, they do not have dependencies.
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The virtual disk maintains the arrival order of the requests
and their dependencies by managing three queues in addition
to the scheduler queue. It also implements a heuristic to
decide the insertion of requests into the scheduler queue.
Figure 1 presents the flow of requests throughout these
queues.

The shared queue connects the disk simulator with the
operating system. For each request, just before queueing it
in the scheduler of the real disk, the system copies its main
parameters to this queue. To not introduce overhead in the
regular I/O path of a request, the system does not create the
virtual request, and just copies its parameters. KDSim itself
will create the new virtual request by using these parameters,
and it will insert the virtual request into the waiting queue.

The waiting queue stores virtual requests that cannot be
inserted into the scheduler queue due to dependencies. It
also maintains the arrival order of requests. A request in
this queue is moved to the scheduler iff it has solved its
dependencies. These dependencies are controlled via the
following heuristic:

• Write requests are queued immediately in the sched-
uler;

• A synchronous read will be inserted into the scheduler
queue if no another synchronous read of the same
process is either ahead in the waiting queue or in
the scheduler queue. A synchronous read can be
inserted into the scheduler even when there is already
an asynchronous read of the same process in this queue;

• An asynchronous read request is enqueued in the
scheduler if there is no synchronous read request of the
same process ahead in the waiting queue;

• The first request of a new process is enqueued in the
scheduler when the last request of its parent process,
issued before child creation, has been served. If a
parent process waits for the completion of its child,
none of the new requests of the parent will be enqueued
until the child exits.

This heuristic copies the default Linux behavior, and
imitates how requests arrive to the scheduler of a regular
disk. We are aware that all the dependencies are not
controlled, but most of them are captured, so the virtual disk
can process requests in the order it had used if been the real
disk.

The process queue records the requests in the scheduler of
KDSim. We need it since Linux handles scheduler queues
as black boxes that cannot be scanned. This queue controls
dependencies with requests dispatched but not completed.

Requests are moved from the shared to the waiting queue
in a FIFO order. Then requests are moved from the waiting
queue to the scheduler and process queues following the
aforementioned heuristic. Requests in the scheduler queue
are served following the order imposed by the I/O scheduler
used by KDSim. Finally, a request in the process queue will
be deleted only after being completed by KDSim.

3.3. Training the tables

Tables can be initialized on-line or off-line. For the off-line,
we run a training program that is run only once for every
disk model. The training is usually “fast”; in our system,
it took 80 minutes for a 400 GB HDD, and 2 minutes for a
64 GB SSD. The program issues requests in a random way
and uniformly distributed over all the cells. The value of
each cell is the mean of the samples obtained for it.

With the on-line configuration, tables are first zeroed,
and then our model learns the disk behavior as requests are
served. For a not-yet-updated cell, the model returns the
average of the corresponding column as I/O time, if this
value is not zero; otherwise, it uses the nearest column with
non-zero cells.

4. A USE CASE: THE RAM ENHANCED DISK
CACHE PROJECT

REDCAP introduces a new cache of disk blocks that can
reduce the I/O time of read requests. It (a) enlarges a disk
cache with a small portion of RAM; (b) prefetches disk
blocks; and (c) leverages the read-ahead mechanism of a
disk drive. REDCAP consists of a cache, a prefetching
method, and an activation-deactivation algorithm (ADA).

The REDCAP cache introduces a new level in the cache
hierarchy, between the page and disk caches. This new cache
has disk blocks prefetched by reads on every cache miss. It
is stored in RAM and has a fixed size of C blocks. As a
disk cache, our cache is split into N segments (REDCAP
segments) that are managed independently. A segment
has S consecutive blocks (where C = N × S), and is the
transfer unit of the prefetching technique. The replacement
algorithm is Least Recently Used (LRU).

The prefetching technique mimics the read-ahead of a
disk cache. Each request is handled depending on its type,
and before being inserted into the scheduler. For read
requests, REDCAP searches the corresponding segments in
its cache. For a hit, the request is serviced from the cache,
and no prefetching is done. For a miss, the blocks of the
segment are read. Some blocks are those requested by the
application, while others (the prefetched blocks) are read to
complete the segment. Since some prefetched blocks may
be located before the requested blocks on disk, REDCAP
can leverage the immediate read3 usually made by HDDs.

A read request that affects several segments is handled as
n small partial requests, one for each segment. All the partial
requests are handled as “normal” requests, and when all of
them complete, the original one is completed.

No prefetching is done on write requests. On a cache hit,
we invalidate the appropriated blocks. We do not update
the affected disk blocks, because we do not expect any
access to these blocks in the short term. Misses are just
ignored. In both cases, the write request is directly issued

3When settling the heads, hard disks attempt a read as soon as the heads
are near the desired track [8]. So, blocks before the requested ones can be
read and stored in the disk cache too. The net effect is similar to a backward
prefetching, which drives neither really perform or detect.
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(a) REDCAP is active (b) REDCAP is inactive

FIGURE 2. KDSim used in a REDCAP system. For the sake of clarity, we omit the KDSim queues.

to the real disk, with no modification, in order not to put the
consistency of the file system at risk.

Two REDCAP’s aims are to overlap computation and I/O,
and to be I/O-time efficient. REDCAP converts workloads
with thousands of small requests into workloads with disk-
optimal large sequential ones, mitigating the overhead that
data transfers between the disk controller and the RAM
suppose for each request.

Our prefetching policy is completely different from that
made by the page cache of Linux. REDCAP prefetches
blocks that are adjacent on disk, so it exploits spatial locality
at disk level. The page cache usually reads in advance data
blocks of the same file, that could be fragmented on disk,
what is less efficient (this problem also appears on other
prefetching techniques based on file access patterns [14]).
The page cache, therefore, exploits spatial locality at file
level.

In exploiting the principle of spatial locality, REDCAP
takes advantage of the organization in block groups of
some file systems, where data blocks and i-nodes of all
the regular files in a directory are put together in the same
group [24]. As results show, even with a small portion
of RAM, REDCAP is able to obtain a performance that is
larger than that obtained by the usual policies of the page
cache. Moreover, we are not interested in an integration of
REDCAP in the page cache, since the page cache could evict
blocks that REDCAP could need later on.

4.1. Activation-deactivation algorithm

An activation-deactivation algorithm (ADA) completes
REDCAP by controlling its performance to make its
prefetching dynamic [6]. ADA continually analyzes the
REDCAP performance, and turns its cache on/off according
to it.

REDCAP works in two main states. In the active state,
REDCAP handles requests as explained. But if ADA detects
that access time is worse with than without the cache, it
moves REDCAP to the inactive state. In the inactive state,
no requests are processed and no prefetching is done. But
ADA studies the possible success of REDCAP by simulating

that it is on and recording the hits/misses on each read. When
ADA detects that REDCAP could be efficient, turns it on
again.

KDSim is used for implementing ADA. As Figure 2
shows, when REDCAP is active, KDSim simulates the
behavior of the real disk in a normal system. In the inactive
state, it simulates the behavior of the real disk in a REDCAP
system. ADA compares the mean time required to serve one
block of 4 kB by a REDCAP system and by a normal system.
For this, the following information is stored:

• BRedcap is the number of blocks (4 kB) served by
REDCAP. For a hit, it includes the requested blocks,
and for a miss, it includes the requested and prefetched
blocks

• TRedcap is the time that REDCAP needs to serve BRedcap
blocks. For each request, it is computed as the time
elapsed since the request arrives to REDCAP until it
ends. It can be the time of a cache hit, of a cache miss,
or even both times.

• BNormal System denotes the number of requested blocks,
also of 4 kB.

• TNormal System is the time that a regular system needs to
serve BNormal System blocks from disk.

The service time is calculated as the elapsed time since
the request is queued in the scheduler until its completion.
This time includes the waiting time in the scheduler, and the
I/O time of the drive. An interesting point is that ADA uses
the table model of KDSim for computing the I/O times of
both the real and virtual disk. As our accuracy study shows
(see Section 6), the virtual disk’s behavior is very similar
to that of the real disk, but not identical. So, for the sake
of comparison, we always use I/O times obtained from the
same source.

By using the above data, ADA says that if condition
1000

∑
i=1

TRedcapi

BRedcapi

<
1000

∑
i=1

TNormal Systemi

BNormal Systemi

(1)

is true, REDCAP is improving access time and it has to
be active; otherwise, it has to be inactive. The verification
considers the last 1000 requests (see Section 6).
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In the active state, each original I/O request, without
any modification, is inserted into KDSim. The time of the
virtual disk corresponds to the time to serve the request
in a normal system. For each request, KDSim provides
BNormal System and TNormal System, and REDCAP calculates
BRedcap and TRedcap.

In the inactive state, KDSim simulates the behavior of
the real disk as if REDCAP was on. For each cache
miss, the corresponding request is issued to the virtual disk.
Since REDCAP is simulated, BRedcap is exactly known,
and TRedcap is calculated as TRedcap = TVirtual Disk + TCHit ,
where TVirtual Disk is the service time of the virtual disk, and
corresponds to the time that REDCAP needs to read the
requested and prefetched blocks from disk; TCHit is the time
of the cache hits, and is estimated by using values stored
for cache hits during the active state. Simultaneously, the
system calculates BNormal System and TNormal System.

5. EXPERIMENTS AND METHODOLOGY

We implement REDCAP and KDSim in a Linux kernel
2.6.23 (REDCAP-VD kernel), and for comparison we use
the same kernel with no modification.

Our experiments are conducted on a 2.67 GHz Intel dual-
core Xeon system with 1 GB of RAM and five disks. The
first one has a Fedora Core 8 operating system, and collects
traces. The other are the test drives, two HDDs and two
SSDs, but here we only present results for one HDD and one
SSD. Nevertheless, results obtained for the other devices are
pretty similar to those provided here [19].

The HDD is a Seagate ST3400620AS disk with a capacity
of 400 GB and a cache of 16 MB. The SSD is an Intel X-
25M SSDSA2MH160G2C1 that has a capacity of 160 GB
and uses MLC flash memories. Both have a clean Ext3 file
system, containing nothing but files used for the tests. We
have chosen Ext3 here because it is the predominant file
system in Linux 2.6.23. Moreover, since REDCAP has been
already tested with five different Linux file systems (Ext2,
Ext3, XFS, JFS and ReiserFS), and has proved to provide
significant improvement with all of them [7], we think that
results obtained with one of those file systems represent our
proposal’s benefits very well.

We use the following benchmarks, each executed for 1,
2, 4, 8, 16 and 32 processes, that cover different access
patterns:

• Linux Kernel Read (LKR). It reads the sources of
the Linux kernel 2.6.17 by using the command
“find -type f -exec cat {} > /dev/null \;”.
Each process uses its own copy of the kernel files.

• IOR Read (IOR-R). We test the REDCAP behavior in
parallel sequential reads with IOR 2.9.1 [25]. We use
the POSIX API, 1 GB file per process, and a transfer
unit of 64 kB. Before running the test, we create the
files in parallel with IOR too.

• TAC. Each process reads a file backward with the
command tac. Files are the same as those from IOR-R.

• 8 kB Strided Read (8k-SR). Each process reads 1 GB file
with a strided access pattern with small strides. The test

reads a first block (4 kB) at offset 0, skips two blocks
(8 kB), reads the next block, skips another two blocks,
etc. Files are the same as those read by IOR-R and
TAC.

• 512 kB Strided Read (512k-SR). This test is similar to
the previous one, but has a larger stride. Now, every
process reads 4 kB, skips 512 kB, reads 4 kB, skips
512 kB, etc. When the end of the file is reached, a
new read with the same access pattern starts again at
a different offset. There are four read series at offsets 0,
4 kB, 8 kB, and 12 kB. The same files of the previous
tests are used.

• All in a row (AIR). The previous tests are run one
after another, without rebooting the computer until
the last is done. This shows how KDSim adapts to
workload changes. Since some tests use the same files,
the execution order (TAC; 512k-SR; 8k-SR; LKR; and
IOR-R) tries to reduce the effect of the page cache.

• All in parallel (AIP). This test runs all the previous
ones (but AIR) in parallel, and finishes when each one
has been run at least once. If a benchmark ends when
others are still in their first run, it is launched again.
This test is executed for 1, 2 and 4 processes, i.e., each
benchmark is run for that number of processes, and
each one reading its own files. The aim is to analyze
the behavior of our proposals when the workload is a
blend of different access patterns.

As schedulers, we use CFQ and AS for the HDDs,
and CFQ and Noop for the SSDs. CFQ and AS have
been the most widely used in Linux [23], and CFQ is the
default one as of Linux kernel 2.6.23. Noop usually gets
better performance for SSDs than the other available Linux
schedulers [26, 27]. For a given test, the real and virtual
disks use the same scheduler.

Regarding KDSim, the read and write tables obtained
from the off-line training are provided each time the system
is booted.

6. ACCURACY OF THE DISK MODEL

This Section analyzes the accuracy of KDSim. Since
KDSim does not explicitly simulate the disk cache, which
is one of the most important features to simulate a disk
behavior request by request, we do not calculate its demerit
figure [8]. Moreover, note that it does not make sense
to compare performance achieved by both disks on every
request, since it would imply a significant overhead, and it
would be impossible to take the right decision.

As I/O time comparisons are done for large numbers of
requests (1000 in our case), our simulator only needs to give
good estimations per set of requests. By using the total I/O
time of several requests, many over and under estimations
cancel each other out, making the overall estimation more
accurate. We are aware that our model does not fully
simulate the disk behavior, being just an approximation.
Our intent is not to develop the best possible model, but
to develop one “alike enough” to allow us to evaluate the
performance of I/O mechanisms.
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FIGURE 3. Difference (% of I/O time) of the virtual disk (VD) with respect to the real disk (RD) in the AIR test for the HDD (a) and SSD
(b). Vertical dashed lines mark the end of a benchmark and the beginning of the next one. Benchmarks conforming the AIR test are executed
in a row, in the order TAC, 512k–SR, 8k–SR, LKR, and IOR. Note that for the SSD the Y-axis range is [−5,5].

The real and virtual disks serve the same requests, and use
CFQ as scheduler. I/O times compared are those directly
given by the disks. The real disk does not use the table
model to estimate I/O times. REDCAP is neither active nor
simulated. Although both disks receive the requests in the
same order, they could dispatch them in a different order
since they are independent from each other.

We use the AIR test because it runs the TAC, 512k-SR,
8k-SR, LKR, and IOR-R benchmarks in a row, that is, not in

parallel. Therefore, its execution shows the accuracy of our
model in all the benchmarks, and how our model adapts to
workload changes. It also shows how the dynamic update of
the tables allows KDSim to follow the behavior of the real
drive.
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6.1. Accuracy for Hard Disk Drives

For the HDD, and 1, 8 and 32 processes, Figure 3(a)
shows the evaluation of different configurations based on
the number of values averaged per cell. We analyze results
of averaging eight (“VD 8” in the figure), sixteen (“VD
16”), thirty two (“VD 32”), and sixty four (“VD 64”) values
per cell. Each point of the figure represents the difference
between the last 1000 requests served by each disk. A
negative difference means that the virtual disk is “faster”
than the real one.

Major differences are observed at the beginning of the
test, when TAC is run. Like a sequential access pattern
profits the prefetching of a disk drive, a backward access
pattern takes advantage of the immediate read of the drive
(see Section 4). However, at a cache miss, the time needed
to read the requested blocks is larger than in the forward
access due to the backward seeks. Although our read table
is updated with all these times, the disk cache effect has a
noticeable impact, making the virtual disk faster than the real
one.

After TAC, difference decreases quickly, being less than
5% on average when each cell stores the mean of the last
sixty four values. The reason of this fast adaptation is
that, although our tables have many cells, just a small set
of cells is used and updated, even when the test is run for
32 processes [19].

With these results, we can claim that the “VD 64”
configuration of the virtual disk has a good behavior, and
that the virtual disk closely matches the real one.

One reason for which the virtual disk’s behavior is not
the same as the real disk’s is the difficulty to simulate the
disk cache. To analyze this, we run the same test with the
disk cache off, and only the “VD 64” configuration. In
Figure 3(a) results appear as “VD 64, disk cache off”. Now,
the virtual disk matches the real one very accurately, and
differences are smaller than 0.2%, even for TAC.

Finally, to show that the request size is important, we run
the same test, but without considering that parameter: for a
given inter-request distance, we use the average of the values
in its column (for all the sizes). This test is run once and for
1 process because the virtual disk becomes very slow and
the execution takes a long time. The result appears as “VD
64 average” in Figure 3(a). This single execution is enough
to see that, when the size is not considered, differences are
significant, and the behavior of the virtual disk does not
match that of the real one.

6.2. Accuracy for Solid State Drives

For the SSD, and 1, 8 and 32 processes, Figure 3(b)
shows the evaluation of the four configurations based on
the number of values averaged per cell. The virtual disk
behaves very much like the SSD, and differences between
both are less than 0.3% on average. Major differences
(up to 1.7%) are seen at the beginning of the test, when
TAC is run, because the cells are not updated yet to the
current behavior of the device, but these differences decrease
quickly. Differences among the four tested configurations

TABLE 1. Average difference (% of I/O time) between the real
and virtual disks in the AIR test (REDCAP on, 64 values/cell).

Disk 1 proc 8 procs 32 procs

HDD-400 GB 2.02% 0.49% 0.62%
SSD-160 GB 0.84% 0.44% 0.60%

are negligible. But, to use a single configuration, our disk
model will also store the average of the last 64 values per
cell when simulating SSDs.

6.3. Accuracy with REDCAP active

We evaluate our model’s accuracy when REDCAP is always
active (ADA is not run). The real and virtual disks serve the
requests issued by REDCAP for each cache miss. These
requests create a workload composed of 128 kB requests
that may not be sequential on disk. Table 1 shows the
average difference (% in I/O time) between both disks when
64 values are stored per cell. As we can see, our model
gives quite good estimations, and differences are smaller
than 2.1% and 0.9% for the HDD and SSD, respectively.

7. REDCAP PERFORMANCE

This section studies how KDSim and REDCAP can improve
I/O performance together. For this evaluation, the REDCAP
cache size is set to 64 MB, 4× larger than the cache of the
test disk, and less than 6.25% of memory utilization. The
cache has 512 segments of 128 kB each. This segment size
showed the best behavior in our early tests [6].

Results are the average of five runs. Error bars represent
confidence intervals for the means, for a 95% confidence
level. We run the tests with cold (page and REDCAP)
caches. In all the executions, the REDCAP initial state is
active.

7.1. REDCAP performance with hard disk drives

7.1.1. Benchmarks executed independently
For the tests running independently, Figure 4 shows the
improvements in application time achieved by REDCAP
with respect to the original kernel, when CFQ/AS and the
HDD are used. Tests are sorted in the same order as they are
run in AIR.

TAC. For this test, REDCAP always performs better than
the vanilla kernel with improvements of up to 24.7% for
CFQ and 29.1% for AS. The operating system is unable
to detect the backward access pattern, and makes no
prefetching. REDCAP takes advantage of the immediate
read made by the disk drive and of its own prefetching,
and its cache is on almost all the time. TAC reads the files
with 8 kB requests, so almost fifteen out of every sixteen
application requests are cache hits.

512 kB Strided Read. For this pattern, our cache provides
no improvement because it is not effective. ADA detects this
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FIGURE 4. Application time improvement achieved by REDCAP
over a vanilla Linux kernel when benchmarks are executed
independently, on the hard disk.

fact and keeps REDCAP off almost all the time. Our kernel
behaves quite similar to the original one, and, statistically,
both have the same performance. The small degradation that
appears in a few cases is due to the time initially lost when
REDCAP is on at the beginning of the test.

8 kB Strided Read. REDCAP always outperforms the
vanilla kernel, and ADA keeps REDCAP always on. The
Linux kernel does not detect this access pattern nor does it
implement any technique to enhance the performance under
this sort of access. With REDCAP, however, most of the
requests profit the prefetching done, since almost nine out
of every ten application requests are cache hits. Reductions
of up to 36.8% and 37.5% are achieved for CFQ and AS,
respectively.

Linux Kernel Read. Our proposal always performs better
than the original one. REDCAP is active all the time for
both schedulers. For CFQ, improvements increase with the
number of processes. For 32 processes, the application
time is reduced by up to 79.2%. For AS, improvements

have roughly the same behavior (except for 1 process), with
improvements of up to 60.5%.

Although, REDCAP gets the highest reductions for CFQ,
on average the improvement is larger for AS. REDCAP
behaves the same for both schedulers, having almost the
same hit percentage. Differences are due to the access
pattern and the schedulers’ behaviors. When traversing
a directory tree, AS exploits the spatial locality in disk
provided by Ext3 better than CFQ does. AS usually makes
fewer disk seeks, since it sorts requests by physical location
on disk [23]. CFQ chooses the process to attend with a
round robin policy [23, 28]. This implies more disk seeks,
increasing application and I/O times. Due to these distinct
behaviors, differences between both schedulers are even
larger in this test, since a large amount of small files is read.

IOR Read. The prefetching techniques of both the
operating system and disk caches are optimized for a
sequential access pattern. Due to the prefetching of the
operating system, most of the read requests issued have a
size of 128 kB (maximum request size allowed by the file
system), which is the same size as that of the REDCAP
requests. Hence, the REDCAP improvement is rather small,
and it even adds a copy time to each cache hit. Because I/O
times of the real and virtual disks are very similar, sometimes
ADA alternates the REDCAP state between active and
inactive. But, the right decision would be to keep it inactive.

For CFQ, taking into account confidence intervals,
REDCAP behavior is almost equivalent to that of the vanilla
kernel.

For AS, the situation is slightly different. For 1 process
there is a degradation of up to 15.6%. But, if we compare I/O
times (not shown due to space restrictions), the degradation
is only of 2.6%. To understand these results, we need
to explain two aspects of Linux and AS. First, when a
new asynchronous request is issued, if there is no pending
requests, the kernel plugs the block device, delaying the
request that will be done later [29]. The goal is to increase
the chances of clustering requests for adjacent blocks. The
device usually remains plugged for a small time interval
(normally, 3 ms). Second, AS selectively stalls, for a small
time interval, the block device right after servicing a request
in the hope that a new one for a nearby sector will be soon
posted [30]. When a new request is scheduled that meets this
condition, if the device is plugged, AS unplugs it.

When REDCAP is on, these two policies produce an odd
effect for sequential access patterns. Due to their large
sizes, requests usually need two REDCAP segments: one
is a cache hit, that copies data, and the other is a miss, that
issues a disk read request. Although the copy time is very
small, when the disk request arrives to the scheduler, the
AS time interval has expired. If there are no more pending
requests, the new one is not dispatched until the device is
unplugged, what increases application time. The I/O time,
however, does not usually increase.

For two or more processes, when the AS time interval
expires, a request of a different process is dispatched
(because a request of the current process has not been

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????
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FIGURE 5. Application time improvement of REDCAP over a
vanilla Linux kernel for the AIR test on the HDD.

issued yet), and the device is rarely plugged. This behavior
requires more disk-head movements that can increase seek
time, and downgrade the performance of the disk cache
because prefetched data can be evicted before being used.
For 8, 16 and 32 processes, there is a degradation of 4.3%,
8.9% and 8.2%, respectively. But, for the I/O times, the
degradation is only of up to 4.8% for 32 processes.

7.1.2. All in a row
Figure 5 shows application time improvements achieved by
our technique with respect to the original kernel in this
test, for CFQ and AS. REDCAP presents an equivalent
behavior to that obtained when the benchmarks are run
independently. Improvements of up to 32.7%, 42.2% and
76.6% are achieved for TAC, 8k-SR and LKR, respectively.
For 512k-SR and IOR-R, except for two cases, performance
is quite similar to that obtained by a vanilla kernel. Hence,
according to these results, we can claim that our proposal
adapts very quickly to the workload changes caused by the
execution of the tests in a row. Only minor differences,
explained below, are observed due to both the page and
REDCAP caches.

1 process. When TAC finishes, a significant amount of file
blocks are already in the buffer cache, because the system
has 1 GB of RAM, and the file is also 1 GB in size. So,
512k-SR has to read only a small amount of data from the
end of the file (due to the backward access pattern of TAC,
the last blocks of the file were evicted from memory). As
we explained, 512k-SR makes four read series on the file.
With the REDCAP-VD kernel, after the first series, almost
all the blocks requested by the other three series are either
in the buffer cache or in our REDCAP cache. The operating
system, however, does not perform any prefetching, and the
vanilla kernel has to read all the blocks of the four series by
means of independent requests. For this reason, REDCAP
unexpectedly gets an improvement of 50%.

When 8k-SR is run, REDCAP reads more blocks than the
vanilla kernel and its improvement is reduced to 5%. This
is due to the size of the kernel image. The memory needed
by the REDCAP-VD kernel image is larger than that needed
by the original kernel one. After the execution of the first
two tests, with our kernel, there are fewer blocks of the file
in memory and more blocks have to be read.

At the end of 8k-SR, 1 out of every 3 blocks (of 4 kB)
of the file are in RAM, that is approximately 341 MB of
the file. Since the next test, LKR, uses only 344 MB of
memory, all the 341 MB of the file are still in RAM when
IOR is run. This produces a “strided” access pattern that
prevents the operating system from doing large prefetching
requests. But, the REDCAP prefetching is used widely, and
our method obtains an unexpected improvement of 32% for
CFQ.

For AS, IOR-R produces an increase in application time
of up to 12%, but an improvement of up to 6.6% in I/O
time (not shown). The reason is the same as that given in
Section 7.1.1. The effect can also be observed for 8, 16 and
32 processes.

2 processes. At the end of TAC, parts of the files are in
RAM, but, due to the size of the kernel images, there are
fewer file blocks in RAM with our kernel than with the
original one. When 512k-SR is run, REDCAP reads more
blocks than the vanilla kernel. Now the blocks to read do
not fit in the REDCAP cache, and there is a degradation of
up to 5% for both schedulers. For 4 and more processes,
the same effect happens, but the degradation is insignificant,
since the extra blocks that REDCAP reads represents a small
percentage of the total.

7.1.3. All in parallel
Results for this test, presented in Table 2, show that
REDCAP always outperforms the vanilla kernel, although
its improvement depends on the scheduler. REDCAP
presents its best behavior for CFQ, reducing the application
time by up to 74.3%. In this case, improvements slightly
decrease as the number of processes increases, although
for 4 processes per benchmark (20 processes altogether)
reductions of 60.3% are still achieved. For AS, REDCAP
gets improvements of up to 19.3%, and they increase

THE COMPUTER JOURNAL, Vol. ??, No. ??, ????



IMPROVING I/O PERFORMANCE THROUGH AN IN–KERNEL DISK SIMULATOR 11

TABLE 2. Application time improvement of REDCAP over a
vanilla kernel for the AIP test on the HDD.

Scheduler 1 proc 2 procs 4 procs

CFQ 74.3% 73.1% 60.3%
AS 3.5% 18.4% 19.3%

with the number of processes. Again, although REDCAP
provides the higher reductions for CFQ, its behavior is
the same for both schedulers, and the mean percentage of
activation is almost equal: 92% for CFQ and 91% for AS.
The different reductions are due to the performance of the
schedulers in this test. AS already behaves quite well in this
test, so REDCAP improvement cannot be higher.

7.1.4. Aged file system
We test our approach in a second HDD with an aged file
system. Although results [19] are not showed, they are pretty
similar to those provided by the clean file system for all the
tests. This means that: i) KDSim is able to simulate HDDs
with aged file systems; and ii) aged file systems have no
negative impact on REDCAP.

7.2. REDCAP performance with Solid State Drives

Before explaining the results, it is important to clarify two
aspects. First, when comparing Linux I/O schedulers on
SSDs, Noop and Deadline usually outperform CFQ and
AS [26, 27]. The problem is that CFQ and AS insert delays
with the hope of minimizing seek times, and the delays can
increase application times without reducing I/O times. We
have made several tests with the vanilla kernel, CFQ, Noop,
and our SSDs, and results confirm that Noop outperforms
CFQ with respect to application times, although I/O times
are almost identical. The scheduler also affects REDCAP
results: improvements in application time are usually larger
for Noop than for CFQ, while improvements in I/O time are
almost identical.

Second, although the overhead of our proposals is
rather small (see Section 7.3), it becomes noticeable with
SSDs, and, consequently, application times can be slightly
increased, specially in the tests where REDCAP provides
no improvement. The “problem” is the high performance
of SSDs, and the relative low performance of the computer
used, that has a processor with only two cores. But it
is important to realize that many current systems have
powerful processors with several cores, so we believe that
this overhead can be reduced to almost zero in one up-to-
date system.

7.2.1. Benchmarks executed independently
Figure 6 shows improvements, in application time, achieved
by REDCAP with respect to the vanilla kernel for CFQ
and Noop. To explain these results, Figure 6 also depicts
improvements in I/O time. The tests are sorted as in the AIR
test. Results are quite similar to those obtained for the HDD,
and only a few differences are noticed, mainly because of

the high performance of SSDs.

TAC. With this test, REDCAP always performs better than
the vanilla kernel, but the improvement depends on the
scheduler. The best behavior is achieved for Noop, reducing
the application time by up to 80%. Regarding the I/O time,
REDCAP gets improvements of up to 80%. Our cache is
always active.

512 kB Strided Read. For this test, REDCAP provides no
improvement. The algorithm detects this fact and turns it
off on the first check, and it is inactive almost all the time.
But REDCAP performs worse than a normal system and
application time is increased up to 38%, and I/O time up
to 22%. This increase is due to two problems. First, it is
partially due to the time initially lost by REDCAP while the
cache is active at the beginning of the test, and this lost time
cannot be recovered in the short duration of the test. Second,
the overhead of REDCAP and KDSim, although small, has
a negative influence on this benchmark, and the application
time is increased. Moreover, with this test, application times
are quite small for both the REDCAP and original kernels
(bellow 12 s for 1, 2 and 4 processes), and their absolute
differences are also small, causing large relative differences.
Differences are even smaller when we compare I/O times:
the largest one is less than 3 s for 32 processes and CFQ.
Table 3 shows average application and I/O times for this
test with CFQ. There, we can see the small execution times
obtained, the small differences, and that I/O times are almost
the same. With Noop, differences are even smaller, but these
times are not shown due to space limitations.

8 kB Strided Read. With this test, REDCAP always
performs better than the vanilla kernel. Reductions of up
to 62.5% and 70.4% are achieved for CFQ and Noop,
respectively. The reason is the same as that given for hard
drives.

Linux Kernel Read. When this test is run, the REDCAP
cache is almost always active, and it gets almost the
maximum possible improvements. Reductions of up
to 26.8% and 17.7% are achieved for CFQ and Noop,
respectively. But these reductions are not as large as those
obtained for hard drives. The problem is the overhead
introduced by the creation of the large amount of small
processes to read the Linux kernel source, that is relatively
larger with respect to the application time on the SSDs than
on the HDDs. However, reductions on I/O times are much
larger, by up to 74.5%, and they are comparable with those
on the hard devices.

To prove this fact, we modify this test in such a way that a
single process now reads all the files of a Linux kernel source
tree. We integrate the cat command in the find command,
and, when a regular file is found, the “cat” function is
called. The reading process is the same, but no processes are
created to read the files, and just one makes all the reading.
With this test, REDCAP gets improvements in application
time of up to 59% and 68% for CFQ and Noop, respectively.
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FIGURE 6. Application and I/O time improvement achieved by REDCAP over a vanilla kernel when benchmarks are executed
independently on the SSD.

Reductions in I/O time are of up to 77%, quite similar to
those of LKR.

IOR Read. With this sequential workload, REDCAP
performs worse than a normal system by increasing
application time up to 5.6%. The problems are similar to
those suffered by 512k-SR: the REDCAP overhead and the
increase in the application time produced when REDCAP
is active at the beginning of the test. But, since absolute
times are larger now, downgrades are relatively smaller than
those seen with 512k-SR. For instance, for Noop and 32
processes, the biggest absolute difference is 6.83 s (the times
are 163.36 s and 170.19 s with the original and REDCAP-
VD kernels, respectively), and the downgrade is just 4.2%.
Regarding I/O times, both kernels obtain the same results,
and they behave similarly.

7.2.2. All in a row
Figure 7 depicts REDCAP improvements in this test.
REDCAP presents a similar behavior to that obtained when
the tests are run independently. We can claim that KDSim

adapts very quickly to the workload changes in this test.
Improvements of up to 80%, 71% and 28% are achieved for
TAC, 8k-SR and LKR, respectively. With 512k-SR and IOR-
R, differences in the application time between REDCAP and
a regular system are due to the REDCAP overhead and the
small application times, as already explained. There are only
minor differences due to the page and REDCAP caches, and
the reason is the same as that given for HDDs.

7.2.3. All in parallel
Table 4 presents results for this test. REDCAP always
performs better than the regular kernel, although its behavior
depends on the scheduler. Its best improvement is achieved
for CFQ, reducing the application time by up to 88.7%. In
this case, improvements decrease as the number of processes
increases, but for 4 processes per benchmark (20 processes
altogether) reductions of 63.6% are achieved. For Noop,
improvements do not depend on the number of processes,
and reach 86.5%.
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TABLE 3. Average application time and average I/O time for the 512k-SR test, with the SSD and CFQ.

Average time Kernel 1 proc 2 procs 4 procs 8 procs 16 procs 32 procs

Application
REDCAP 3.11 s 6.44 s 11.75 s 22.53 s 45.08 s 91.37 s
Original 2.37 s 4.66 s 9.15 s 18.04 s 36.03 s 72.84 s

I/O
REDCAP 2.31 s 4.42 s 8.21 s 15.84 s 31.62 s 63.44 s
Original 1.89 s 3.81 s 7.62 s 15.18 s 30.33 s 60.65 s
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FIGURE 7. Application time improvement of REDCAP over a
vanilla kernel for the AIR test on the SSD.

7.3. Overhead of the simulation

We measure our proposal’s overhead at two different levels:
whole simulation and request copy. In the former, requests
are processed by REDCAP and KDSim as usual, although
REDCAP cache is never turned on. In the latter, we
only copy regular requests to the disk simulator; we do
no run any simulation, although KDSim and REDCAP
are loaded. Results for the whole simulation show the
overhead introduced by both KDSim and REDCAP, i.e., the
whole system, whereas results for the request copy show the
overhead of copying each regular I/O request to our system.

We compute both overheads by comparing the application
times with those in the original kernel. We run the AIR test

TABLE 4. Application time improvement of REDCAP over a
vanilla kernel for the AIP test on the SSD.

Scheduler 1 proc 2 procs 4 procs

CFQ 88.7% 79.2% 63.6%
Noop 84.3% 83.8% 86.5%

TABLE 5. KDSim and REDCAP overheads.
Overhead Disk 1 proc 8 procs 32 procs

Whole simulation HDD 1.6% 2.6% 1.6%
SSD 7.8% 4.1% 3.5%

Request copy HDD 0.3% 0.8% 0.4%
SSD 1.3% 0.2% 0.4%

for 1, 8 and 32 processes. Table 5 presents these results. As
we can see, the request copy overhead is negligible for both
devices. The whole simulation overhead is also irrelevant
for the hard drive (it is 2.6% in the worst case). For the
SSD, due to its very high performance, this overhead is
more noticeable. However, note that, with a more up-to-date
hardware, this overhead can also be reduced to almost zero
for these drives.

Regarding memory overhead, the KDSim tables need
14 MB for the HDD and only 6 MB for the SSD. The
REDCAP cache size is 64 MB (it does not depend on the
device). Both mechanisms use only 7.6% (HDD) and 6.8%
(SSD) of RAM.

8. RELATED WORK

There have been many studies about disk simulators, and its
applications [31, 32, 33]. For brevity, we only highlight
those that are representative for our work. The famous
DiskSim [9] simulates disks, controllers, drivers, etc. One
drawback is that it needs specific parameters of the simulated
hard disk, and these parameters cannot be obtained from the
disk’s technical specification. Another one is that cannot be
used for on-line simulation.

Simulators have usually been implemented in user space
as standalone applications, or integrated in a more general
environment, although, in some cases, they have been
implemented in the operating system’s kernel. Wang et
al. [32] implement a disk simulator in the Solaris kernel, but
it is specific to a hard disk model, and is not aimed at an
on-line performance analysis of a system component.

There are also several simulators for SSDs [10, 11,
21] that usually simulate their internal hardware and
software components, and can be used for designing new
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configurations of SSDs.
Compared to all these simulators, KDSim has the ability

to simulate HDDs and SSDs just knowing its capacity.
It is integrated inside the Linux kernel and can make
on-line simulation and compare different I/O strategies
simultaneously.

Regarding disk modeling, we only stand out those that
are table-based models. Gotlieb and MacEwen [34] develop
a queueing model of disk storage systems to measure
performance through mean response times, and use tables
to approximate those times. Thornock et al. [35] propose a
stochastic method that uses tables where each column is a
probability distribution of service times for a particular seek
distance. For a request, they use the distribution to randomly
estimate the corresponding service time. Anderson [36] uses
a table-model to measure the performance of disk arrays and
to assist in their reconfiguration. By using interpolation, the
model returns the maximum estimated throughput available.

Disk Mimic [37] is a table-based disk simulator of HDDs
inside the Linux kernel that returns the positioning time
of a request. To represent ranges of missing inter-request
distances, they use simple linear interpolation. KDSim
is similar to Disk Mimic, but with several important
differences. Their model predicts positioning time, and only
uses the inter-request distance, and the type of the current
and previous operations as input parameters. Memory
overheads are quite different. They say that, for a disk
of 10 GB, the memory needed for their table can exceed
80 MB [37]. So, for a disk of 400 GB, their table needs
around 3 GB of memory. Each KDSim table only uses
7 MB of memory. Finally, they propose an I/O scheduler,
called shortest-mimicked-time-first, which uses Disk Mimic
to select the request with the shortest positioning time,
whereas KDSim can evaluate several I/O mechanisms in
parallel, and selects that with the highest performance.

The idea of issuing two requests, a “real” and a “virtual”,
at the same time is somehow similar to the I/O speculation
proposed by Chang and Gibson [38], or by Fraser and
Chang [39]. But their goal is just to make prefetching more
efficient.

With respect to work related to disk caches, or techniques
that take advantage of them, we can mention Disk Caching
Disk (DCD), a disk storage architecture that is aimed at
optimizing write performance with a small log disk as a
secondary disk cache [40]. Their aims are completely
different to ours. The log disk buffers modified blocks that
will be transfer to disk later, so they optimize writes. Their
results are obtained with a trace-driven simulation program.

Several proposals implement storage architectures similar
to DCD by using a SSD as a cache for a HDD [41, 42, 43].
These “hybrid” devices improve the performance by usually
keeping data associated with random reads and writes on
the SSD, and issuing sequential operations on the HDD.
Although the main idea (to improve I/O performance) is
the same, their aims are completely different to ours. They
optimize writes and random workloads, whereas REDCAP
optimizes reads and not writes. Furthermore, REDCAP
continuously analyzes its performance to decide whether

being active or not, while they do not carry out any analysis.
File-Oriented Read-ahead (FOR) and Host-guided De-

vice Caching (HDC) are two management techniques for
the disk controller cache [44]. FOR adjusts the number of
read-ahead blocks brought into the disk cache according to
the file system information. HDC gives the host direct con-
trol over part of the disk controller cache. Their drawbacks
are: i) their results are based on simulations; ii) to be imple-
mented, the disk controller has to be modified; and iii) they
only prefetch blocks that belong to the same file.

Grimsrud et al. [45] propose an adaptive prefetching
mechanism for disk caches that predicts future access
sequences and control the prefetch mechanism by using a
table with information about past disk accesses. Zhu et
al. [46] also use a table with information about the next
most probable disk access to implement adaptive prefetching
scheme for disk caches. Their results show the effectiveness
and efficiency of their proposals. However, the problem of
both proposals is that the experiments have been performed
in a simulation model, and the proposed algorithms have not
been implemented on any machine, whereas REDCAP has
been tested and implemented inside the Linux kernel.

Soloviev [47] prefetches disk blocks in RAM by replacing
the disk-cache prefetching. Her proposal’s drawbacks are:
i) it needs to control disk caches, what currently cannot be
done; ii) it only tests sequential workloads and prefetching
is always active what can downgrade performance in some
cases; iii) no control over the achieved improvement is done;
and iv) no real implementation exists.

HPCT-IO is an application-based caching and prefetching
technique that maintains a file-IO cache in application
address space [48]. For a read cache miss, it will issue new
requests to read the data; it also tries to make sequential
prefetching. Although their cache plays a role similar to that
carried out by REDCAP, there are two important differences:
i) HPCT-IO is implemented as a user-space library; and ii) it
does file prefetching, but no metadata prefetching.

Patterson et al. [15] propose that applications inform
of future accesses to perform prefetching and caching.
They introduce significant improvements, but there are
important differences with respect to REDCAP: i) their
proposal leverages application hints, so applications should
be modified to provide this information; ii) they only
prefetch blocks from the same file (and those blocks can be
spread across the whole disk); and iii) consequently, they
perform file prefetching, but no metadata prefetching.

Operating systems also incorporate some kind of
prefetching. Prefetching during sequential access patterns,
as Linux does [49, 44], is the most common technique
used when files are read. Lei and Duchamp [14] also
propose to prefetch entire files by taking into account past
file access patterns. Note, however, that both techniques
present drawbacks similar to those described for Patterson
et al.’s proposal.

Smith suggested a disk cache that turned itself on and off
depending on the performance [50], but the idea was not
tested, and no algorithm was developed to handle the cache
state. He also suggested the possibility of using the main
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memory for the disk cache by mapping files in memory, and
eliminating the controller cache.

9. CONCLUSIONS AND FUTURE WORK

We have presented the design and implementation of KDSim
and REDCAP. KDSim is an in-kernel disk simulator that
accurately simulates the behavior of both HDDs and SSDs.
Thanks to KDSim, it is possible to simulate different I/O
mechanisms, and to dynamically turn them on/off depending
on the throughput achieved. REDCAP is a RAM-based disk
cache that is able to significantly reduce the I/O time of read
requests.

KDSim has interesting features: i) it does not interfere
with regular requests; ii) it simulates the service order of the
requests in a real disk by considering their dependencies;
and iii) unlike other theoretical approaches, it makes a real
self-monitoring and self-adapting I/O subsystem come true.

REDCAP has also several features that make it unique:
i) it is I/O-time efficient; ii) it converts workloads
with thousands of small requests into workloads with
disk-optimal large sequential requests; iii) its activation-
deactivation algorithm makes it dynamic; and iv) it is
independent of the device.

By using KDSim, REDCAP decides the right state of its
cache to get its maximum improvements. For workloads
with some spatial locality, REDCAP achieves improvements
up to 80% for HDDs, and up to 88% for SSDs. It presents the
same performance as a regular system for random or large
sequential workloads.

Our work points out two interesting aspects. First, disk
manufacturers should provide specific information of the
disk cache behavior to be able to simulate it properly.
Second, considering the results achieved by REDCAP,
disk drives should include larger caches to enhance their
performance.

As future work we want to evaluate our proposals
on hardware and software hybrid drives (i.e., HDD+SSD
drives), and RAID devices. We also want to improve
REDCAP to work more cooperatively with the disk cache
by taking into account some of its parameters (number
of segments, segment sizes, etc.), and adapting REDCAP
to them. Finally, evaluation of our proposal with other
file systems, such as Ext4 and Btrfs, is something to be
considered too.
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