527 research outputs found

    A survey on RF and microwave doherty power amplifier for mobile handset applications

    Get PDF
    This survey addresses the cutting-edge load modulation microwave and radio frequency power amplifiers for next-generation wireless communication standards. The basic operational principle of the Doherty amplifier and its defective behavior that has been originated by transistor characteristics will be presented. Moreover, advance design architectures for enhancing the Doherty power amplifier’s performance in terms of higher efficiency and wider bandwidth characteristics, as well as the compact design techniques of Doherty amplifier that meets the requirements of legacy 5G handset applications, will be discussed.Agencia Estatal de Investigación | Ref. TEC2017-88242-C3-2-RFundação para a Ciência e a Tecnologia | Ref. UIDP/50008/201

    A Methodology to Derive a Symbolic Transfer Function for Multistage Amplifiers

    Get PDF
    In this paper, a simple while effective methodology to calculate the symbolic transfer function of a multistage amplifier with frequency compensation is proposed. Three general amplifier models are introduced and analyzed, which represent basic topologies found in the literature. For these amplifier models, the symbolic transfer function is derived and specific strategies for the zero and non-dominant pole expressions are presented. The methodology is suited for hand calculations and yields accurate results while offering more intuition into the operation of the widely adopted frequency compensation solutions discussed in the literature. The effectiveness of the proposed approach is validated through various typical cases of study

    A Four-stage Power and Area Efficient OTA with 30 × (400pf – 12nf) Capacitive Load Drive Range

    Get PDF
    Multistage operational transconductance amplifier (OTA) has been a major research focus as a solution to high DC Gain high Gain Bandwidth and wide voltage swing requirement on sub-micron devices. These system requirements, in addition to ultra-large capacitive load drivability (nF-range load capacitor), are useful in applications including LCD drivers, low dropout (LDO) linear regulators, headphone drivers, etc. The major drawback of multistage OTAs is the stability concerns since each added stage introduces low frequency poles. Numerous compensation schemes for three stage OTAs have been proposed in the past decade with only a few four stage OTA in literature. The proposed design is a four stage OTA which uses an active zero block (AZB) to provide left half plane (LHP) zero to help with phase degradation. AZB is embedded in the second stage ensuring reuse of existing block hence providing area and power savings. This design also uses single miller capacitor in the outer loop which ensures improved speed performance with minimal area overhead. A very reliable slew helper is implemented in this design to help with the large signal performance. The slew helper is only operational in the events slewing and does not affect the small signal performance. The proposed design achieves a DC gain of 114 dB, GBW > 1.77MHz and PM > 46.9⁰ for capacitive load ranging from 400pF–12nF (30x) which is the highest recorded range in literature for these type of compensation. It does this by consuming a total power of 143.5µW and an area of 0.007mm^2

    Strategies for enhancing DC gain and settling performance of amplifiers

    Get PDF
    The operational amplifier (op amp) is one of the most widely used and important building blocks in analog circuit design. High gain and high speed are two important properties of op amps because they determine the settling behavior of the op amps. As supply voltages decrease, the realization of high gain amplifiers with large Gain-Bandwidth-Products (GBW) has become challenging. The major focus in this dissertation is on the negative output impedance gain enhancement technique. The negative impedance gain enhancement technique offers potential for achieving very high gain and energy-efficient fast settling and is low-voltage compatible. Misconceptions that have limited the practical adoption of this gain enhancement technique are discussed. A new negative conductance gain enhancement technique was proposed. The proposed circuit generates a negative conductance with matching requirements for achieving very high DC gain that are less stringent than those for existing -g m gain enhancement schemes. The proposed circuit has potential for precise digital control of a very large DC gain. A prototype fully differential CMOS operational amplifier was designed and fabricated based on the proposed gain enhancement technique. Experimental results which showed a DC gain of 85dB and an output swing of 876mVp-p validated the fundamental performance characteristics of this technique. In a separate section, a new amplifier architecture with bandpass feedforward compensation is presented. It is shown that a bandpass feedforward path can be used to substantially extend the unity-gain-frequency of an operational amplifier. Simulation results predict significant improvements in rise time and settling performance and show that the bandpass compensation scheme is reasonably robust. In the final section, a new technique for asynchronous data recovery based upon using a delay line in the incoming data path is introduced. The proposed data recovery system is well suited for tight tolerance channels and coding systems supporting standards that limit the maximum number of consecutive 0\u27s and 1\u27s in a data stream. This system does not require clock recovery, suffers no loss of data during acquisition, has a reduced sensitivity to jitter in the incoming data and does not exhibit jitter enhancement associated with VCO tracking in a PLL

    Analogue micropower FET techniques review

    Get PDF
    A detailed introduction to published analogue circuit design techniques using Si and Si/SiGe FET devices for very low-power applications is presented in this review. The topics discussed include sub-threshold operation in FET devices, micro-current mirrors and cascode techniques, voltage level-shifting and class-AB operation, the bulk-drive approach, the floating-gate method, micropower transconductance-capacitance and log-domain filters and strained-channel FET technologies

    Analysis and design of wideband voltage controlled oscillators using self-oscillating active inductors.

    Get PDF
    Voltage controlled oscillators (VCOs) are essential components of RF circuits used in transmitters and receivers as sources of carrier waves with variable frequencies. This, together with a rapid development of microelectronic circuits, led to an extensive research on integrated implementations of the oscillator circuits. One of the known approaches to oscillator design employs resonators with active inductors electronic circuits simulating the behavior of passive inductors using only transistors and capacitors. Such resonators occupy only a fraction of the silicon area necessary for a passive inductor, and thus allow to use chip area more eectively. The downsides of the active inductor approach include: power consumption and noise introduced by transistors. This thesis presents a new approach to active inductor oscillator design using selfoscillating active inductor circuits. The instability necessary to start oscillations is provided by the use of a passive RC network rather than a power consuming external circuit employed in the standard oscillator approach. As a result, total power consumption of the oscillator is improved. Although, some of the active inductors with RC circuits has been reported in the literature, there has been no attempt to utilise this technique in wideband voltage controlled oscillator design. For this reason, the dissertation presents a thorough investigation of self-oscillating active inductor circuits, providing a new set of design rules and related trade-os. This includes: a complete small signal model of the oscillator, sensitivity analysis, large signal behavior of the circuit and phase noise model. The presented theory is conrmed by extensive simulations of wideband CMOS VCO circuit for various temperatures and process variations. The obtained results prove that active inductor oscillator performance is obtained without the use of standard active compensation circuits. Finally, the concept of self-oscillating active inductor has been employed to simple and fast OOK (On-Off Keying) transmitter showing energy eciency comparable to the state of the art implementations reported in the literature

    Ultra-Compact mm-Wave Monolithic IC Doherty Power Amplifier for Mobile Handsets

    Get PDF
    YesThis work develops a novel dynamic load modulation Power Amplifier (PA) circuity that can provide an optimum compromise between linearity and efficiency while covering multiple cellular frequency bands. Exploiting monolithic microwave integrated circuits (MMIC) technology, a fully integrated 1W Doherty PA architecture is proposed based on 0.1 µm AlGaAs/InGaAs Depletion- Mode (D-Mode) technology provided by the WIN Semiconductors foundry. The proposed wideband DPA incorporates the harmonic tuning Class-J mode of operation, which aims to engineer the voltage waveform via second harmonic capacitive load termination. Moreover, the applied post-matching technique not only reduces the impedance transformation ratio of the conventional DPA, but also restores its proper load modulation. The simulation results indicate that the monolithic drive load modulation PA at 4 V operation voltage delivers 44% PAE at the maximum output power of 30 dBm at the 1 dB compression point, and 34% power-added efficiency (PAE) at 6 dB power back-off (PBO). A power gain flatness of around 14 ± 0.5 dB was achieved over the frequency band of 23 GHz to 27 GHz. The compact MMIC load modulation technique developed for the 5G mobile handset occupies the die area of 3.2.This research was funded by the European Regional Development Fund (FEDER), through COMPETE 2020, POR ALGARVE 2020, Fundação para a Ciência e a Tecnologia (FCT) under i-Five Project (POCI-01-0145-FEDER-030500). This work is also part of the POSITION-II project funded by the ECSEL joint Undertaking under grant number Ecsel-345 7831132-Postitio-II-2017-IA. This work is supported by FCT/MCTES through national funds and when applicable co-funded EU funds under the project UIDB/50008/2020-UIDP/50008/2020. The authors would like to thank the WIN Semiconductors foundry for providing the MMIC GaAs pHEMT PDKs and technical support. This work is supported by the Project TEC2017-88242-C3-2-R- Spanish Ministerio de Ciencia, Innovación e Universidades and EU-FEDER funding

    Performance enhancement techniques for operational amplifiers

    Get PDF
    Operational amplifiers (op amps) are one of the most fundamental and widely used building blocks for analog and mixed-signal circuits and systems. As transistors’ feature size scales down in the deep submicron process, the short channel effects, high leakage current and reduced supply voltages make the design of op amps more challenging. In this dissertation, we present several methods to improve op amps’ DC gain, slew rate, power efficiency and current utilization efficiency (CUE). A basic requirement for an op amp is high DC gain especially for high precision applications. We introduce a method to robustly improve op amps’ DC gain with negligible power and area overhead. The new DC gain enhancement method can be implemented based on the source degeneration circuit (SDC) or the flipped voltage attenuator (FVA). Compared to the FVA-based technique, the SDC-based technique is more suitable for those CMOS processes whose transistors’ threshold voltages are too low for the transistors in the FVA to work in weak or strong inversion regions. Otherwise, the FVA-based technique is recommended as this technique is more robust to devices’ random mismatch. A prototype op amp with the FVA-based technique is designed and fabricated in the IBM130nm process. The measurement and simulation results of the prototype verify that the technique largely enhances an op amp’s DC and is very robust over process, voltage and temperature variations. Another important op amp requirement is high slew rate. In this regard, we introduce a method that greatly improves an op amp’s slew rate while still preserving its small signal performance by a well-defined turn-on condition. The performance of the introduced method is discussed in comparison with an existing adaptive biasing method that was widely used to enhance slew rate. The introduced method excels in several aspects. First, unlike the adaptive biasing method which degrades an op amp’ linearity, the introduced method is able to enhance linearity. Second, the proposed method improves an op amp’s slew rate by 2320% (vs. 780% by the adaptive method) with the power and area overhead of 2% and 1.2% (vs. 15% and 35% by the adaptive method). In addition, the proposed method improves the op amp’s total harmonic distortion (THD) by 6dB but the adaptive method degrades the THD by 12dB. The ability to drive large capacitive loads is becoming critical for op amps in emerging applications such as liquid crystal display drivers. In this regard, we introduce a power efficient design of op amps that can drive large capacitive loads. The proposed method decouples the large and small signal performance, eliminates current waste in the preamp stages’ load circuits, and is not sensitive to devices’ random mismatches. Compared to the state-of-the-art methods, our design prototype in a CMOS 180nm process shows largely improved small and large signal figure of merits, equivalent to largely improved power efficiency for given small and large signal performance specifications. Folded cascode amplifier (FCA) is a commonly used architecture for designing op amps, but a significant portion of supply current is wasted in the cascode stage. This not only reduces the current utilization efficiency (CUE), defined as the ratio of an FCA’s tail current to its total supply current, but also degrades the FCA’s gain, noise and offset. In this regard, we introduce a method to dramatically reduce a FCA’s cascode stage current without degrading the FCA’s settling performance. Compared to the existing methods, the proposed method effectively improves not only the CUE but also the settling performance of op amps. Lastly, a prototype FCA, with the proposed performance enhancement techniques of gain, slew rate and CUE, is designed to demonstrate the compatibility of these techniques
    corecore