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ABSTRACT In this paper, a simple while effective methodology to calculate the symbolic transfer 

function of a multistage amplifier with frequency compensation is proposed. Three general amplifier 

models are introduced and analyzed, which represent basic topologies found in the literature. For these 

amplifier models, the symbolic transfer function is derived and specific strategies for the zero and non-

dominant pole expressions are presented. The methodology is suited for hand calculations and yields 

accurate results while offering more intuition into the operation of the widely adopted frequency 

compensation solutions discussed in the literature. The effectiveness of the proposed approach is validated 

through various typical cases of study. 

INDEX TERMS Amplifier; compensation capacitance; frequency compensation; Miller compensation; 

multistage amplifiers; pole/zero analysis; transfer function. 

I. INTRODUCTION 

A preliminary and fundamental task to the design of a 

multistage amplifier is the derivation of its symbolic 

transfer function. Indeed, knowledge of the voltage transfer 

function is required to gain more insight into the operation 

of a multistage amplifier and to set and design the amplifier 

compensation network, which is a fundamental design step 

where interactions between the power consumption, noise, 

area, bandwidth, and stability are involved. Moreover, 

starting from a generalized symbolic transfer function 

expression, a designer can readily study and compare the 

several design features of an amplifier compensated with 

different frequency compensation solutions.  

Since the early years of MOS analog integrated circuits, 

the compensation of two or more stage amplifiers was a key 

research area [1]-[28]. In this field several novel solutions 

were continuously proposed, especially for three- and four-

stage amplifiers, and, despite several decades have been 

devoted to this subject, even in the last ten years the interest 

on this topic appears active [29]-[40]. Indeed, due to the 

continuous degradation of transistors’ intrinsic gain and the 

low supply voltage of modern scaled technologies, more 

gain stages are required [35] and in any case the 

development of novel compensation networks remains an 

important research area in advanced CMOS technologies. 

Despite from one side several multistage amplifier 

compensation networks were proposed and analyzed [1]-

[40], and, hence, we know their voltage transfer functions 

which are typically reported in the original or successive 

papers, the continuous research on this domain maintains 

unchanged the need to evaluate the voltage transfer 

function especially in a novel more complex topology that 

could be adopted. Hence, methodologies to calculate the 

symbolic voltage transfer function simply and efficiently 

are still important. 

Traditionally, the calculation of a symbolic transfer 

function is a very lengthy and complex task if only 

Kirchhoff laws at nodes and meshes are used. To help the 

designer, computer-aided design (CAD) tools are developed 

to carry out the small-signal analysis such that the transfer 

function can be extracted in factorized or non-factorized 

form [41]-[48]. Simplifying circuit-level methods are used 

for pole/zero extraction, some of which are relied on 

dividing the frequency spectrum into small pieces [43], 

approximation of the time constants [44], developing new 

circuit micromodel [49]-[50], or analysis of signal flow-

graph [41]. Despite these approaches could be ideally suited 

also for pencil and paper evaluation, the final expressions 

are, however, complicated and cannot be analyzed simply, 

thus these strategies are more suited for CAD tools rather 

than for hand calculations. 

Among the several papers and books where compensation 
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techniques for multistage amplifiers are treated and their 

voltage transfer function is calculated, some circuit-level 

techniques suitable for a pencil and paper approach can be 

found in the literature [51]-[54]. For instance, one may 

calculate the location of the poles of a three-stage nested 

Miller compensated (NMC) amplifier by assuming that the 

second compensation capacitor is short-circuited, and the 

inner gain stage is in unity-feedback configuration [51]. 

Alternatively, the compensation network of an amplifier 

may be analyzed directly based on the concepts of control-

centric Local Feedback Loop (LFL) [52], [32] or equivalent 

output impedance of the compensation loop [55]-[56]. 

Similar methodologies facilitate the designer’s ability to 

calculate the transfer function given that the type of the 

amplifier was specified a priori. A control-centric design-

oriented analysis methodology based on a simplified 

feedback theory is presented in [54], helping to quickly 

evaluate the pole frequencies. Nevertheless, no clear 

symbolic expression can be extracted in general form, 

hindering a general understanding of the contributing and 

the limiting factors of the amplifier’s performance. 

In this paper, we develop a simple methodology that 

allows to efficiently calculate the symbolic transfer function 

of a multistage amplifier with its specific compensation 

networks. The methodology is suited to be also applied 

with pencil and paper and gives very accurate results. In 

particular, three general amplifier models are introduced 

and analyzed, which represent basic topologies found in the 

literature. For these amplifier models, the symbolic transfer 

function is derived and specific strategies for the zero and 

non-dominant pole expressions are presented. Thus, the 

final symbolic transfer function can be written in the 

required standard form. 

The application and accuracy of the approach are reported 

for a set of six amplifiers, which includes classical and 

advanced topologies that can be considered as typical cases 

of study, even if the approach was positively used and 

tested for other several topologies. In particular, the 

amplifiers considered to validate the methodology are: 

- a two-stage Miller compensation with nulling resistor 

(MCNR) [1]; 

- a three-stage with NMC [5]-[6]; 

- a three-stage with reversed Nested-Miller compensation 

(RNMC) [6]; 

- a three-stage with the nested Miller compensation and a 

current buffer in the external loop, named active-

feedback frequency compensation (AFFC) [16]; 

- a three-stage with single Miller compensation named 

impedance adapting compensation named (IAC) [29]; 

- a three-stage with single Miller compensation and 

current buffer, named cross feedforward cascode 

compensation (CFCC) [31]. 

Moreover, the results show that the entire procedure can 

be summarized to find the variables used in a symbolic 

transfer function expression.  

The manuscript is organized as follows. In Section II, after 

some preliminary considerations, the methodology is 

presented and developed, showing the evaluation of zero and 

poles and of the whole transfer function, as well as 

approximated calculation of the dominant pole. Section III 

reports the application, in order of complexity, on the six 

amplifier topologies selected as typical cases. Design 

considerations and remarks arising from the proposed 

methodology are included in Section IV. Finally, the 

conclusions are given in Section V. 

 
II.  THE PROPOSED METHODOLOGY 

A. ABBREVIATIONS AND ACRONYMS 

After inspecting the circuit topology of a huge number of 

multistage amplifiers presented in the literature, which 

includes both the conventional and the novel solutions, it was 

found that a generic topology can be modeled by using, in a 

recursive way if needed, the generalized three circuit 

configurations shown in Fig. 1 and named type I, type II, and 

type III.  
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FIGURE 1.  The general amplifier models proposed in this section; (a) 
type I; (b) type II; (c) type III (combined). 

 

In particular, as it will be better detailed and explained in 

the next Section, considering the well-known topology 

reported in references, the type I model can be used for the 

amplifier that adopts the Miller compensation [1], NMC [5], 

RNMC [6], single Miller compensation (SMC) [22], together 
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with the IAC single Miller topology [29], (i.e., compensation 

topologies without current or buffer or amplifier in the 

external loop). The type II model can be considered for two-

stage amplifiers with Miller compensation and current buffer 

[8], [53], [66] and AFFC amplifier [16], while single miller 

topologies with a current buffer, like CFCC [31] and the 

cascode Miller-compensation with local impedance 

attenuation (CLIA) [34] (not included in this manuscript for 

space reason) can be reported and analyzed with the type III 

model. 

It is worth noting that the main difference between the 

models in Fig. 1 is the way the input is connected to the 

feedback pathway of the frequency compensation network. 

In any case, the input transconductance, Gmi, converts the 

input voltage into an equivalent ac current, and the current 

is applied to the compensation loop. The transconductance 

Gmi is considered unchanged at the frequencies of interest 

and can be positive or negative depending on circuit 

implementation. The compensation loop is comprised of the 

frequency-dependent transconductance Gm(s), in negative 

feedback configuration, and supplies the load impedance 

zL(s). 

Considering the feedback network of the three model 

types, for the type I model the feedback elements in Fig. 

1(a) connect the output of Gm(s) to its input directly, 

whereas for type II in Fig. 1(b) the one-way current buffer 

with constant GmC (and an input impedance of 1/GmC) 

buffers the feedback current, and prevents the feedforward 

current flowing to the output through zA(s). Finally, the type 

III model in Fig. 1(c), where the input transconductance is 

broken into identical Gmi/2 stages, can be seen as a 

combination of the two other models in Fig. 1(a) and (b).  

Note that also a type IV model could be considered, 

which uses a voltage buffer inside the feedback loop instead 

of the current buffer [7], [64], but presently, especially for 

the low voltage power supply of the typical application, it is 

not a practical solution. Moreover, by inspection of Fig. 1, 

it is apparent that type III model can be seen as a more 

general topology of type II model and hence could be, in 

principle, merged. However, since the zeros of the type II 

model, unlike to type III model, may depend on Gm(s) (as it 

will be shown in the next sub-section), we decided to 

maintain two different models which appear to be more 

effective from a practical point of view. 

In all the cases considered, the symbolic voltage-gain 

transfer function from vi to vo can be generally expressed as 

( )
( )

( )
0

3

1

Zo
V

i NP

dB

N sv A
A s

sv D s

p−

= = 

+

 (1) 

where A0 and p-3dB  denote the DC voltage gain and 

the dominant pole, respectively, and NZ(s) and DNP(s) are 

the zeros and nondominant poles polynomials, respectively, 

being 

( ) ( )
0 0

lim lim 1Z NP
s s

N s D s
→ →

= =  (2) 

The polynomial DNP(s) contains the most important 

bandwidth- and stability-limiting pole frequencies, whereas 

NZ(s) contains the zero frequencies which generally may 

also affect the overall stability, depending of course on their 

frequency.  

A symbolic transfer function in the form of relationship 

(1) is very helpful for writing all the design expressions in 

symbolic form. For instance, a symbolic phase margin 

(PM) expression can then be expressed as 

( ) ( )( )

( ) ( )( )

1

1

90 tan Im Re

tan Im ReNP NP

PM N jGBW N jGBW

D jGBW D jGBW

−

−

     + −   

      

 (3) 

where GBW is the gain-bandwidth product and is given by 

A0⸱p-3dB. 

Moreover, to take advantage of the model treated, it is 

conventionally assumed that the amplifier contains linear 

elements only. Hence, the transfer function would be 

fractional, and contains unchanged coefficients for N(s) and 

DNP(s) expressions: 

( )
( )

( )
A

A
A

nz s
z s

dz s
=  (4) 

( )
( )

( )
B

B
B

nz s
z s

dz s
=  (5) 

( )
( )

( )
L

L
L

nz s
z s

dz s
=  (6) 

( )
( )

( )
m

m
m

nG s
G s

dG s
=  (7) 

Analysis of the transfer function provides insightful 

knowledge on the behavior of the frequency compensation 

applied. To this end,  and  in their most general 

form must be evaluated. Thus, instead of using a direct 

transfer function evaluation, or the adoption or other 

approaches such as Rosenstark method [57] or Signal Flow 

Analysis [58], the analysis in the rest of this section is 

devoted to directly derive N(s) and DNP(s) through a depth 

circuit observation and practical considerations. In particular, 

it will be shown that the zeros originate from the feedforward 

pathways and the shunt elements within the input-output 

pathway, whereas the location of nondominant poles is 

mainly governed by the compensation loop. 

B.  ANALYSIS OF ZEROS 

It is possible to formulate the transfer function zero 

expressions by revisiting the conditions leading to a ‘zero’. 

A zero is a complex frequency, szi , where vo evaluated at its 

value is equal to zero (i.e., vo(szi)=0), and it can be regarded 
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as the input frequency szi  that yields a virtual grounded 

output. Different scenarios end up with such result for the 

models under consideration. In particular, considering the 

type I model in Fig. 1(a), we found the zeros under the 

following conditions: 

a) an input frequency that generates a load impedance 

equal to zero (i.e., zL(s)=0), which in turn means 

( ) 0Lnz s =  (8) 

b) the input of the Gm(s) stage, vF, equal to zero, (i.e., 

zB(s)=0), or in other terms 

( ) 0Bnz s =  (9) 

c) a current through the load impedance equal to zero; 

this case corresponds to a complex frequency where 

the current supplied by the Gm(s) becomes equal to 

the current of the feedback element zA(s) (i.e., 

Gm(s)vF equal to vF/zA(s)), which means 

( )

( )

( )

( )
0

A m

A m

dz s nG s

nz s dG s
− =  (10) 

yielding 

( ) ( ) ( ) ( )

( ) ( )
0

A m A m

A m

dz s dG s nz s nG s

nz s dG s

 − 
=


 (11) 

Thus, any zero of the type I model transfer function is 

obtained from one of the three above cases and combining 

them in a general and compact form we get 

( ) ( ) ( ) ( ) ( ) ( ) ( )1 L B A m A mN s nz s nz s dz s dG s nz s nG s =    −    (12) 

The two zero expressions in (8) and (9) are valid for the 

amplifier model type II illustrated in Fig. 1(b). The one-way 

current buffer, GmC, however, prevents zA(s) draining any 

current from the input of Gm(s) Hence, since Gm(s)vF=0, 

instead of Eq. (10) we have 

( ) 0mnG s =  (13) 

The series combination of zA(s) and 1/GmC is connected 

to the output and generates additional zeros. The output will 

be grounded when the series impedance of the two elements 

becomes zero (i.e., zA(s)+1/GmC=0) and we can write 

( ) ( ) 0mC A AG nz s dz s+ =  (14) 

Thus, the generalized zero expression of model type II is 

given by 

( ) ( ) ( ) ( ) ( ) ( )2 L B m mC A AN s nz s nz s nG s G nz s dz s =    +   (15) 

Equation (8) still holds for the model type III illustrated 

in Fig. 1(c). Other zero expressions can be, however, found 

by setting the output voltage to zero. In particular, if vo=0, 

the voltage vC can be expressed in terms of the input 

voltage, vi, as 

( )

( )2 1

Ami
C i

mC A

z sG
v v

G z s

 
=  

+   

 (16) 

Hence, taking into account the above relation, the feedback 

voltage, vF, is related to vi by 

( )

( )

( )
( )
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1 2

2 1
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F mC C i B

mC Ami
B i
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G
v G v v z s

G z sG
z s v
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+ 
  
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 (17) 

Thus, applying the current law to the output node yields 

( )
( ) 0C

m F
A

v
G s v

z s
−  =  (18) 

and 

( ) ( ) ( )1 1 2 0m mC A BG s G z s z s −  +  =   (19) 

and the zero equation is expressed by 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

2

2 0

mC m A B m A B

m A B mC A A

G nG s nz s nz s nG s dz s nz s

dG s dz s dz s G nz s dz s

   +   −

    + =
 (20) 

where the approximation holds since the first 1 in 

relationship (19) can be safely neglected with respect to the 

other terms which are normally much higher (remember 

that Gm(s)zA(s) and GmC(s)zB(s) represent two gains). The 

symbolic zero expression of the model type III can be 

written as 

( ) ( ) ( ) ( )3 2L mC A AN s nz s G nz s dz s =   +   (21) 

By inspection of the Ni(s) expressions derived above for 

different amplifier models, it is worth noting that the 

feedforward pathways and the shunt elements are responsible 

for generating a zero.  

C.  ANALYSIS OF POLES 

Remembering that in a network the natural frequencies, i.e. 

the poles, only depend on the network topology and 

component values, but not on the input [59], to evaluate the 

poles of the transfer function we can calculate the input or 

the output impedance and take their poles. 

Consider the model type I illustrated in Fig. 1(a). The 

output impedance is that of a typical simple feedback 

circuit and, consequently, it can be simply evaluated 

applying any usual method for impedance evaluation in 

feedback amplifiers, such as Blackman [60] or modified 

Rosenstark [61], or even directly. In particular, we get 
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( )
( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

/ /
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Thus, by using (4)-(7), after routine manipulations, the final 

zeq(s) can be expressed by 

( )
( )m A B A B L

eq
m A B L m A B L m A B L

dG nz dz dz nz nz
z s

dG dz dz nz nG dz nz nz dG nz dz dz

+
=

+ +
 (23) 

and hence the pole expression of the transfer function, 

being the same of the relationship (23), is given by 

( )1P m A B L m A B L

m A B L m A B L

D s dG dz dz nz nG dz nz nz

dG nz dz dz dG dz nz dz

= + +

+
 (24) 

Concerning the type II and type III models, their output 

impedance is equal1 and by inspection of Fig. 1(b) or 1(c), 

observing that to evaluate the output impedance type II and 

type III models are equivalent to type I if  

( ) ( ) ( )'
m mC B mG s G z s G s=    (25) 

( )' 1
B

mC

z s
G

=  (26) 

are used in the compensation loop instead of Gm and zB, 

respectively. Thus, from (22) we get2 

( )
( ) ( )

( ) ( )
( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
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' '
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' ' '
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 (27) 

Therefore, from (24) the denominator of type II and type III 

models is given by 

( ) ( ) ' '
2 3

' ' ' ' ' '

P P m A B L

m A B L m A B L m A B L

D s D s dG dz dz nz

nG dz nz nz dG nz dz dz dG dz nz nz

= = +

+ +
 (28) 

Moreover, being 

( )' 1Bnz s =  (29) 

( )'
B mCdz s G=  (30) 

 
1 We are implicitly assuming for type III model, as it happens for real 

cases, that the output impedance of the upper Gmi/2 transcoductance can be 

neglected (i.e., much higher than 1/GmC) 

2 Using (25) and (26), eq. (27) reduces to
( ) ( )

( ) ( )
( )

'

/ /
1

A B
L

m B

z s z s
z s

G s z s

+

+ 
 

but this form is less practical at this moment. 

and 

( ) ( ) ( )'
m mC B mnG s G nz s nG s=    (31) 

( ) ( ) ( )'
m B mdG s dz s dG s=   (32) 

equation (28) becomes 

( ) ( ) (

)

2 3P P mC m A B L

m A B L m A B L m A B L

D s D s G dG dz dz nz

nG dz nz nz dG nz dz dz dG dz dz dz

= = +

+ +
 (33) 

D.  GENERAL TRANSFER FUNCTION 

Noticing that the feedback element zA(s), contains generally 

a series compensation capacitor, which means 

( )
0

lim A
s

z s
→

=   (34) 

for any of the proposed models, the symbolic DC gain 

formula can thus be expressed by 

( ) ( ) ( )0 0 0 0mi m B LA G G z z=     (35) 

To ensure that condition (2) is met for the type of the 

transfer function in (1), the standard NZ(s) should be 

implied in the form of (1+s+ s2+…), while inspecting the 

N(s) expressions derived in subsection II.B we find a 

constant term. Hence, we can write that 

( )
( )

( )0

i
Zi

i

N s
N s

N
=  (36) 

where i is equal to 1, 2 or 3. 

Concerning eqs. (24) and (33), to represent the transfer 

function as in (1), despite DPi(s), with i to 1 to 3, contains 

all the amplifier poles, we have to identify the dominant 

pole and factorize it. At this purpose we can consider that 

the dominant pole, p-3dB, can be evaluated by applying the 

open-circuit time constant method [62] and, since it is 

typically imposed by exploiting the Miller effect on the CC, 

of zA(s) [49], we can write 

( ) ( ) ( ) ( ) ( ) ( ) ( )

3

1

0 0 0 0 0 0 0

dB

B B L L B L B m L C

p

z C z C z z z G z C

− =

−

 + + + + 

 (37) 

where CB and CL are the capacitive contribute of zB(s) and 

zL(s). 

The function DPi(s) in a general form can be written as 

( ) 2
0 1 2 ... n

Pi nD s a a s a s a s= + + + +  (38) 

where, of course, 

( )0 0Pia D=  (39) 

Thus, remembering that a compensated amplifier has a 

dominant pole approximated by 
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( )
3

1

0Pi
dB

D
p

a
− =  (40) 

the transfer function related to the non-dominant poles only 

with the unitary constant term can be expressed by 

( )
( )

( )

2 132

1 1 1

3

1 ...

0 1

Pi nn
NPi

Pi
dB

D s a aa
D s s s s

a a as
D

p

−

−

 = + + + +
 
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 (41) 

In conclusion, expression (42) summarizes the analysis of 

this section, providing a symbolic voltage-gain transfer 

function expression for most multistage amplifiers used in 

the literature 

( )
( )

( )

( )

( )

( )

( )

( )

( )
0

0

3

0

0
1

−
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+

i Pi Zi Zi
V

i Pi NPi NPi

dB

N s D N s N sA GBW
A s A

sN D s D s s D s

p

 (42) 

where i is from 1 to 3 and Ni(s) and DPi(s) are summarized 

in Table I. 

E.  APPROXIMATED POLE EXPRESSIONS 

A useful approximation can be obtained noting that in a 

compensated amplifier the non-dominant poles are at 

frequencies higher than the transition frequency. They are, 

consequently, much higher than the dominant pole that is 

usually entirely set by the Miller compensation capacitor. 

Then, at the frequency of the non-dominant poles we can 

assume the compensation capacitor short-circuited. 

The compensation capacitor is inside zA(s), thus the 

assumption of short-circuited compensation capacitor 

means to evaluate 

( )lim limA A
s

z z s
→

=  (43) 

and substitute it to zA(s) in (24) and (32) to achieve the 

equation for the non-dominant poles. In particular, 

rewriting (24) and (33) and introducing zAlim we 

respectively get 

( ) ( ) (

)

lim1 1

lim

P A NGPN A m B L

m B L m A B L m B L

D s dz D s dz dG dz nz

nG nz nz dG z dz dz dG nz dz

= = +

+ +
 (44) 

( ) ( ) ( )

(

)

lim2 lim3 3

lim

P P A NGPN

A mC m B L

m B L m A B L m B L

D s D s dz D s

dz G dG dz nz

nG nz nz dG z dz dz dG nz dz

= = =

+

+ + 

 (45) 

where DNGNPi(s) are equations with only the non-dominant 

poles, but not in the required form. Indeed, note that the 

dominant pole of the transfer function can be approximated 

by 

( )
3 3

1 0A NGNPi
dB dB

s s
dz D

p p− −

+    (46) 

Then, the expression for the non-dominant poles with one 

as constant term is given by 

( )
( )

( )0

NGNPi
NPi

NGNPi

D s
D s

D
=  (47) 

Despite useful, especially when a Miller capacitance or a 

nulling resistance in the compensation path is adopted (i.e., 

for amplifiers that are represented with type I model), this 

approximation may lead to errors when current buffers are 

introduced used in the compensation path. As such, the 

small input resistance of the current buffer in series makes 

quite important the size of the Miller capacitance and its ac 

current on the non-dominant poles. Approximated DNGNPi(s) 

are summarized in Table I. 

III.  APPLICATIONS OF THE PROPOSED 
METHODOLOGY  

The achieved symbolic transfer function expression can 

significantly reduce the calculations of OTA transfer 

function. Fig. 2 presents several the well-known circuit 

TABLE I 

APPROXIMATED EXPRESSIONS 

 
i Ni(s) 

1 ( ) ( ) ( ) ( ) ( ) ( )L B A m A mnz s nz s dz s dG s nz s nG s   −   

2 ( ) ( ) ( ) ( ) ( )L B m mC A Anz s nz s nG s G nz s dz s    +   

3 ( ) ( ) ( )2L mC A Anz s G nz s dz s  +   

i DPi(s) 

1 m A B L m A B L m A B L m A B LG dz dz nz nG dz nz nz dG nz dz dz dG dz nz dz+ + +  

2 ( )mC m A B L m A B L m A B L m A B LG dG dz dz nz nG dz nz nz dG nz dz dz dG dz dz dz+ + +  
3 

i Approximated DNGNPi(s) 

1 limm B L m B L m A B L m B LdG dz nz nG nz nz dG z dz dz dG nz dz+ + +  

2 ( )limmC m B L m B L m A B L m B LG dG dz nz nG nz nz dG z dz dz dG dz dz+ + +  
3 

*the dependence on s is not explicated for length reasons 
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diagrams used to realize two-stage and three-stage 

amplifiers, where resistors, capacitors, and transconductors 

of different blocks are explicitly represented using 

conventional notations. In this section, we shall analyze 

these amplifiers as a typical case of study by using the 

methodology developed in the previous section based on 

the models introduced in Fig. 1 and summarized by 

equation (41) and Table I. 

A.  MILLER COMPENSATION WITH NULLING 
RESISTOR 

As the classical method to stabilize a two-stage amplifier 

[51], Miller compensation places a compensation capacitor 

among the input and output of the second stage to dominate 

the pole of the first stage output. The original Miller 

compensation is mostly avoided since it suffers from 

stability problems due to a right-half plane (RHP) zero and 

improvements that avoid the RHP are usually adopted [51], 

[63].  

The most known and used solution that allows to avoid 

the RHP is based on a nulling resistor (RC) which is 

therefore placed in series with the compensation capacitor 

(CC) to create a negative zero according to the circuit 

diagram shown in Fig. 2(a). In addition to the input gmi 

stage with the output capacitor (C1) and resistor (R1), the 

block diagram of Fig. 2(a) is composed of an inverting gmL 

stage with the feedback RC and CC, driving CL and RL of the 

amplifier. This structure is analogous to the model type I 

discussed in Section 2, when taking into consideration 

Gmi=gmi, and the following relations for remaining 

components: 

( )
1 C CA

A
A C

R C snz
z s

dz C s

+
= =  (48) 

( ) 1

1 11

B
B

B

nz R
z s

dz R C s
= =

+
 (49) 

( )
1

m mL
m

m

nG g
G s

dG
= =  (50) 

( )
1

L L
L

L L L

nz R
z s

dz R C s
= =

+
 (51) 

The DC gain and dominant pole are obtained from (35) 

and (37), respectively. Moreover, usually (37) can be 

simplified into 

( ) ( ) ( ) ( )3

1

1

0 0 0 0

1

dB
B m L C L L

mL L C L L

p
z G z C z C

g R R C R C

−

−
 =

+

−

+

 (52) 

The zeros expressions are easily derived as 

( )
( )

( )
1

1
1

1
1

0
z C C

mL

N s
N s C R s

N g

  
= = + −  

   

 (53) 

Concerning the non-dominant poles, we can use the 

approximated expression (44). Thus, approximating the 

first term of DP1(s) as 

1 1 1m B L L mL L C mL LdG dz nz R R g R R R R g R= + + +   (54) 

and being 

( )lim limA A C
s

z z s R
→

= =  (55) 

we get 

( ) (

)

( )

1

lim

1 1 1 1 1 1

2
1 1

NGPN m B L

m B L m A B L m B L

mL L L C L L L L C

L L C

D s dG dz nz

nG nz nz dG z dz dz dG nz dz

R g R R C R R C R R C R R C R s

R C R C R s

= +

+ + =

+ + + + +
 (56) 

which from (47) gives the non-dominant pole function in 

the required form 

vi _

RC

gmL

vO

CL
gmi C1

+
–

R1 RL 
+
–

Gmi

zB

zA

Gm(s)

zL

CC

(a)

_

CC1

gm2 gmL

+
_

CLRL
gmi 

vi

+
–

vO

+

–
C1R1 R2 C2

zAzB
CC2

(b)

CC1

gm2 gmL

_

CLRL
gmi 

vi

+

–

vO

+

–
C1R1 R2 C2

zA

zL

CC2
_ +

(c)

_

CC1

gm2

gmL

+_

_

+

gmC

gmf

CLRLgmi 

vi

+
–

vO

gmC 

1

+

–C1R1 R2 C2

zA

zB

CC2
_

CC

gm2 gmL

+
_

CLRL

gmi vi

+
–

vO
+
–C1R1 R2 C2

RD

CD

zA

zB

Gm(s)
zL

_

CCgm2 gmL

+
_

_

_
+

0.5gmi 

gmC

gmf2

CLRL
0.5gmi 

vi

+

–

vO
gmC 

1

+

–C1R1 R2 C2

zA

zB

zL

_
gmf1

(d) (e) (f)  
Fig. 2.  Block diagrams of multistage amplifiers; (a) Miller compensation with nulling resistor; (b) NMC; (c) RNMC; (d) AFFC; (e) IAC; (f) CFCC. 
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( ) 21
1 1

1

1 1 1C C CL
NP L

mL L mL mL

R R RC C
D s s C C s

g R g R g

    
= + + + + +    

     

 (57) 

It is worth noting that application of the accurate relationship 

(41) only adds the negligible term, CLC1/CCgmL, thus yielding 

the same result. 

B.  NESTED MILLER COMPENSATION 

Nested Miller compensation is an advanced variant of the 

Miller compensation presented formerly for three-stage 

amplifiers [3], [5]-[6]. Fig. 2(b) illustrates the circuit 

schematic of a three-stage NMC amplifier, comprising from 

an inverting first stage, a non-inverting second stage, and an 

inverting third stage modeled by their equivalent 

transconductor (gmi, gm2 and gmL), output stage resistor (R1, 

R2 and RL) and output stage capacitor (C1, C2 and CL). 

The two compensation capacitors of NMC, i.e. CC1 and 

CC2, connect the third stage output to the first and the 

second stage outputs, respectively. The capacitor CC1 

creates the main pole of the amplifier, while CC2 controls 

the quality factor of the non-dominant poles. This structure 

is analogous to the model type I in Fig. 1(a), when 

considering 

_
iO

vi vO

_

CC1

gm2 gmL

+
_

CLRL

gmi 

vi

+

–

vO

+

–C1R1 R2 C2

CC2vi vO

zOGm(s)

CC1

_

CLgmi 

vi

+

–

vO

+

–
C1

_

gmL 

1gmL
gm2 (          –1)

CC2s

zA Gm(s) zLzB

(b)

(a)

 

FIGURE 3.  (a) Structure of NMC three-stage amplifier as model type I; 
(b) equivalent high-frequency model. 

( )
1

1
A

C

z s
C s

=  (58) 

( ) 1
1 1

1 1
/ /Bz s R

C s C s
=   (59) 

where the rightmost approximation in (59) holds if 

R1C1s >>1. 

The DC gain and the dominant pole can be evaluated from 

(35) and (37) noting that zB(0)=R1, Gm(0)=gm2gmLR2 and 

zL(0)=RL. Nonetheless, it is essential to evaluate the Gm(s) 

and zL(s) expressions before the proposed method can be 

applied to evaluate Nzi(s) and DNPi(s). To this end, the 

elements inside the rectangular dash line in Fig. 3(a) can be 

represented by an equivalent transconductor Gm(s), with 

input voltage vi , output voltage vo, and an output impedance 

of zo. 

By applying the current law at the output of the second 

stage, the output current, io is related to vi and vo by 

( )

( ) ( )

'
' '
0 '

' '2 2 2 2 2 2
2 2

2 2 2 2 2 2

1

1 1

o
m i

o

mL mL
m i C o

C C

v
i G s v

z

g R R C s g R R C s
g v C s v

R C C s R C C s

= + =

   − + +
+   

+ + + +      

 (60) 

Thus, since typically CC2>>C2, R2CC2s>>1 and gmL>>CC2s 

we get  

( ) 2
2

2

mL C
m m

C

g C s
G s g

C s

−
=  (61) 

( ) ' 1 1 1
/ / / / / / / /

1

L o L L
L mL L

mL L

z s z R R
C s g C s

g C s

=  

+

 (62) 

Due to the impedance zo at the output of Gm(s) the load 

impedance is modified according to the equivalent high-

frequency model of NMC amplifier shown in Fig. 3(b). 

By using (60) and (61), being N1(0)=−gm2gmL, 

relationship Nz1(s) is expressed by 

( )
( )

( )
1 22 1 2

1
1 2

1
0

C C C
z

mL m mL

N s C C C
N s s s

N g g g
= = − −  (63) 

which is exactly the expression that is found in papers [12]-

[14] and textbooks [49], and applying the approximated 

pole expression, being zAlim=0 and DNGNP1(0)= gm2gmL, we 

get DNP1(s) as 

( )
( )

( )
1

1
1

22 1
2 2

2 2

0

1

NGNP
NP

NGNP

mL m L
C C

m mL m mL

D s
D s

D

g g C C
C s C s

g g g g

= =

− +
+ +

 (64) 

In this case application of the accurate relationship (41) only 

adds the terms (CC2C1/gm2CC1)s and 

(CC2C1/gm2gmL)(CC2/CC1)s2 which are negligible. Moreover, 

neglecting C1 in the s2 term, which is typically much lower 

than CL, (64) gives exactly the approximated denominator 

reported in papers [12]-[14] and textbooks [51]. 

C.  REVERSE NESTED MILLER COMPENSATION 

When a three-stage amplifier is realized with an inverting 
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first and second stage and a non-inverting last stage, the 

NMC cannot be applied and the RNMC is adopted (Fig. 

2(c)), formerly presented in [6] and analyzed with details in 

[15]. As compared to NMC, RNMC also shows inherent 

benefits in terms of speed performance as demonstrated in 

[64]. 

An RNMC amplifier diagram is fitted to the generalized 

model type I, where 

( )
1

1
A

C

z s
C s

=  (65) 

( )
1 1

/ /L L
L L

z s R
C s C s

=   (66) 

and considering the generalized Gm(s) and zB(s) found 

according to Fig. 4. In particular, the elements inside the 

rectangular dashed box of Fig. 4(a) can be integrated to an 

equivalent transconductor with input voltage vi, output 

voltage vo, and an input impedance zo. The voltage vx of 

the second stage output is related to vi by 

 

CC1
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gmL

_

CLRL

gmi vi

+

–

vO

+

–C1R1 R2 C2

CC2vi vO

_
ii

vi vO
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_
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gmL (          –1)

CC2s
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zL
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FIGURE 4.  (a) Structure of RNMC three-stage amplifier as model type I; 
(b) equivalent high-frequency model. 

 

( )
' '2 2 2 2

2 2 2

1
1

1

m
x i

C

g R R C s
v v

R C C s

 + +
= − 

+ +  

 (67) 

The output current io, can be expressed in terms of vx and 

vi as 

( )
' ' '2 2 2 2
0

2 2 2

1
1

1

m
mL x mL i

C

g R R C s
i g v g v

R C C s

 + +
= − = − 

+ +  

 (68) 

Thus, by using the usual approximations (gmLR1, gmLR2>>1, 

CC2>>C2, gm2>>C2s, R2CC2s>>1) we get 

( )
( )
2 2 2 2 2

2 2 2 2

1
1 1

1

m m
m mL mL

C C

g R R C s g
G s g g

R C C s C s

   + +
= −  −   

+ +    

 (69) 

The ratio between vi and ii should be measured to 

additionally evaluate zi of the new transconductor. 

Applying the current law at the second stage output, zi is 

calculated as 

( )'
2 2 2'

'
2 2 2 2 2

11

1

Ci
i

C mi

R C C sv
z

C s g R R C si

 + +
= =  

+ +  

 (70) 

Fig. 4(b) illustrates the equivalent high-frequency circuit 

schematic of the RNMC amplifier. The equivalent zi 

modifies zB(s)  of the first stage to 

( )
( )2 2 2

1
2 2 2 2 2 1 2 1

11 1 1
/ / / /

1

C
B

C m m

R C C s
z s R

C s g R R C s C s g C s

 + +
=  

+ + +  

 (71) 

From (65), (66), (69) and (71), Nz1(s) is again given by 

(63), while application of relationship (41) and (24) yields 

( )

( )

1

2
2 1 1

22 2 2 1

2 2 2

1

NP

C
C L L

C L C C C

mL C mL m m mL

D s

C
C C C C C

C C C C C
s s

g C g g g g

=

+ +
 

+ + − + 
 

 (72) 

Note that in this case a0=0 in (41), but this happens for the 

approximation adopted in (65), (66), (69) and (71). 

Neglecting the second-order addends in the s2 term of (72), 

as suggested in [15], we find exactly the transfer function 

reported in [15]. It is worth noting that if we apply the 

approximated pole expression, where zAlim=0, we lack the 

two terms (CC2C1/gm2CC1)s and (C1CC2/gm2gmLCC1)s2, where 

the former of the two cannot be considered negligible as 

compared to the others in (72). 

D.  ACTIVE-FEEDBACK FREQUENCY COMPENSATION 

Fig. 2(d) illustrates the architecture of the named three-

stage AFFC amplifier [16]. It implements an active 

feedback network from the third stage output through the 

transconductor gmC, and the capacitor CC1 to the second 

stage input (i.e., a NMC with a current buffer in the 

external loop). Again capacitor CC2 adjusts the quality of 

the complex poles similar to NMC and RNMC amplifiers. 

Moreover, it also includes an additional feedforward gmf 

stage, which shunts to the main signal pathway comprised 

from gm2 and gmL, extending the bandwidth for gmf >> gm2 

[39]. 

The AFFC block diagram is similar to that of model type 

II for GmC=gmC and Gmi=gmi, and the combination of the 

second and the third stages can be analyzed similarly to the 

approach used for the NMC amplifier in sub section 3.2. 

The result is, hence, an equivalent Gm(s) between the first 
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and third stage outputs reported in (61), but including gmf: 

( ) 2 2 2

2

m mL m C
m mf

C

g g g C s
G s g

C s

−
 +  (73) 

and the load impedance given by (62). 

Fig. 5 reports the block scheme of the high-frequency 

AFFC amplifier as a model type II. In addition to Gm(s) and 

zL(s), it includes the zA(s) and zB(s) given by (58) and (59), 

respectively. Of course, the DC gain and dominant pole are 

evaluated from (35) and (37), and again the dominant pole 

can be simplified with (52). 

Since N2(0)=gm2gmLgmC, the zero expressions Nz2(s) is 

given by 

( )
( )

( )

( )2 22 1
2

2 2

1 1
0

m mf C C
z

m mL mC

g g CN s C
N s s s

N g g g

 −  
 = = − + 
    

 (74) 

From (41) and (33) (noting that in (41) a0=0) we get 

( )
( )

( )
2 1

2 2
2 2 2 1

2 31 2 1 2

1 2 2

1 1
1 1

0

1 1
1

mfNGNP
NP C

NGNP mL m m C

C C LL

mL C mC m m mL mC

gD s C
D s C s

D g g g C

C C C C CC
s s

g C g g g g g

  
= = + − + +   

   

  
+ + +  

   

 (75) 

If the approximated expression (44) is used, where zAlim=0 

and DNGNP1(0)=gm2gmLgmC, we lose in the s term the 

negligible addend with C1/CC2, but also the term with the 

ratio CL/CC1 in the s2 term. It is worth noting that neglecting 

in the s term of the denominator the contribute with C1/CC2 

we find that the first non-dominant pole is almost perfectly 

cancelled by the first zero in (74). Thus (74) and (75) 

reduce to the relationship reported in the original paper 

[16]. 

CC1

_
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gmi vi

+

–

vO

+

–
C1

_
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1gmL
gm2 (          –1)

CC2s

zA

Gm(s)

zL
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+
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1

_

gmf

 

FIGURE 5.  Block scheme of the three-stage AFFC amplifier as model 
type II. 

E.  SINGLE MILLER CAPACITOR COMPENSATION 

A more recent compensation techniques with respect to 

NMC and RNMC is based on the use of only a single 

Miller capacitor [26]-[27], [29]-[32], [34]-[36], [39]. Since 

the first paper dates back twenty years ago [11] and another 

one five years later [22], investigation and application of 

this kind of strategy is increasing, especially for multistage 

amplifiers having high capacitive loads, such as [32], [34]-

[36] and [39]. 

Among the various single Miller topologies with only 

passive components on the compensation loop, one of the 

most popular topologies named Impedance Adapting 

Compensation (IAC) [29] is considered in the following. 

The topology reported in Fig. 2(e) adopts a series R-C 

network (RD and CD) added to the second stage output, to 

further split the non-dominant real poles. 

In order to evaluate the voltage-gain transfer function, 

the following model parameters have to be used 

( )
1

1
A

C

z s
C s

=  (76) 

( ) 1
1 1

1 1
/ /Bz s R

C s C s
=   (77) 

( )
1 1

/ /L L
L L

z s R
C s C s

=   (78) 

For CD>>C2, R2>>RD, and R2CDs>>1, the equivalent 

Gm(s) is expressed as 

( ) 2 2
2

2

1 1
/ / / /

1

m m mL D
D

D D
m mL

D

G s g g R R
C s C s

R C s
g g

C s

  
= +  

   

 +
  

 

 (79) 

The expressions zB(0)=R1 and zL(0)=RL should be used 

when evaluating the dominant pole and the DC gain from 

(35) and (37). The zeros are given by the polynomial 

( )
( )

( )
1 2

1
1 2

1
0

D C
z D D

m mL

N s C C
N s R C s s

N g g
=  + −  (80) 

and from the approximated pole expression, being zAlim=0 

and DNGNP1(0)=gm2gmL, we get 
 

( )
( )1 2

1
2

1
D L

NP D D
m mL

C C C
D s R C s s

g g

+
 + +  (81) 

Note that the precise relationship (41) has one more 

negligible term (CDCLC1/gm2gmLCC)s2. The resulting transfer 

function is the same of that reported in [29], even if the 

order of the numerator and denominator is reduced due to 

the approximation adopted on Gm(s) according to (79). 

F.  CROSS FEEDFORWARD CASCODE 
COMPENSATION 

Among the amplifier with single Miller compensation the 

first specifically devoted to high capacitive load was the 

topology named cross feedforward cascode compensation 

(CFCC) [31]. A single compensation capacitor with a 

current buffer realizes an active feedback network to enable 

driving the ultra-large load capacitors, according to the 

CFCC diagram in Fig. 2(f). The amplifier also contains two 

feedforward stages gmf1 and gmf2, which improve the large- 
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and small-signal operation [36]. 

As shown in Fig. 6, we simplify the analysis by 

transferring the input of gmf1 from the first stage to the 

second stage input. Thus, the equivalent transconductor, 

denoting Av1(s)=gmi(R1//(1/C1s)) as the gain of the first 

stage, is gmf1/Av1. 

The CFCC architecture matches with the type III model 

(GmC=gmC and Gmi=gmi), with the corresponding zA(s), zB(s) 

and zL(s) are again given by (76), (77) and (78), 

respectively. 

The new transconductor gmf1/Av1, is now shunted to gm2 

resulting to an effective transconductance of gm2+gmf1/Av1. 

Hence, Gm(s) is 

( )
1

2 2 2
1 2

2
2

2 2

1
/ /

1

mf

m m mL mf
v

m mL

g
G s g g R g

A C s

R
g g

R C s

   
= + +     

  

+

 (82) 

Being N3(0)=2gmC, Nz3(s) yields 

( )
( )

( )
3

3
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0 2

C
z
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= = +  (83) 

and from (41) with (33) we get 
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 (84) 

Relationship (83) and (84) gives zeros and non-dominant 

poles also reported in [31], even if the results are more 

accurate since in the original manuscript additional 

approximations are done from the assumption that CL is 

much higher than CC. It is worth noting that, in this case in 

which the compensation loop has an active component, the 

approximated pole expression may be not sufficiently 

accurate since it lacks the two terms (CLC1/gm2gmLR2CC)s 

and (CLC1C2/gm2gmLCC)s2. 

 

_
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+
_

_

_

+
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FIGURE 6.  Equivalent block diagram of CFCC amplifier as model type 
III. 

IV. COMPARISON AND REMARK ON THE ANALYZED 
MODELS  

Table II summarizes the model parameters of the 

compensation schemes analyzed in Section III. By 

inspection of Table II, it is apparent that, regardless of the 

amplifier model, the main difference between different 

schemes is from the perspective of Gm(s). It affects the 

entire features of the amplifier with frequency 

compensation and results in many advantages and 

disadvantages in terms of power and area. Of course, the 

type of the model is another factor that impacts 

considerably the operation of an amplifier. 

Moreover, from Table II, it is evident that NMC and 

AFFC, and IAC and CFCC have similar model parameters. 

The differences of the amplifier models, however, enhance 

the operation of the AFFC and CFCC topologies over their 

counterparts. Indeed, for identical model parameters, both 

models type II and III employ a series GmC with zA(s), a 

property that leads to superior operation as compared to 

model type I, for identical parameters. This can be 

demonstrated by investigating the pole expressions of the 

three models. 

In particular, looking into (24), among the four terms 

appearing in DNP1(s) the factor nGmdzAnzBnzL is typically 

the term with the lowest order, as it contains three 

nominators that are mostly constant (see Table II). And 

considering this condition, we can factorize the terms in 

(24) that can be rearranged as 

( )

( ) ( )
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1

1

A B

L
NP m A B L
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z s z s

z s
D s nG dz nz nz

G s z s
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 
 
  

 (85) 

For the same reason, the order of GmCnGmdzAnzBnzL term 

is mostly the lowest in the DNP2,3(s) of models type II and 

III. Thus, factorizing this term in (33), yields 

( )
( ) ( )

(
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( )

2,3

1
1 1

1

NP mC m A B L
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A mC

L
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z s G
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
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 (86) 

Since typically zB(s)>>1/GmC, the models type II and III 

generate larger nondominant poles for identical CL (i.e., 

zL(s) ) and CC (i.e., zA(s) ), zB(s) and Gm(s) of the model type 

I. 

The pole expressions in (85) and (86) also suggest the 

following design rules for improving the performance when 

the load and compensation capacitors are known a priori 

(unchanged zL(s) and zA(s), respectively): 

1. The impedance zB(s), of the first stage should be 

increased to reduce the second term of the standard 

pole expressions, thereby pushing the nondominant 
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poles to higher frequencies (this can be 

accomplished by trying to further reduce the 

parasitic output capacitor C1 of the first stage). 

2. The second term inside the brackets in (83) and (84) 

can be suppressed by further enlarging Gm(s). This 

can be made possible by increasing Gm(0), and by 

pushing further the nondominant poles of Gm(s) to 

higher frequencies. 

For all the models proposed in Fig. 1, the zeros of zL(s) 

will be also the same zeros of the transfer function. Such 

zeros are, indeed, very common in low-dropout regulators 

(LDOs) [64]-[66]. The zeros of the models type I and II 

may depend on Gm(s), contrary to model type III which 

does not contain a zero related to Gm(s). An advantage of 

model type II is its potential to generate a LHP zero at 

frequencies lower than that of model type III, which can be 

concluded by comparing the zero expressions appeared for 

these models in (15) and (21). More LHP zeros might be 

generated by model type II via Gm(s) and zB(s). 

V. CONCLUSION 

A simple methodology to quickly carry out a closed-form 

expression for the symbolic transfer function of multistage 

amplifiers with frequency compensation is proposed.  

The method can be applied to any amplifier that can be 

modelled through the general models reported in Fig.1, 

which, to the best of the authors’ knowledge, unless for the 

old and not used case where a voltage buffer is used [7], 

allows to represent all the different solution reported in the 

literature so far. Anyway, it can also be simply extended to 

other novel and original topologies that cannot be 

represented by the model in Fig. 1, by simply following the 

procedure described in Section II for the three type models. 

While simplifying the fundamental task of symbolic 

analysis of an amplifier, the methodology gives an 

insightful view into the operation of the applied frequency 

compensation network, offering design rules for improving 

the performance when the load and compensation 

capacitors are known a priori. The proposed method is 

validated through the analysis of a number of the widely 

adopted amplifiers found in the literature and it is shown 

that, in all cases, the same transfer function reported in the 

original paper is obtained. 

To sum up, the main advantages of the proposed 

methodology are as follows: 

1. It happens frequently that, after writing several 

pages of the small-signal equations for a multistage 

amplifier, the designer gets confused by the 

theoretical complications and is forced to get back 

and check the results again. The same problem led to 

different forms of transfer functions with inaccurate 

results in the literature, some of which happen to be 

even incorrect. With the proposed systematic 

solution, the designer will not deal with the lengthy 

and complex small-signal equations of the amplifier. 

They should only specify the amplifier's model and 

find the elements before using the proposed 

symbolic transfer function. This is equivalent to 

breaking a difficult problem into several simple and 

easy steps. 

Modeling the transfer function of several amplifiers in the 

form of a single symbolic equation paves the way to compare 

their properties easily. Some results can be found in Section 

IV where the terms inside the symbolic transfer functions are 

compared. 
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