247 research outputs found

    Distributed Stochastic Market Clearing with High-Penetration Wind Power

    Full text link
    Integrating renewable energy into the modern power grid requires risk-cognizant dispatch of resources to account for the stochastic availability of renewables. Toward this goal, day-ahead stochastic market clearing with high-penetration wind energy is pursued in this paper based on the DC optimal power flow (OPF). The objective is to minimize the social cost which consists of conventional generation costs, end-user disutility, as well as a risk measure of the system re-dispatching cost. Capitalizing on the conditional value-at-risk (CVaR), the novel model is able to mitigate the potentially high risk of the recourse actions to compensate wind forecast errors. The resulting convex optimization task is tackled via a distribution-free sample average based approximation to bypass the prohibitively complex high-dimensional integration. Furthermore, to cope with possibly large-scale dispatchable loads, a fast distributed solver is developed with guaranteed convergence using the alternating direction method of multipliers (ADMM). Numerical results tested on a modified benchmark system are reported to corroborate the merits of the novel framework and proposed approaches.Comment: To appear in IEEE Transactions on Power Systems; 12 pages and 9 figure

    Strategic Demand-Side Response to Wind Power Integration

    Get PDF

    Bi-Level Optimization Considering Uncertainties of Wind Power and Demand Response

    Get PDF
    Recently, world-wide power systems have been undergone a paradigm change with increasing penetration of renewable energy. The renewable energy is clean with low operation cost while subject to significant variability and uncertainty. Therefore, integration of renewables presents various challenges in power systems. Meanwhile, to offset the uncertainty from renewables, demand response (DR) has gained considerable research interests because of DR’s flexibility to mitigate the uncertainty from renewables. In this dissertation, various power system problems using bi-level optimization are investigated considering the uncertainties from wind power and demand response. In power system planning, reactive power planning (RPP) under high-penetration wind power is studied in this dissertation. To properly model wind power uncertainty, a multi-scenario framework based on alternating current optimal power flow (ACOPF) considering the voltage stability constraint under the worst wind scenario and transmission N-1 contingency is developed. The objective of RPP in this work is to minimize the VAR investment and the expected generation cost. Benders decomposition is used to solve this model with an upper level problem for VAR allocation optimization and generation cost minimization as a lower problem. Then, several problems related wind power and demand response uncertainties under power market operation are investigated. These include: an efficient and effective method to calculate the LMP intervals under wind uncertainty is proposed; the load serving entities’ strategic bidding through a coupon-based demand response (CBDR) with which a load serving entity (LSE) may participate in the electricity market as strategic bidders by offering CBDR programs to customers; the impact of financial transmission right (FTR) with CBDR programs is also studied from the perspective of LSEs; and the stragegic scheduling of energy storages owned by LSEs considering the impact of charging and discharging on the bus LMP. In these problems, a bi-level optimization framework is presented with various objective functions representing different problems as the upper level problems and the ISO’s economic dispatch (ED) as the lower level problem. The bi-level model is addressed with mathematic program with equilibrium constraints (MPEC) model and mixed-integer linear programming (MILP), which can be easily solved with the available optimization software tool

    The Impact of Distributed Energy Resources on the Bulk Power System: A Deeper Dive

    Get PDF
    solar photovoltaics (PV), electric storage and electric \ vehicles, demand response, combined heat and \ power, wind, fuel cells, and micro-turbines are \ typically installed on the low or medium voltage \ distribution network. Changes on the distribution \ network can have rippling effects throughout the rest \ of the power system. In this paper, we have \ calculated both traditional locational marginal \ prices (LMPs) and distributed locational marginal \ prices (DLMPs) using an optimal power flow (DC \ OPF). This paper provides an analysis of the energy \ price impacts resulting from significant additions of \ Distributed Energy Resources (DER), namely solar \ PV, electric batteries and demand response, in a \ distribution feeder. The impact is measured in terms \ of nodal approximations to DLMPs, realistic \ calculation of LMPs in the transmission system and \ overall price suppression effects that trickle down to \ consumers on the feeder. Policy implications are \ drawn concerning the potential impacts of \ penetration of DER on future planning, and \ operation of the power system as well as on energy \ markets and the environment

    Congestion Management Strategies of Real-Time Market

    Get PDF

    A Reserve-Based Method for Mitigating the Impact of Renewable Energy

    Get PDF
    The fundamental operating paradigm of today\u27s power systems is undergoing a significant shift. This is partially motivated by the increased desire for incorporating variable renewable energy resources into generation portfolios. While these generating technologies offer clean energy at zero marginal cost, i.e. no fuel costs, they also offer unique operating challenges for system operators. Perhaps the biggest operating challenge these resources introduce is accommodating their intermittent fuel source availability. For this reason, these generators increase the system-wide variability and uncertainty. As a result, system operators are revisiting traditional operating strategies to more efficiently incorporate these generation resources to maximize the benefit they provide while minimizing the challenges they introduce. One way system operators have accounted for system variability and uncertainty is through the use of operating reserves. Operating reserves can be simplified as excess capacity kept online during real time operations to help accommodate unforeseen fluctuations in demand. With new generation resources, a new class of operating reserves has emerged that is generally known as flexibility, or ramping, reserves. This new reserve class is meant to better position systems to mitigate severe ramping in the net load profile. The best way to define this new requirement is still under investigation. Typical requirement definitions focus on the additional uncertainty introduced by variable generation and there is room for improvement regarding explicit consideration for the variability they introduce. An exogenous reserve modification method is introduced in this report that can improve system reliability with minimal impacts on total system wide production costs. Another potential solution to this problem is to formulate the problem as a stochastic programming problem. The unit commitment and economic dispatch problems are typically formulated as deterministic problems due to fast solution times and the solutions being sufficient for operations. Improvements in technical computing hardware have reignited interest in stochastic modeling. The variability of wind and solar naturally lends itself to stochastic modeling. The use of explicit reserve requirements in stochastic models is an area of interest for power system researchers. This report introduces a new reserve modification implementation based on previous results to be used in a stochastic modeling framework. With technological improvements in distributed generation technologies, microgrids are currently being researched and implemented. Microgrids are small power systems that have the ability to serve their demand with their own generation resources and may have a connection to a larger power system. As battery technologies improve, they are becoming a more viable option in these distributed power systems and research is necessary to determine the most efficient way to utilize them. This report will investigate several unique operating strategies for batteries in small power systems and analyze their benefits. These new operating strategies will help reduce operating costs and improve system reliability
    • 

    corecore