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Strategic Demand-Side Response
to Wind Power Integration

Ali Daraeepour, Student Member, IEEE, S. Jalal Kazempour, Member, IEEE, Dalia Patiño-Echeverri, and
Antonio J. Conejo, Fellow, IEEE

Abstract—This paper explores the effects of allowing large,
price-responsive consumers to provide reserves in a power system
with significant penetration of wind energy. A bilevel optimization
model represents the utility maximization problem of a large
consumer, subject to a stochastic day-ahead co-optimization of
energy and reserves that a system operator would solve to clear
the market while considering wind power uncertainty. An exam-
ination of the market outcomes from both an illustrative and a
large-scale study using this model allows analysis of a) the effects
of the type of behavior of the large consumer (i.e., strategic vs
competitive), b) limits on the amount of reserves it is allowed to
provide, and c) variability and accuracy of characterization of
wind power uncertainty.
Index Terms—Mathematical program with equilibrium con-

straints (MPEC), strategic consumer, wind production uncer-
tainty, wind-integrated electricity market.

I. INTRODUCTION

A. Background and Motivation

I NCREASED elasticity of electricity demand is deemed to
have multiple system's benefits including facilitation of in-

tegration of renewables. Similarly, it is generally accepted that
allowing price responsive consumers to provide ancillary ser-
vices may further improve market outcomes. However, it is
possible that any positive effects may be counteracted by the
strategic behavior of large consumers able to manipulate the
market, particularly when they have the flexibility to provide
balancing services (up and down reserves) to the grid. This im-
pact can be evenmore significant under high penetration of wind
energy resources which increases the need for real-time bal-
ancing services.

B. Aim and Approach
The aim of this paper is to investigate the extent to which

an elastic large consumer, denoted “strategic consumer”, can
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exercise its market power in an energy-only, wind-integrated
electricity market. We define a strategic consumer as an en-
tity that either owns large loads in different locations of the
electricity grid or a non-profit aggregator that submits purchase
bids on behalf of its loads. These entities, by definition, are
obliged to serve their loads while having control over their con-
sumption through diverse instruments. Examples of such an en-
tity are large corporations with industrial plants like aluminum,
steel, and ferro alloys production plants; liquefied air compa-
nies; motor vehicle manufacturing companies; pulp, paper, and
paperboard mills; etc.
We develop a stochastic complementarity model (based on a

bilevel optimization problem) representing the optimal bidding
strategy of the strategic consumer, considering wind power
production uncertainty and endogenous formation of clearing
prices of electricity. The proposed bilevel programming ap-
proach includes an upper-level (UL) problem, representing
expected utility maximization of the strategic consumer (as the
only player behaving strategically), constrained to a lower-level
(LL) problem, representing actual day-ahead market (DAM)
clearing and balancing operation of the grid. The UL problem
depends on clearing prices coming from the LL problem, and
the LL problem is influenced by day-ahead bidding curves
determined in the UL problem. The strategic consumer owns
large number of loads that do not need to be fully supplied.
The considered pool in this paper is cleared one day prior

to power delivery on an hourly basis. The pool clearing algo-
rithm is a single-period network-constrained auction, which is
recast as a two-stage stochastic programming problem to incor-
porate the integration of wind power producers and the uncer-
tainty of their production. The first stage of this model repre-
sents the actual DAM clearing and the second stage models the
balancing operation of the system for different realizations of
wind power production. Indeed, DAM decisions are made ac-
counting for expected balancing cost of the system due to uncer-
tain wind fluctuations. Depending on the real-time realization
of wind power production, up or down reserves are deployed to
balance generation and demand during the real-time operation
of the system. Reserve deployment refers to changes in energy
generation/consumption levels of units/loads between the first
(day-ahead) and second (balancing) stages. Units/loads reserve
a part of their generation/consumption capacity, called reserve
capacity, in the day-ahead stage to be converted to energy in
the balancing stage, offsetting wind power variations. The ra-
tionale of the stochastic market clearing model is investigated
using a generic mathematical framework in [1]. The stochastic
market clearing model has generally two main differences with
respect to the existing deterministic models traditionally used in
the electricitymarkets: 1) estimation of the reserve requirements
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and 2) dispatch of energy and deployment of reserves. In deter-
ministic market clearing models, reserve requirements are input
parameters reflecting a target that system's operators pre-specify
based on reliability criteria and without any consideration of
the current costs of such services and/or updated information on
the uncertainty and variability of intermittent energy resources.
In contrast, in a stochastic market clearing model reserve re-
quirements are endogenously determined through simulating
the balancing operation of the system under different scenarios.
The second difference between the stochastic and deterministic
modeling stems from the dispatch of energy and reserves. The
stochastic model provides an optimal pre-positioning of gen-
erating units and loads to manage the uncertain events in the
balancing stage of the system. Consequently, and different from
the deterministic modeling, stochastic models would not neces-
sarily schedule all the day-ahead forecasted wind power produc-
tion in the DAM, and instead, would schedule a level of wind
power production determined after considering its variability
and uncertainty, and the costs and availability that required re-
serves for managing it [1]–[6]. The pricing scheme of the sto-
chastic model is proved to ensure generation cost recovery and
revenue adequacy in expectation. A lossless dc representation
of the network is embodied in both stages of the pool clearing
algorithm so both day-ahead and balancing prices are locational
marginal prices (LMPs).

C. Literature Review and Contributions

One thread of research related to this work is concerned with
demand-side bidding strategy in electricity markets.Most litera-
ture in this domain regards electricity purchasers as price takers.
For instance, references [7], [8], and [9] optimize the bidding
strategy of a price-responsive retailer, with different responsive-
ness levels to electricity prices.
Similarly, [10] and [11] optimize the contracting policies for

energy purchase of an energy buyer participating in forward
and day-ahead markets using stochastic programming models.
In addition, [12] designs the robust electricity procurement
strategy of a large consumer in a DAM and a subsequent
adjustment market using information gap decision theory.
However, very little attention has been paid to the strategic
demand-side bidding with endogenous formation of electricity
prices. [13] proposes a non-linear programming approach
(where optimality of its solution is not guaranteed) for the
optimal bidding strategy of a retailer procuring electricity in the
DAM and several subsequent intra-day markets. The retailer's
impact on the clearing prices is represented through its residual
offer curves in each market. [14] proposes a complementarity
bilevel model for deriving strategic bidding curves of a large
consumer, supplying its demand in a day-ahead pool, under the
uncertainty of supply offer curves of producers.
Complementarity modeling, or specifically bilevel op-

timization has been applied before to different electricity
market problems. This technique has been used to study the
offering strategy of a producer [15], the offering strategy of in-
vestor-owned storage units [16], the bidding strategy of a large
consumer participating in day-ahead markets [14], strategic
generation investment [17], [18], transmission expansion plan-
ning [19], [20], vulnerability assessment [21], yearly generation
maintenance scheduling [22], and yearly transmission mainte-
nance scheduling [23]. Among these papers, [14] is the only

one investigating the strategic behavior of a large price-respon-
sive consumer through complementarity modeling. However,
[14] determines the strategic day-ahead bidding curves without
considering the benefits the strategic consumer can obtain from
provisioning balancing services. Moreover, [14] also leaves out
of the analysis the uncertainty of wind power production and
its impacts on provision of balancing services and other market
outcomes determining the benefits of the strategic consumer.
To fill these gaps, this paper extends the model presented in [14]
in three ways: a) it allows demand-side resources to provide
reserves, b) it accounts for the benefits of this provision in the
determination of the bid of the strategic consumer, and c) it
accounts for the uncertainty on wind power generation and
its impacts on the strategic consumer's ability to manipulate
the market to its benefit. To the best of our knowledge, our
approach of using a two-stage stochastic market clearing model
in the lower-level program of a complementarity model to
determine the day-ahead dispatch of energy and reserves under
wind power uncertainty is the first of its kind. None of the
previous works have addressed the impacts of the participation
of the strategic consumer on the reserve provision and the
impacts of wind power production uncertainty on the design of
this consumer's day-ahead bidding strategy. Accordingly, the
contributions of this paper are threefold:
1) A two-stage stochastic complementarity model that de-

rives an optimal bidding strategy for a large strategic con-
sumer in an electricity market (including day-ahead trading
stage and real-time operation) under wind power produc-
tion uncertainty, and demand-side reserve provision.

2) A transformation of the proposed stochastic complemen-
tarity model into an equivalent mixed-integer linear pro-
gramming (MILP) problem.

3) Use of the proposed model to explore the effects of al-
lowing large consumers to participate in the reserve's
market under uncertainty on wind-power production.

D. Paper Organization

The remainder of the paper is organized as follows.
Section II presents features and assumptions of the proposed
strategic bidding model. Mathematical formulation of the
model, including the bilevel model, its corresponding Mathe-
matical Program with Equilibrium Constraints (MPEC) and its
equivalent MILP are described in Section III. Section IV pro-
vides and discusses the results from case studies. Section V con-
cludes the paper.

II. MODEL FEATURES AND ASSUMPTIONS

The main modeling features and assumptions of this paper
are as follows:
1) The strategic consumer bids strategically the demand of

load in the DAM at a price , while offers competi-
tively its reserve deployment at which is identical to
its marginal utility.

2) Each load and each generating unit offers both up and
down reserves at an identical price. This assumption is
made due to lack of data on offer prices, nevertheless if
it was revised to consider asymmetrical offer prices for the
up and down reserves it is unlikely the conclusions of this
paper would change.
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3) All loads/generating units submit their energy bids/offers
to the DAM, while only flexible loads/generating units
offer reserve deployment in the balancing stage.

4) Among all potential uncertainties, only wind power pro-
duction uncertainty is taken into account and characterized
through a finite set of plausible scenarios.

5) Scheduled wind production in the DAM for each wind
farm is limited to the expected wind power production of
that wind farm.

6) Since the clearing algorithm of the pool is a single-hour
auction, the inter-temporal constraints of generating units
and loads are not considered.

7) Only one single bidding/offering block is considered for
each load/generating unit.

8) Only competitive loads are considered for involuntarily
load curtailment in the balancing stage so that they are paid
for their curtailed load at their value of lost load (VOLL).

9) The supply side is assumed to be perfectly competitive so
all generating units submit their marginal costs and their
respective offers.

III. MODEL FORMULATION

This section presents the notation, the formulation of the
bilevel model, and the corresponding MPEC in nonlinear and
linear forms.

NOTATION

A. Indices
Index for loads of the strategic consumer running
from 1 to .
Index for loads of competitive consumers running
from 1 to .
Index for generating units running from 1 to .
Index for wind farms running from 1 to .
Indices for buses running from 1 to , and from 1
to , respectively.
Index for wind power scenarios running from 1 to

.

B. Sets
Set of loads of the strategic consumer.
Set of loads of competitive consumers.
Set of generating units.
Set of wind farms.
Set of system buses adjacent to bus .

Sets , , and include subscript if referring to the set
of loads/units/farms located at bus .

C. Constants
Probability of scenario .
Price offer by generating unit MWh ,
equal to its marginal cost.
Price bid by competitive load MWh ,
equal to its marginal utility.
Marginal utility of load of the strategic
consumer [$/MWh].

Price cap for bids of the strategic consumer
[$/MWh].
Capacity of generating unit MW .

Maximum demand of load of the strategic
consumer [MW].
Maximum demand of competitive load

MW .
Maximum up reserve to be provided by generating
unit MW .
Maximum down reserve to be provided by
generating unit MW .
Maximum up reserve to be provided by load
of the strategic consumer [MW].
Maximum down reserve to be provided by load

of the strategic consumer [MW].
Maximum up reserve to be provided by competitive
load MW .
Maximum down reserve to be provided by
competitive load MW .
Value of lost load for competitive load

MWh .
Actual realization of wind power production of farm

under scenario MW .
Maximum power production of wind farm to
be scheduled in the DAM [MW].
Susceptance of transmission line .
Capacity of transmission line MW .

D. Variables

Scheduled production of generating unit in
the DAM [MW].
Cleared power to be consumed by load of
the strategic consumer in the DAM [MW].
Cleared power to be consumed by competitive load

in the DAM [MW].
Scheduled wind production of farm in the
DAM [MW].
Deployed reserve by generating unit in the
balancing stage under scenario MW .
Deployed reserve by load of the strategic
consumer in the balancing stage under scenario

MW .
Deployed reserve by competitive load in the
balancing stage under scenario MW .
Involuntarily load shed of competitive load
in the balancing stage under scenario MW .
Wind power production spillage of farm in
the balancing stage under scenario MW .
Price bid by load of the strategic consumer
[$/MWh].
Voltage angle of bus in the DAM [rad].
Voltage angle of bus in the balancing stage under
scenario .
Day-ahead locational marginal price at bus

MWh .
Probability-weighted balancing locational marginal
price at bus under scenario MWh .
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E. Bilevel Model

The optimal bidding strategy of a strategic consumer
is designed using the following bilevel optimization
model formulated in (1)–(2). Equations (1) and (2) rep-
resent the UL and LL problems, respectively. Ξ

rep-
resents the primal set of variables of the LL problem, and
Ξ indicates the LL problem's set of dual variables. The
corresponding dual variable of each constraint is after the con-
straint following a colon. Also, Ξ Ξ Ξ
represents the primal set of the UL problem's variables. Note
that (bid price of the strategic consumer) is a decision
variable within the UL problem and a parameter in the LL
problem so that they are fixed bidding decisions in the LL
problem. Therefore, the LL problem is linear and thus convex.

Ξ

(1a)

subject to:
(1b)

Ξ

(2a)

subject to:

(2b)

(2c)

(2d)

(2e)

(2f)

(2g)
(2h)

(2i)
(2j)
(2k)

(2l)

(2m)

(2n)

(2o)

(2p)
(2q)

(2r)
(2s)

(2t)

(2u)

In the UL problem, objective function (1a) represents the total
expected utility of the strategic consumer for a single time pe-
riod that consists of two terms: the first term corresponds to the
strategic consumer's utility in the DAM and the second term
models the strategic consumer's expected utility in the balancing
stage over the set of scenarios. The consumer's utility in the
DAM is calculated by multiplying the consumption quantities
scheduled in the DAM for the consumer by the difference
between the consumer's bid ( , the price it is willing to pay),
and the day-ahead LMPs . Likewise, the balancing LMPs

and deployed reserves are used to determine
the strategic consumer's utility under each scenario, and the ex-
pected utility over the set of scenarios. Note that is
the probability-removed balancing LMP at bus for scenario
where is the probability of that scenario. Constraint (1b)

ensures non-negativity of the strategic consumer's bid price and
enforces that to be less than the price cap of the pool. The LL
problem, which models the clearing of the pool, is presented
in (2a)–(2u). Equation (2a) represents the objective function,
which minimizes the minus of declared expected social wel-
fare. Constraints (2b) to (2u) represent the constraints of the pool
clearing model. Note that scenario-independent constraints (2b)
and (2d)–(2j) correspond to the first stage (i.e., DAM clearing),
while scenario-dependent constraints (2c) and (2k)–(2u) per-
tain to the balancing stage. Constraints (2b) and (2c) represent
the balance constraints in the DAM and balancing stage for
every bus , respectively. Dual variables of these constraints
for the specific bus , i.e., and , are the day-ahead
and balancing LMPs of bus , respectively. Constraints (2d) and
(2e) bound the scheduled production for conventional and wind
power generating units in the DAM to their minimum and max-
imum limits. The maximum production that can be scheduled
in the DAM for a conventional unit is limited to its installed
capacity, though the maximum production that is scheduled for
a wind farm is limited to its expected production. Constraints
(2f) and (2g) bound the minimum andmaximum scheduled con-
sumption in the DAM, respectively, for strategic and competi-
tive loads. Constraint (2h) enforces transmission constraints in
the DAM. Constraint (2i) enforces the upper and lower bounds
of the voltage angles in the DAM. Constraint (2j) identifies bus

as the voltage angle's reference in the DAM.
Constraints (2k)–(2u) are all scenario-dependent representing

the balancing stage constraints under different scenarios. Con-
straints (2k) and (2l) bound the maximum up and down reserve
that conventional generating units can deploy. Constraints
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(2m)–(2p) represent the maximum up and down reserve that
strategic and competitive loads deploy, respectively. Con-
straints (2q) and (2r) enforce the amount of corrective actions,
including involuntary load shedding and wind spillage, to be
within specific limits. Load shedding from the competitive
load in scenario must be lower than its adjusted consump-
tion under scenario . Constraint (2s) enforces transmission
constraints in the balancing stage. Constraint (2t) enforces the
upper and lower bounds of the voltage angles in the balancing
stage. Constraint (2u) identifies bus as the voltage angle's
reference in the balancing stage under scenario .

F. MPEC

The linearity of the LL problem (2) allows replacing it by its
Karush-Kuhn-Tucker (KKT) optimality conditions. This trans-
formation renders an MPEC as given by (3)–(4) below:

Ξ
(3a)

subject to:
(3b)

(3c)

(3d)

(3e)
(3f)

(3g)

(3h)

(3i)

(3j)

(3k)

(3l)

(3m)

(3n)

(3o)

(3p)
(3q)
(3r)

(3s)

(3t)

(3u)

(3v)
(3w)

(3x)
(3y)

(3z)

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)

(4h)

(4i)

(4j)

(4k)
(4l)
(4m)

(4n)

(4o)
(4p)

(4q)

Constraint (3b) contains the only upper-level constraint and the
equalities included in the LL problem (2). Equalities (3c)–(3m)
and the complementarity conditions (3n)–(4q) are the KKT op-
timality conditions of the LL problem (2).

G. MPEC Linearization

The MPEC (3)–(4) above is nonlinear due to com-
plementarity conditions (3n)–(4q) and the bilinear term
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in the objective
function (1a), denoted below as . The strong duality equality
is utilized to substitute the bilinear term by an exactly equiv-
alent linear term by the following step-by-step approach [15]:
1) The strong duality equality corresponding to the LL

problem (2) is obtained.
2) The complementarity conditions (3s) and (4c)–(4f) render

the following equalities:

(5a)

(5b)

(5c)

(5d)

(5e)

3) The equalities (5) are substituted in the strong duality
equality. Specifically, the left-hand side terms in (5) are
substituted with the corresponding right-hand side terms.

4) KKT equalities (3g) and (3h) are multiplied by and
, respectively; then the resulting equalities are added

up, which renders equality (6) below:

(6)

5) By substituting equality (6) in the strong duality equality
obtained in step 3, the bilinear term can be replaced by the
exact linear equivalent as follows:

TABLE I
DATA FOR GENERATING UNITS (SINGLE-AREA CASE STUDY)

(7)

For more on the principles of this approach see [15]. In addition,
each complementarity condition (3n)–(4q) of the form

is equivalent to the set of mixed-integer linear conditions
, , , , where is an auxiliary

binary variable, and is a large enough positive constant [24].

IV. NUMERICAL RESULTS
In this section, the one-area and the three-area IEEE relia-

bility test systems (IEEE RTS-24 and RTS-72) [25] are used to
illustrate different features and outcomes of the strategic con-
sumer's bidding and the practical functioning and consistency
of the proposed model.

A. Illustrative Case Study
1) Data: The data for the illustrative case study (single-area

IEEE RTS) is presented in Tables I and II. Table I presents gen-
erating units' data and location. Maximum reserve capacities of
base, intermediate and peak units are assumed 0%, 10% and
20% of their capacity, respectively.
Data for strategic and competitive loads including their type

(responsive, non-responsive and semi-responsive), and location
are given in Table II. The case study has 17 loads; loads Q1 to
Q7 and L1 to L10 are owned by the strategic and competitive
consumers, respectively. Same as generating units, maximum
reserve capacities of loads differ based on their type. Maximum
reserve capacities for non-responsive, semi-responsive and
responsive loads are assumed 0%, 7.5% and 15% of their
maximum demand, respectively. Total maximum demand of
the strategic consumer is 1,064.88 MW, which is 36.63% of
total maximum demand of all loads (2,907 MW). Note that
maximum demand of each load is identical to that in [25]
raised by 2%. VOLL for competitive loads is assumed to be
$10,000/MWh. Maximum energy bid price to be submitted
by the strategic consumer is $180/MWh. For simplicity and
to make the findings more intuitive, the capacity of all the
transmission lines are increased to 600 MW, so transmission
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TABLE II
DATA FOR LOADS OF THE STRATEGIC AND COMPETITIVE CONSUMERS

TABLE III
DATA FOR WIND POWER PRODUCTION SCENARIOS

constraints are non-binding. However, the impact of transmis-
sion constraints on bidding strategy of the strategic consumer
is studied later through a congested case.
Table III presents data for the two wind farms K1 and K2 of

the single-area case study, including their production under dif-
ferent scenarios and probability of such scenarios. Wind farms
K1 and K2 are located at buses 3 and 14, and their installed ca-
pacities are assumed to be 228 MW and 264 MW, respectively.
Expected value and expected standard deviation of wind power
production of farm K1 are 124.8 MW and 41.62 MW. For wind
farm K2, expected value and expected standard deviation are
111.54MW and 50.03MW, respectively. Accordingly, the wind
power production of farm K2 has higher volatility than that of
farm K1. The case corresponding to Table I to Table III is re-
ferred as “Base Case”.
The difference between the four cases considered are pre-

sented in Table IV. The cases differ in the participation of loads
in reserve provision, their reserve deployment capacity, and
characteristics of the wind farms.
2) Competitive Versus Strategic Bidding: In this section,

Case 1 (which is our Base Case) is studied to compare the

TABLE IV
CHARACTERISTICS OF CASE STUDIES

outcomes of the strategic consumer's competitive and strategic
behavior. The result are presented in Table V. Rows two and
three of Table V give the values of dispatched wind in the
DAM and the expected wind power spillage, respectively. The
fourth row presents the strategic consumer's energy bid price
for the DAM. Day-ahead LMPs and expected balancing LMPs
are also given in rows five and six. The expected value of the
strategic consumer's not-supplied energy is presented in the
seventh row. Total expected utility of the strategic consumer
is given in the eighth row. Rows ninth and tenth give expected
utility of the strategic consumer in the DAM and the balancing
stage, respectively. The eleventh and twelfth rows present the
total expected utility of competitive consumers and the total
expected profit of generating units, respectively. The last row
shows total expected social welfare of the market. In this case,
the strategic consumer has the opportunity to supply a fraction
of its demand deploying down reserve in the balancing stage
depending on the deployment capability of its loads. Results
for Case 1 given in Table V show that:
a) LMPs are lower under the strategic demand-side (equal

to $13.58/MWh) as the strategic consumer underbids its
demand in the DAM. Although by underbidding the de-
mand the strategic consumer reduces its utility from sup-
plying energy (i.e., expected unsupplied energy increases)
this cost is more than offset by the increase in utility from
lower DAM's LMPs. The net effect is that the expected
utility of the strategic consumer in the DAM is $1,128
higher when it behaves strategically (row 9).

b) A fraction of the strategic consumer's demand is not
scheduled in the DAM under strategic bidding. How-
ever, part of the unscheduled demand is supplied in the
balancing stage through down-reserve deployment so it
is expected the consumer will only have 46.14 MWh of
expected energy not supplied.

c) The strategic behavior of the large consumer reduces the
scheduled wind production in the DAM and hence in-
creases both the availability of free wind energy and the
required down reserves in the balancing stage necessary
in order to maximize the supply to meet its demand. As a
result, its expected utility in the balancing stage increases
by $140 (row 10).

d) The total expected utility of the competitive consumers
is higher in the strategic case. Indeed, although the com-
petitive consumers behave as price-takers, they free-ride
on the strategic consumer's behavior fully supplying their
load at lower LMPs relative to prices in the competitive
case. Neither in the strategic nor in the competitive cases
the competitive consumers have any unserved load, but in
the strategic case LMPs are lower.
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TABLE V
STRATEGIC AND COMPETITIVE BIDDING RESULTS FOR CASE 1

TABLE VI
STRATEGIC BIDDING RESULTS FOR ALL CASES

e) The strategic behavior of the large consumer has detri-
mental impacts on other market outcomes relative to the
competitive case, including the total expected profit of
generating units ($3673 lower) and expected social wel-
fare of the market ($8953 lower).

3) Strategic Bidding Outcomes in Different Cases: This
section highlights factors impacting the strategic consumer's
behavior and its outcomes by comparing Case 2, Case 3, and
Case 4 to Case 1, all presented in Table VI. Comparison of
the results for the first three cases (Case 1, Case 2, and Case
3) highlights the effects of increased capability of reserve
provision . Note that Case 3 is intermediate between Case 1
(maximum reserve provision capability) and Case 2 (no reserve
provision capability). Furthermore, comparison of Case 1 and
Case 4 explores the effects of increased wind power production
variability, under similar reserve provision capability.
Rows 2 and 3 present the scheduled wind production in the

DAM and expected wind spillage, respectively. Day-ahead
LMPs are also given in row 4. Row 5 presents the expected
value of the strategic consumer's not-supplied energy. Rows
6 and 7 present the expected utility of the strategic consumer
in the balancing stage and in total, respectively. The last row
shows the expected value of the total social welfare of the
market.
The following conclusions can be drawn from comparing the

results of Case 2, where DAM is the strategic consumer's sole
option for supplying its demand, to Case 1:
a) As the strategic consumer is banned from reserve provi-

sion in Case 2, a larger amount of wind energy is sched-
uled in the DAM.

b) In Case 2, the only available tool to the strategic consumer
for gaming is cutting a part of its demand in the DAM.
As a result, the expected value of the strategic consumer's

not-supplied energy increases by 65.9 MWh (112–46.1)
in Case 2 so that its total utility is reduced by $397 (i.e.,
$9517-$9120).

c) Reserve deployment significantly contributes to the large
consumer's market power and its influence on market out-
comes.

Another factor affecting the strategic consumer's strategic be-
havior (investigated using Case 3) is its reserve deployment ca-
pacity. Comparing the results of this case with Case 1 reveals
that the reduction in the strategic consumer's reserve deploy-
ment capacity increases the scheduled wind production in the
DAM. This reduces the demand for down-reserve deployment
in the balancing stage, and forces the strategic consumer to ac-
cept a higher expected value of energy not supplied in order to
achieve the same LMPs as in Case 1. Therefore, its expected
total utility is lower in Case 3. Similar results are obtained in
Case 4. In Case 4, production of the wind farms have lower ex-
pected standard deviation (as a measure of variability) than Case
1, while the expected production values are the same. The lower
variability reduces demand for reserve deployment so that a
smaller fraction of reserve's demand is supplied by the strategic
consumer, and hence its expected utility decreases with respect
to Case 1.
4) Strategic Bidding in a Congested Network: In this section,

Case 1 (the Base Case) is modified to investigate the reactions
of the strategic consumer to congestion in the network and its
impacts on market outcomes. To create congestion in Case 1,
the test case (IEEE RTS-24) is divided into two subareas, North
and South, where the North subarea includes buses 14–24, and
the South subarea buses 1–13. The two subareas are intercon-
nected through four branches: 1) from bus 24 to bus 3, 2) from
bus 14 to bus 11, 3) from bus 23 to bus 12, and 4) from bus 23
to bus 13. The available transmission capacity (ATC) of the in-
terconnection between the subareas is 500 MW. To better high-
light the impact of congestion on the bidding behavior of the
strategic consumer and its market outcomes, the strategic bid-
ding results in congested conditions are compared to results ob-
tained under strategic bidding when there is no congestion (i.e.,
Case 1) in Table VII. Note that the order of reported results in
rows of Table VII are identical to the order of reported results
in Table V. The following observations can be made from the
results presented in Table VII:
a) Due to transmission congestion the LMPs are different in

the two subareas, with the LMP in the North being lower
than in the South. Moreover, the LMP of the North in
the congested case is lower than that in the uncongested
case. Consequently, under transmission congestion, the
expected utility of the strategic consumer is higher than
under no congestion, though the expected value of its not-
supplied energy is higher than in the uncongested case.

b) All the expected not-supplied energy in the congested
case corresponds to strategic loads located in the South
subarea where the majority of strategic loads are Located.
This is because having not supplied load in the north
subarea further exacerbates the congestion and increases
the need for generation from more expensive units in the
South to alleviate congestion, which would further in-
crease the LMPs.

c) The general conclusion to be made is that the bidding
behavior of the strategic consumer in a congested net-
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work and its market outcomes significantly depend on
the topology of the grid (location of generating units and
loads), and the subareas resulting from congestion.

d) In some cases, it may happen that the strategic consumer
forces congestion to increase its expected utility.

B. Large-Scale Case Study
In this section, the strategic bidding model is examined on the

three-area test system (IEEE RTS-72) [25] for a 24-hour time
period (running the model individually for each hour). Assump-
tions on conventional generating units, loads (strategic and non-
strategic) and intra-area transmission lines of the three areas are
identical and equal to those in the previous subsection. Trans-
mission constraints of the lines interconnecting the three areas
are chosen to be non-binding. Three wind farms K1, K2, and
K3 are assumed to be located at bus 3 of areas 1, 2, and 3, re-
spectively. The uncertainty on wind generation is represented
with a total of 30 scenarios of hourly wind power production
from each farm. Note that instead of discretizing the uncer-
tainty set through scenarios in order to reduce the infinite-di-
mensional problem to a finite dimensional one, it would be pos-
sible to choose a set of functions that serve as a basis for the
uncertainty set. The scenarios used for in-sample simulations
are constructed based on the data for the first 500 days of the
available 1000 data points, on aggregated hourly power pro-
duction from wind farms in Belgium [26] and Ireland [27] (so
there are 500 data points for the production of each wind farm
in each hour). From the data, for each of the 24 hours (including
off-peak hours t1 to t11, shoulder hours t12 to t17 and t22 to t24,
and peak hours t18 to t21), we divided the range of observed
values into 5 equal-length intervals corresponding to five dif-
ferent possible states of wind power generation: very low, low,
medium, high and very high. The probabilities of each of the 5
states were calculated as the frequency of each state observed
in the sample. Because wind power production from the three
farms is assumed to be independent of each other, for each hour
there are possible scenarios of aggregated wind power
production. In order to maintain computational tractability the
set of 125 possible scenarios is reduced to a set of 30 chosen
using the method presented in [28].
Although reducing the set of scenarios to 30 may fail to rep-

resent all the possible conditions of wind power generation, any
misrepresentation of the uncertainty does not have an impact
in the in-sample analysis we conduct or its results. This is be-
cause the same 30 scenarios represent the information used by
the strategic consumer to design its bid (and by the market oper-
ator to clear the DAM) are also assumed to be representative of
the wind production observed in real time and the corresponding
clearing of the balancing stage. However this use of scenarios
implicitly assumes that the strategic consumer has a very good
idea of what future wind power production may be. In order to
explore the robustness of strategic consumer's bids to its imper-
fect characterization of the uncertainty on wind power produc-
tion we conduct an “out-of-sample” simulation. That is, we look
at a case where the strategic consumer has a less accurate char-
acterization of the uncertainty and rather than constructing sce-
narios from the same 500 days of available historical data (i.e.,
days 1 to 500), has information about only the second half of
the data (i.e., days 501 to 1000). Hence, for the out-of-sample
results, the expected outcomes are calculated over a different
set of scenarios than those used as input to the model. In other

TABLE VII
STRATEGIC BIDDING RESULTS IN CONGESTED

AND NORMAL CONDITIONS FOR CASE 1

Fig. 1. Maximum system demand and hourly not-supplied demand of the
strategic consumer for the three area system obtained in-sample.

words, for the in-sample results, it is assumed that the strategic
consumer has complete information about the distribution func-
tion of wind power production identical to the operator of the
market, when generating the set of scenarios. However, for the
out-of-sample results, the strategic consumer has incomplete in-
formation and the utilized distribution function is constructed
using a different subset of the data available to the market oper-
ator. In a sense, out-of-sample simulation evaluates the quality
of the generated scenarios for production of the wind farms
and whether or not they appropriately capture the uncertainty of
wind power production from the strategic consumer's perspec-
tive.
Figs. 1 and 2 illustrate in-sample results for the strategic and

competitive bidding of the strategic consumer. Note that the
maximum system demand depicted in Fig. 1 refers to the pos-
sible maximum electricity demand in the system, which is equal
to the sum of the demand from all strategic and competitive
loads when the price is zero (i.e., the demand curve's intercept
with the vertical axis). Wind spillage ratio in Fig. 2 refers to
the ratio of expected wind spillage to the expected wind power
production over the set of scenarios. As seen, the strategic
consumer's strategic bidding lowers the LMPs during off-peak
hours (t1, t3, t6, and t8), shoulder hours (t12) and peak hours
(t19 and t20). As a result, expected total daily utility of the
strategic consumer increases by 15,009 (2.65%) with strategic
bidding. However, 938 MWh, equivalent to 4.68% of its max-
imum daily demand, are unsupplied.
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Fig. 2. LMPs, expected utility of the strategic consumer and wind spillage ratio
for the three area system obtained in-sample.

Fig. 3. Expected balancing LMP, expected utility of the strategic consumer,
and wind spillage ratio of the three area system obtained out-of-sample.

Fig. 3 shows the out-of-sample results of the strategic and
competitive bidding. Wind spillage ratio in Fig. 3 refers to the
ratio of the expected wind spillage to the expected wind power
production over the set of unseen wind power production
samples. As seen, the calculated out-of-sample results for com-
petitive and strategic biding cases follow the patterns similar
to the in-sample results. For instance, total expected utility
of the strategic consumer from strategic bidding is $15,499
higher (%2.72) than that obtained in the competitive case. This
increase in the out-of-sample expected utility from strategic
bidding is due to a higher realization of wind power production
than what was expected by the strategic consumer from its
uncertainty characterization. Additionally, under the strategic
case, the expected LMPs in the balancing stage are lower than
those obtained in the competitive case except during time
periods t5, t10, t12, and t17. These and other differences (such
as those on the wind-spillage ratio) between the in-sample and
out-of-sample results, stem from different characteristics of
the in-sample and out-of-sample wind power production data
sets. For instance, hourly average expected wind production
for the in-sample data is 487 MW, which is 41 MW lower
than the hourly average out-of-sample wind power production.
Higher amounts of down-reserve scheduled in the strategic
case, with respect to those in the competitive case, contribute to
the wind-spillage ratio differences as the strategic consumer's
behavior tends to increase the demand for down-reserve de-
ployment in the balancing stage.

TABLE VIII
RESULTS RELATED TO THE COMPUTATIONAL COMPLEXITY

OF THE STRATEGIC BIDDING MODEL

C. Computational Considerations
The computational burden of the proposed model is charac-

terized in Table VIII for the single-area (IEEE RTS-24) and
the three-area (IEEE RTS-72) test cases. As shown, the CPU
time for solving the illustrative case study (IEEE RTS-24) for
a single time period is 73 seconds, and for the large-scale case
study (IEEE RTS-72) for a 24-hour time horizon is 11,880 sec-
onds. It is worth noting that increasing the number of wind
farms further increases the computational complexity of both
the stochastic market clearing problem and the derivation of
the strategic day-ahead bidding curves for the large consumer.
This is due to the fact that adding wind farms exponentially in-
creases the size of the set of scenarios required to characterize
the uncertainty on the wind power production. This increase
in the number of scenarios is matched with an increase in the
number of continuous and binary decision variables. Neverthe-
less, there are multiple alternatives available for resolving this
problem including utilizing a supercomputer, implementing de-
composition and/or parallel computing techniques [29], [30],
applying appropriate techniques to simplify the network [31]
and reducing the number of scenarios through existing scenario-
reduction techniques [28]. For all case studies, CPLEX 12.3
under GAMS [32] is used to solve the resulting MILP problem
on a PC with two processors clocking at 3.3 GHz and 4 GB of
RAM.

V. CONCLUSIONS AND FUTURE RESEARCH
The numerical results reveal that a large, price-responsive

strategic consumer providing operating reserves can increase
total expected utility and decrease the expected value of its en-
ergy not-supplied. The market power of this strategic consumer
is enhanced in proportion of its capacity to provide operating
reserves, and can significantly impact the scheduling of wind
power production in the DAM, and increase the required down
reserve in the balancing stage. Since this paper considers
a single-hour auction, the introduced model underestimates
market power of the strategic consumer as its load-shifting
capability is ignored. Also, it is worth noting that the outcomes
of this study are obtained assuming the large consumer has full
information about the network, demand bids, supply offers,
and distribution function for production of the wind farms.
Therefore, the calculated outcomes represent an upper bound
on the extent that the strategic consumer can exercise market
power. Future work will study the strategic behavior of a large
consumer that benefits from energy storage and load shifting
capabilities and the interaction of strategic consumers and
producers.

REFERENCES
[1] J. M. Morales, A. J. Conejo, K. Liu, and J. Zhong, “Pricing electricity

in pools with wind producers,” IEEE Trans. Power Syst., vol. 23, no.
3, pp. 1366–1376, Aug. 2012.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DARAEEPOUR et al.: STRATEGIC DEMAND-SIDE RESPONSE TO WIND POWER INTEGRATION 11

[2] G. Pritchard, G. Zakeri, and A. Philpott, “A single-settlement, energy-
only electric power market or unpredictable and intermittent partici-
pants,” Oper. Res., vol. 58, no. 4, pp. 1210–1219, Jul.-Aug. 2010.

[3] J. M. Morales, A. J. Conejo, H. Madsen, P. Pinson, and M. Zugno,
Integrating Renewables in Electricity Markets, ser. International Series
in Operations Research and Management Science. New York, NY,
USA: Springer, 2013.

[4] S. Wong and J. D. Fuller, “Pricing energy and reserves using stochastic
optimization in an alternative electricity market,” IEEE Trans. Power
Syst., vol. 22, no. 2, pp. 631–638, May 2007.

[5] J. Khazaei, G. Zakeri, and G. Pritchard, “The effects of stochastic
market clearing on the cost of wind integration: A case of New
Zealand electricity market,” Energy Syst., vol. 5, no. 4, pp. 657–675,
Dec. 2014.

[6] S. Martin, Y. Smeers, and J. A. Aguado, “A stochastic two settlement
equilibrium model for electricity markets with wind generation,” IEEE
Trans. Power Syst., vol. 30, no. 1, pp. 233–245, Jan. 2015.

[7] S. E. Fleten and E. Pettersen, “Constructing bidding curves for a
price-taking retailer in the Norwegian electricity market,” IEEE Trans.
Power Syst., vol. 20, no. 2, pp. 701–708, May 2005.

[8] A. B. Philpott and E. Pettersen, “Optimizing demand-side bids in day-
ahead electricity markets,” IEEE Trans. Power Syst., vol. 21, no. 2, pp.
488–498, May 2006.

[9] D. Menniti, F. Costanzo, N. Scordino, and N. Sorrentino, “Purchase-
bidding strategies of an energy coalition with demand-response capa-
bilities,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1241–1255, Aug.
2009.

[10] Y. Liu and X. Guan, “Purchase allocation and demand bidding in
electric power markets,” IEEE Trans. Power Syst., vol. 18, no. 1, pp.
106–112, Feb. 2003.

[11] M. Carrión, A. B. Philpott, A. J. Conejo, and J. M. Arroyo, “A sto-
chastic programming approach to electric energy procurement for large
consumers,” IEEE Trans. Power Syst., vol. 22, no. 2, pp. 744–754,May
2007.

[12] K. Zare, A. J. Conejo, M. Carrión, and M. P. Moghaddam, “Multi-
market energy procurement for a large consumer using a risk-aver-
sion procedure,” Elect. Power Syst. Res., vol. 80, no. 1, pp. 63–70, Jan.
2010.

[13] R. Herranz, A. M. S. Roque, J. Villar, and F. A. Campos, “Optimal de-
mand-side bidding strategies in electricity spot markets,” IEEE Trans.
Power Syst., vol. 27, no. 3, pp. 1204–1213, Aug. 2012.

[14] S. J. Kazempour, A. J. Conejo, and C. Ruiz, “Strategic bidding for a
large consumer,” IEEE Trans. Power Syst., vol. 30, no. 2, pp. 848–855,
Mar. 2015.

[15] C. Ruiz and A. J. Conejo, “Pool strategy of a producer with endogenous
formation of locational marginal prices,” IEEE Trans. Power Syst., vol.
24, no. 4, pp. 1855–1866, Nov. 2009.

[16] H. Mohsenian-Rad, “Coordinated price-maker operation of large en-
ergy storage units in nodal energy markets,” IEEE Trans. Power Syst..

[17] F. H. Murphy and Y. Smeers, “Generation capacity expansion in im-
perfectly competitive restructured electricity markets,”Oper. Res., vol.
53, no. 4, pp. 646–661, Jul. 2005.

[18] S. J. Kazempour, A. J. Conejo, and C. Ruiz, “Strategic generation
investment using a complementarity approach,” IEEE Trans. Power
Syst., vol. 26, no. 2, pp. 940–948, May 2011.

[19] L. P. Garces, A. J. Conejo, R. G. Bertrand, and R. Romero, “A bilevel
approach to transmission expansion planning within a market environ-
ment,” IEEE Trans. Power Syst., vol. 24, no. 3, pp. 1513–1522, Aug.
2009.

[20] E. E. Sauma and S. S. Oren, “Proactive planning and valuation of trans-
mission investment in restructured electricity markets,” J. Reg. Econ.,
vol. 30, no. 3, pp. 261–290, Nov. 2006.

[21] G. Brown, M. Carlyle, J. Salmeron, and K. Wood, “Defending critical
infrastructure,” Interfaces, vol. 36, no. 6, pp. 530–544, Nov. 2006.

[22] H. Pandzic, A. J. Conejo, and I. Kuzle, “An EPEC approach to the
yearly maintenance scheduling of generating units,” IEEE Trans.
Power Syst., vol. 28, no. 2, pp. 922–930, May 2013.

[23] H. Pandzic, A. J. Conejo, I. Kuzle, and E. Caro, “Yearly maintenance
scheduling of transmission lines within a market environment,” IEEE
Trans. Power Syst., vol. 27, no. 1, pp. 407–415, Feb. 2012.

[24] J. Fortuny-Amat and B. McCarl, “A representation and economic in-
terpretation of a two-level programming problem,” J. Oper. Res. Soc.,
vol. 32, no. 9, pp. 783–792, Sep. 1981.

[25] “Relaibility system task force, the IEEE reliability test system–1996: A
report prepared by the reliability test system task force of the applica-
tion of probability methods subcommittee,” IEEE Trans. Power Syst.,
vol. 14, no. 3, pp. 1010–1020, Aug. 1999.

[26] Elia, Belgium's Electricity Transmission System operator [On-
line]. Available: http://www.elia.be/en/grid-data/power-genera-
tion/wind-power

[27] EIGRID, Ireland's Electricity Transmission System Operator [Online].
Available: http://www.eirgrid.com/operations/systemperformance-
data/windgeneration/

[28] J. M. Morales, S. Pineda, A. J. Conejo, and M. Carrion, “Scenario re-
duction for futures market trading in electricity markets,” IEEE Trans.
Power Syst., vol. 24, no. 2, pp. 878–888, May 2009.

[29] A. Ahmadi-Khatir, A. J. Conejo, and R. Cherkaoui, “Multi-area unit
scheduling and reserve allocation under wind power uncertainty,”
IEEE Trans. Power Syst., vol. 29, no. 4, pp. 1701–1710, Jul. 2014.

[30] A. Nasri, S. J. Kazempour, A. J. Conejo, and M. Ghandhari, “Net-
work-constrained AC unit commitment under uncertainty: A Benders'
decomposition approach,” IEEE Trans. Power Syst., to be published.

[31] X. Cheng and T. J. Overbye, “PTDF-based power system equivalents,”
IEEE Trans. Power Syst., vol. 20, no. 4, pp. 1868–1876, Nov. 2005.

[32] General Algebraic Modeling System (GAMS) [Online]. Available:
http://www.gams.com/

Ali Daraeepour (S'13) received the B.Sc. degree from Azad University, Iran, in
2005, and the M.Sc. degree from Semnan University, Semnan, Iran, in 2008. He
is currently pursuing the Ph.D. degree at theNicholas School of the Environment
at Duke University, Durham, NC, USA.
He was a Senior Engineer at the Iran Grid Management Company (IGMC),

Tehran, Iran, between 2009 and 2012. His research interests include planning,
economics and regulation of electric energy systems, and environmental and
electricity policy.

S. Jalal Kazempour (S'08–M'14) received the B.Sc. degree from the Univer-
sity of Tabriz, Tabriz, Iran, in 2006, the M.Sc. degree from Tarbiat Modares
University, Tehran, Iran, in 2009, and the Ph.D. degree from the University of
Castilla-La Mancha, Ciudad Real, Spain, in 2013, all in electrical engineering.
In 2014, he was a postdoctoral fellow at the Whiting School of Engineering,

Johns Hopkins University, Baltimore, MD, USA. He is currently a postdoc-
toral fellow at the Department of Electrical Engineering, Technical University
of Denmark, Kgs. Lyngby, Denmark. His research interests include power sys-
tems, electricity markets, optimization, and its applications to energy systems.

Dalia Patiño-Echeverri received the B.S. and M.Sc. degrees in industrial en-
gineering from the University of the Andes, Bogotá, Colombia, and the PhD
degree in engineering and public policy from Carnegie Mellon University, Pitts-
burgh, PA, USA.
She is currently an Assistant Professor at the Nicholas School of the Environ-

ment at Duke University, Durham, NC, USA, where she studies the economic
and environmental impacts of power generation technologies, market rules, and
policies affecting capital investment and operating decisions within the elec-
tricity industry.

Antonio J. Conejo (F'04) received the M.S. degree from the Massachusetts
Institute of Technology, Cambridge, MA, USA, in 1987, and the Ph.D. degree
from the Royal Institute of Technology, Stockholm, Sweden, in 1990.
He is currently a Full Professor at The Ohio State University, Columbus, OH,

USA. His research interests include control, operations, planning, economics
and regulation of electric energy systems, as well as statistics and optimization
theory and its applications.


