17,103 research outputs found

    Decision support for build-to-order supply chain management through multiobjective optimization

    Get PDF
    This is the post-print version of the final paper published in International Journal of Production Economics. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2010 Elsevier B.V.This paper aims to identify the gaps in decision-making support based on multiobjective optimization (MOO) for build-to-order supply chain management (BTO-SCM). To this end, it reviews the literature available on modelling build-to-order supply chains (BTO-SC) with the focus on adopting MOO techniques as a decision support tool. The literature has been classified based on the nature of the decisions in different part of the supply chain, and the key decision areas across a typical BTO-SC are discussed in detail. Available software packages suitable for supporting decision making in BTO supply chains are also identified and their related solutions are outlined. The gap between the modelling and optimization techniques developed in the literature and the decision support needed in practice are highlighted. Future research directions to better exploit the decision support capabilities of MOO are proposed. These include: reformulation of the extant optimization models with a MOO perspective, development of decision supports for interfaces not involving manufacturers, development of scenarios around service-based objectives, development of efficient solution tools, considering the interests of each supply chain party as a separate objective to account for fair treatment of their requirements, and applying the existing methodologies on real-life data sets.Brunel Research Initiative and Enterprise Fund (BRIEF

    Production planning in different stages of a manufacturing supply chain under multiple uncertainties

    Get PDF
    This thesis focuses on designing stochastic programming models for production planning at different stages in a manufacturing supply chain under multiple sources of uncertainties. Various decision makers along the manufacturing supply chain often have to make planning decisions with embedded risks and uncertainties. In an effort to reduce risks and to ensure that the customer demand is met in the most efficient and cost effective way, the production plans at each stage need to be strategically planned. To assist production planning decisions, a two-stage stochastic programming model is developed with the objective of minimizing the total cost including production, inventory, and backorder costs. The proposed framework is validated with case studies in an automobile part manufacturer with real data based on literature. The results demonstrate the robustness of the stochastic model compared with various deterministic models. Sensitivity analysis is performed for the production capacity parameter to derive managerial insights regarding lot-sizing and scheduling decisions under different scenarios

    Spatial stochastic programming model for timber and core area management under risk of stand-replacing fire, A

    Get PDF
    2012 Fall.Includes bibliographical references.Forest harvest scheduling has been modeled using deterministic and stochastic programming models. Past models seldom address explicit spatial forest management concerns under the influence of natural disturbances. In this research study, we employ multistage full recourse stochastic programming models to explore the challenges and advantages of building spatial optimization models that account for the influences of random stand-replacing fires. Our exploratory test models simultaneously consider timber harvest and mature forest core area objectives. Each model run reports first-period harvesting decisions for each stand based on a sample set of random fire. We integrate multiple model runs to evaluate the persistence of period-one solutions under the influence of stochastic fires. Follow-up simulations were used to support multiple comparisons of different candidate forest management alternatives for the first time period. Test case results indicate that integrating the occurrence of stand-replacing fire into forest harvest scheduling models could improve the quality of long-term spatially explicit forest plans

    Self-resilient production systems : framework for design synthesis of multi-station assembly systems

    Get PDF
    Product design changes are inevitable in the current trend of time-based competition where product models such as automotive bodies and aircraft fuselages are frequently upgraded and cause assembly process design changes. In recent years, several studies in engineering change management and reconfigurable systems have been conducted to address the challenges of frequent product and process design changes. However, the results of these studies are limited in their applications due to shortcomings in three aspects which are: (i) They rely heavily on past records which might only be a few relevant cases and insufficient to perform a reliable analysis; (ii) They focus mainly on managing design changes in product architecture instead of both product and process architecture; and (iii) They consider design changes at a station-level instead of a multistation level. To address the aforementioned challenges, this thesis proposes three interrelated research areas to simulate the design adjustments of the existing process architecture. These research areas involve: (i) the methodologies to model the existing process architecture design in order to use the developed models as assembly response functions for assessing Key Performance Indices (KPIs); (ii) the KPIs to assess quality, cost, and design complexity of the existing process architecture design which are used when making decisions to change the existing process architecture design; and (iii) the methodology to change the process architecture design to new optimal design solutions at a multi-station level. In the first research area, the methodology in modeling the functional dependence of process variables within the process architecture design are presented as well as the relations from process variables and product architecture design. To understand the engineering change propagation chain among process variables within the process architecture design, a functional dependence model is introduced to represent the design dependency among process variables by cascading relationships from customer requirements, product architecture, process architecture, and design tasks to optimise process variable design. This model is used to estimate the level of process variable design change propagation in the existing process architecture design Next, process yield, cost, and complexity indices are introduced and used as KPIs in this thesis to measure product quality, cost in changing the current process design, and dependency of process variables (i.e, change propagation), respectively. The process yield and complexity indices are obtained by using the Stream-of-Variation (SOVA) model and functional dependence model, respectively. The costing KPI is obtained by determining the cost in optimizing tolerances of process variables. The implication of the costing KPI on the overall cost in changing process architecture design is also discussed. These three comprehensive indices are used to support decision-making when redesigning the existing process architecture. Finally, the framework driven by functional optimisation is proposed to adjust the existing process architecture to meet the engineering change requirements. The framework provides a platform to integrate and analyze several individual design synthesis tasks which are necessary to optimise the multi-stage assembly processes such as tolerance of process variables, fixture layouts, or part-to-part joints. The developed framework based on transversal of hypergraph and task connectivity matrix which lead to the optimal sequence of these design tasks. In order to enhance visibility on the dependencies and hierarchy of design tasks, Design Structure Matrix and Task Flow Chain are also adopted. Three scenarios of engineering changes in industrial automotive design are used to illustrate the application of the proposed redesign methodology. The thesis concludes that it is not necessary to optimise all functional designs of process variables to accommodate the engineering changes. The selection of only relevant functional designs is sufficient, but the design optimisation of the process variables has to be conducted at the system level with consideration of dependency between selected functional designs

    Revision of the EU Green Public Procurement (GPP) Criteria for Textile Products and Services: Technical Report with final criteria.

    Get PDF
    The revision of the Green Public Procurement (GPP) criteria for Textile products and Services is aimed at helping public authorities to ensure that textiles products and services are procured in such a way that it delivers environmental improvements that contribute to European policy objectives for energy, chemical management and resource efficiency, as well as reducing life cycle costs. In order to identify the most significant improvement areas for criteria development an analysis has been carried out of the environmental impacts of manufacturing and using textile products and providing textile services. The most commonly used procurement processes have been also identified and are further addressed in the separate criteria document (published as a Staff Working Document of the Commission). Together these two documents aim to provide public authorities with orientation on how to effectively integrate these GPP criteria into their procurement processes.JRC.B.5-Circular Economy and Industrial Leadershi

    Decision makings in key remanufacturing activities to optimise remanufacturing outcomes : a review

    Get PDF
    The importance of remanufacturing has been increasing since stricter regulations on protecting the environment were enforced. Remanufacturing is considered as the main means of retaining value from used products and components in order to drive a circular economy. However, it is more complex than traditional manufacturing due to the uncertainties associated with the quality, quantities and return timing of used products and components. Over the past few years, various methods of optimising remanufacturing outcomes have been developed to make decisions such as identifying the best End-Of-Life (EOL) options, acquiring the right amounts of cores, deciding the most suitable disassembly level, applying suitable cleaning techniques, and considering product commonality across different product families. A decision being made at one remanufacturing activity will greatly affect the decisions at subsequent activities, which will affect remanufacturing outcomes, i.e. productivity, economic performance effectiveness, and the proportion of core that can be salvaged. Therefore, a holistic way of integrating different decisions over multiple remanufacturing activities is needed to improve remanufacturing outcomes, which is a major knowledge gap. This paper reviews current remanufacturing practice in order to highlight both the challenges and opportunities, and more importantly, offers useful insights on how such a knowledge gap can be bridged

    Monetary-fiscal policy interactions and fiscal stimulus

    Get PDF
    Increases in government spending trigger substitution effects both inter- and intra-temporal and a wealth effect. The ultimate impacts on the economy hinge on current and expected monetary and fiscal policy behavior. Studies that impose active monetary policy and passive fiscal policy typically find that government consumption crowds out private consumption: higher future taxes create a strong negative wealth effect, while the active monetary response increases the real interest rate. This paper estimates Markov-switching policy rules for the United States and finds that monetary and fiscal policies fluctuate between active and passive behavior. When the estimated joint policy process is imposed on a conventional new Keynesian model, government spending generates positive consumption multipliers in some policy regimes and in simulated data in which all policy regimes are realized. The paper reports the model's predictions of the macroeconomic impacts of the American Recovery and Reinvestment Act's implied path for government spending under alternative monetary-fiscal policy combinations.
    corecore