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Abstract 

 

 The fundamental operating paradigm of today’s power systems is undergoing a 

significant shift. This is partially motivated by the increased desire for incorporating 

variable renewable energy resources into generation portfolios. While these generating 

technologies offer clean energy at zero marginal cost, i.e. no fuel costs, they also offer 

unique operating challenges for system operators. Perhaps the biggest operating 

challenge these resources introduce is accommodating their intermittent fuel source 

availability. For this reason, these generators increase the system-wide variability and 

uncertainty. As a result, system operators are revisiting traditional operating strategies to 

more efficiently incorporate these generation resources to maximize the benefit they 

provide while minimizing the challenges they introduce.  

 One way system operators have accounted for system variability and uncertainty 

is through the use of operating reserves. Operating reserves can be simplified as excess 

capacity kept online during real time operations to help accommodate unforeseen 

fluctuations in demand. With new generation resources, a new class of operating reserves 

has emerged that is generally known as flexibility, or ramping, reserves. This new reserve 

class is meant to better position systems to mitigate severe ramping in the net load 
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profile. The best way to define this new requirement is still under investigation. Typical 

requirement definitions focus on the additional uncertainty introduced by variable 

generation and there is room for improvement regarding explicit consideration for the 

variability they introduce. An exogenous reserve modification method is introduced in 

this report that can improve system reliability with minimal impacts on total system wide 

production costs.  

Another potential solution to this problem is to formulate the problem as a 

stochastic programming problem. The unit commitment and economic dispatch problems 

are typically formulated as deterministic problems due to fast solution times and the 

solutions being sufficient for operations. Improvements in technical computing hardware 

have reignited interest in stochastic modeling. The variability of wind and solar naturally 

lends itself to stochastic modeling. The use of explicit reserve requirements in stochastic 

models is an area of interest for power system researchers. This report introduces a new 

reserve modification implementation based on previous results to be used in a stochastic 

modeling framework. 

 With technological improvements in distributed generation technologies, 

microgrids are currently being researched and implemented. Microgrids are small power 

systems that have the ability to serve their demand with their own generation resources 

and may have a connection to a larger power system. As battery technologies improve, 

they are becoming a more viable option in these distributed power systems and research 

is necessary to determine the most efficient way to utilize them. This report will 

investigate several unique operating strategies for batteries in small power systems and 
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analyze their benefits. These new operating strategies will help reduce operating costs 

and improve system reliability.  

  



v 

 

Acknowledgements 

 

I would like to extend my gratitude and appreciation to my academic advisor, Dr. 

Wenzhong Gao, for all of his help and guidance throughout the entirety of my doctoral 

candidacy. His inputs and ideas have helped me in creating this dissertation and for that I 

am truly grateful. His kind words and support have helped me through this trying time in 

my academic career. Under his tutelage, I have expanded my technical expertise and 

grown both scholastically and professionally and I would like to offer sincere a thank you 

for all of his effort. 

 I would like to also extend my appreciation to several colleagues for their support 

and advice. I would like to thank Dr. Erik Ela with the Electric Power Research Institute 

and Dr. Eduardo Ibanez with General Electric for all of their effort. Through their 

guidance, I have been able to produce research that is both of high academic standard and 

valuable to industry partners and researchers. 

I would like to thank my classmates for their input and good wishes. I am truly 

grateful for all of their support. 

I would like to thank my family and specifically my parents. Their love and 

support have helped motivate me and keep me on track to complete my studies. I am 

grateful to my brothers for their support as well.  Finally, I would like to thank my wife 

for all of her patience, love, and support. I could not have finished this dissertation 

without her. 

 



vi 

 

Table of Contents 

Abstract ............................................................................................................................................ ii 
 
Acknowledgements .......................................................................................................................... v 
 
List of Figures ................................................................................................................................. vii 
 
List of Tables ................................................................................................................................. viii 
 
List of Acronyms .............................................................................................................................ix 
 
Chapter 1: Introduction .................................................................................................................... 1 

1.1 Motivation .............................................................................................................................. 1 
1.2 Problem Statement ................................................................................................................. 3 
1.3 Theoretical background ......................................................................................................... 5 
1.4 My contributions to this research ......................................................................................... 22 

 
Chapter 2: Description of simulation platform .............................................................................. 25 
 
Chapter 3: Improving Flexibility Reserves for System Operations ............................................... 30 

3.1 Advanced flexibility reserve techniques .............................................................................. 30 
3.2 Analysis of advanced flexibility reserve techniques ............................................................ 39 
3.3 Three-Stage Reliability-Based Reserve Modifiers for Enhanced Operation ....................... 48 

 
Chapter 4: Using Stochastic Modeling to Address System Uncertainty ........................................ 58 

4.1 Motivation ............................................................................................................................ 58 
4.2 Stochastic Formulation ........................................................................................................ 59 
4.3 Analyzing the use of reserves in stochastic modeling ......................................................... 62 
4.4 Three-Stage Stochastic Modifiers ........................................................................................ 73 

 
Chapter 5: Future Roles of Emerging Technologies in Grid Operations ....................................... 83 

5.1 Utilizing PHEVs for Reserve Scheduling ............................................................................ 83 
5.2 Optimizing BESS for Ancillary Services in Microgrids ...................................................... 91 

 
Chapter 6: Conclusion.................................................................................................................. 103 

6.1 Final Remarks .................................................................................................................... 103 
6.2 List of Publications ............................................................................................................ 108 

 
References .................................................................................................................................... 110 
 
Appendix A: Additional Model Details ....................................................................................... 119 
 
Appendix B: Extensive form of Stochastic RTSCED ................................................................. 133 
 



vii 

 

List of Figures 

 

Figure 1 – Sample flexible ramping demand curve ....................................................................... 11 

Figure 2 – Simulation platform flow chart..................................................................................... 28 

Figure 3 – Modified simulation workflow with 3-Stage modifiers ............................................... 34 

Figure 4 – Example FRDC curves ................................................................................................. 36 

Figure 5 – FRDC maximum requirements for the month of October ............................................ 38 

Figure 6 – Unused thermal capacity in the month of April across all cases .................................. 41 

Figure 7 – Number of thermal generators committed in April ...................................................... 42 

Figure 8 – LMP duration curve for October across all cases ......................................................... 42 

Figure 9 – Mean-absolute difference between day-ahead and real-time LMPs across all cases ... 44 

Figure 10 – Accumulated ACE broken down by direction across all cases .................................. 45 

Figure 11 – Distributions of raw ACE across all cases .................................................................. 46 

Figure 12 – Distribution of ACE across all cases with the modifiers (right) and without (left) .... 55 

Figure 13 – Stochastic simulation workflow ................................................................................. 63 

Figure 14 – Scenarios set type 1 (top) and type 2 (bottom) ........................................................... 64 

Figure 15 – Number of thermal start-ups in January ..................................................................... 66 

Figure 16 - Distribution of ACE across all cases in April ............................................................. 67 

Figure 17 - Comparison of net-load ramp tracking in Case 1 and Case 2 ..................................... 69 

Figure 18 – Number of committed thermal units in each simulated month ................................... 72 

Figure 19 – Direction of accumulated ACE for cases 7 and 8 in October ..................................... 73 

Figure 20 – Stochastic simulation workflow with modification stage ........................................... 76 

Figure 21 – Computation time (in minutes) across all cases ......................................................... 78 

Figure 22 – Distribution of ACE in April ...................................................................................... 79 

Figure 23 – Average unused thermal ramping capacity ................................................................. 80 

Figure 24 – Number of committed thermal generators in January ................................................. 81 

Figure 25 – System LMPs with and without PHEVs providing energy and ancillary services ..... 89 

Figure 26 – Relationship between the number of PHEVs and depth of discharge ........................ 90 

Figure 27 – Modified IEEE single-area reliability test system for microgrid applications ........... 95 

Figure 28 – Distribution of ACE in October for all microgrid operating scenarios ...................... 97 

Figure 29 – SOC of the battery providing energy and regulation and regulation only .................. 98 

Figure 30 – Amount of load lost to multiple contingencies with and without the BESS ............ 101 

 

  



viii 

 

List of Tables 

 

Table 1 – State RPS requirements as of September 2014 ................................................................ 2 

Table 2 – Summary of different forms of operating reserves .......................................................... 4 

Table 3 - Modified IEEE 118 Bus Test System Characteristics .................................................... 32 

Table 4 – Breakpoints on the FRDC implementation .................................................................... 36 

Table 5 – Summary of different flexibility reserve scenarios ........................................................ 39 

Table 6 – Flexibility reserves simulation results ........................................................................... 40 

Table 7 – VG curtailment per case per month in GWh ................................................................. 43 

Table 8 – Percentage of intervals with transmission congestion ................................................... 47 

Table 9 – Change in reliability and economic metrics due to three-stage reserve modification ... 52 

Table 10 – Mean absolute difference between DA and RT LMPs in $/MWh ............................... 54 

Table 11 – Summary of reserve methods for each case ................................................................. 64 

Table 12 – Summary of stochastic reserve results ......................................................................... 65 

Table 13 – Summary of sensitivity scenario reserve requirements................................................ 70 

Table 14 – Summary of stochastic sensitivity scenario results ...................................................... 71 

Table 15 – Three stage stochastic modifier simulation results ...................................................... 77 

Table 16 – Summary of curtailed wind with stochastic modifiers .................................................. 81 

Table 17 – PHEV operational data used in simulations ................................................................. 86 

Table 18 – Nine bus system line data ............................................................................................ 86 

Table 19 – Nine bus system generator data ................................................................................... 87 

Table 20 – System production costs for three different reserve scenarios that both include and 

exclude PHEVs .............................................................................................................................. 88 

Table 21 – Generator commitment schedules impact by PHEV scheduling ................................. 89 

Table 22 – Numerical results from BESS analysis ........................................................................ 96 

Table 23 – Numerical results from contingency scenarios .......................................................... 100 

 

  

file:///C:/Users/ikrad/Desktop/DU/Dissertation/For%20Dr%20Gao/IbrahimKrad_Dissertation.docx%23_Toc451427187


ix 

 

List of Acronyms 

 

AACEE: Absolute ACE in Energy 

ACE: Area Control Error 

AGC: Automatic Generation Control 

APEC: Applied Power Electronics Conference 

ARMA: Auto Regressive Moving Average 

BA: Balancing Area 

BESS: Battery Energy Storage System 

CAISO: California Independent System Operator 

CPS2: Control Performance Standard 2 

DASCUC: Day-Ahead Security Constrained Unit Commitment 

DOD: Depth Of Discharge 

EENS: Expected Energy Not Served 

EPEC: Electrical Power and Energy Conference 

ERCOT: Electric Reliability Council of Texas 

ESS: Energy Storage System 

EV: Electric Vehicle 

FRDC: Flexible Ramping Demand Curve 

GAMS: General Algebraic Modeling System 

HOMER: Hybrid Optimization of Multiple Energy Resources 

IEEE: Institute of Electrical and Electronics Engineers 

ITA: Information Theory and Applications 

LMP: Locational Marginal Price 

LOLP: Loss of Load Probability 

LP: Linear Programming 

MAACE: Mean Absolute ACE 

MILP: Mixed-Integer Linear Program 

MISO: MidContinent Independent System Operator 

MPP: Maximum Power Point 

MW: Megawatt 

MWh: Megawatt hour 

NERC: North America Electric Reliability Corporation 

NREL: National Renewable Energy Laboratory 

NSRS: Non-Spinning Reserve Service 

PHEV: Plugin Hybrid Electric Car 

PV: Photovoltaic 

RPS: Renewable Portfolio Standard

RTSCUC: Real-Time Security Constrained Unit Commitment 

RTSCED: Real-Time Security Constrained Economic Dispatch 

SOC: State of Charge 

TEPPC: Transmission Expansion Planning Policy Committee 

VG: Variable Generation 

WECC: Western Electricity Coordinating Council 



1 

 

 

 

 

 

 

 

 

 

 
Chapter 1: Introduction 

 

1.1 Motivation 

 Since the creation of the electric power system, system operators have been 

tasked with the responsibility of ensuring that when a customer turns a light switch, the 

lights turn on. As the power system continuously evolves, this task is becoming more 

challenging. As utility footprints expand and total customer demand increases, power 

system operators must plan and operate the system in a preemptive manner to help avoid 

contingency-induced events, like blackouts. This task is further compounded by the 

composite nature of the emerging power system. With increasing societal pressure to 

curb the use of non-environmentally friendly fuels and to reduce our collective 

dependency on fossil fuels, utilities are trying to accommodate more and more renewable 

energy resources, such as generation from wind and solar power, in their generation 

portfolios.  These renewable energy resources help reduce air, land, and water pollution 

caused by thermal generators. They help reduce sulfur dioxides, nitrogen oxides, and 

other disease causing bacteria found in generating plants [1]. States are individually 

responsible for utilizing renewable energy resources. In this regard, many states are 
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adopting renewable portfolio standards (RPS). An RPS is a policy that mandates a certain 

amount of demand served for customers must come from renewable energy resources. 

Table 1 summarizes some RPS goals for several states [2]. 

   

State RPS Goal Penetration RPS Goal Date 

Hawaii 40 % 2030 

California 33 % 2020 

Colorado 30 % 2020 

New York 29 % 2015 

Connecticut 27 % 2020 

Minnesota 26.5 % 2025 

Nevada 25 % 2025 

Oregon 25 % 2025 

Illinois 25 % 2026 

West Virginia1 25 % 2025 

Vermont1 20 % 2017 

 

Table 1 – State RPS requirements as of September 2014 

 For example, California is planning and operating their electric system with the 

goal of providing 33 % of the electrical demand by renewable energy resources by 2020. 

Renewable energy resources present unique challenges for power system operators that 

are significantly different from traditional operating procedures. The most noteworthy of 

these challenges is their inherent intermittent nature. Traditionally, in a utility with an all 

fossil-fuel fired generation fleet, the operator has 100% control over generation variables 

(namely commitment and dispatch). However, renewable energy resources reverse this 

paradigm. They are available when nature says they are available and the system operator 

must plan accordingly. Predicting how much renewable energy will be available may or 

may not be a trivial task. Sources such as hydro and biogas can be fairly well predicted 

                                                           
1 West Virginia and Vermont have renewable portfolio goals. This is similar to a renewable portfolio 
standard with the exception that it is not legally binding. 
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and operated. Solar generation, while the daily pattern can be fairly well forecasted, the 

actual power output of solar plants may be difficult to forecast due to the complicated 

nature of their dependencies (atmospheric conditions, cloud cover, etc.). Wind power is 

perhaps the most complicated to predict since wind power does not adhere to any binding 

patterns. It is not uncommon for wind power to be above/below forecasted values.  These 

forecast errors effect how efficiently the wind power, and all renewable resources in 

general, are used.  

 The continual advancement of technologies has also led to small, independent 

power systems within larger power systems. These smaller systems go by many names, 

namely “micro-grids” and sometimes “smart grids.” These systems allow for more 

customer participation, more adoption of emerging technologies such as energy storage 

systems, new operating principles and strategies, higher power quality, and reliable 

power delivery [3]. Since these systems operate in both a grid connected mode 

(connected to the larger power system) and islanded mode (disconnected from the larger 

power system), careful consideration must be made regarding operating strategies and 

control techniques to ensure safe operation. One of the main operating challenges of these 

smaller systems is ensuring that there is always enough energy available to supply the 

entire load as well as any ancillary service requirements.  

1.2 Problem Statement 

 

 The proliferation of wind and solar generation will change the way system 

operators have traditionally handled variability and uncertainty in power system 

operations. Historically, operating reserves are withheld in real-time via an arbitrary 
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requirement calculated offline before power system operations begin. Table xxx 

summarizes different forms of operating reserve products. 
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        The unpredictability of wind and solar generation make this approach inefficient. 

Research must be done to find ways to optimize the operating reserve requirements. This 

paper will explore using an updated methodology to update the deterministic operating 

reserve requirements, explore the potential use of advanced modeling techniques in 

unison with operating reserve requirements to optimize system operations, and explore 

using advanced emerging technologies to provide ancillary services.  

1.3 Theoretical background 

 

It is natural for ideas and technologies to evolve over the course of time, and the 

electric power system is no different. In order to ensure reliable operation, system 

operators hold contingency reserves that could account for an outage of the largest power 

system component. Over time, as the size of the electric power system increased and 

electrification became more commonplace, additional ancillary services were developed 

in order to operate the power system more efficiently and reliably. The next step in the 

evolution of the power system is the incorporation of renewable energy resources in 

generation portfolios, namely wind and solar photovoltaic (PV). These variable 

generators (VG) provide particular operating challenges due to their intermittent nature. 

In order to accommodate these future changes, a number of new operating strategies are 

being researched. Among these strategies are flexibility reserves, stochastic 

programming, and the use of energy storage systems and other emerging technologies.    

 System operators require operating reserves in order to ensure reliable operation 

of the system. One class of these operating reserves id defined as contingency reserves, 
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also known as spinning and non-spinning reserves. These are used to return the system to 

normal operating conditions after an event, e.g. a generator outage. Primary contingency 

reserves are used to stabilize the system operating frequency. Secondary contingency 

reserves are used to return the frequency back to nominal. Tertiary contingency reserves 

are used to replace primary and secondary contingency reserves. This is done so primary 

and secondary reserves can go offline and prepare in case another event happens. 

Ramping reserves are similar to contingency reserves except they respond to slower 

events that occur in the system over several minutes up to an hour. Regulation reserves 

are used to maintain the balance of real time electricity generation and consumption that 

occurs at temporal resolutions that are typically finer than the temporal resolution of the 

economic dispatch solution. Generators that provide this type of ancillary serve typically 

must be equipped with communications that allow it to receive control signals from a 

centralized dispatch location. This type of control scheme is known as automatic 

generation control (AGC). Load following reserves are used to help track the changes in 

the electrical load in order to help maintain the real time balance of electrical generation 

and consumption in future time intervals. This type of reserve typically does not require 

AGC equipment since it is typically utilized at the same temporal resolution as the 

economic dispatch solution [4].  

Variable generation will increase both the variability and uncertainty present in 

the system. Variability can be defined as the expected magnitude oscillations, in both the 

positive and negative direction, in power system variables. Uncertainty can be defined as 

the unexpected changes in power system variables in both the positive and negative 
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directions as well. Variability and uncertainty occur naturally in the power system, e.g. 

load forecast errors and power system component outages. Another type of power system 

event garnering more attention recently is the response of the system to unforeseen VG 

ramping events. This has led to the potential development of a new reserve product 

generally known as flexibility reserves. This type of reserve product aims to mitigate the 

additional uncertainty and variability introduced by increased levels of VG penetration 

[5]. This type of reserve product can be further generalized into variability based reserve 

products, load based reserve products, and net load based reserve products, and.  

The variability based reserve methodologies are dependent on the intra-hour and 

inter-hour variability present in power system profiles such as load, wind speed, and solar 

irradiation. The authors of [6] present a flexibility reserve method that utilizes this type of 

calculation. The reserve requirement is dependent on the variability of wind and solar 

forecast errors. These forecast errors are then sorted according to the power associated 

with them. Then the flexibility requirement is calculated based on a 70% confidence 

interval, i.e. the reserve requirement must cover 70% of the forecast errors. This method 

is applied for wind profiles, and load profiles if the data is available. For solar forecasts, 

the solar generation output is forecasted by using a persistent cloud cover forecast [7]. 

This type of forecast can be modeled as follows: 

 𝑃𝐹(𝑡 + 𝑡) = 𝑃(𝑡) + 𝑆𝑃𝐼(𝑡)[𝑃𝐶𝑆(𝑡 + 𝑡) − 𝑃𝐶𝑆(𝑡)]. (1) 

 In (1), PF is the forecasted power, P is the actual power at time t, SPI is the solar 

power index at time t, and PCS is the clear-sky power at time t. The SPI can be calculated 
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in real-time based on historic clearsky data. The solar power index is the ratio of the 

actual power output of the solar generator to the clearsky output of the generator, or 

 

𝑆𝑃𝐼(𝑡) = 𝑚𝑖𝑛 (
𝑃𝑎𝑐𝑡𝑢𝑎𝑙

𝑃𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
, 1) 

(2) 

 

Once the forecasts are calculated, a similar process as described above can be 

used to calculate the solar forecast errors and then subsequently to calculate the flexibility 

reserve requirement for solar power. The solar forecast errors can be calculated as 

follows: 

 𝑃𝜀 = 𝑃(𝑡) − 𝑃(𝑡) − 𝑆𝑃𝐼(𝑡) ∙ 𝑃𝐶𝑆(𝑡) (3) 

 In (3), Pε is the forecast error, P is the actual generation, and P and PCS 

represent the change in actual power and clear-sky power, respectively, between the 

current time interval and the following time interval. A benefit of this methodology is it 

can be customized to particular systems by modifying the confidence intervals used in the 

calculations in order to find the reserve requirement that best fits certain applications.  

 There are a number of different variability based solutions being proposed in 

literature. The authors of [8] present a methodology where the reserve requirement is 

based on the variability of the load and wind profiles. The total amount of the reserve 

requirement is then calculated in such a way so as to maintain an acceptable level of 

operating risk. The goal is to maintain a constant risk of load shedding at every hourly 

time interval throughout the year. Simulations show that as the amount of wind 

generation present in the system increases, the amount of reserves needed to reliably 

operate the system (i.e. maintain a constant risk level of load shedding instances 
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throughout the year) will also moderately increase. The authors of [9] propose a reserve 

management tool (RMT) that defines the hourly operating reserve requirements based on 

different risk metrics including the loss of load probability (LOLP) and the expected 

energy not served (EENS). These metrics are calculated based on extracting the 

variability embedded in the load and wind forecast errors.  

 The authors of [10] propose a load based method that determines the optimal 

operating reserve requirement by simple market clearing mechanisms. A reserve capacity 

supply curve is plotted against a curve of system losses due to a service interruption. The 

intersection of these curves then sets the optimal reserve requirement. There are also load 

based methods that are typically used in large, interconnection-scale grid integration 

studies. These methods are often based on reliability standards put forth by the Western 

Electricity Coordinating Council (WECC). The requirement typically consists of a 

heuristically selected percentage of the changes in the load profile or with respect to the 

magnitude of the load profile. For example, operating reserve requirements can be 

approximated as 1% of the system peak load [11]. The WECC Transmission Expansion 

Planning Policy Committee (TEPPC) also suggest using 5% of the demand served by 

hydro and 7% of the demand served by thermal generators as the operating reserves 

requirement [12].  

 The authors of [13] propose a net load based method that determines the optimal 

spinning reserve requirement via stochastically optimizing the requirement. By 

minimizing the total cost of providing the reserve product (i.e. the cost of providing the 

reserve and the cost of the outages the reserve will be unable to prevent), the probability 
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distribution of the net load is divided into several intervals where the midpoint of each 

interval is the optimal reserve requirement for that interval. The overall requirement is 

then taken as the weighted sum of the requirement in each interval multiplied by the 

probability that the net load will occurs in that interval. Monte Carlo simulations are then 

used to converge to a final solution. The Electric Reliability Council of Texas (ERCOT) 

has proposed a net load based ancillary service known as Non-Spinning Reserve Service 

(NSRS) that aims to protect the system against the variability and uncertainty in the net 

load profile [14]. ERCOT compares the actual historical net load forecast errors and 

schedules enough reserve such that the reserve scheduled, the responsive reserve service 

scheduled (500 MW as defined by ERCOT), and the average regulation reserve 

scheduled in the upward direction (Regup) will be greater than 95% of the uncertainties in 

the historical net load (0.95εNL). This is shown in (4). 

 𝑁𝑆𝑅𝑆(𝑡) + 500 + 𝑅𝑒𝑔𝑢𝑝(𝑡) ≥ 0.95휀𝑁𝐿 (4) 

The California Independent System Operator (CAISO) has also presented a 

flexible ramping ancillary service that depends on the variations in the system net load 

[15]. The final requirement is calculated such that it covers 95% of the change in net load 

between model intervals (95% confidence interval between the 2.5% percentile and the 

97.5% percentile). The requirement is also constrained to be in the same direction as the 

movement in net load, i.e. any negative requirement that is calculated as a result of the 

previous analysis is set to zero. The maximum and minimum values are connected via a 

series of gradually decreasing prices and quantity levels to construct a flexible ramping 

demand curve. The maximum values are set by the limits of the confidence intervals. 
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This demand curve is extended into advisory intervals although only the first interval is 

financially binding. A sample flexible ramping demand curve (FRDC) similar to the one 

used later in this report is shown in Figure 1. 

 
Figure 1 – Sample flexible ramping demand curve 

 The Midcontinent Independent System Operator (MISO) has proposed an 

ancillary service product designed to ensure that enough ramping flexibility is available 

in future time intervals. This method is calculated based on the changes in the net load 

profile (electrical demand – VG) and the observed historical uncertainty in the net load. 

The upward and downward requirements are calculated to ensure that the requirement 

covers the maximum change in net load plus the observed historical uncertainty occurring 

at the same temporal resolution as the reserve product. The scheduling of these reserves 

is done carefully to ensure that in the case of a net load event, this ramping capacity is 

deliverable by the generators scheduled to provide it [16]. The CAISO and MISO are also 

considering modifying their market clearing algorithms to incorporate additional 

constraints to facilitate the scheduling and deployment of these flexibility reserve 

products [17][18]. This modification should help reduce price spikes and help to better 
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position the system for the additional uncertainty and variability introduced by increased 

VG penetration levels.  

Due to the inherent uncertainty surrounding variable generation, these types of 

problems naturally lend themselves to stochastic formulations. Stochastic modeling 

attempts to capture the variability and uncertainty found in power system variables by 

simulating many possible scenarios. The authors [19] of present a stochastic formulation 

for long term security constrained unit commitment problems. Essentially, the traditional 

objective function must be modified to link the multiple scenarios together. This can be 

accomplished with the following additional term: 

 
∑ ∑ ∑ 𝜇𝑖,𝑡

𝑠

𝑖𝑡𝑠

(𝐼𝑖,𝑡
𝑠 − 𝑐𝑖,𝑡) 

 

(5) 

 In (5), µ is the Lagrangian multiplier penalty factor, I is the unit status variable (or 

the first stage decision variable), and c is the weighted average of the decision variables 

across scenarios and it is assumed to be the optimal solution. This solution is calculated 

as: 

 
𝑐𝑖,𝑡 = ∑

𝑃𝑠 ∙ 𝐼𝑖,𝑡
𝑠

𝑃𝑠
𝑠

 (6) 

In (6), I is the first stage decision variable and P is the weighted average of 

scenario s. By iteratively solving the optimization and updating the implementable as 

shown in (6), eventually, the first stage decision variable will converge across all 

scenarios. However, since the unit commitment problem is not convex, the problem may 

not absolutely converge. As a result, a stopping criterion can be defined to signal the 

most feasible optimal solution has been found. The large stochastic problem is 
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decomposed into smaller, deterministic sub-problems via Lagrangian Relaxation. This is 

a scenario based model that embeds the uncertainty of state variables within different 

scenario outcomes. These scenarios are generated via Monte Carlo simulations. This 

technique can be used to capture the uncertainty in generator outages as well as load and 

renewable energy generation forecast errors. 

The authors of [20] present a two stage stochastic unit commitment model that 

also includes integer variables in the second stage. Typically two-stage formulations 

solve linear programs in the second stage. The inclusion of integer variables in the second 

stage (e.g. quick start generation statuses) results in a problem that is not convex and 

requires more sophisticated solution techniques to solve. A modified Benders’ 

Decomposition technique that employs L-shaped cuts is utilized to solve the problem 

where iterations control the upper and lower bounds of the solution space until the 

bounds converge. The authors [21] propose a two-stage stochastic unit commitment 

methodology that includes both demand response resources as well as energy storage 

systems. The second stage optimization includes reliability constraints in the form of 

transmission and risk constraints in order to control the loss of load probability. The risk 

constraints are functions of the conditional value-at-risk in order to maintain the linearity 

of the optimization problem. The complete problem is then solved via a modified 

Benders’ Decomposition technique. Experiments show that more conservative reliability 

requirements typically results with higher production costs. 

The authors of [22] present a stochastic formulation that incorporates uncertain 

demand side behavior. The reliability of the system is ensured by maintaining the loss of 
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load probability above a predetermined risk value. The model is solved using a sample 

average approximation method. Preliminary results show that employing a stochastic 

model for demand side participation can result with an increased amount of available 

generation capacity when compared to a deterministic representation. The authors of [23] 

developed a unified, two-stage stochastic and robust optimization model for solving the 

unit commitment problem. This problem is formulated as a dual objective problem where 

one half of the objective minimizes the total production cost and the second half of the 

objective function minimizes the cost of the worst case scenario. These dual objectives 

are mutually weighted such that the sum of both weights equals one. In this way, the 

system operator can control the main objective and can thus control the solution time. 

This allows for a balance between the solution time and solution robustness depending on 

the problem being solved. This model is solved using Benders’ Decomposition by 

producing both feasibility and optimality cuts for both the stochastic and robust 

objectives separately. A comprehensive review of stochastic modeling applications for 

unit commitment can be found in [24].   

In order to solve stochastic models, there are generally two approaches. The first 

approach models all scenarios at the same time and produces a final solution after one 

iteration. This approach is useful for academic demonstrations on small problems but 

becomes technically infeasible for larger systems. The second approach decomposes the 

stochastic problem in many deterministic sub-problems. This technique is easily scalable 

to large problems while maintaining feasible solution times. This method requires an 

iterative solution process to solve the sub-problems and check for optimality. One 
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method to accomplish this is through the use of progressive hedging. Using this method, 

a variable defined as the implementable is calculated as the average solution across all 

scenarios. Then, this average solution is included into the objective function of the sub-

problems along with a penalty factor. This is to penalize the solutions that deviate from 

the optimal average solution. Once the deviation is below a predefined threshold, ε, the 

solution is considered to have converged and the optimal solution has been found 

[25][26]. The steps for this algorithm are given below. 

1. Solve all deterministic sub-problems, one per scenario 

2. Calculate the average solution across all scenarios, �̅� 

3. Update penalty factor, 𝜌 

4. Modify the objective function of sub-problems to include the following 

term: 

 𝜌 ∙ (𝑥 − �̅�) (7) 

5. Recalculate the average solution across all scenarios 

6. Check for solution convergence using the following criteria: 

 
∑ 𝑝𝑟𝑜𝑏(𝑠) ∙ ‖𝑥 − �̅�‖

𝑠

< 휀 
 

(8) 

a. If solution has converged, a solution has been found, exit the 

algorithm 

b. If solution has not converged, go back to step 3 
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There has been some research regarding the use of stochastic modeling and the 

determination of operating reserves. The authors of [27] compare the differences in 

generation dispatch decisions between using a flexible ramping product explicitly 

modeled in a deterministic market clearing algorithm versus a stochastic market clearing 

algorithm without this product. They have found that the dispatch decisions between 

deterministic and stochastic models can be quite similar if the flexible ramping product is 

appropriately modeled for the system. The deterministic model may not always produce 

the least cost solution if more expensive generators with desirable flexibility are included 

in the generation fleet. This is because the deterministic model will try to schedule the 

flexible capacity from the expensive generators without necessarily considering the fact 

this excess capacity may physically be delivered in the future. This problem can be 

mitigated to an extent by using penalty factors in the market clearing algorithm’s 

objective function but will still yield a solution that is less efficient, in terms of 

production costs, than the stochastic solution. 

The authors of [28] explore the differences between scheduling reserves in a 

deterministic and stochastic market clearing model. This model solves the daily 

commitment and dispatch problems at hourly temporal resolutions with extended look-

ahead horizons. They examined the differences in explicitly modeling a reserve 

requirement versus not including an explicit requirement. Simulations showed that not 

including the reserve requirements reduces production costs. They also conclude that the 

benefit of including an explicit reserve requirement is more pronounced for deterministic 

models rather than stochastic models. This is due to the inherent nature of stochastic 
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models to consider the variability and uncertainty in power system variables. They also 

found that the value of different reserve requirements (in terms of security and production 

costs) may not be consistent across methods, i.e. a reserve requirement that improves the 

reliability in one case may not have the same behavior in another case. The authors of 

[29] explore the modeling of reserves in systems with large amounts of wind penetration. 

The variability and uncertainty of the wind power is captured through a stochastic day-

ahead unit commitment problem and by Monte Carlo simulations for the economic 

dispatch problem. Their analysis is performed on eight representative days throughout the 

year and do not consider transmission constraints. The stochastic reserves 

implementation reduced the total production costs compared to the deterministic reserve 

implementations.  

 The inclusion of renewable energy resources as well as other emerging 

technologies, such as battery energy storage systems (BESS), will change the way power 

systems are operated and controlled. One significant change that has recently gained 

significant research interest is the development of microgrids. These are small, self-

sufficient power systems that are capable of supplying the entire load within their 

geographical footprint without assistance from the main power system. These types of 

systems typically utilize renewable energy resources to provide cheap, clean energy as 

well as some form of dispatchable energy. They are capable of operating with a live 

connection to the main power system, i.e. grid-connected mode, as well as completely 

isolated from the main power system, i.e. islanded mode. Due to the small nature of these 

power systems, it is critical to optimize the dispatch of the generation fleet to minimize 



18 

 

the operating costs and ensure that the system is operated reliably, namely there is 

sufficient capacity to supply the entire load. The authors of [30] present a distributed 

form of economic dispatch suitable for small, distributed power systems that can be 

solved iteratively to produce a least cost dispatch solution with minimum knowledge of 

the system. Each generator in this algorithm measures the system imbalance at its point 

of connection via measuring the frequency offset from nominal. Using this information, 

generators iteratively adjust their outputs to eliminate the frequency offset while 

maintaining the minimum dispatch cost, the cost of dispatching the generators to meet the 

total demand. One drawback for this algorithm is the number of iterations required to 

achieve the optimal dispatch may be considered technically infeasible based on the 

application. The authors of [31] present a day-ahead unit commitment formulation for a 

microgrid in both grid connected and islanding modes of operation. This formulation 

takes into account the ability of the grid to provide energy and reserves as well the 

uncertainty in power system variables such as load, wind, and solar generation. Results 

show that load shedding may be necessary to provide sufficient reserve capacity, 

especially for critical loads, during islanded operation. The amount of committed, 

dispatchable capacity will also increase as the uncertainty in the power system variables 

increase. This is due to the fact that larger generators need to be committed in order to 

cover a larger uncertainty space. 

 The authors of [32] present an economic dispatch formulation for determining the 

optimum generator dispatch set-points for a microgrid in both grid-connected and 

islanded modes. The economic dispatch problem considers the modification of the line 
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flow capacities in order to obtain a solution that takes into account the additional line 

flows due to connecting the microgrid with the main power grid and with modifying the 

operational reserve requirements. This modification of line flow limits is necessary 

during islanding operation in order to further improve the stability of the islanded 

microgrid. This formulation also takes into account the power sharing control techniques 

popular in the design of today’s microgrids, namely fixed-droop power sharing and 

adjustable-droop power sharing. In the first technique, the power balance is distributed 

based on generator nameplate capacities. In the second technique, the power balance is 

distributed based on the generator reserve schedules, a quantity that changes throughout 

the operation process. The economic dispatch problem is solved using a direct search 

method because it is simple to implement, has a robust formulation, and there is research 

being conducted in enhancing the algorithm’s performance. The authors of [33] proposed 

a microgrid scheduling algorithm that optimizes the energy and reserve schedules of all 

generators in the microgrid to minimize both the total production cost and the generated 

emissions. This model solves the daily operating plan for the microgrid operator at an 

hourly temporal resolution.  While the model of the microgrid’s operation is simple, it 

does include a formulation to allow demand response as a resource to participate in both 

energy and reserve scheduling. The dual objective optimization problem is formulated as 

an augmented ε-constraint problem. Essentially, the emissions reduction problem is 

broken into several smaller optimization problems covering different portions of the 

potential solution space. Once the sub-problems are solved, a single pareto-optimal 

solution can be defined via Fuzzy sets. Results from this analysis show that these 
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objectives are conversely related, i.e. improving one objective will deteriorate the other. 

For example, reducing the total emissions in the microgrid may result in increasing costs. 

 The authors of [34] propose a dual layer microgrid control scheme that considers 

the integrity of system voltages throughout the microgrid. The schedule layer provides 

the layout of connected generators, similar to the unit commitment problem. The dispatch 

layer provides the real time control of the generators within the microgrid, similar to the 

economic dispatch problem. One of the main benefits of this type of control scheme is 

that proper communication between layers can help mitigate real time control issues that 

arise due to imperfect forecasts of power system variables. The formulation utilizes 

power reserves to help compensate for forecast errors. The utilization of this control 

scheme along with energy storage systems and demand response allows the microgrid to 

operate economically in grid-connected mode and reliably in islanded mode. The authors 

of [35] present a hierarchical control scheme for a microgrid with the objectives of 

reducing the microgrid operating cost and improving the microgrid reliability. This 

control scheme utilizes a stochastic security constrained unit commitment and dispatch 

model formulated as a mixed-integer program (MIP). The control will determine the 

optimal control of microgrid energy components including distributed generators, 

renewable generators including wind and solar, an energy storage system, and the loads 

participating in demand response. One of the main design features of the microgrid is the 

redundant nature of the network that is designed to minimize the amount of unserved 

loads when there are power system component outages and the controlling of these lines 

via advanced switchgear. The controller operates the microgrid components at an hourly 
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resolution for the entire year. Results show that the use of this type of control scheme can 

reduce costs in terms of minimizing the amount of penalty incurred due to not serving 

load, energy arbitrage with the main grid, and optimally dispatching generating units. The 

reliability of the microgrid also improves in terms of the frequency of service 

interruptions and the duration of these interruptions.  

 The authors of [36] present an analysis performed in order to determine the 

optimal design configuration of a microgrid with the goals of providing energy and 

reducing carbon emissions. The analysis was performed using the Hybrid Optimization of 

Multiple Energy Resources (HOMER) developed by the National Renewable Energy 

Laboratory (NREL). A microgrid with a live connection to a larger power system 

provides the cheapest solution due to the lowest required capital costs. However, in a 

system that cannot rely only on a larger power system, a hybrid diesel-renewable energy 

microgrid provides the best tradeoff between reducing the net present cost, the levelized 

cost of energy, and carbon emissions. The analysis showed that the inclusion of the 

diesel-fired distributed generators is necessary to minimize the amount of unserved 

energy. There has also been some research in determining not only the most optimal mix 

of generation resources, but also in how to get the most benefit from those resources. The 

authors of [37] explore a solar panel control scheme that will allow the solar panel to 

provide frequency regulation on a microgrid. This control scheme tracks a portion of the 

maximum power point (MPP) of the solar panel, leaving a certain amount uncommitted. 

This uncommitted capacity can then be used as frequency regulation reserve. As 

frequency begins to decrease and the solar panel is engaged for frequency regulation, the 
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MPP tracker will move closer to the actual MPP of the solar panel, increasing the amount 

of energy provided to the microgrid, thereby helping to correct the frequency deviations. 

This type of control is similar to the control described in [38] for wind plants in that in 

order for the solar to provide regulation, it must withhold some of its potential energy 

capacity. The authors of [38] examine the potential usage of wind plants in providing 

ancillary services, namely regulation, in market environments. The analysis shows that 

wind turbines possess the necessary hardware to provide regulation. As long as the 

market properly incentivizes the wind turbine the provide regulation, i.e. the price of 

providing regulation exceeds the price of providing energy, the wind turbine can feasibly 

provide regulation. However, there are potential technical drawbacks since wind 

generators provide up regulation by operating below their actual capacities and provide 

down regulation by curtailing their output. 

1.4 My contributions to this research 

 

 The future of power systems will undoubtedly include more renewable energy 

generation resources as well as other emerging technologies such as energy storage 

systems. In this environment, it will be important to ensure that the power system, 

regardless of its size, continues to operate in an efficient and reliable manner. Successful 

adoption of these technologies will depend on maximizing the benefits they can provide 

will mitigating the challenges they introduce in daily operation. 

Operating reserves are one tool system operators use to efficiently operate the 

power system. Future power systems with high penetrations of wind and solar generation 
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will necessitate changes to the ways operators have historically defined operating 

reserves. This report will demonstrate an updated modification algorithm to better 

position the power system to absorb high renewable energy penetration scenarios. This is 

accomplished by explicitly taking into account the variability of wind and solar 

generators in the reserve requirement calculation algorithm. This is achieved by 

examining the actual imbalance occurring in the system due to the variability of wind and 

solar generation. 

Stochastic models still have some major barriers preventing them from becoming 

major players in industry. Perhaps the biggest barrier is the long computation times 

needed to arrive at an optimal solution. This is directly related to the number of scenarios 

and the structure of the scenarios being considered. This report will demonstrate the 

benefit of augmenting the stochastic model with explicit operating reserve requirements 

for optimal performance. In addition to this analysis, a three stage stochastic modification 

procedure will be presented that controls the structure of the stochastic model in real-time 

based on the realized variability and uncertainty in the system to optimize performance 

while maintaining solution integrity.  

Smaller power systems will arguably face more significant challenges due to their 

physical limitations. Larger power systems have implicit operating advantages such as 

thousands of synchronous generators all rotating at the same speed. Small disturbances 

have negligible impact because they cannot affect the entire system. Microgrids do not 

have this characteristic and special care must be given to the control techniques used to 

operate them. This report will demonstrate new control techniques of emerging 



24 

 

technologies, such as electric cars and energy storage systems, to better operate 

microgrids. These technologies can be used to participate in reserve scheduling for 

microgrids that can improve system operation in terms of costs and sometimes reliability. 

By controlling the ways these technologies participate in this reserve scheduling, the 

microgrid can also handle additional variable generation penetrations, as will be 

demonstrated in this report.    
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Chapter 2: Description of simulation platform 

 
In order to perform this analysis, a power system operations tool, known as the 

Flexible Energy Scheduling Tool for Integrating Variable generation (FESTIV), is used 

to simulate the scheduling and deployment of these operating reserves. This tool is 

developed by the National Renewable Energy Laboratory (NREL). This operation tool 

simulates all temporal resolutions of the scheduling process starting from day-ahead unit 

commitment all the way through automatic generation control (AGC). The first stage is 

the security-constrained day-ahead unit-commitment (DASCUC). During this stage, long 

start generation commitment decisions are made. This optimization is performed once 

before the operating day with hourly interval resolution. The second stage is the security-

constrained real-time unit-commitment (RTSCUC). During this stage, the commitment 

decisions for all generation resources are decided. This optimization is performed three 

hours in advance (sometimes referred to as the hour-ahead commitment step) with a 15 

minute interval resolution. The third stage is the security-constrained real-time economic 

dispatch (RTSCED). During this stage, the energy and ancillary service schedules for all 

generation resources is allocated. This optimization solves every five minutes while 

looking ahead for the next hour. The final stage is the AGC algorithm where generator 
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resource setpoints are adjusted to perform the real-time balance of generation and 

demand. This stage occurs every four seconds. Figure 2 shows the simulation flow chart. 

The unit commitment problems are formulated as mixed-integer linear programming 

(MILP) optimization problems. The economic dispatch problem is formulated as a linear 

programming (LP) optimization problem. All optimizations are formulated in the General 

Algebraic Modeling System (GAMS) and are solved using CPLEX [39]. The objective of 

all models is to minimize the production cost shown in (9). 

 
𝑚𝑖𝑛  ∑ ∑ 𝐶𝐺(𝑃𝑖𝑡) + 𝐶𝑆𝑈(𝑃𝑖𝑡) + 𝐶𝑁𝐿(𝑃𝑖𝑡) + 𝛾𝜎𝑡 + 𝛿𝜌𝑡

𝑡𝑖

 

 

 

(9) 

In (5), CG is the marginal cost of generation, CSU is the startup cost, CNL is the no 

load cost, 𝜎𝑡 is the amount load lost at time t, 𝜌𝑡 is the amount of insufficient reserves 

scheduled, 𝛾 and 𝛿 are penalty factors.  

The AGC is a rule based algorithm that allocates regulation requirements based 

on regulation schedules. In order to perform the regulation, the area control error (ACE) 

is calculated as shown in equation 5. 

 
𝐴𝐶𝐸(𝑡) = ∑ 𝑃𝑖(𝑡)

𝑖

− ∑ 𝐷𝑗(𝑡)

𝑗

     ∀𝑖 ∈ {𝐺}, ∀𝑗 ∈ {𝐿} 

 

(10) 

In (10), G is the set of all generation resources, L is set of electrical demands, Pi is 

the generation level of generator i and Dj is the electrical demand of resource j. The ACE 

is taken directly as the mismatch between generation and consumption. This formulation 

assumes perfect interchange knowledge between operating areas. The AGC algorithm 

then assigns regulation duties to all resources proportionally according to their regulation 

schedules to correct this ACE. The AGC module is typically executed every 4 seconds, 
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similar to the standard in the United States of performing AGC every 4-6 seconds. Figure 

2 shows the solution flow chart of this simulation platform. 

Reliability, as referred to in the rest of this report, is defined as the measure of the 

ACE accrued in the system. Systems experiences high values of ACE are said to be 

experiencing low reliability and vice versa for systems with low values of ACE. These 

ACE metrics can be used to measure system reliability performance with respect to 

satisfying NERC control performance standards. 
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Figure 2 – Simulation platform flow chart 

 The previous models all leverage a DC optimal power flow formulation, common 

among similar models proposed in literature and industry. It should be noted that these 

models do not contain any information regarding the reactive components in the power 

systems, e.g. reactive power and voltages. As a result, in order to ensure a feasible 



29 

 

solution, some form of security-check should be performed after the optimal power flow 

is solved. This can be accomplished via a security constrained optimal power, or AC 

optimal power flow. Another method could be to solve an AC power flow iteratively with 

the DC optimal power flow until a feasible solution is found. 

 The previous models are by default linear programs (LP) and mixed-integer linear 

programs (MILP). While other solution methods have been proposed, such as 

evolutionary programming, particle swarm optimization, Langrangian Relaxation, and 

dynamic programming, LP and MILP problems have become industry standards due to 

recent developments in computational science and their ability to find optimal solutions. 

CPLEX utilizes the dual problem formulated from the primal optimizations to gauge the 

maximum and minimum value of the objective function. When the gap between these 

separate bounds are within some predefined epsilon of each other, the simulation is 

completed and the optimal solution has been found.  
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Chapter 3: Improving Flexibility Reserves for System Operations 

 

3.1 Advanced flexibility reserve techniques 

 

Power system operators have historically withheld generator capacity to be 

deployed in response to system events. These operating reserves have been typically 

utilized to address unforeseen events, e.g. generator and transmission line outages, and 

small expected events, e.g. load following and regulation reserves. With the emergence of 

renewable energy generation that is dependent on intermittent fuel resources, i.e. wind 

speed and solar irradiance, a new class of operating reserves is being studied. These 

operating reserves are meant to help system operators ride through potentially severe 

ramping events from wind and solar generation as well as balance the sub-minute 

variability of these resources. 

The first step in this analysis was to perform a direct comparison of the different 

flexibility reserve requirements proposed in literature discussed in section 1.2. The 

following equations are used to capture the scheduling of operating reserves. Equation 

(11) represents the reserve balance constraint. This constraint ensures that the amount of 

reserve scheduled is at least enough to fulfil the current requirement. 
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∑ ∑ 𝑅𝑖,𝑡,𝜏 ≥ 𝛤𝑡,𝜏

𝑖𝑡

 

 

(11) 

  In (11), Ri,t,τ is the generator reserve schedule for generator i at time t for reserve 

type τ, and 𝚪t,τ is the reserve requirement for reserve type τ at time t. Equations (12) and 

(13) are used to set the maximum and minimum capability of a generator to provide 

reserves, respectively. 

 𝑃𝑖,𝑡 + 𝑅𝑖,𝑡,𝜏 ≤  𝑃𝑚𝑎𝑥,𝑖 ∙ 𝐼𝑖,𝑡 (12) 

 𝑃𝑖,𝑡 − 𝑅𝑖,𝑡,𝜏 ≥ 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝐼𝑖,𝑡 (13) 

  In (12) and (13), Pi,t is the generation scheduled for generator i at time t, Pmax,i is 

the maximum capacity of generator i, Pmin,i is the minimum capacity of generator i, and Ii,t 

is the binary commitment variable of generator i at time t. Equation (12) is binding for all 

reserve types that are in the upward direction and require the generator to be online. 

Equation (13) is binding for all reserve types that are in the downward direction and 

require the generator to be online. The commitment variable is binary, in which a value 

of 1 indicates that the generator is online and a value of 0 indicates that the generator is 

offline. Equation (14) prohibits generators from providing reserves if the generator is 

currently within the start-up or shutdown trajectory. 

 𝑅𝑖,𝑡,𝜏 ≤ 𝑃𝑚𝑎𝑥,𝑖 ∙ (1 − 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡) (14) 

  In (14), yi,t is a binary variable indicating whether a generator is being turned on, 

and zi,t is a binary variable indicating whether a generator is being turned off. The start-up 

and shutdown indicators are mutually exclusive—i.e., a generator cannot be experiencing 

both a shutdown and a start-up during the same interval. The start-up and shut-down 

indicators are related by equations (15) and (16). 



32 

 

 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡 = 𝐼𝑖,𝑡 − 𝐼𝑖,𝑡−1 (15) 

 𝑦𝑖,𝑡 + 𝑧𝑖,𝑡 ≤ 1 (16) 

   Equation (17) is used to determine the amount of available capacity a generator 

has that can participate in reserve scheduling. 

 𝑅𝑖,𝑡,𝜏 ≤ 𝐼𝑖,𝑡 ∙ 𝑅𝑅𝑖 ∙ 𝑅𝑇𝜏 + (1 − 𝐼𝑖,𝑡) ∙ 𝑄𝑆𝐶𝑖 (17) 

 

 In (17), Ii,t is the binary commitment variable of generator i at time t, RRi is the 

megawatt-per-minute ramp rate of generator i, RTτ is the response time of reserve 

product τ, and QSCi is the amount of megawatts generator i can quickly provide if it is 

turned on. The response time is time requirement of how quickly generators must provide 

the reserve. In this study, the quick-start capability of each generator is equal to its 

minimum generation capacity if it can reach that level within 30 minutes. Otherwise, the 

quick-start capacity is set to zero. 

With the model prepared, a test system needed to be designed. A modified version 

of the IEEE 118 bus test system is used in this analysis. The generation data was updated 

according to [40] to better capture available operation cost data. Wind and solar 

generation was added to reflect high penetration scenarios. Table 3 summarizes the 

generation mixes of the new system. 

System Characteristics 

Coal Capacity [TW] 2.3  

Combined Cycle  Capacity [TW] 2.76  

Combustion Turbine Capacity [TW] 2.52  

Peak Load [TW] 6.9  

Average Annual Solar Energy Penetration [%] 17.45  

Average Annual Wind Energy Penetration [%] 16.98  

Table 3 - Modified IEEE 118 Bus Test System Characteristics 
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 The penetration levels in Table 3 are with respect to actual load. The wind and 

solar data is taken from available data sets for northern California provided by the 

National Renewable Energy Laboratory [41]. Since the purpose of this report is not to 

optimize the locations of VG resources, the wind and solar plants were sited to maximize 

access to transmission capacity and thereby minimize potential curtailment. The system is 

then prepared to simulate an entire week’s operation for four separate months, namely 

January, April, July, and October. This is done to capture the season trends in the load, 

wind, and solar profiles.  

 The simulation workflow is adjusted to perform the three stage modification 

process. The modification occurs before every optimization problem is solved. The 

modified simulation workflow is shown in Figure 3. 
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Figure 3 – Modified simulation workflow with 3-Stage modifiers 

 

 With the system prepared, the flexibility reserves need to be determined. In this 

report, several different reserve requirement methodologies are considered based on 
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techniques available in literature to get an idea of available flexibility reserve 

methodologies. These flexibility reserves are considered as excess capacity withheld 

during the scheduling process to account for unforeseen ramping events during real time 

operations. The first three reserve methods considered are based strictly on available load 

data. The method determines the flexibility reserve requirement as the megawatt (MW) 

requirement necessary to cover 70% of hour-ahead load forecast errors. In order to gain 

insight into the sensitivity of this number, a second reserve requirement is used that only 

covers 50% of the hour-ahead load forecast errors. In order to investigate the benefit of a 

dynamic requirement versus a static requirement, a third reserve requirement was 

implemented as the mean of the 70% requirement, constant for all time. These three 

methods can be generally categorized as load-based flexibility reserve requirements. 

 A forth reserve requirement is calculated based on [7] as mentioned in section 1.2. 

For this method, the wind, solar, and load forecasts are treated independently. The 

contribution to the total requirement from each data set is the MW requirement needed to 

cover 70% of the hour-ahead forecast errors. Then the final requirement is taken as the 

geometric sum of each individual contribution. To gain insight into the sensitivity of this 

requirement, a fifth requirement is used that covers only 50% of the individual forecast 

errors. These two requirements can be generally classified as variability-based flexibility 

reserve requirements since each data set is treated separately and their individual 

contributions are calculated separately.  

 A sixth reserve requirement that is inspired by [14] and [18] is also considered. 

This requirement calculates the MW requirement needed to cover 95% of the day-ahead 
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net-load forecast errors. The net load is defined as the actual load profile minus the 

contributions by wind and solar generators. This method caps the maximum requirement 

as the size of the largest generation asset, in this case 700 MW. In order to gain some 

insight into this sensitivity of this method, a seventh reserve requirement that covers 90% 

of the day-ahead net-load forecast errors was also used. These two reserve methods can 

be generally classified as net-load based flexibility reserve requirements.  

 An eighth reserve requirement inspired by [15] is used to compare against a more 

sophisticated reserve requirement methodology. This method implements the flexibility 

reserve demand curve (FRDC). The shape of the demand curve is summarized in Table 4. 

 

 DASCUC RTSCUC RTSCED 

Step Width [MW] 250 50 50 

Penalty Costs, Up Direction [$/MW] 250, 24, 15, 8, 2.5 

Penalty Costs, Down Direction [$/MW] 250, 3.6, 2.25, 1.2, 0.375 

Table 4 – Breakpoints on the FRDC implementation 

 Due to insufficient available data, historical data for a single year was used for 

northern California to determine the FRDC breakpoints. These breakpoints are functions 

of net-load forecast errors and will be detailed later. Another sample FRDC is shown in 

Figure 4 for convenience.  

 

Figure 4 – Example FRDC curves 
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 The left FRDC in Figure 4 shows a basic FRDC under normal operating 

conditions. The breakpoints on the FRDC are dynamically set for each optimization step. 

FRMIN and FRMAX are the minimum and maximum flexibility reserve requirements 

respectively. Each step in the FRDC has an associated penalty cost for insufficient 

reserve. The purpose of the FRDC is so that the system will schedule additional 

flexibility reserves when economically feasible to do so, namely when the marginal cost 

of providing the flexibility reserve is less than associated penalty cost. These 

requirements are set in both the upward and downward directions. If FRMIN is negative, 

the FRDC is shifted to the first nonnegative step (Figure 4, right). The calculation of the 

minimum and maximum breakpoints are outlined below for each model: 

 

 DASCUC: Day-ahead flexibility requirements are calculated based on the hourly 

difference in net load. FRMIN is calculated based on the difference in day-ahead 

forecasts for each hour. FRMAX is calculated as the 97.5th and 2.5th percentiles for 

historic net load hourly ramps for each month and hour of the day for the upward and 

downward directions, respectively. It is a 60-minute product. 

 RTSCUC: Intra-day unit commitment happens with a frequency of 15 minutes in the 

simulations. FRMIN is calculated as the difference between the forecast for each of 

the 5-minute RTSCED steps that correspond to each RTSCUC solution. FRMAX is 

calculated as the 95% confidence interval for historic FRMIN for each hour of the 

day within a month. Requirements are calculated for the binding and advisory 

intervals. It is a 5-min product. 
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 RTSCED: Real-time economic dispatch flexibility reserve requirements are based on 

the difference of each consecutive 5-minute forecasts for net load, both for the 

binding and advisory intervals. FRMIN values are calculated as the expected 5-

minute ramps in the net load forecasts. Up and down FRMAX values are calculated 

to cover 95% of the historic net load differences. It is a 5-min product. 

The maximum FRDC requirements for each of the three submodels for the month of 

October in both the upward and downward directions is shown in Figure 5. 

 

Figure 5 – FRDC maximum requirements for the month of October 

 A summary of all the different flexibility reserve techniques considered in this 

report is shown in Table 5. These requirements will be used to gain insight into the 
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operational implications of flexibility reserve to develop a more efficient means of setting 

the requirements. 

Name Flexibility Reserve Calculation 

Base No flexibility reserve 

Case 0 Static , based on Case 1 average 

Case 1 Based on 70% of load forecast error 

Case 2 Based on 50% of load forecast error 

Case 3 Based on 70% of VG and load forecast error 

Case 4 Based on 50% of VG and load forecast error 

Case 5 Based on 95% of net load forecast error 

Case 6 Based on 90% of net load forecast error 

Case 7 Based on dynamic FRDC net-load calculations 

Table 5 – Summary of different flexibility reserve scenarios 
 

3.2 Analysis of advanced flexibility reserve techniques 

 

 All the cases summarized in Table 5 were simulated and the results are shown in 

Table 6. The column labeled cost is the total system-wide production cost. The 

production cost per generator is defined as the product of the energy produced by that 

generator and the marginal cost of generation for that generator including start-up and no-

load costs. The second column is the number of spikes in the real-time price of energy, or 

locational marginal price (LMP). This column indicates the number of real-time market 

infeasibilities. This metric is useful because one of the potential benefits of flexibility 

reserves mentioned throughout literature is the potential of flexibility reserves to reduce 

the number of real-time price spikes. The third column is the absolute ACE in energy 

(AACEE). This metric is the integral of the absolute value of ACE over the entire study 

period. This metric provides some insight into how well the system was balanced. The 

fourth column is the standard deviation of the ACE.  
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  Case 
Cost 

[$M] 
 Cost 

Number 

Of Price 

Spikes 

 Number 

of Price 

Spikes 

AACEE 

[MWh] 
 

AACEE 

σACE 

[MW] 
 σACE 

Ja
n

u
ar

y
 

Base 12.44 – 226 – 2,201 – 25.3 – 

Case 0 12.49 0.3% 160 -29.2% 2,379 8.08% 28.6 13.0% 

Case 1 12.42 -0.2% 176 -22.1% 2,145 -2.52% 24.8 -2.0% 

Case 2 12.40 -0.3% 179 -20.8% 2,160 -1.85% 25.0 -1.1% 

Case 3 12.17 -2.2% 104 -54.0% 2,070 -5.92% 23.2 -8.0% 

Case 4 12.53 0.7% 118 -47.8% 2,023 -8.06% 23.4 -7.4% 

Case 5 13.09 5.2% 0 -100% 1,903 -13.52% 22.6 -10.8% 

Case 6 12.95 4.1% 0 -100% 1,883 -14.44% 21.6 -14.6% 

 Case 7 12.11 -2.7% 6 -97.4% 2,231 1.36% 24.5 -3.2% 

A
p

ri
l 

Base 7.83 – 219 – 3,044 – 39.4 – 

Case 0 7.85 0.2% 206 -5.9% 3,184 4.58% 44.5 13.0% 

Case 1 7.92 1.0% 199 -9.1% 2,993 -1.70% 40.4 2.5% 

Case 2 7.87 0.5% 192 -12.3% 2,815 -7.53% 37.6 -4.6% 

Case 3 8.018 2.4% 161 -26.5% 2,880 -5.39% 39.1 -0.8% 

Case 4 7.987 2.0% 166 -24.2% 3,026 -0.60% 40.7 3.1% 

Case 5 9.279 18.4% 0 -100% 3,341 9.73% 50.9 29.0% 

Case 6 8.982 14.7% 3 -98.6% 3,061 0.54% 44.8 13.7% 

 Case 7 8.22 5.0% 25 -88.6% 2,917 4.17% 35.3 -10.4% 

Ju
ly

 

Base 17.74 – 459 – 5,522 – 94.4 – 

Case 0 17.92 1.1% 425 -7.4% 4,264 -22.78% 70.0 -25.8% 

Case 1 17.93 1.1% 425 -7.4% 4,959 -10.19% 87.0 -7.8% 

Case 2 17.90 0.91% 448 -2.4% 4,887 -11.50% 83.3 -11.7% 

Case 3 17.56 -0.98% 366 -20.3% 2,675 -51.55% 51.0 -45.9% 

Case 4 18.12 2.2% 412 -10.2% 3,960 -28.28% 66.1 -30.0% 

Case 5 18.27 3.0% 31 -93.3% 1,063 -80.74% 11.9 -87.4% 

Case 6 18.46 4.1% 53 -88.5% 1,060 -80.81% 11.8 -87.5% 

 Case 7 17.66 -0.45% 101 -78.0% 1,388 -74.86% 16.0 -83.1% 

O
ct

o
b

er
 

Base 9.09 – 130 – 2,117 – 27.6 – 

Case 0 9.09 0.1% 91 -30.0% 2,151 1.64% 29.0 4.8% 

Case 1 9.11 0.2% 99 -23.9% 2,101 -0.72% 27.6 0.01% 

Case 2 9.16 0.8% 116 -10.8% 2,264 6.96% 30.7 11.3% 

Case 3 9.12 0.4% 59 -54.6% 2,135 0.86% 30.5 10.6% 

Case 4 9.12 0.4% 79 -39.2% 2,044 -3.44% 26.9 -2.7% 

Case 5 10.16 11.8% 1 -99.2% 2,223 5.02% 33.5 21.4% 

 Case 6 9.94 9.4% 2 -98.5% 2,187 3.35% 31.6 14.5% 

 Case 7 9.31 2.4% 8 -93.9% 2,172 2.60% 26.8 -2.9% 

Table 6 – Flexibility reserves simulation results 
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The production costs in general are not changed very much. However, for cases 5 

and 6, the production costs are notably increased. These cases are overly conservative in 

their attempt to cover 95% and 90% of day-ahead net-load forecast errors. This results in 

the over commitment of generators. All cases exhibit this behavior; however, it is 

magnified in cases 5 and 6. Figure 6 shows the amount of excess capacity in all cases for 

the April simulations. 

 

Figure 6 – Unused thermal capacity in the month of April across all cases 

 This excess capacity is directly related to the number of committed thermal 

generators (maximum of 74 generators). The flexibility reserve requirement results in the 

commitment of additional thermal generators in order to meet the additional flexibility 

requirements (Figure 7). These additional commitments resulted in slightly higher 

production costs, as shown in Table 6. 
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Figure 7 – Number of thermal generators committed in April 

 The flexibility reserves also have implications on economic metrics as well. 

Figure 8 shows an LMP duration curve for the month of October across all cases.  

 

Figure 8 – LMP duration curve for October across all cases 
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The additional thermal generators provide an interesting result with respect to VG 

penetration and ultimately LMPs. The excess capacity results in times where all online 

generators are operating at or near their minimum generation levels and as a result cannot 

be backed down any further. Coincidentally when wind and solar generator outputs are 

increasing, the only available mechanism for the system operator to maintain reliability, 

i.e. minimize ACE, is to curtail the VG output. The curtailment of VG output, the 

marginal units of energy in the system, result with significant times where the price of 

energy is 0 $/MWh. Notice, in Table 7, as the requirement becomes more conservative, 

the amount of curtailed VG also increases. This is because more generators are 

committed for the more conservative requirements and this magnifies the minimum 

generation problem mentioned earlier.  

 January April July October 

Base Case 11.83 28.34 11.42 20.48 

Case 0 12.04 29.51 12.09 19.65 

Case 1 11.92 30.24 12.12 20.62 

Case 2 11.81 29.31 11.42 19.63 

Case 3 11.93 31.01 11.97 20.65 

Case 4 13.13 30.51 12.09 20.53 

Case 5 19.64 43.36 19.67 30.65 

Case 6 18.60 41.97 19.68 29.41 

Case 7 15.02 32.38 11.35 25.44 

Table 7 – VG curtailment per case per month in GWh 

Another benefit of the flexibility reserves mentioned in literature is the potential 

for converging day-ahead and real-time prices. The analysis performed in this study 

confirm this behavior. Figure 9 shows the mean-absolute difference between day-ahead 

and real-time LMPs. 
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Figure 9 – Mean-absolute difference between day-ahead and real-time LMPs across all 

cases 

 There are also noticeable implications on reliability metrics. Figure 10 shows the 

accumulated ACE broken down by direction. Notice in July that the amount ACE 

accumulated in the positive direction, i.e. as a result of over-generation, is relatively flat 

across all cases. This means that under peak loading conditions, the system is more 

susceptible to under-generation and can benefit greatly from additional upward ramping 

capacity. Outside of the peak loading condition, the system mostly incurs positive ACE 

during the valleys of net-load profile. This implies that there are significant times where 

the net-load is decreasing and online thermal generators cannot ramp down quick enough 

to accommodate the wind and solar generation ramping up. This implies that the system 

could benefit from additional downward ramping capacity.  
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Figure 10 – Accumulated ACE broken down by direction across all cases 

 Figure 11 shows the distribution of ACE across all cases for all months. From 

these distributions, it can be seen that the majority of the ACE being realized in the 

system occurs between positive and negative 20 MW. This is important because in order 

to substantially improve reliability metrics, reserve methodologies should focus mainly 

on reducing the tails of these distributions and a secondary objective should be tightening 

the distribution around zero. Another interesting deduction from these distributions is that 

the majority of flexibility requirements have similar distributions, i.e. the distributions 

overlap, regardless of the complexity of the reserve determination method. This implies 

that there is a capacity threshold that once exceeded, results in similar commitment 

decisions by the optimization.  
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Figure 11 – Distributions of raw ACE across all cases 

 The inclusion of the flexibility reserve requirement has minimal implications on 

transmission congestion as well. In general, all the different flexibility reserve 

requirements studied in this report reduced the number of intervals exhibiting 

transmission congestion, shown in Table 8. Transmission congestion is defined as any 

interval where the flow on a transmission line exceeds 95% of its rated capacity. 

However, there are some cases where the number of congested intervals increased. The 

congestion in this system is highly dependent on the commitment decisions being made 
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and since the flexibility reserve requirements do not drastically change the commitment 

decisions, the congestion is minimally impacted.  

 January April July October 

Base Case 1.51 % 1.47 % 1.87 % 1.28 % 

Case 0 1.55 % 1.44 % 1.81 % 1.29 % 

Case 1 1.55 % 1.51 % 1.83 % 1.25 % 

Case 2 1.60 % 1.46 % 1.85 % 1.32 % 

Case 3 1.54 % 1.38 % 1.87 % 1.22 % 

Case 4 1.59 % 1.39 % 1.77 % 1.23 % 

Case 5 1.35 % 1.10 % 1.68 % 1.20 % 

Case 6 1.45 % 1.16 % 1.72 % 1.19 % 

Case 7 1.52 % 1.39 % 1.70 % 1.23 % 

Table 8 – Percentage of intervals with transmission congestion 

 The previous analysis provides significant insight into the operational 

implications of flexibility reserves. These insights can be used to develop a modified 

flexibility reserve requirement that can better position the system to handle the additional 

variability and uncertainty introduced by VG resources. The following conclusions can 

be made: 

1. All of the flexibility reserve requirement methodologies do not explicitly consider 

the variability of wind and solar generation. Uncertainty is accounted for via some 

form of consideration of the forecast errors.  

2. When the system is operating in the valleys of the net-profile, the system has a 

tendency to accumulate ACE is in the positive direction. 

3. Due to the commitment of additional thermal generation, there are times when 

these generators are operating at their minimum generation levels and zero-cost 

wind and solar generation must be curtailed to accommodate unexpected ramps in 

the net-load profile. 
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4. The excess thermal capacity committed does provide additional ramping capacity. 

However, if this extra requirement results in the commitment of larger, slower 

generators rather than several smaller, faster generators, this may have an adverse 

effect on the system imbalance. 

5. Flexibility reserves have been found, both in literature and this analysis, to reduce 

the total number of real-time price spikes. 

6. Flexibility reserves also help reduce the divergence between day-ahead and real-

time energy prices. 

 

3.3 Three-Stage Reliability-Based Reserve Modifiers for Enhanced Operation 

 

 Based on the analysis and conclusions discussed in section 2.4, a new reserve 

modification algorithm is proposed. This new reserve modification technique overcomes 

the shortcoming of traditional flexibility reserve techniques that do not explicitly consider 

the additional variability introduced by VG resources. This section will detail an ex post 

facto addendum to any reserve requirement methodology that explicitly accounts for 

additional variability introduced by VG resources. This three-stage process is designed to 

improve reliability metrics with minimal impacts on economic metrics. This new three-

stage process is outlined below: 

Step 1. Calculate modifier α1. 

 
𝛼1 = 1 −

𝑁𝑒𝑡 𝐿𝑜𝑎𝑑

𝐴𝑐𝑡𝑢𝑎𝑙 𝐿𝑜𝑎𝑑
 

 

(18) 
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Step 2. If α1 ≥ 0.70, then increase the downward reserve requirement by one percent. 

 If α1 < 0.70, then increase the upward reserve requirement by one percent. 

 

Step 3. Calculate modifier α2. 

 
𝛼2 = 1 −

𝐴𝑐𝑡𝑢𝑎𝑙 𝑉𝐺 𝑂𝑢𝑡𝑝𝑢𝑡

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑉𝐺 𝑂𝑢𝑡𝑝𝑢𝑡
 

 

(19) 

 

Step 4. If α2 ≤ 0.40, then increase the downward reserve requirement by one percent. 

 If α2 > 0.40, then increase the upward reserve requirement by one percent. 

Step 5. Calculate modifier α3. 

 

𝛼3 =

1
𝑇 ∫ 𝐴𝐶𝐸(𝜏) 𝑑𝜏

 

𝑇

𝐿10
 

 

(20) 

 

Step 6. If α3 > 0, then increase the downward reserve requirement by one percent. 

 If α3 < 0, then increase the upward reserve requirement by one percent. 

The first stage of this process looks to determine whether or not the system is 

operating in the valleys of the net load profile. During these times, reserves in the 

downward direction are more valuable than upward reserves since upward generation can 

be obtained via VG curtailment. The second stage looks at the actual curtailment of VG 

power output. If the curtailment is exceeding some predefined threshold, in this case 

40%, then the downward reserves are increased. This is intended to help mitigate 
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curtailment occurring due to inflexible online capacity. The first two stages are based on 

the actual uncertainty in the system occurring in real time. The final stage takes into 

account the actual variability occurring in the system. This is captured via consideration 

of the actual ACE. This stage looks into the actual ACE being realized in the system in 

real time. The numerator is the average of the last T minutes, in this case 5 minutes. The 

denominator is the L10 threshold from the NERC Compliance Performance Standard 2 

(CPS2) for the balancing area being studied. If this modifier is positive, positive ACE is 

being accumulated, and the downward reserve requirement should be increased, and 

similarly if the average ACE is negative. The modified reserve requirement is capped so 

as not to exceed 2% of the actual load at the same time. While in theory, increasing 

reserves will result in approaching a perfectly reliable system, in practice, this is not 

economically feasible. Thus it is important to ensure that the reserve requirement 

improves the reliability metrics while, at worst, maintaining the same total system-wide 

cost. The cap of 2% is double the standard integration study practice by the WECC 

TEPPC of 1% of the current load. The threshold values associated with each stage are 

determined empirically using an iterative trial-and-compare technique until a sufficient 

optimal solution was obtained. While this reserve modification algorithm is reliability-

based and designed to improve reliability metrics in terms of ACE, it could potentially 

yield economic savings if this improvement results in avoiding potential NERC sanctions 

as a result of violating CPS2 requirements which can be greater than $300,000 per 

violation [42].  
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The analysis performed in section 2.4 is repeated with the three-stage reserve 

modification algorithm included in the optimizations. All operating assumptions and 

system characteristics are kept constant. This allows for the implications of the three-

stage reserve modification algorithm to be extracted. Table 9 summarizes the difference 

in the results from section 2.4 by including the three-stage reserve modification 

algorithm. The columns in Table 9 from left to right correspond to the change in total 

system wide production cost, the change in AACEE, the change in the standard deviation 

of the ACE, the change in the number of real time price spikes, and the change in number 

of real time market infeasibilities.  
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 Case  COST 
 

AACEE 
 σACE 

 Number of 

Price Spikes 
 RT Inf. 

Ja
n
u
ar

y
 

Case 0 -4.0% -21.2% -22.6% -50.0% -91.5% 

Case 1 -0.4% -13.4% -11.3% -51.1% -79.8% 

Case 2 -0.2% -14.9% -14.7% -52.0% -88.7% 

Case 3 2.1% -11.0% -8.3% -57.7% -78.7% 

Case 4 -0.8% -8.4% -6.9% -39.8% -68.3% 

Case 5 -1.3% 0.3% 7.6% - - 

Case 6 -0.2% -1.3% 5.7% - - 

 Case 7 -0.3% 2.4% 3.5% 11% 190% 

A
p
ri

l 

Case 0 2.7% -16.3% -10.3% -45.6% -74.6% 

Case 1 1.5% -14.5% -17.7% -42.2% -68.4% 

Case 2 1.5% -6.0% 0.4% -27.1% -55.7% 

Case 3 1.9% -13.9% -10.8% -55.9% -55.3% 

Case 4 1.9% -16.3% -11.0% -50.0% -51.0% 

Case 5 -1.0% -5.1% -6.0% - - 

Case 6 0.6% -1.4% 1.6% -100.0% -100% 

 Case 7 0.7% 6.3% 7.9% -20% -35.4% 

Ju
ly

 

Case 0 -1.1% -13.7% -7.8% -9.6% -16.8% 

Case 1 -1.0% -19.6% -19.7% -11.5% -23.9% 

Case 2 -0.8% -24.0% -15.4% -18.8% -29.2% 

Case 3 -1.3% -16.0% -2.3% -28.1% -25.0% 

Case 4 -2.0% -9.0% -6.3% -7.8% -11.1% 

Case 5 1.9% -6.4% -6.5% -48.4% 168.9% 

Case 6 -0.4% -8.5% -8.0% -24.5% -65.3% 

 Case 7 -0.0% -0.2% -0.7% -2.0% 23.1% 

O
ct

o
b
er

 

Case 0 0.7% -14.7% -16.1% 3.3% -34.2% 

Case 1 1.0% -13.0% -13.36% -17.2% -20.6% 

Case 2 0.0% -20.3% -23.3% -28.4% -44.2% 

Case 3 0.0% -9.3% -11.9% 0.0% -6.9% 

Case 4 0.6% -10.1% -10.1% -27.8% -19.7% 

Case 5 -1.4% -2.2% -1.9% 100.0% 2.5% 

Case 6 0.0% 3.7% 7.4% 0.0% -57.8% 

 Case 7 -0.1% -0.8% -0.7% 20% 57.1% 

Average 0.03% -9.34% -7.17% -23.50% -33.9% 

Table 9 – Change in reliability and economic metrics due to three-stage reserve 

modification 
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 The results in Table 9 show an important result summarized in the final row. The 

average impact across all cases with the three-stage reserve modification algorithm is 

able to improve all of the reliability metrics across the board while minimally impacting 

the total system production cost. There are some blank entries in this table and that is 

because the three-stage reserve modification process did not impact the result.  

 One of the benefits of the three-stage reserve modification algorithm is its impact 

on the ACE occurring in the system. Figure 12 shows the distributions of the ACE across 

all scenarios for all months. The plots on the left correspond to the scenarios without the 

three-stage reserve modifiers starting from January (top) through October (bottom). The 

plots on the right correspond to the same scenarios re-run with the three-stage reserve 

modifiers. The modifiers help converge the distributions across cases implying the 

modifiers allow the generators to reach a more optimal dispatch solution. In general, the 

distributions with the modifiers are also more symmetric around zero which is desirable 

to help mitigate generator wear in a single direction and removes any undesirable bias in 

the imbalance. 

 The modifiers, while designed around reliability metrics, also have implications 

on economic metrics as well. As was mentioned before, the three-stage reserve 

modification process is able to further reduce the number of real-time price spikes. This 

is desirable because it helps minimize the volatility of the real-time electricity market. 

Another benefit in this regard is the ability of the modifiers to further converge the day-

ahead and real-time energy prices. Table 10 shows the change in the difference between 

the mean-absolute day-ahead LMP and real-time LMP by including the three-stage 
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modifiers. This metric essentially reflects the convergence of the electricity markets, a 

value of zero implying that the day-ahead and real-time markets have the same LMP. A 

negative value in Table 10 implies that the case with the modifiers was able to further 

converge the prices by the magnitude of the value. For example, including the modifiers 

further converges the day-ahead and real-time LMPs in July Case 2 by 3.36 $/MWh.  

 

 
January April July October 

Case 0 -0.27 -1.68 -2.56 -0.40 

Case 1 0.31 -0.09 -2.19 -0.35 

Case 2 -0.98 0.82 -3.36 -1.37 

Case 3 0.79 -1.22 -3.40 -0.37 

Case 4 -0.61 -1.16 -3.65 -0.93 

Case 5 0.99 -0.42 0.51 0.02 

Case 6 -0.65 -1.32 -1.55 0.19 

Case 7 -0.01 -0.43 -0.14 -0.02 

Average -0.05 -0.69 -2.04 -0.40 

Table 10 – Mean absolute difference between DA and RT LMPs in $/MWh 
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Figure 12 – Distribution of ACE across all cases with the modifiers (right) and without 

(left) 
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 As the landscape of electric power systems continues to evolve, the operating 

strategies with which system operators have historically relied on will need to change. 

This is especially true of operating reserves. Due to the inherent individuality of power 

systems, there is no clear cut operating strategies enforced across all systems. Rather, 

each operator operates their own system according to its own best interest since each 

power system can significantly vary due to demand profiles, geographical footprints, 

social pressures, political agendas, etc. Therefore, in order to maximize positive impacts, 

it is important to improve operational guidelines rather than specific operational 

strategies.  

 With this in mind, this report proposed a three-stage reserve modification process 

that was designed with the goal of improving reliability metrics with minimal impacts on 

economic metrics. This process addresses several shortcomings of different operational 

flexibility reserve methodologies proposed in literature by industrial and academic 

professionals. Firstly, this process explicitly captures the variability of wind and solar 

generation in determining the final reserve requirement. Secondly, the proposed three-

stage modification process is dynamic and takes into account the current operating state 

of the system as opposed to the static reserve calculation methods proposed in literature. 

Thirdly, this process is also independent of individual operating reserve calculation 

methodologies. That means that this process can be applied to any operating reserve 

methodology.  

 This three-stage reserve modification process was shown to on average, improve 

the reliability metrics across the board and across all cases simulated. While designed 
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with the intention of improving reliability metrics, it also provided economic benefits. 

The three-stage process is able to further reduce the number of real-time prices spikes and 

it also further converges the day-ahead and real-time energy prices. Because this three-

stage process happens just before the optimization and is a strict calculation, it can be 

easily implemented in any market clearing algorithm with minimal impact on hardware 

execution time, which is desirable especially for large power systems. While not perfect, 

this proposed algorithm should help system operators more accurately account for the 

increased variability and uncertainty introduced by wind and solar generation under high 

penetration scenarios. 
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Chapter 4: Using Stochastic Modeling to Address System Uncertainty 

4.1 Motivation 

 

 As renewable energy resources become more ubiquitous in tomorrow’s power 

systems, the way system operators treat them will have to adapt. Typically, wind and 

solar generation are treated as price-takers. This means that they generate what they are 

physically capable of and the power system operator must adjust the remaining online 

generation to accommodate them. While this may be feasible under low penetrations, this 

paradigm will offer significant challenges under high penetration scenarios. System 

operators will have to find ways to include these resources in market clearing models so 

that they become fully integrated into power system operations. One of the major 

challenges in this regard is the additional variability and uncertainty that they introduce 

into the system.  

Since these resources are naturally uncertain, it is natural to extend their 

representations into the stochastic modeling space. With unlimited time and 

computational power, it is not unreasonable to assume that power system operators could 

solve a stochastic representation of the energy scheduling problem to an optimal solution 

that guarantees security without the need to withhold capacity in the form of operating 
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reserves. However, due to computational limits, the amount of uncertainty scenarios that 

can be considered must be reduced. Reducing the number of scenarios results in 

increasing the uncertainty in the solution. One way to accommodate this shortcoming is 

by introducing an explicit operating reserve requirement, similar to those described in 

Chapter 3, which can be used to address this uncertainty. This report will explore the 

benefits of using an explicit operating reserve requirement in a stochastic modeling 

formulation and improve on this formulation by adapting to realized variability and 

uncertainty occurring in real time in the power system. 

4.2 Stochastic Formulation 

 

 The base simulation platform described in Chapter 2 is modified to expand its 

capability into the stochastic modeling domain. The unit commitment problems 

(DASCUC and RTSCUC) utilize a progressive hedging algorithm to help solve the 

multiple scenarios to a good enough solution as outlined in Chapter 1. This is an iterative 

process that solves each scenario separately, as a single deterministic sub-problem, and 

compares the optimal solution of all scenarios against each other. If the difference 

between solutions is too great, the optimization is updated with a penalty factor and 

solved again. This process continues until a final solution is found. The solution process 

is outlined below. 

1. Modify the objective function of sub-problems with relaxed term: 

 𝜌 ∙ (𝑥 − �̅�) (21) 

2. Solve all deterministic sub-problems, one per scenario, 𝑥 
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3. Calculate the average solution across all scenarios, �̅� 

4. Check for solution convergence using the following criteria: 

 
∑ ∑ ∑ 𝜆𝑖𝑡𝑠

𝑠𝑡𝑖

< 휀 
 

(22) 

5. If solution has converged, solution found, end of search. If solution has 

not converged, continue to step 5. 

6. Update penalty factor, 𝜌 

7. Go back to step 3 

The previous steps give some high level insight into the solution process. The use 

of the progressive hedging algorithm helps enforce the non-anticipativity across all 

scenarios. The sub-problems utilize Langrangian Relaxation in order to facilitate the 

iterative solution process. The relaxed objective function is given in (37). 

 
𝑚𝑖𝑛  ∑ ∑

𝐶𝐺(𝑃𝑖𝑡) + 𝐶𝑆𝑈(𝑃𝑖𝑡) + 𝐶𝑁𝐿(𝑃𝑖𝑡) + 𝛾𝜎𝑡 + 𝛿𝜌𝑡

+𝜌 ∙ (𝑥 − 𝑥) + 𝑤 ∙ (|𝐶𝑖𝑡 − 𝐼𝑖𝑡| − 𝜆𝑖𝑡)
𝑡𝑖

 

 

(23) 

This additional terms in the objective function help converge the solutions, i.e. 

enforce non-anticipativity across scenarios via progressive hedging, and move the 

solution towards the optimal solution via updates to the updated Langrangian multiplier, 

w. The process of updating the Langrangian multiplier w is outlined below. 

1. Solve for the sub-gradient of each individual scenario 

 𝜎𝑖𝑡𝑠 = 𝑐𝑖𝑡𝑠 − 𝐼𝑖𝑡𝑠 (24) 
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2. Determine the step size to approach the optimal solution 

 
𝑁𝑡 = √∑ ∑ ∑(𝑐𝑖𝑡𝑠 − 𝐼𝑖𝑡𝑠)2

𝑠𝑡𝑖

 

 

(25) 

 
𝑖𝑓 

𝑁𝑡−1

𝑁𝑡

≤ 1, 𝑡ℎ𝑒𝑛 𝜏𝑡 = (
𝑁𝑡−1

𝑁𝑡

)
3

∙ 0.75 ∙ 𝜏𝑡−1 ∙
𝑁𝑡

(𝑁𝑡−1 + 0.001𝑁𝑡)
 

 

(26) 

 
𝑖𝑓 

𝑁𝑡−1

𝑁𝑡

> 1, 𝑡ℎ𝑒𝑛 𝜏𝑡 = (
𝑁𝑡−1

𝑁𝑡

)
2

∙ 0.75 ∙ 𝜏𝑡−1 ∙
𝑁𝑡

(𝑁𝑡−1 + 1.001𝑁𝑡)
 

 

(27) 

3. Update the Langrangian multiplier, λ 

 λ𝑖𝑡𝑠 = 𝜏𝑡 ∙ 𝜎𝑖𝑡𝑠 (28) 

 This process utilizes an adaptive step size to adjust the solution step (step 2 

above) to control the convergence speed of the problem [43]. The final solution is a near-

optimal solution relative to all scenarios. In order to adjust the penalty factor ρ, a cost-

proportional strategy is used the updates the penalty factor based on difference between 

the scenario solutions, i.e. the sub-gradient from step 1 above [44]. The scenario solutions 

are linked via the linking variable, c, through all cases and is defined as follows. 

 
𝑐𝑖,𝑡 = ∑

𝑃𝑠 ∙ 𝐼𝑖,𝑡
𝑠

𝑃𝑠
𝑠

 (29) 

 In the above equations, the variable ‘I’ is the thermal generator commitment 

status. A value of one signifies that the unit is online, and conversely, a value of zero 

signifies that the unit is offline. 

 The previous discussion describes a stochastic unit commitment problem in the 

decomposed form. This decomposition is separates the master stochastic problem into a 

subset of deterministic sub-problems to be solved separately using a progressive hedging 



62 

 

algorithm to enforce non-anticipativity and a Langrangian subgradient based method to 

determine solution optimality. Another stochastic formulation involves extending the 

traditional optimization problem into the scenario domain. This type of formulation is 

called the extensive form. This type of formulation is not practical for the unit 

commitment problem. This is because the extension of the mixed-integer problem into an 

additional third dimension exponentially increases the solution time. However, for the 

economic dispatch problem, it is computationally feasible to extend the problem into an 

additional domain. This is simply done by extending the formulation to include a third 

dimension for scenarios. The economic dispatch formulation in the extensive form is 

given in Appendix B. 

4.3 Analyzing the use of reserves in stochastic modeling 

 

 The analysis is performed on a modified IEEE 118 bus system described in 

Chapter 3. Wind generation was added to this system in order to simulate high 

penetration scenarios. Particularly, renewable energy generation was added to have an 

average energy penetration level of 33%. Renewable energy sites were selected to 

maximize access to transmission capacity in order to minimize the amount of curtailment 

occurring due to congestion. The flexibility reserves modeled in this analysis are based 

on non-spinning reserve service developed by the Electric Reliability Council of Texas. 

This product is meant to cover 95% of net-load forecast errors from the previous month 

and the same month from the previous year. The scenario data was simulated using an 
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auto regressive moving average (ARMA) technique [45][46]. This method modified the 

forecast by introducing normally distributed errors. This modification is performed as: 

 𝑋𝑡 = 𝛼 ∙ 𝑋𝑡−1 + 𝛽 ∙ 𝑍𝑡−1 + 𝑍𝑡 (30) 

 

For the analysis in this paper, the α and β constants are defined as 0.98 and -0.7 

respectively. The standard deviation of the sampled normal distribution, Zt, is 3% for the 

load and reserve requirement profiles and 6% for the wind profile. The stochastic 

simulation workflow is shown in Figure 13. 

 

Figure 13 – Stochastic simulation workflow 
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There are two types of scenario sets created for this study. The first type considers 

a fully stochastic scenario set, including the first interval of the optimization. The second 

type considers a deterministic binding interval, i.e. the first interval of the optimization, 

and the scenarios deviate starting from the second interval. These different types are 

illustrated in Figure 14.  

 

 

Figure 14 – Scenarios set type 1 (top) and type 2 (bottom) 

The following cases were developed in order to study the impact of using an 

explicit operating reserve requirement in a stochastic modelling framework.  

 Model 

Type 

No 

Reserves 

Deterministic 

Reserves 

Stochastic 

Reserves  

Case 1 Det  X   

Case 2 Sto X    

Case 3 Sto  X   

Case 4 Sto   X 

Table 11 – Summary of reserve methods for each case 
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Case 1 is a fully deterministic model. This case is used as a baseline solution. 

Case 2 is a fully stochastic model that does not include any flexibility reserves. Case 3 is 

a fully stochastic model with a deterministic flexibility reserve requirement. Case 4 is a 

fully stochastic model. Table 12 summarizes the economic and reliability results from 

studying cases 1-4. 

  Cost  

[$M] 

Δ Cost 

[%] 

AACEE 

[MWh] 

Δ AACEE 

[%] 

Ja
n
u
ar

y
 Case 1 16.29 ― 617.6 ― 

Case 2 16.96 +4.1 781.3 +26.5 

Case 3 18.27 +12.2 632.8 +2.5 

Case 4 18.35 +12.7 614.4 -0.5 

A
p
ri

l 

Case 1 13.05 ― 667.9 ― 

Case 2 13.54 +3.7 811.3 +21.5 

Case 3 13.40 +2.7 606.8 -9.1 

Case 4 13.63 +4.5 605.3 -9.4 

Ju
ly

 

Case 1 22.64 ― 616.9 ― 

Case 2 21.99 -2.9 1388.0 +125 

Case 3 22.77 +0.6 864.5 +40.2 

Case 4 24.16 +6.7 817.8 +32.6 

O
ct

o
b
er

 Case 1 13.79 ― 622.4 ― 

Case 2 14.22 +3.1 927.9 +49.1 

Case 3 14.14 +2.5 602.8 -3.1 

Case 4 14.09 +2.2 580.5 -6.7 

Table 12 – Summary of stochastic reserve results 

From Table 12, in general, stochastic modeling increases the system production 

cost. This is expected since stochastic models can result in committing additional thermal 

generators than a comparable deterministic model. Figure 15 shows the total number of 

thermal generator start-ups split between “small” generators, i.e. less than 150 MW, and 

“large” generators, i.e. greater than 150 MW for the January simulation. While this only 

shows the number of start-ups for January, other weeks display similar results. 
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Figure 15 – Number of thermal start-ups in January 

Investigating the reliability ACE results exposes an interesting result. Figure 16 

shows a distribution of the ACE for all the cases (the outliers have been excluded in order 

to improve readability of the plots) for the April simulations. 
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Figure 16 - Distribution of ACE across all cases in April 

Including the reserves in the stochastic formulation tightens the distribution. 

Similar trends can be found in the other months as well. This was due to the extra 

flexibility in the system from the additional thermal capacity afforded by the additional 

thermal generators being turned on (see Figure 15). Another interesting result is the 

stochastic formulations result with a negative bias in the net ACE (mean and median 

value are more negative than the fully deterministic case). This has to do with the nature 

of the stochastic formulation and how the optimization handle the load peaks. Due to 

computational limitations and the methodology of the optimizations, the stochastic 

solutions do not arrive to the same optimal solution, but rather a solution that is good 

enough, i.e. near optimal, that minimizes the difference between scenarios. With a set of 

imperfectly forecasted scenarios, the final dispatch solution will most likely vary from 

the realized load and wind profiles. In addition to this, under peak conditions, the system 

is typically experiencing the most operational stress, e.g. generators are ramping at their 
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capacities and transmission lines are carrying near limit flows. As a result, AGC is not 

able to fully make up this difference and sometimes results with intervals that experience 

under-generation at peak loads. For example, the simulation of the week in July 

experienced noticeable under-generation for three out of the seven load peaks with minor 

under-generation occurring on another peak.  

It is also worthwhile to compare cases 1 and 2. For convenience, Case 1 is the 

fully deterministic model and Case 2 is the fully stochastic model that does not include a 

reserve obligation. In general, the system production cost is unaffected (the difference of 

a few percentage points from a total of over $22M is deemed negligible). However, the 

AACEE metric noticeably increases in the stochastic model without reserves. The 

stochastic model is unable to capture the full uncertainty spectrum of the load and wind 

profiles and sometimes fails to prepare the system for ramps in the net-load. Figure 17 

shows one instance where the deterministic case was better able to track an upward ramp 

in the net-load profile (solid, blue trace) with the online thermal assets (dashed, black 

trace). The plot on the left is case 1, the fully deterministic case; the plot on the right is 

case 2, the stochastic case without a reserve requirement. Similar behavior can be 

observed throughout each simulation week. 
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Figure 17 - Comparison of net-load ramp tracking in Case 1 and Case 2 

Comparing cases 3 and 4 shows that in terms of reliability, it is better to include a 

reserve requirement and a stochastic requirement offers more benefit to the system than a 

deterministic requirement. 

It is during the economic dispatch stage of the scheduling process that decisions 

on reserve schedules are made. Therefore, in order to study the impacts of reserves in a 

stochastic model, the following sensitivities were also studied. All sensitivities only 

include the reserve requirement in the economic dispatch stage of the simulation and the 

unit commitment stages do not have any such requirement. Case 5 implements a type 2 

scenario set for the reserve requirement. Case 6 implements a type 1 scenario set. Case 7 

includes a deterministic requirement in the first interval and no reserve requirement in the 

future intervals, i.e. all cases have the same reserve requirement in the first interval and 

no requirement in the future intervals. Case 8 includes a stochastic requirement in the 

first interval and no reserve requirement in the future intervals, i.e. each scenario has a 

different requirement in the first interval and no requirement in the future intervals. 

 

 



70 

 

 First Interval Look-ahead Intervals 

Case 5 Deterministic Stochastic 

Case 6 Stochastic Stochastic 

Case 7 Deterministic None 

Case 8 Stochastic None 

Table 13 – Summary of sensitivity scenario reserve requirements 

 The motivation behind cases 8 and 9 is that the uncertainty is more significant in 

the look-ahead timeframes. As a result, the reserve requirement can be used to address 

the uncertainty in the next five minutes while the stochastic model itself can be used to 

address the uncertainty happening an hour from now. 

Since the decision on reserve schedules is made in the real-time economic 

dispatch stage, several sensitivities we run in order to explore the impacts of reserves in a 

stochastic modeling framework, namely cases 5-8.  Table 14 summarizes the costs and 

reliability ACE metric results from these cases. 

 

 

 

 

 

 

 

 

 

 

  Cost Δ Cost AACEE Δ AACEE 
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[$M] [%] [MWh] [%] 

Ja
n
u
ar

y
 Case 5 16.70 

+1.2 
924.1 

-18.0 
Case 6 16.89 757.9 

Case 7 17.79 
-0.2 

965.0 
+37.1 

Case 8 16.75 1323.1 

A
p
ri

l 

Case 5 13.38 
+3.1 

859.9 
+22.2 

Case 6 13.79 1050.3 

Case 7 13.61 
+0.1 

856.1 
+24.2 

Case 8 13.63 1063.3 
Ju

ly
 

Case 5 24.02 
+5.7 

4868.7 
-2.6 

Case 6 25.39 4740.3 

Case 7 24.59 
-3.4 

4807.2 
+4.3 

Case 8 23.77 5012.5 

O
ct

o
b
er

 Case 5 14.54 
+0.5 

1023.7 
+3.0 

Case 6 14.61 1054.6 

Case 7 14.58 
+0.2 

1029.2 
-0.0 

Case 8 14.60 1029.1 

Table 14 – Summary of stochastic sensitivity scenario results 

Cases 5 and 6 essentially compare the impact of scheduling reserves to address 

the uncertainty in the binding interval. Stochastically generated scenarios are used to 

address the uncertainty in future time intervals. The uncertainty in the binding interval is 

addressed via a deterministic requirement in case 5 and a stochastic requirement in case 

6. It is more expensive to use a stochastic requirement in the binding interval. The 

reliability metrics relate to the amount of renewable energy in the system. In the April 

and October weeks, where there are intervals with instantaneous VG penetration of more 

than 78%, there are less thermal generators committed which results in less operational 

flexibility. With less flexibility in the system, it is better to minimize risk in the 

scheduling problem by reducing the considered uncertainty, i.e. deterministic 

requirements in the binding interval.  
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Figure 18 – Number of committed thermal units in each simulated month 

  

Comparing cases 7 and 8 shows that without explicitly addressing the uncertainty 

in future intervals, a deterministic reserve requirement performs better than a stochastic 

reserve requirement. Since the system is not reserving capacity, generators are dispatched 

only to meet the expected net-load in the next five minutes. In the stochastic scenario, a 

singular dispatch cannot meet all expected net-load forecasts and as a result, the system is 

susceptible to load shedding. Figure 19 shows the sign of the accumulated ACE in the 

system in October. Clearly, the use of the stochastic requirement increases the amount of 

ACE accrued in the negative direction, i.e. under generation. 



73 

 

 

Figure 19 – Direction of accumulated ACE for cases 7 and 8 in October 

While Figure 19 only shows the ACE results for the October simulation, similar 

trends are visible in all of the other cases as well. 

4.4 Three-Stage Stochastic Modifiers 

 

Based on the previous analysis, the three stage stochastic modification process is 

designed to speed up solution time while maintaining solution integrity. This process is 

empirically designed based on observations of system operations in a stochastic model. 

The modification process is outlined below. 

Step 1: Define the net-load as follows: 

 𝜇(𝑡) = 𝐿(𝑡) − 𝑃𝑤(𝑡) (31) 

Step 2: Calculate the first modifier based on the net-load penetration level as follows: 
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𝜌 =

𝜇 − 𝜇

𝜇 − 𝜇
∙ 100 

 

(32) 

 

Step 3: If modifier ρ is greater than 80, then bind all requirements in the first interval 

across all scenarios. 

Step 4: Calculate the second modifier as follows: 

 𝛿 = 𝑟𝑜𝑢𝑛𝑑(𝜌) ∙ 𝑆𝑚𝑎𝑥 (33) 

Step 5: Set the number of scenarios equal to modifier δ. 

Step 6: Calculate the third modifier based on the standard deviation of the load and wind 

power as follows: 

 
휀 =

𝜎(𝑋(𝑡))

max (𝑋(𝑡))
   ∀ 𝑡 𝜖 [𝑡 − 𝑇, 𝑡]  

 

(34) 

Step 7: Set the standard deviation of the ARMA forecasts equal to modifier ε. 

In (31), L is the electrical demand and Pw is the expected wind power. In (32), the 

bars indicate the forecasted maximum (upper-bar) and minimum (lower-bar) net-load 

profile values. These values can be adjusted to control the modification process to best 

serve the system being studied. T represents the amount of time to consider in determining 

the standard deviation of the wind and load profiles. This variable also serves as a tuning 

parameter that can be adjusted on a case-by-case basis. In (33), Smax is the maximum 

number of scenarios to consider for the current simulation. This number can also be tuned 

throughout the simulation. In (34), X stands for either the load or wind data.  

The basic motivation for this process lies in the implicit intention of using 

stochastic modeling to begin with, how to best address future uncertainty. When the 
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power system is under the most strain, there is less flexibility in the system. As a result, it 

is beneficial to minimize the uncertainty in the optimization. This is achieved in the first 

stage by binding the uncertain variables in the first interval, i.e. the first interval becomes 

a deterministic problem. Conversely, when the system is not under duress, e.g. during the 

valleys of the net-load profile, the system typically has excess energy and ramping 

capacity available. Also, since the use of stochastic modeling is highly motivated by the 

presence of variable renewable generation, there is less need for fully stochastic 

optimizations during these times. As a result, the second stage helps reduce the stochastic 

problem during these time periods by reducing the number of scenarios being considered. 

Since the goal of utilizing the scenario-based stochastic modeling approach is to address 

the uncertainty in load and renewable generation data, the third stage updates the standard 

deviation of the scenarios to match the standard deviation realized in the load and wind in 

real-time based on actual data. The simulation workflow is adjusted to accommodate the 

3-stage modifiers. The new workflow is shown in Figure 20. 
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Figure 20 – Stochastic simulation workflow with modification stage 

Three scenarios were simulated to study the benefit of the three stage stochastic 

modifiers. Scenario 1 is fully deterministic formulation. This scenario serves as a sort of 

baseline scenario. Scenario 2 is a normal stochastic formulation that utilizes the model 

described in Section 4.2. Scenario 3 is a stochastic formulation that utilizes the three-

stage modification process. Table 15 summaries the simulation results. With the 

exception of January, stochastic modeling was able to reduce the production costs. The 
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three-stage modifiers were able to even further reduce these costs. Even in January, the 

costs increased a nonsignificant amount (less than 2% increase). Across all cases, the 

stochastic model was able to improve the AACEE metrics. The three stage modifiers 

were able to even further improve these metrics as well, although the benefit is less 

pronounced than the benefit afforded to costs. 

  Cost 
[$M] 

 
AACEE [MWh] 

Ja
n

. Deterministic 2.385  76.6 
Regular Stochastic 2.427  73.4 
Modified Stochastic 2.430  71.7 

A
p

r.
 Deterministic 1.864  130.3 

Regular Stochastic 1.756  116.9 
Modified Stochastic 1.763  116.7 

Ju
l. 

Deterministic 3.015  98.5 
Regular Stochastic 2.679  88.5 
Modified Stochastic 2.658  83.4 

O
ct

. Deterministic 2.261  122.1 
Regular Stochastic 1.982  83.2 
Modified Stochastic 1.981  81.0 

Table 15 – Three stage stochastic modifier simulation results 

The greatest benefit of the three-stage stochastic modifiers is the reduction in 

computation time. Figure 21 compares the solution time for all cases. 
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Figure 21 – Computation time (in minutes) across all cases 

As expected, the stochastic model significantly increases the computation time 

compared to the case that uses a fully deterministic formulation. There is up to four times 

reduction in solution time. This is because there is a significant computational burden in 

attempting to solve multiple scenarios to a single optimal solution. However, using the 

three-stage stochastic modifiers is able to significantly reduce the computation time by 

simplifying the design of the scenarios. For example, it is computationally more efficient 

to reduce the number of scenarios being simulated during times of low wind and solar 

generation output. This could be achieved during stage 2 of the modification process. 

Figure 22 shows the distribution of ACE for the three cases simulated in April.  



79 

 

 

Figure 22 – Distribution of ACE in April 

The characteristic stochastic model has a noticeable negative bias in the ACE 

distribution. This is because the stochastic model is susceptible to under-generation during 

times of peak load as discussed earlier. The three-stage modification process is able to 

mitigate this impact and help move the distribution closer around zero. Similar trends can 

be observed in the other simulations as well. During the rest of the simulation, the 

stochastic modifiers help better situate the system in terms of available thermal ramping 

capacity. Figure 23 shows the average unused ramping capacity across all cases. 
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Figure 23 – Average unused thermal ramping capacity 

This excess ramping capacity correlates with the number of generators online. In 

general, the stochastic models commit more thermal generation than the deterministic 

case. The three-stage modifiers can even help during peak times by providing a clearer 

picture of what is happening in the system at this time. This can be seen in Figure 24 

which shows the number of thermal generators committed throughout the simulation in 

January. Notice that during the peak times, the three-stage modifiers commit more thermal 

generators than any of the other scenarios. 
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Figure 24 – Number of committed thermal generators in January 

This extra flexibility helps facilitate the integration of renewable energy in the system. 

Table III shows the amount of curtailed wind energy in the system for all cases. Using the 

three-stage stochastic modifiers is able to reduce the amount of curtailed wind energy in 

the system. 

 Case Curtailed Wind [GWh] 

Jan 
Regular Stochastic 4.81 

Modified Stochastic 4.59 

Apr 
Regular Stochastic 10.9 

Modified Stochastic 10.8 

Jul 
Regular Stochastic 7.56 

Modified Stochastic 7.32 

Oct 
Regular Stochastic 5.69 

Modified Stochastic 5.51 

Table 16 – Summary of curtailed wind with stochastic modifiers 
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As renewable energy generators become larger players in power systems, 

operators will have to find new ways to accommodate them. The uncertainty in power 

systems is typically handled via operating reserves. New research is being performed in 

advanced modeling techniques that can perhaps supplant traditional operating schemes. 

One such technique is known as stochastic modeling. Stochastic modeling is quickly 

becoming a more and more viable solution to the problem of best integrating variable 

renewable energy generation. Due to computational limitations, it is beneficial to combine 

both approaches, namely including a stochastic operating reserve requirement in a 

stochastic modeling formulation. However, there are significant technical issues that must 

be addressed first. Perhaps the biggest concern is the long computation times for solutions. 

This report presented a three-stage stochastic modification process that can be used to 

reduce the computation time significantly while maintaining solution integrity.  

 

  



83 

 

 

 

 
 

Chapter 5: Future Roles of Emerging Technologies in Grid Operations 

5.1 Utilizing PHEVs for Reserve Scheduling 

 

 The future of electric power systems will vary greatly from the power systems we 

know today. Emerging technologies, such as energy storage systems (ESS) and electric 

vehicles (EV), will become more common throughout the network. It will be important to 

handle these new components of the power system in the most efficient way possible so 

as to maximize the benefits they offer. This will entail finding ancillary applications for 

these technologies that can serve the system operator while also benefiting the technology 

owner. The additional loading these technologies will have on the distribution system 

will stagnate their adoption. By finding ways they can benefit the system, hopefully this 

stagnation can be turned into motivation. While pure EVs have high potential, there is 

still social hesitation that is hindering their widespread adoption. One of the major 

concerns of consumers is the limited driving range today’s battery packs can provide. 

Thus plug-in hybrid electric vehicles (PHEV) are being seen at the transitional stepping 

stone to an electrified personal transportation future.  These vehicles have both an 

internal combustion engine as well as an electric machine and battery pack. They also 

consist of a physical connection to the main grid. This opens the doors for many potential 
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power system applications for PHEVs. Typically daily commutes only exercise a small 

fraction of total battery capacities. Theoretically, this means that PHEV owners could be 

providing ancillary services to the power system for the rest of the day.  

Since PHEV battery packs typically have high cost per kWh of energy, they 

should focus on providing high value, short term ancillary services. This will help 

maximize the economic compensation PHEV owners receive while mitigating potential 

impacts on battery life. It also makes sense for PHEV owners to participate in spinning 

contingency reserves since system operators typically pay providers of this ancillary 

service an availability payment, thus owners can be payed to be plugged in. This is 

especially attractive since there is no guarantee that the PHEV owner will be called on to 

actually deploy these reserves but will be compensated for their availability regardless. 

Consequently, this report will propose allowing PHEVs to participate in the scheduling of 

spinning contingency reserves and the potential benefits and implications this type of 

control will have on system operations and the PHEV owner.  

While the amount of energy available in a single PHEV battery pack is not 

sufficient to provide meaningful assistance to the power system operator, it is not an 

unfounded assumption that load aggregators will begin to aggregate PHEVs in a similar 

fashion as they become more ubiquitous. By aggregating PHEVs in a single area, the 

available energy from their onboard battery packs can be harnessed and used by the 

system operator in a meaningful way. In smaller microgrids, it might not even be 

necessary to aggregate PHEVs, depending on the size of the system. In order to capture 

the operational implications of PHEVs providing spinning contingency reserves, the 
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energy available in the aggregated PHEV fleet needed to be modeled. The following 

equations based on [47] are used to model the PHEVs within the DASCUC.   

 𝐼𝐶𝐻,𝑡 ∙ 𝑃𝐶𝐻,𝑚𝑖𝑛 ∙≤ 𝑃𝐶𝐻,𝑡 ≤ 𝐼𝐶𝐻,𝑡 ∙ 𝑃𝐶𝐻,𝑚𝑎𝑥 ∙ 𝑁 (35) 

 𝐼𝐷𝐶𝐻,𝑡 ∙ 𝑃𝐷𝐶𝐻,𝑚𝑖𝑛 ∙≤ 𝑃𝐷𝐶𝐻,𝑡 ≤ 𝐼𝐷𝐶𝐻,𝑡 ∙ 𝑃𝐷𝐶𝐻,𝑚𝑎𝑥 ∙ 𝑁 (36) 

 𝐸𝑁𝐸𝑇,𝑡 = 𝐸𝐷𝐶𝐻,𝑡 − 𝜂 ∙ 𝐸𝐶𝐻,𝑡−1 (37) 

 𝑃𝐸𝑉,𝑡 = 𝑃𝐷𝐶𝐻,𝑡 − 𝑃𝐶𝐻,𝑡−1 (38) 

 𝐸𝑡 = 𝐸𝑡−1 − 𝐸𝑁𝐸𝑇,𝑡 (39) 

 𝐼𝐶𝐻,𝑡 + 𝐼𝐷𝐶𝐻,𝑡 ≤ 1 (40) 

 𝐸𝑚𝑖𝑛 ∙ 𝑁 ≤ 𝐸𝑡 ≤ 𝐸𝑚𝑎𝑥 ∙ 𝑁 (41) 

 𝐸24 = 𝐸𝑚𝑎𝑥 ∙ 𝑁 ∙ 𝑆𝑂𝐶24 (42) 

 
PEV,t + ∑ Ri,t ≥ RTOT,t

i

 

 

(43) 

 

In the above equations, ICH and IDCH are the status of charging and discharging 

variables respectively, PCH and PDCH are the charging and discharging powers 

respectively, ECH and EDCH are the charging and discharging energies respectively. ENET 

is the net energy exchanged with the battery, η is the charging efficiency of the battery, N 

is the number of PHEVs being considered, PEV is the amount of power available in the 

battery, and E is the amount of energy available in the battery. Equations (35) and (36) set 

the limits on the battery charging and discharging powers. Equation (37) describes the net 

exchange of energy with the batteries. Equation (38) describes the amount of power 

available in the battery during the current time interval based on the actions in the 

previous interval. Equation (39) describes how much energy is in the batteries at time t. 

Equation (40) ensures the battery is not charging and discharging at the same time. 

Equation (41) enforces the energy limits on the batteries. Equation (42) enforces a 

minimum state of charge at the end of the optimization horizon. Equation (43) 

incorporates the PHEVs into the reserve scheduling constraint. 
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The PHEV operational data used in the optimization model is shown in Table 17. 

The first three rows correspond to the quadratic coefficients of the cost function. The 

remaining rows characterize the operating behavior of the PHEV battery packs.  

 Value per PHEV 

A ($/kW2) 0.41 

B ($/kW) 8.21 

C ($/h) 0 

Max Charge (kW) 7.29 

Min Charge (W) 7.3 

Max Discharge (kW) 6.2 

Min Discharge (W) 6.2 

Max Capacity (kWh) 27.4 

Min Capacity (kWh) 5.48 

Table 17 – PHEV operational data used in simulations 

 A small microgrid was simulated based on the IEEE 9-bus test system taken from 

MATPOWER [48]. Transmission and generator data used in this study are shown in 

Table 18 and Table 19. 

From Bus To Bus X (pu) Max (kW) 

1 4 0.0576 250 

4 5 0.092 250 

5 6 0.17 150 

3 6 0.0586 300 

6 7 0.1008 150 

7 8 0.072 250 

8 2 0.0625 250 

8 9 0.161 250 

9 4 0.085 250 

Table 18 – Nine bus system line data 

 

 Unit 1 Unit 2 Unit 3 

a ($/h) 1000 700 450 

b ($/kWh) 16.19 16.6 19.7 

c ($/kW2h) 0.00048 0.002 0.00398 



87 

 

Pmin (kw) 80 20 25 

Pmax (Kw) 455 130 162 

Ramp Up Rate (kW/h) 100 80 50 

Ramp Down Rate (kW/h) 60 30 40 

Minimum On Time (h) 8 5 6 

Minimum Off Time (h) 8 5 6 

Start Up Cost ($) 4500 550 900 

Table 19 – Nine bus system generator data 

 As discussed in [4] and mentioned in chapter 2, there is no industry-wide standard 

for determining the amount of reserves that need to be scheduled. NERC standard BAL-

002 says that a balancing area (BA) needs to withhold enough capacity to withstand the 

single, largest contingency. According to WECC, an operator must schedule the 

maximum of the most severe single contingency or 5% of total hydro generation plus 7% 

of total thermal generation. The Union for Coordination of Transmission of Electricity in 

Europe requires enough reserve to cover the maximum instantaneous power deviation. To 

this end, three different spinning contingency reserve requirements are used in this 

analysis. Scenario 1 considers the largest, single contingency, in this case the outage of 

the largest generator. Scenario 2 requires enough reserve to meet the peak load demand. 

Scenario 3 requires enough reserve to cover 7% of total thermal generation. In order to 

extract the implications of PHEVs providing this spinning contingency reserve, each 

scenario is simulated both with and without the PHEVs to obtain this effect. Table 20 

summarizes the total system-wide production cost for each scenario. 

 

 

Scenario Production Cost  Penalty Cost 
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Scenario 1 without PHEVs $ 318,430.34 $  650,000.00 

Scenario 1 with 20 PHEVs $ 297,047.79 $  0.00 

Scenario 2 without PHEVs $ 251,889.42 $  0.00 

Scenario 2 with 20 PHEVs $ 239,724.50 $  0.00 

Scenario 3 without PHEVs $ 111,499.37 $  0.00 

Scenario 3 with 20 PHEVs $ 109,383.37 $  0.00 

Table 20 – System production costs for three different reserve scenarios that both include 

and exclude PHEVs 

 Including the PHEVs results in lowering the system production costs. This effect 

is magnified as the reserve requirement increases. It is interesting to note the implications 

for scenario 1. Under this scenario, there was not enough generation in this microgrid to 

both serve demand and schedule spinning reserves to cover the loss of the largest 

generator. As a result, the microgrid has to either import the reserves from outside the 

microgrid or schedule insufficient reserves. Regardless, this results with penalty prices 

occurring, and the cost is increased dramatically. Including the PHEVs allows the 

microgrid to schedule the reserve requirements and meet demand with its own resources 

and the penalty prices are avoided, resulting in considerable cost savings. The PHEVs 

can also help curb reliance on expensive thermal generators. This can be seen from the 

commitment schedule of generator 1 shown in Table 21 where the reserve requirement is 

increased to cover 50% of the actual demand. 

 

 

 

50% Reserve with no PHEVs                                                             Cost: $134,026.16 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 
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50% Reserve with 20 PHEVs                                                             Cost: $130,332.38 

1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

Table 21 – Generator commitment schedules impact by PHEV scheduling 

 The inclusion of PHEVs also has an interesting effect on the system LMPs. Figure 

25 shows the system LMPs for 24 hours. Notice that there is no congestion occurring in 

the system since all buses share the same LMP. While the effect is small in this case, 

there are times where the PHEVs were able to reduce the LMPs. 

 

Figure 25 – System LMPs with and without PHEVs providing energy and ancillary 

services 

 Utilizing the batteries onboard PHEVs will undoubtedly impact the lifetime of the 

battery. This comes as a result of increasing the depth of discharge (DOD) of the battery 

pack. Rapidly charging and discharging the battery as well as increasing the depth of 

discharge negatively affect the battery’s expected lifetime. Figure 26 shows the 
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relationship between the number of PHEVs participating and the depth of discharge of 

the collective battery pack.  

 

Figure 26 – Relationship between the number of PHEVs and depth of discharge 

 Figure 26 shows that the benefits that PHEVs can provide severely affect the 

DOD of the aggregated battery capacity. Until a certain number of PHEVs are connected, 

the microgrid will almost completely utilize all available energy in each battery pack. The 

break point in this graph can be referred to as the critical number of PHEVs, in this case, 

11 PHEVs. This is the minimum number of PHEVs required such that each individual 

PHEV’s schedulable energy is not completely exhausted. The further the number of 

PHEV’s increasing beyond this point, the more the effect of scheduling on the DOD is 

mitigated.  

 PHEVs will be players in future energy markets and how they are controlled will 

directly impact the amount of benefit they can afford operators. While individually they 

might not impact system operations significantly, aggregating them will provide 
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operators considerable flexibility. PHEVs can help reduce the system total production 

costs by displacing expensive thermal generation and potentially avoiding penalty costs 

resulting from insufficient scheduling capacity. They can also help compress system 

LMPs. There is a critical number of PHEVs that are necessary to begin to mitigate the 

DOD issues of making the energy in PHEVs available to system operators.  

 It should be noted that the analysis in this report does not include the cost incurred 

by market operators to properly incentivize PHEV owner to participate in ancillary 

services and assumes that owners will be willing to support grid operations. The issue of 

reporting revenues is quite sensitive and heavily reliant on the accuracy of cost 

information provided. Since real-world cost, revenue, and incentive data was unavailable 

during the writing of this report, these costs were ignored. However, before this type of 

control strategy can be implemented by system operators, they need to be addressed.  

5.2 Optimizing BESS for Ancillary Services in Microgrids 

 

 Improvements in BESS technologies and reductions in costs will make them 

significant players in the future power system. These technologies provide superior 

performance from an operational point of view because they are controlled and interfaced 

via power electronics. This means that they provide system operators with fast, accurate 

generation that can be available almost instantaneously. Their ability to charge and 

discharge, thus behaving as both generation and load, also provides the operator with 

valuable flexibility. This is especially valuable during times where the system operator is 

tasked with balancing highly variable wind and solar generation. Their size and 
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portability make them ideal components for use in a microgrid that typically lacks the 

generation resources larger power systems have at their disposal for balancing electrical 

supply and demand. Thus it is important to design a control algorithm that will maximize 

the benefits these resources offer. In order to accomplish this task, a BESS model is 

added to the previously discussed unit commitment and economic dispatch formulations. 

While the BESS shares many similar constraints with traditional thermal generation, e.g. 

maximum/minimum capacity limits, charge/discharge ramp rates, minimum 

charge/discharge times, etc., there are some operational differences that need to be 

accounted for. The following equations detail the unique constraints of the BESS. 

 
        𝜎𝑖,𝑡 = 𝜎𝑖,𝑡−1 − [𝑃𝑖,𝑡 ∙ 𝜂𝑑𝑖𝑠,𝑖 + 𝑃𝑆𝑖,𝑡 ∙ 𝜂𝑐ℎ𝑔,𝑖] (44) 

 

  

In (44), σ represents the storage level, i represents the index of the BESS unit, t 

represent the current time index, Pi,t is the current generation schedule of unit i at time t, 

PSi,t is the current charging schedule of unit i at time t, and ηdis,i and ηchg,i are the 

discharging and charging efficiency of the BESS unit respectively. This equation is used 

to model the current level of the BESS based on the previous level and current action of 

the BESS unit. Note that either Pi.t or PSi,t or both must be zero because the battery 

cannot charge and discharge simultaneously. 

The following constraint is used to ensure that the storage level does not exceed 

its maximum capacity at the end of each optimization. 

 𝜎𝑖,𝑡 ≤ 𝜎𝑚𝑎𝑥,𝑖 + 𝜎𝑤𝑎𝑠𝑡𝑒𝑑  (45) 

 

In (45), σi,t is the storage level of unit i at time t, σmax,i is the maximum storage 
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level of unit i, and σwasted is any wasted storage capacity (i.e. energy that is trying to be 

stored beyond the capacity limit that is ultimately wasted). 

  The following constraint is used to model the startup trajectory of the battery 

when starting to store energy modeled after [49]. 

 

 
𝑃𝑆𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝛤

𝛤=
𝑈𝑝 𝑅𝑒𝑠𝑒𝑟𝑣𝑒𝑠

 ≥  𝛼 + 𝛽 − 𝛾 

 

(46) 

 

where 

 

 

𝛼 = 𝑃𝑆𝑚𝑖𝑛,𝑖 ∙ (𝐼𝑃𝑖,𝑡 − ∑ 𝑧𝑝𝑖,𝐻 − ∑ 𝑦𝑝𝑖,𝐻

𝑡

𝐻=𝑡−𝑃𝑈𝑃+1

𝑡+𝑃𝐷𝑃−1

𝐻=𝑡

) 

 

(47) 

 

𝛽 = 𝑃𝑆𝑚𝑖𝑛,𝑖 ( ∑ (𝐻 − 𝑡 + 1)𝑦𝑝𝑖,𝑡

𝑡

𝐻=𝑡−𝑃𝑈𝑃+1

) min (1,
1

𝑡𝑝𝑠𝑡𝑎𝑟𝑡
) 

 

(48) 

 𝛾 = 𝑃𝑚𝑎𝑥,𝑖 ∙ 𝐼𝑖,𝑡 (49) 

 

In the previous equations, PSi,t is the charging schedule of unit i at time t, PUP is 

the number of intervals a unit has been storing energy during startup, PDP is the number 

of intervals a unit has been storing energy during shutdown, Ri,t is the reserve schedule of 

unit i at time t, yp is the charging startup indicator, tpstart is the time it takes for a unit to 

reach charging status, Pmax,i is the maximum discharge level of the unit, and Ii,t is the 

generation commitment variable. Equation (47) is required to ensure that a unit is storing 

above the minimum required storage level if a unit is neither starting up nor shutting 

down. Equation (48) is used to set the trajectory limit of a unit during startup. The 

trajectory is assumed to be a linear trajectory over the amount of time it takes a unit to 
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reach its minimum storage level. Equation (49) is required to relax the constraint if the 

unit is generating rather than storing energy. 

The microgrid system simulated is a modified version of the IEEE single area 

reliability test system intended to reflect a microgrid that might serve large 

industrial/commercial customers or even small towns. The modifications were motivated 

by the Perfect Power microgrid at the Illinois Institute of Technology [50]. Distributed 

wind and solar generation in addition to the BESS are spread throughout the microgrid. 

The underlying data used in this analysis is from available data from NREL for northern 

California [41]. A one-line diagram of the new system is shown in Figure 27. 
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Figure 27 – Modified IEEE single-area reliability test system for microgrid applications 

 The location of the wind and solar generators are selected to maximize access to 

transmission. The system is simulated for four weeks (the third week in January, April, 

July, and October) in order to capture the seasonal behavior of wind and solar. Three 
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cases are simulated to capture the benefits of the BESS. Case 1 does not include any 

BESS. Case 2 includes BESS participating in both energy and ancillary service 

provisions. Case 3 only allows the BESS to provide ancillary services. Numerical results 

from this analysis is shown in Table 22. 

  Case 1 Case 2 Case 3 

Jan 

Cost [$M] 1.638 1.610 1.608 

AACEE [kWh] 597 632 479 

Sigma ACE [kW] 5.01 5.46 4.11 

MAACE [kW] 3.55 3.76 2.85 

VG Curtailment [kW] 314 169 243 

Apr 

Cost [$M] 1.336 1.303 1.289 

AACEE [kWh] 711 772 588 

Sigma ACE [kW] 6.35 6.72 5.37 

MAACE [kW] 4.24 4.59 3.50 

VG Curtailment [kW] 875 300 395 

Jul 

Cost [$M] 1.987 1.961 1.934 

AACEE [kWh] 422 488 368 

Sigma ACE [kW] 3.60 4.31 3.04 

MAACE [kW] 2.52 2.90 2.19 

VG Curtailment [kW] 435 73 221 

Oct 

Cost [$M] 1.451 1.485 1.468 

AACEE [kWh] 713 711 502 

Sigma ACE [kW] 6.13 6.35 4.31 

MAACE [kW] 4.24 4.23 2.99 

VG Curtailment [kW] 225 666 613 

Table 22 – Numerical results from BESS analysis 

 As expected, the inclusion of the BESS reduces the system production cost due to 

the displacement of thermal generation. What was not expected, was the BESS increased 

the ACE metrics. This was due to reducing the number of online generators and thus 

loading the remaining online generators even more. The reduced headroom resulted in 

less flexibility for the microgrid because it did not have sufficient thermal flexibility to 

make up for this loss. However, Case 3 shows that by controlling the BESS in such a way 

that they focus strictly on providing regulation services, it can actually improve reliability 
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metrics significantly. The AACEE, standard deviation of the ACE, and the mean-absolute 

ACE (MAACE) all improve by allowing the BESS to focus on providing regulation only. 

Figure 28 shows the distribution of ACE across all three cases considered. 

 

Figure 28 – Distribution of ACE in October for all microgrid operating scenarios 

  

Notice that the distributions get tighter around zero by adding the BESS and even 

tighter by allowing the BESS to focus on regulation reserves. Allowing the BESS to 

focus on regulation reserves provides another operational benefit. Figure 29 shows the 

state of charge (SOC) of the battery for cases 2 and 3.  
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Figure 29 – SOC of the battery providing energy and regulation and regulation only 

 For these simulations, it was assumed that the battery starts with a 66% SOC. 

Notice that if the BESS is providing both energy and reserves, the microgrid controller 

will try to maximize the output from the battery and completely cycle the energy within 

it. By allowing the battery to focus on providing regulation only, the BESS energy profile 

is flat, thus protecting the BESS from behavior that will shorten its operational lifetime.  

 The impact of energy storage systems providing contingency spin/nonspin 

contingency reserves is also examined. In order to perform this analysis, several 

contingency events were simulated both with and without the energy storage system to 

extract the impact of energy storage systems on contingency response. In order to capture 

the benefit of energy storage systems providing contingency response, several different 

contingency events were simulated, at different times during the day, and throughout 
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different weeks of the year. The first contingency considered is the loss of a large thermal 

generator at 8 a.m. in October. This was chosen to capture the impact of losing a large 

thermal generator under medium loading conditions in the morning as the load profile is 

typically ramping up. The second contingency considered is the loss of solar generation at 

11 a.m. in January. This was chosen to capture the effect of losing solar generation at 

around its peak output during high penetration levels, around 12% instantaneous 

penetration during this time period. The third contingency considered is the loss of a 

medium thermal generation unit at 1 p.m. in July. This was chosen to capture the impact 

of losing a potential peaking generation unit as peak load approaches. The fourth 

contingency considered is the loss of wind generation at 7 p.m in April. This was chosen 

to investigate the loss of highly variable, zero cost generation during local peaks in the 

load profile. A summary of these results is shown in Table 23. 
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  Without ESS With ESS 

Scenario 1 

Cost [$k] 224 228 

AACEE [kWh] 198 177 

Sigma ACE [kW] 28.6 25.6 

MAACE [kW] 8.3 7.4 

Lost Load [kWh] 63 35 

Scenario 2 

Cost [$k] 218 221 

AACEE [kWh] 82 66 

Sigma ACE [kW] 10.3 5.7 

MAACE [kW] 3.4 2.7 

Lost Load [kWh] 13 0 

Scenario 3 

Cost [$k] 216 224 

AACEE [kWh] 64 50 

Sigma ACE [kW] 6.6 8.9 

MAACE [kW] 2.7 2.1 

Lost Load [kWh] 0.15 0 

Scenario 4 

Cost [$k] 172 245 

AACEE [kWh] 128 93 

Sigma ACE [kW] 12.3 12.1 

MAACE [kW] 5.3 3.9 

Lost Load [kWh] 20 5 

Table 23 – Numerical results from contingency scenarios 

 The cost of operating this system remains relatively unchanged, increasing only 

slightly. There is a significant increase in scenario 4 because the BESS caused an 

additional thermal generator to be committed to support it during charging mode and thus 

resulted in increased production costs. The AACEE and MAACE are improved by 

including the BESS because it can quickly respond to generator outages and provide 

emergency energy very quickly. The standard deviation for scenario 3 actually increases 

when the BESS is included. This is because the loss of the small peaking generator that 

was used for regulation reduces the regulation response of the system. Since the BESS is 

mostly providing energy to replace the outage, the regulation burden goes unserved and 

the variability of the ACE increases. Another important result is the significant reduction 
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in lost load due to generator outages. Since the BESS can respond almost 

instantaneously, the amount of demand that is unserved can be minimized. This 

immediate response had an additional benefit in that it can quickly help arrest frequency 

deviations in the microgrid. For a microgrid operating in islanding mode, the frequency 

can be approximated by equation 32. 

 
𝑓 = 𝑓𝑛 +

𝐴𝐶𝐸

−10𝐵
 

 

(50) 

 

 In (50), fn is the nominal frequency, 60 Hertz in this case, ACE is the area control 

error, and B is the frequency bias of the system. Figure 30 shows the system imbalance 

during the four contingency scenarios. 

 

Figure 30 – Amount of load lost to multiple contingencies with and without the BESS 
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 There is some overshoot immediately after the outage event while the BESS is 

transitioning into providing more energy, but overall, the load lost is brought back to near 

zero quicker than the scenarios without the BESS. This is expected since the BESS has 

much faster charge and discharge rates than similarly sized thermal generators. This 

allows the BESS to quickly respond to contingency events and quickly resume service to 

electrical loads. 

Battery energy storage systems provide many benefits, especially for smaller 

microgrids. These BESS can help improve microgrid reliability during islanded 

operation. They can help with real-time balancing of electrical supply and demand. They 

can also provide valuable response to generator outages to help replace lost energy and 

arrest frequency deviation. In order to maximize benefits of BESS, it is important to 

allow them to provide ancillary services. Allowing the battery energy storage system to 

focus on strictly providing ancillary services can still provide reliability improvements 

while minimizing the impact on the battery operational lifetime. This is possible by 

mitigating the amount of energy charged and discharged over short periods of time.  
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Chapter 6: Conclusion 

6.1 Final Remarks 

 

 The landscape of power systems is evolving. The traditional makeup of power 

systems is evolving. Renewable generation resources are becoming a more viable option 

to system operators and are consequently being installed all over the world. Emerging 

technologies, such as batteries and electric cars, are becoming more cost effective and 

desirable by consumers. Microgrids are being considered as potential solutions for 

customers that need increased reliability or would like to arbitrage energy as distributed 

energy technologies become more cost effective. As these scenarios become more 

prevalent, traditional operating techniques need to be revisited to account for their 

contributions to the net load. 

 This report proposed several potential operating changes that can help mitigate 

the impact of these technologies and maximize the benefit they afford operators. 

Flexibility reserves are designed to account for the additional uncertainty introduced by 

increased VG resource penetrations. This report proposed a three-stage, reliability-based 

reserve modification process to improve these flexibility reserves by explicitly taking into 

account the actual variability introduced by VG resources. This three-stage process was 
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shown to minimally impact the total system production cost while improving reliability 

and real time electricity market outcomes.  

 One of the potential mechanisms to be used in the future to address the 

uncertainty of wind and solar generation is the use of stochastic programming to model 

the scheduling problem in power systems. Due to computational and hardware 

limitations, stochastic models typically run a reduced set of “most-likely” scenarios in 

order to obtain an optimal solution in a practical amount of time. Reducing the number of 

scenarios increases the amount of uncertainty unaddressed in the system. This paper 

explored using an explicit operating reserve requirement in a stochastic formulation to 

help address this issue. In addition to this analysis, this report also presented a three-stage 

stochastic modification process that can be used to help reduce the solution time while 

minimally impacting the solution. Results show that the three-stage stochastic 

modification process can reduce system production costs while maintaining, and even 

slightly improving, reliability metrics. 

 Plugin Hybrid Electric Vehicles are being seen as the stepping stone to a 

completely electrified transportation sector and have recently gained popularity. This 

report proposed a control scheme to utilize the aggregated energy capacity of these 

vehicles in order to help provide contingency spinning reserves. It was shown that this 

control scheme helps reduce the system operating costs, especially if it helps avoid 

expensive alternatives for procuring the required spinning capacity, such as importing the 

required capacity.  
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 As battery technology improves and manufacturing costs come down, batteries 

are being utilized more in power system applications, namely microgrid applications. 

This report proposed a control technique for a microgrid to utilize batteries for providing 

regulation and contingency spinning reserves. This type of control scheme helps reduce 

the total system production cost while minimizing the imbalance observed in the 

microgrid. It also helps minimize the impact on the battery’s operational lifetime by 

minimizing the depth of discharge. It also provides superior contingency support and is 

able to arrest frequency deviation and quickly restore it to nominal. 

 While the research presented in this report provides insight and potential solutions 

for power system operators, there is still opportunity for improvement. Wind and solar 

generation profiles are inherently stochastic. Meteorologists are still improving the ways 

wind speed and solar irradiation are forecasted. In order to fully investigate the 

implications of flexibility reserves and to improve upon the flexibility reserve 

requirement methodology, the interaction between flexibility reserves and other reserve 

products should be extensively studied. There is potential of double counting megawatts 

between reserve products and the total reserve requirement should be optimized across all 

products.  

 The uncertainty of wind and solar generation naturally lends itself to stochastic 

modeling. However, there are still major hurdles that need to be addressed before 

stochastic modeling can become a realistic solution. The first hurdle, and perhaps the 

largest, is the long solution times necessary before reaching the optimal solution of a 

stochastic model. There are many factors that impact this, particularly the structure of the 
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scenarios and solution search method. There is also the concern of having to find a 

reduced number of scenarios that can adequately capture the amount of uncertainty in the 

system all while considering the solution time. A too steep reduction in scenarios opens 

the system to additional uncertainty at the cost of solution time. Considering too many 

scenarios will unnecessarily increase the solution time, perhaps to infeasible times. To 

this end, there should be a more efficient way to combine stochastic modeling and 

reserve requirements. This paper presents a three-stage stochastic modification 

framework that can help solve this problem, but more extensive testing should be done on 

more realistic data sets to confirm performance. 

 One of the main benefits of microgrids is their inherent customization for their 

specific applications. As such, there may be no overall best way to design and operate a 

microgrid. There is incentive to propose overall best-practice guidelines. Microgrids must 

be able to satisfy their own electrical demands while operating in islanding mode. This 

often implies some form of redundancy in the design of the microgrid to ensure 

reliability. One way to achieve this reliability is through the scheduling of operating 

reserves to satisfy these requirements. Consequently, there may be opportunity with 

emerging technologies, such as distributed VG resources and battery systems, to improve 

the way operators handle this requirement of maintaining reliability. It may be possible to 

emulate the scheduling of these operating reserves by intelligently controlling these 

technologies and foregoing the explicit scheduling of the operating reserves. 

 There will undoubtedly be many issues facing power system operators in the 

future. Addressing some of the issues discussed in this report will help shed light on a 
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few of these concerns, and will hopefully prepare power system engineers to handle what 

will certainly be a dynamic, intelligent power system in the future. 
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Appendix A: Additional Model Details 

 

List of Symbols 

SCALARS 

VOIR – Value of Insufficient Reserve 
VOLL – Value of Lost Load 
VOIE – Value of Insufficient Energy 
 

SETS 

i : Generator index 

t : Time interval index 

b: Bus index 

0 : Initial value index 

type: Type of reserve product 

k : Block associated with the piecewise linear cost curve of generators 

VG : Set of wind and solar resources 

CSG: Set of conventional storage generation 

G: Set of all generators 

L: Set of all demand 

 

VARIABLES 

QSC : Quick start capability of a generator 

MToff : Maximum possible down town of a generator 

H : Optimization horizon 

Xoff : Time generator has been off initially 

I : Commitment status of a generator 

IDAC : Optimization resolution 

IP : Commitment status of a storage unit 

P : Power output of a generator 

CPS: Power output of a storage unit 

B : B matrix 

θ : Branch angles  

Y : Admittance matrix 

D : Electrical demand 

d : Load distribution factor 

PL : Power flow on a transmission line 

RTOT : Total scheduled reserve 

RT: Reserve time requirement per reserve product 

R : Generators’ reserve schedules 

Rlevel : Total reserve requirement 

LL : Lost load 
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PX : Generation per block of the piecewise linear cost curve approximation of generator 

costs 

IF : Cost per block of the piecewise linear cost curve approximation of generator costs 

RR : Ramp rate per generator 

PRR: Charging ramp rate of ESS 

y : start-up indicator 

z : shut-down indicator 

yp : storage unit has started charging indicator 

zp : storage unit has stopped charging indicator 

SDP : Number of intervals required to shut down 

SUP : Number of intervals required to start up 

PUP: Number of intervals required to begin charging 

ISA : How many intervals ago the start-up process began 

IPSA: How many intervals ago the charging process began 

ISUP : Indicator implying a generator has recently begun the start-up process 

IPUP: Indicator implying an ESS has recently begun the charging process 

TON : Unit minimum run time 

TOFF : Unit minimum off time 

TPON : Storage unit minimum charging time 

TPOFF : Storage unit minimum down time 

IR: Online reserve indicator 

λ : Shift factor 

ST: Amount of energy stored in the ESS at the end of the optimization 

SV: Value of stored energy at the end of the optimization 

SL: Storage level 

C: General cost function 

η: Efficiency (either charging or discharging) 

IR: Binary variable where a value of 1means the unit must be online to provide that 
reserve 
RAGC: Binary variable where a value of 1 means that the reserve requires AGC 
IAGC: Binary variable where a value of 1 means that the unit is capable of AGC 

G: Binary variable where a value of 1 means the unit requires a governor to provide 
reserve 
UR: Upward regulation schedule 
DR: Downward regulation schedule 
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Unit Commitment Formulation 

 

The objective function to be optimized is given below: 
 

𝑃𝑅𝑂𝐷𝐶𝑂𝑆𝑇 = ∑ {∑ [∑(𝐼𝐹𝑖,𝑘 ∙ 𝑃𝑋𝑖,𝑘)

𝑘

+ 𝐼𝑖,𝑡 ∙ 𝐶𝑁𝐿,𝑖

𝑖𝑡

+ 𝐶𝑆𝑈,𝑖,𝑡 ∑ (𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝐶𝑅𝐸𝑆,𝑖,𝑡𝑦𝑝𝑒)
𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑡𝑦𝑝𝑒𝑠

] + 𝐿𝐿𝑡 ∙ 𝑉𝑂𝐿𝐿

+ ∑ (𝑅𝐼𝑁𝑆,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝑉𝑂𝐼𝑅)
𝑟𝑒𝑠𝑒𝑟𝑣𝑒

𝑡𝑦𝑝𝑒𝑠

} + ∑ (−𝑆𝑉𝑆𝑇𝑂 ∙ 𝑆𝑇𝑖,𝐻𝐷𝐴𝐶
)

𝑖𝜖{𝑆𝑡𝑜𝑟𝑎𝑔𝑒}

 

 
Load balance: 
 

∑ ∑ 𝑃𝑖,𝑡 =

𝑖

∑ ∑ 𝐷𝑡,𝑏

𝑏𝑡𝑡

+ 𝐿𝐿𝑡  

 
DC Load Flow representation: 
 
 

𝑃𝑖𝑛𝑗,𝑛,𝑡 = ∑(𝑃𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡) − 𝑑𝑛(𝐷𝑡)

𝑖

 𝑖 ∈ {𝑢𝑛𝑖𝑡𝑠 𝑎𝑡 𝑏𝑢𝑠 𝑛} 

 

𝑃𝐿𝑗,𝑡 = ∑ 𝜆𝑗,𝑛 ∙ 𝑃𝑖𝑛𝑗,𝑛,𝑡

𝑛

 

 
|𝑃𝐿𝑗,𝑡| ≤ 𝑃𝐿𝑚𝑎𝑥,𝑗 

 
 
Modeling system reserve requirements: 
 

∑ ∑ 𝑅𝑖,𝑡,𝜏 ≥ 𝛤𝑡,𝜏

𝑖𝑡

  

𝑃𝑖,𝑡 + 𝑅𝑖,𝑡,𝜏 ≤  𝑃𝑚𝑎𝑥,𝑖 ∙ 𝐼𝑖,𝑡 
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𝑃𝑖,𝑡 − 𝑅𝑖,𝑡,𝜏 ≥ 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝐼𝑖,𝑡 

𝑅𝑖,𝑡,𝜏 ≤ 𝑃𝑚𝑎𝑥,𝑖 ∙ (1 − 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡) 

𝑅𝑖,𝑡,𝜏 ≤ 𝐼𝑖,𝑡 ∙ 𝑅𝑅𝑖 ∙ 𝑅𝑇𝜏 + (1 − 𝐼𝑖,𝑡) ∙ 𝑄𝑆𝐶𝑖 

A generator’s output is modeled as follows: 
 

𝑃𝑖,𝑡 = ∑ 𝑃𝑋𝑖,𝑘,𝑡

𝑘

 

 
𝑃𝑋𝑖,𝑘,𝑡 ≤ 𝑃𝑋𝑖,1,𝑡   𝑓𝑜𝑟 𝑘 = 1 

𝑃𝑋𝑖,𝑘,𝑡 ≤ 𝑃𝑋𝑖,𝑘,𝑡 − 𝑃𝑋𝑖,𝑘−1,𝑡   𝑓𝑜𝑟 𝑘 ≠ 1 

𝑃𝑖,𝑡 ≤ 𝑃𝑚𝑎𝑥,𝑖 ∙ 𝐼𝑖,𝑡 

𝑃𝑖,𝑡 + ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≤ 𝐼𝑖,𝑡 ∙ 𝑃𝑚𝑎𝑥,𝑖 + 𝐼𝑃𝑖,𝑡 ∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖

𝑢𝑝𝑤𝑎𝑟𝑑
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

 

𝑃𝑖,𝑡 ≥ 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝐼𝑖,𝑡 − 𝐼𝑃𝑖,𝑡 ∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖 

𝑃𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≥
𝑑𝑜𝑤𝑛𝑤𝑎𝑟𝑑

𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

𝑃𝑚𝑖𝑛,𝑖 ∙ 𝐼𝑖,𝑡 − 𝐼𝑃𝑖,𝑡 ∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖 

 
The unit ramp up and ramp down constraints for units with limited ramping 
capabilities are enforced as follows: 
 

𝑓𝑜𝑟 𝑡 = 1     𝑃𝑖,𝑡 − 𝑃𝑖0 ≤ 60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑅𝑅𝑖 ∙ (1 − 𝑦𝑖,𝑡) + 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝑦𝑖,𝑡 

𝑓𝑜𝑟 𝑡 > 1     𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 ≤ 60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑅𝑅𝑖 ∙ (1 − 𝑦𝑖,𝑡) + 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝑦𝑖,𝑡 

 

𝑓𝑜𝑟 𝑡 > 1     𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 ≥ −60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑅𝑅𝑖 ∙ (1 − 𝑧𝑖,𝑡) − 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝑧𝑖,𝑡 

𝑓𝑜𝑟 𝑡 = 1     𝑃𝑖,𝑡 − 𝑃𝑖0 ≥ −60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑅𝑅𝑖 ∙ (1 − 𝑧𝑖,𝑡) − 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝑧𝑖,𝑡 

 
Generator start-up trajectories are modeled via the following constraints: 
 
If t ≤ HDAC – SDPi & t ≥ SUPi – 1: 
 

𝑃𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒

𝑑𝑜𝑤𝑛
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

≥ 𝑃𝑚𝑖𝑛,𝑖 [𝐼𝑖,𝑡 − ∑ 𝑧𝑖,𝐻 − ∑ 𝑦𝑖𝐻

𝑡

𝐻=𝑡−𝑆𝑈𝑃𝑖+1

𝑡+𝑆𝐷𝑃𝑖−1

𝐻=𝑡

] + [ ∑ {(𝑡 − 𝐻 + 1)

𝑡

𝐻=𝑡−𝑆𝑈𝑃𝑖+1

∙ 𝑦𝑖𝐻}] ∙ 𝑃𝑚𝑖𝑛,𝑖 ∙ 1
𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝

⁄ − 𝐼𝑃𝑖,𝑡

∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖 

 
 
 
 
If t < SUPi – ISAi -1: 
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𝑃𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒

𝑑𝑜𝑤𝑛
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

≥ 𝑃𝑚𝑖𝑛,𝑖 [𝐼𝑖,𝑡 − ∑ 𝑧𝑖,𝐻 − 𝐼𝑆𝑈𝑃𝑖 − ∑ 𝑦𝑖𝐻

𝑡

𝐻=1

𝑡+𝑆𝐷𝑃𝑖−1

𝐻=𝑡

] + 𝐼𝑆𝑈𝑃𝑖 ∙ [𝐼𝑆𝐴𝑖 + 𝑡] ∙ 𝑃𝑚𝑖𝑛,𝑖 ∙ 1
𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝

⁄      

+ [∑{(𝑡 − 𝐻 + 1)

𝑡

𝐻=1

∙ 𝑦𝑖𝐻}] ∙ 𝑃𝑚𝑖𝑛,𝑖 ∙ 1
𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝

⁄ − 𝐼𝑃𝑖,𝑡 ∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖 

 
If t > HDAC – SDPi: 
 

𝑃𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒

𝑑𝑜𝑤𝑛
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

≥ 𝑃𝑚𝑖𝑛,𝑖 [𝐼𝑖,𝑡 − ∑ 𝑧𝑖,𝐻 − ∑ 𝑦𝑖𝐻

𝑡

𝐻=𝑡−𝑆𝑈𝑃𝑖+1

𝐻𝐷𝐴𝐶

𝐻=𝑡

] + [ ∑ {(𝑡 − 𝐻 + 1)

𝑡

𝐻=𝑡−𝑆𝑈𝑃𝑖+1

∙ 𝑦𝑖𝐻}] ∙ 𝑃𝑚𝑖𝑛,𝑖 ∙ 1
𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝

⁄ − 𝐼𝑃𝑖,𝑡

∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖 

 
Determine maximum possible down time of a generator: 
 

𝑀𝑇𝑜𝑓𝑓,𝑖 = 𝐻𝐷𝐴𝐶 + 𝑋𝑜𝑓𝑓,𝑖(1 − 𝐼𝑖0) 

 
The output of a variable generator shouldn’t exceed its forecasted value. This is 
enforced as follows: 

𝑃𝑖,𝑡 ≤ 𝑃𝑖,𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡        ∀𝑖 ∈ {𝑉𝐺} 

 
If a variable generator is going to provide reserves, then its total scheduled output 
must be below its forecasted output. This is enforced as follows: 
 

𝑃𝑖,𝑡 + ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≤ 𝑃𝑖,𝑡,𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡      ∀𝑖 ∈ {𝑉𝐺}
𝑢𝑝 𝑜𝑟 𝑏𝑜𝑡ℎ

𝑡𝑦𝑝𝑒𝑠 𝑜𝑓 𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

 

 
If the optimization period is more than the minimum run time required of unit i 
away from the end of the optimization horizon, then the minimum run time 
requirement of the unit is enforced as follows: 
 

∑ 𝐼𝑖,𝑡 ≥ 𝑇𝑂𝑁,𝑖 ∙ 𝑦𝑖,𝑡 ∙
1

𝐼𝐷𝐴𝐶
∙ (1 − 𝐹𝑂𝑖,𝑡)

𝑡+𝑇𝑂𝑁,𝑖/𝐼𝐷𝐴𝐶−1

𝑡

 

 
However, if the optimization period is within the minimum run time required of the 
optimization horizon, the minimum run time requirement is enforced as: 
 

∑ 𝐼𝑖,𝑡 ≥ (𝐻𝐷𝐴𝐶 − 𝑡 + 1) ∙ 𝑦𝑖,𝑡

𝐻𝐷𝐴𝐶

𝑡
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Similarly, if the optimization period is more than the minimum down time required 
of unit i away from the end of the optimization horizon, then the minimum down 
time requirement of the unit is enforced as follows: 
 

∑ (𝐼𝑖,𝑡 + 𝐼𝑃𝑖,𝑡) ≤ 𝑇𝑂𝐹𝐹,𝑖 ∙
1

𝐼𝐷𝐴𝐶
∙ (1 − 𝑧𝑖,𝑡 − 𝑧𝑝𝑖,𝑡

𝑡+𝑇𝑂𝐹𝐹,𝑖/𝐼𝐷𝐴𝐶−1

𝑡

) 

 
However, if the optimization period is within the minimum down time required of 
the optimization horizon, the minimum down time requirement is enforced as: 
 

∑ (𝐼𝑖,𝑡 + 𝐼𝑃𝑖,𝑡) ≤ (𝐻𝐷𝐴𝐶 − 𝑡 + 1) ∙ (1 − 𝑧𝑖,𝑡 − 𝑧𝑝𝑖,𝑡)

𝐻𝐷𝐴𝐶

𝑡

 

 
The definitions of the start-up and shut-down indicators are modeled below: 
 

𝑦𝑖,𝑡 − 𝑧𝑖,𝑡 = 𝐼𝑖,𝑡 − 𝐼𝑖,𝑡−1     𝑓𝑜𝑟 𝑡 > 1 
𝑦𝑖,𝑡 − 𝑧𝑖,𝑡 = 𝐼𝑖,𝑡 − 𝐼𝑖0     𝑓𝑜𝑟 𝑡 = 1 

𝑦𝑖,𝑡 + 𝑧𝑖,𝑡 ≤ 1 
 
The reserve capability of a unit is modeled as: 
 

𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≤ (𝐼𝑖,𝑡 + 𝐼𝑃𝑖,𝑡) ∙ 𝐼𝑅 ∙ 𝑅𝑅𝑖 ∙ 𝑡𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ∙ 𝑅𝐴𝐺𝐶 ∙ 𝐼𝐴𝐺𝐶 ∙ (1 − 𝐺) 

                      +(𝐼𝑖,𝑡 + 𝐼𝑃𝑖,𝑡) ∙ 𝐼𝑅 ∙ 𝑅𝑅𝑖 ∙ 𝑡𝑟𝑒𝑠𝑒𝑟𝑣𝑒 ∙ (1 − 𝑅𝐴𝐺𝐶) ∙ (1 − 𝐺) 

           +(1 − 𝐼𝑖,𝑡 − 𝐼𝑃𝑖,𝑡) ∙ (1 − 𝐼𝑅) ∙ 𝑃𝑄𝑆𝐶,𝑖,𝑡𝑦𝑝𝑒 ∙ (1 − 𝐺 )  

 
 
If the line outages are considered, then the following contingency constraints are 
added to the optimization problem. 
 
If a line in under contingency, then its power flow is forced to zero: 
 

𝑃𝐿𝑗,𝑡
(𝐶)

= 0 

 
The voltage angle at the slack bus is forced to remain zero under contingency: 
 

∆𝜃𝑠𝑙𝑎𝑐𝑘
(𝐶)

= 0 
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The change in bus angle voltages is then solved from: 
 

𝑷𝒊𝒏𝒋,𝒕
(𝑪)

= 𝑩(𝑪) ∙ ∆𝜽𝒕
(𝑪)

 

 
The DC line flows under contingency are then calculated as: 
 

𝑃𝐿𝑗,𝑡
(𝐶)

= ∑ 𝑌𝑗(∆𝜃𝑛,𝑡
(𝐶)

− ∆𝜃𝑚,𝑡
(𝐶)

− 𝑃𝑆𝐴𝑗,𝑡
(𝐶)

)

𝑗

 

 
To ensure that line security is not compromised, the following constraints are 
enforced: 
 

𝑃𝐿𝑗,𝑡
(𝐶)

≤ 𝑃𝐿𝑚𝑎𝑥,𝑗
(𝐶)

 

𝑃𝐿𝑗,𝑡
(𝐶)

≥ −𝑃𝐿𝑚𝑎𝑥,𝑗
(𝐶)

 

 
The minimum charging time is enforced with the following constraint if the current 
optimization period is more than the minimum pump time requirement away from 
the end of the optimization horizon: 
 

∑ 𝐼𝑃𝑖,𝑡 ≥ 𝑇𝑃𝑜𝑛,𝑖 ∙
𝑦𝑝𝑖,𝑡

𝐼𝐷𝐴𝐶
∙ (1 − 𝐹𝑂𝑖,𝑡)           ∀𝑖 ∈ {𝐶𝑆𝐺}

𝑡+𝑇𝑃𝑜𝑛,𝑖/𝐼𝐷𝐴𝐶−1

𝑡

 

 
If the current optimization period is within the minimum on time requirement of 
the end of the optimization horizon, the following constraint is enforced instead of 
the previous one: 
 

∑ 𝐼𝑃𝑖,𝑡 ≥ (𝐻𝐷𝐴𝐶 − 𝑡 + 1) ∙ 𝑦𝑝𝑖,𝑡

𝐻𝐷𝐴𝐶

𝑡

 

 
The following constraints enforce the charging ramp rates: 
 

𝐶𝑃𝑆𝑖,1 − 𝐶𝑃𝑆𝑖,0 ≤ 60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑃𝑅𝑅𝑖 ∙ (1 − 𝑦𝑝𝑖,1) + 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙ 𝑦𝑝𝑖,1    𝑡 = 1, ∀𝑖 ∈ {𝐶𝑆𝐺} 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡−1 ≤ 60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑃𝑅𝑅𝑖 ∙ (1 − 𝑦𝑝𝑖,𝑡) + 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙ 𝑦𝑝𝑖,𝑡    𝑡 > 1, ∀𝑖 ∈ {𝐶𝑆𝐺} 

𝐶𝑃𝑆𝑖,1 − 𝐶𝑃𝑆𝑖,0 ≥ −60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑃𝑅𝑅𝑖 ∙ (1 − 𝑧𝑝𝑖,1) + 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙ 𝑧𝑝𝑖,1    𝑡 = 1, ∀𝑖 ∈ {𝐶𝑆𝐺} 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡−1 ≥ −60 ∙ 𝐼𝐷𝐴𝐶 ∙ 𝑃𝑅𝑅𝑖 ∙ (1 − 𝑧𝑝𝑖,𝑡) + 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙ 𝑧𝑝𝑖,𝑡    𝑡 > 1, ∀𝑖

∈ {𝐶𝑆𝐺} 
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Charging mode trajectory constraints: 
 
If t > PUPi & t > 1: 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡−1 ≤ 𝑃𝑅𝑅𝑖 ∙ (𝐼𝑃𝑖,𝑡 − ∑ 𝑦𝑝𝑖,𝑡

𝑡

𝐻=𝑡−𝑃𝑈𝑃𝑖

) +
𝐶𝑃𝑆𝑚𝑖𝑛,𝑖

𝑡𝑝𝑠𝑡𝑎𝑟𝑡𝑢𝑝

∙ ∑ 𝑦𝑝𝑖,𝑡

𝑡

𝐻=𝑡−𝑃𝑈𝑃𝑖

 

 
If t < PUPi – IPSAi & t > 1: 
 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡−1

≤ 𝑃𝑅𝑅𝑖 ∙ (𝐼𝑃𝑖,𝑡 − 𝐼𝑃𝑈𝑃𝑖 − ∑ 𝑦𝑝𝑖,𝑡

𝑡

𝐻=1

) +
𝐶𝑃𝑆𝑚𝑖𝑛,𝑖

𝑡𝑝𝑠𝑡𝑎𝑟𝑡𝑢𝑝
∙ (𝐼𝑃𝑈𝑃𝑖 + ∑ 𝑦𝑝𝑖,𝑡

𝑡

𝐻=1

) 

 
 
 
 
If t = 1: 
 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,0 ≤ 𝑃𝑅𝑅𝑖 ∙ (𝐼𝑃𝑖,𝑡 − 𝐼𝑃𝑈𝑃𝑖 − 𝑦𝑝𝑖,𝑡) +
𝐶𝑃𝑆𝑚𝑖𝑛,𝑖

𝑡𝑝𝑠𝑡𝑎𝑟𝑡𝑢𝑝
∙ (𝐼𝑃𝑈𝑃𝑖 + 𝑦𝑝𝑖,𝑡) 

 
The pumping up and down indicators are modeled similarly to the start-up and shut 
down indicators as follows: 

𝑦𝑝𝑖,𝑡 − 𝑧𝑝𝑖,𝑡 = 𝐼𝑃𝑖,𝑡 − 𝐼𝑃𝑖,𝑡−1     𝑓𝑜𝑟 𝑡 > 1 

𝑦𝑝𝑖,𝑡 − 𝑧𝑝𝑖,𝑡 = 𝐼𝑃𝑖,𝑡 − 𝐼𝑃𝑖0     𝑓𝑜𝑟 𝑡 = 1 
𝑦𝑝𝑖,𝑡 + 𝑧𝑝𝑖,𝑡 ≤ 1 

 
The following constraint is used to determine the start-up cost: 
 

𝐶𝑆𝑈,𝑖,𝑡 = 𝐶𝑆𝑈,𝑖 ∙ 𝑦𝑖,𝑡 
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Economic Dispatch Formulation 

 

The objective function of the RTSCED problem is as follows: 

𝑃𝑅𝑂𝐷𝐶𝑂𝑆𝑇 = ∑ {∑ [∑(𝐼𝐹𝑖,𝑘 ∙ 𝑃𝑋𝑖,𝑘 ∙
5

60
∙ 𝑆𝑏𝑎𝑠𝑒)

𝑘

+ 𝐼𝑖,𝑡 ∙
5

60
∙ 𝐶𝑁𝐿,𝑖 + 𝐶𝑆𝑈,𝑖,𝑡 ∙ 𝑦𝑖,𝑡

𝑖𝑡

+ ∑ (𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝐶𝑅𝐸𝑆,𝑖,𝑡𝑦𝑝𝑒 ∙
5

60
∙ 𝑆𝑏𝑎𝑠𝑒)

𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑡𝑦𝑝𝑒𝑠

+ 𝑆𝑤𝑎𝑠𝑡𝑒𝑑,𝑖,𝑡 ∙ 𝑉𝑂𝐿𝐿 ∙
5

60

∙ 𝑆𝑏𝑎𝑠𝑒] + 𝐿𝐿𝑡 ∙ 𝑉𝑂𝐿𝐿 ∙
5

60
∙ 𝑆𝑏𝑎𝑠𝑒

+ ∑ (𝑅𝐼𝑁𝑆,𝑡,𝑡𝑦𝑝𝑒 ∙ 𝑉𝑂𝐼𝑅 ∙
5

60
∙ 𝑆𝑏𝑎𝑠𝑒)

𝑟𝑒𝑠𝑒𝑟𝑣𝑒
𝑡𝑦𝑝𝑒𝑠

}

+ ∑ (−𝐶𝑆𝑇𝑂 ∙ 𝑆𝑖,𝐻𝑅𝑇𝐷
∙ 𝑆𝑏𝑎𝑠𝑒)

𝑖𝜖{𝑆𝑡𝑜𝑟𝑎𝑔𝑒}

 

 
Load balance: 
 

∑ ∑ 𝑃𝑖,𝑡 =

𝑖

∑ ∑ 𝐷𝑡,𝑏

𝑏𝑡𝑡

+ 𝐿𝐿𝑡  

 
Unit generation limits are enforced as follows: 
 

𝑃𝑖,𝑡 ≥ 𝑃𝑚𝑖𝑛,𝑖 ∙ [𝐼𝑖,𝑡 − 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡] 

 
The generation limit including reserves is enforced as follows: 
 

𝑃𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒

𝑑𝑜𝑤𝑛
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

≥ 𝑃𝑚𝑖𝑛,𝑖 ∙ [𝐼𝑖,𝑡 − 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡] − 𝐼𝑃𝑖,𝑡 ∙ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖  
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The ramping constraints after the first time period are enforced as follows: 
 

𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 ≤ 𝐼𝑀𝑡 ∙ 𝑅𝑅𝑖 ∙ [𝐼𝑖,𝑡 − 𝑦𝑖,𝑡] + 𝑃𝑚𝑖𝑛,𝑖 ∙ min (1,
𝐼𝑀𝑡

60𝑡𝑠𝑡𝑎𝑟𝑡𝑢𝑝,𝑖
) ∙ 𝑦𝑖,𝑡 

 

𝑃𝑖,𝑡 − 𝑃𝑖,𝑡−1 ≥ −𝐼𝑀𝑡 ∙ 𝑅𝑅𝑖 ∙ [𝐼𝑖,𝑡−1 − 𝑧𝑖,𝑡] − 𝑃𝑚𝑖𝑛,𝑖 ∙ min (1,
𝐼𝑀𝑡

15
) ∙ 𝑧𝑖,𝑡 

 
To limit the amount of reserves that can be committed due to the status of the unit, 
the following constraint is enforced: 
 

𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≤ 𝑃𝑚𝑎𝑥,𝑖 ∙ (1 − 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡) 

 
To determine the storage level at the beginning of the optimization period, the 
following constraint is included: 

𝑆𝐿𝑖,𝑡 = 𝑆𝐿𝑖,𝑡−1 − 𝑃𝑖,𝑡 ∙
5

60
+ 𝐶𝑃𝑆𝑖,𝑡 ∙

5

60
∙ 𝜂𝑠𝑡𝑜 

 
The limits of the pumping schedule including reserves are determined as follows: 
 

𝐶𝑃𝑆𝑖,𝑡 − ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒

𝑢𝑝
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

≥ 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙ [𝐼𝑃𝑖,𝑡 − 𝑦𝑝𝑖,𝑡 − 𝑧𝑝𝑖,𝑡] − 𝐼𝑖,𝑡 ∙ 𝑃𝑚𝑎𝑥,𝑖 

 

𝐶𝑃𝑆𝑖,𝑡 + ∑ 𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≤ 𝑃𝑚𝑎𝑥,𝑖

𝑑𝑜𝑤𝑛
𝑟𝑒𝑠𝑒𝑟𝑣𝑒𝑠

 

 
The pumping ramping constraints after the first time period are enforced as follows: 
 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡−1 ≤ 5 ∙ 𝑃𝑅𝑅𝑖 ∙ [𝐼𝑃𝑖,𝑡 − 𝑦𝑝𝑖,𝑡] + 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙
5

60𝑡𝑝𝑠𝑡𝑎𝑟𝑡𝑢𝑝,𝑖
∙ 𝑦𝑝𝑖,𝑡 

 

𝐶𝑃𝑆𝑖,𝑡 − 𝐶𝑃𝑆𝑖,𝑡−1 ≥ −5 ∙ 𝑃𝑅𝑅𝑖 ∙ [𝐼𝑃𝑖,𝑡−1 − 𝑧𝑝𝑖,𝑡] − 𝐶𝑃𝑆𝑚𝑖𝑛,𝑖 ∙
5

60𝑡𝑝𝑠ℎ𝑢𝑡𝑑𝑜𝑤𝑛,𝑖
∙ 𝑧𝑝𝑖,𝑡 

 
To limit the amount of reserves that can be committed due to the charging status of 
the unit, the following constraint is enforced: 
 

𝑅𝑖,𝑡,𝑡𝑦𝑝𝑒 ≤ 𝐶𝑃𝑆𝑚𝑎𝑥,𝑖 ∙ (1 − 𝑦𝑝𝑖,𝑡 − 𝑧𝑝𝑖,𝑡) 

 
 
Modeling system reserve requirements: 
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∑ ∑ 𝑅𝑖,𝑡,𝜏 ≥ 𝛤𝑡,𝜏

𝑖𝑡

  

𝑃𝑖,𝑡 + 𝑅𝑖,𝑡,𝜏 ≤  𝑃𝑚𝑎𝑥,𝑖 ∙ 𝐼𝑖,𝑡 

𝑃𝑖,𝑡 − 𝑅𝑖,𝑡,𝜏 ≥ 𝑃𝑚𝑖𝑛,𝑖 ∙ 𝐼𝑖,𝑡 

𝑅𝑖,𝑡,𝜏 ≤ 𝑃𝑚𝑎𝑥,𝑖 ∙ (1 − 𝑦𝑖,𝑡 − 𝑧𝑖,𝑡) 

𝑅𝑖,𝑡,𝜏 ≤ 𝐼𝑖,𝑡 ∙ 𝑅𝑅𝑖 ∙ 𝑅𝑇𝜏 + (1 − 𝐼𝑖,𝑡) ∙ 𝑄𝑆𝐶𝑖 

 

Automatic Generation Control Algorithm 

 

This is a rule based module whose main purpose is not to optimize dispatch, but 
rather to eliminate area control error (ACE). As a result, this module is only 
concerned with units that are available and have the ramping capability to help 
correct the ACE. The basic operating principle of this module is to check if a unit has 
a regulation schedule. If it does not, then the unit should follow RTSCED dispatch 
schedule. If it does, then the unit should utilize this regulation capacity to 
proportionally correct the ACE. 
 
The AGC algorithm quantifies the possible ramping ability of units through the 
following definitions: 
 
 If unit is turning on:    Rampi = Pmin / (60*tstartup) 
 If unit is turning off:    Rampi = Pmin / tshutdown 
 If unit has begun charging:   Rampi = CPSmin / (60*tpstartup) 
 If unit has just shut down pumping:  Rampi = CPSmin / tpshutdown 

 If unit is charging:    Rampi = PRR 
 Otherwise:     Rampi = RR 
 
The amount ramping capacity available for AGC action is defined as follows: 
 

𝐴𝐺𝐶𝑅𝑎𝑚𝑝𝑈𝑝𝐴𝑣𝑎𝑖𝑙 = ∑ 𝑅𝑎𝑚𝑝𝑖

𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ
𝑢𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

𝐴𝐺𝐶𝑅𝑎𝑚𝑝𝐷𝑜𝑤𝑛𝐴𝑣𝑎𝑖𝑙 = ∑ 𝑅𝑎𝑚𝑝𝑖

𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ
𝑑𝑜𝑤𝑛 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛
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The ACE signal is calculated as: 
 

𝐴𝐶𝐸(𝑡) = ∑ 𝑃𝑖(𝑡)

𝑖

− ∑ 𝐷𝑗(𝑡)

𝑗

     ∀𝑖 ∈ {𝐺}, ∀𝑗 ∈ {𝐿} 

𝑆𝐴𝐶𝐸 = 𝐾1 ∙ 𝐴𝐶𝐸(𝑡) +
1

𝐾2
∫ 𝐴𝐶𝐸(𝜏)𝑑𝜏 

 
 
The amount of energy available for positive AGC action is defined as: 
 

𝐴𝐺𝐶𝑈𝑝𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑣𝑎𝑖𝑙 = ∑ 𝑈𝑅𝑖

𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ
𝑢𝑝 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

𝐴𝐺𝐶𝐷𝑜𝑤𝑛𝐸𝑛𝑒𝑟𝑔𝑦𝐴𝑣𝑎𝑖𝑙 = ∑ 𝐷𝑅𝑖

𝑢𝑛𝑖𝑡𝑠 𝑤𝑖𝑡ℎ
𝑑𝑜𝑤𝑛 𝑟𝑒𝑔𝑢𝑙𝑎𝑡𝑖𝑜𝑛

 

The individual limits of units to provide regulation is defined as: 
 

𝑚𝑎𝑥 𝑟𝑒𝑔𝑖 = 𝑛𝑒𝑥𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑇𝑆𝐶𝐸𝐷 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖 + 𝑈𝑅𝑖 
𝑚𝑖𝑛 𝑟𝑒𝑔𝑖 = 𝑛𝑒𝑥𝑡 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑅𝑇𝑆𝐶𝐸𝐷 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑖 − 𝐷𝑅𝑖 

 
The actual AGC algorithm is as follows: 
 
If ACE < 0 
 If UR < ε 
  If IP = 1 or zp = 1 
   If current pumping schedule < next RTSCED pumping schedule 
    AGCramp = min[Ramp,abs{(next-current)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current+AGCramp*(tagc/60)] 
   Elseif current pump schedule > next RTSCED pump schedule 
    AGCramp = min[Ramp,abs{(current-next)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current-AGCramp*(tagc/60)] 
   Else 
    AGCbasepoint = max[0,current] 
  Else 
   If current gen schedule < next gen schedule from RTSCED 
    AGCramp = min[Ramp,abs{(next-current)/(60(5 + 
tagc/60)}] 
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    AGCbasepoint = max[0,current+AGCramp*(tagc/60)] 
   Elseif current gen schedule > next gen schedule from RTSCED  
    AGCramp = min[Ramp,abs{(current-next)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current-AGCramp*(tagc/60)] 
   Else 
    AGCbasepoint = max[0,current] 
  End 
 Else 
  If IP = 1 or zp = 1 
   AGCramp = min[ramp(tagc/60),abs(UR,AGCUpEnergyAvail*ACE)] 
    AGCbasepoint = min[currentp,max(max reg, currentp-
AGCramp)] 
  End 
  AGCbasepoint = max[currentg,min(max reg, currentg-AGCramp)] 
 End 
Else 
 If DR < ε 
  If IP = 1 or zp = 1 
   If current pumping schedule < next RTSCED pumping schedule 
    AGCramp = min[Ramp,abs{(next-current)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current+AGCramp*(tagc/60)] 
   Elseif current pump schedule > next RTSCED pump schedule 
    AGCramp = min[Ramp,abs{(current-next)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current-AGCramp*(tagc/60)] 
   Else 
    AGCbasepoint = max[0,current] 
  Else 
   If current gen schedule < next gen schedule from RTSCED 
    AGCramp = min[Ramp,abs{(next-current)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current+AGCramp*(tagc/60)] 
   Elseif current gen schedule > next gen schedule from RTSCED  
    AGCramp = min[Ramp,abs{(current-next)/(60(5 + 
tagc/60)}] 
    AGCbasepoint = max[0,current-AGCramp*(tagc/60)] 
   Else 
    AGCbasepoint = max[0,current] 
  End 
 Else 
  If IP = 1 or zp = 1 
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      AGCramp = 
min[ramp(tagc/60),abs(DR,AGCDownEnergyAvail*ACE)] 

  AGCbasepoint = min[currentg,max(min reg, currentg-
AGCramp)] 

  End 
 End 
End 
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Appendix B: Extensive form of Stochastic RTSCED 

 

Objective Function 

Minimize: 

∑ (∑ {∑[𝛼 + 𝛽] + 𝛾 + 𝛿

𝑖∈𝐺

}

𝑡∈𝑇

)

𝑠∈𝑆

 

 

Where 

 

𝛼 = ∑ (𝐼𝐶𝑖,𝑘
𝑠 ∙ 𝑃𝑘𝑖,𝑘,𝑡

𝑠)

𝑘∈𝐾𝑖

 

 

𝛽 = ∑ (𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒
𝑠 ∙ 𝐶𝑅𝐸𝑆,𝑖,𝑟𝑡𝑦𝑝𝑒

𝑠)

𝑟𝑡𝑦𝑝𝑒∈𝑅𝑇𝑌𝑃𝐸

 

 

𝛾 = 𝐿𝐿𝑡
𝑠 ∙ 𝑉𝑂𝐿𝐿 

 

𝛿 = ∑ (𝐼𝑅𝑡,𝑟𝑡𝑦𝑝𝑒
𝑠 ∙ 𝑉𝑂𝐼𝑅)

𝑟𝑡𝑦𝑝𝑒∈𝑅

 

 

Subject to the Following Constraints: 

Power Balance 

∑ 𝐷𝐹𝑖
𝑠 ∙ 𝑃𝑔𝑖,𝑡

𝑠

𝑖∈𝐺

= ∑ 𝐷𝐹𝑛
𝑠 ∙

𝑛∈𝑁

(𝐷𝑡
𝑠 − 𝐿𝐿𝑡

𝑠) 

 

Reserve Balance 

∑ 𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒
𝑠

𝑖∈𝐺

+ 𝐼𝑅𝑡,𝑟𝑡𝑦𝑝𝑒
𝑠 ≥ 𝑅𝐷𝑙𝑒𝑣𝑒𝑙,𝑡,𝑡𝑦𝑝𝑒

𝑠 

Net Injection 

𝑁𝐼𝑛,𝑡
𝑠 = 𝐾𝑖,𝑛

𝑠 ∗ 𝑃𝑔𝑖,𝑡
𝑠 − 𝐿𝐷𝑛

𝑠(𝐷𝑡
𝑠 − 𝐿𝐿𝑡

𝑠 + 𝐴𝐿𝑡
𝑠) 

Power Flow 

𝐿𝐹𝑙,𝑡
𝑠 = ∑ 𝑃𝑇𝐷𝐹𝑙,𝑛 ∙ 𝑁𝐼𝑛,𝑡

𝑠

𝑛∈𝑁

 

Branch Limits 

𝐿𝐹𝑗,𝑡
𝑠 ≤ 𝐿𝐹𝑙

𝑠
   

𝐿𝐹𝑗,𝑡
𝑠 ≥ −𝐿𝐹𝑙

𝑠  

Generator Maximum Capacity Limits 

∑ 𝑃𝑘𝑖,𝑘,𝑡
𝑠

𝑘∈𝐾

= 𝑃𝑔𝑖,𝑡
𝑠 

𝑃𝑘𝑖,𝑘,𝑡
𝑠 ≤ 𝑃𝑘𝑖,𝑘

𝑠
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𝑃𝑔𝑖,𝑡
𝑠 + ∑ 𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒̃

𝑠

𝑟𝑡𝑦𝑝𝑒 ∈ 𝑅𝑢𝑝̃

≤ 𝑃𝑔𝑖

𝑠
∙ 𝑢𝑢𝑖,𝑡

𝑠 

Generator Minimum Capacity Limits 

𝑃𝑔𝑖,𝑡
𝑠 − ∑ 𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒̃

𝑠

𝑟𝑡𝑦𝑝𝑒 ̃ ∈ 𝑅𝑑𝑜𝑤𝑛

≥ 𝑃𝑔𝑖
𝑠 ∙ 𝑢𝑢𝑖,𝑡

𝑠 

 

Generator Ramp Constraints 

𝑃𝑔𝑖,𝑡−1
𝑠  − 𝑃𝑔𝑖,𝑡

𝑠 ≥ 𝑅𝑅𝑖
𝑠 ∙ 𝐼𝑛𝑡𝑡

𝑠 ∙ (𝑢𝑖,𝑡−1
𝑠 − 𝑦𝑦𝑖,𝑡

𝑠) + 𝑦𝑦𝑖,𝑡
𝑠

∙ (𝑃𝑔𝑖
𝑠 ∙

𝐼𝑛𝑡𝑡
𝑠

𝑆𝐷𝑇𝑖
𝑠⁄ + 𝑅𝑅𝑖

𝑠 ∙ (𝐼𝑛𝑡𝑡
𝑠 − 𝑆𝐷𝑇𝑖

𝑠)) 

𝑃𝑔𝑖,𝑡−1
𝑠  − 𝑃𝑔𝑖,𝑡

𝑠 ≤ −𝑅𝑅𝑖
𝑠 ∙ 𝐼𝑛𝑡𝑡

𝑠 ∙ (𝑢𝑢𝑖,𝑡
𝑠 − 𝑧𝑧𝑖,𝑡

𝑠) − 𝑧𝑧𝑖,𝑡
𝑠

∙ (𝑃𝑔𝑖
𝑠 ∙

𝐼𝑛𝑡𝑡
𝑠

𝑆𝑈𝑇𝑖
𝑠⁄ + 𝑅𝑅𝑖

𝑠 ∙ (𝐼𝑛𝑡𝑡
𝑠 − 𝑆𝑈𝑇𝑖

𝑠)) 

Reserve Capability Constraints: 

 

𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒
𝑠 ≤ 𝑢𝑢𝑖,𝑡

𝑠 ∙ 𝑅𝑂𝑁𝑟𝑡𝑦𝑝𝑒
𝑠 ∙ 𝑅𝑅𝑖

𝑠 ∙ 𝑅𝑇𝐼𝑀𝐸𝑟𝑡𝑦𝑝𝑒
𝑠 ∙ 𝑅𝐴𝐺𝐶𝑟𝑡𝑦𝑝𝑒

𝑠 ∙ 𝐼𝐴𝐺𝐶𝑖
𝑠  + 𝑢𝑢𝑖,𝑡

𝑠 ∙ 𝑅𝑂𝑁𝑟𝑡𝑦𝑝𝑒
𝑠 ∙ 𝑅𝑅𝑖

𝑠

∙ 𝑅𝑇𝐼𝑀𝐸𝑟𝑡𝑦𝑝𝑒
𝑠 ∙ (1 − 𝑅𝐴𝐺𝐶𝑟𝑡𝑦𝑝𝑒

𝑠)  + (1 − 𝑢𝑢𝑖,𝑡
𝑠) ∙ (1 − 𝑅𝑂𝑁𝑟𝑡𝑦𝑝𝑒

𝑠) ∙ 𝑄𝑆𝐶𝑖,𝑟𝑡𝑦𝑝𝑒
𝑠 

 

∑ 𝑅𝑂𝑁𝑟𝑡𝑦𝑝𝑒
𝑠 ∙

𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒̃
𝑠

𝑅𝑇𝐼𝑀𝐸𝑟𝑡𝑦𝑝𝑒
𝑠

𝑟𝑡𝑦𝑝𝑒 ̃

≤ 𝑢𝑢𝑖,𝑡
𝑠 ∙ 𝑅𝑅𝑖

𝑠 

 

Reserve Limitations when in start-up or shut-down mode 

𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒
𝑠 ≤ 𝑃𝑔𝑖

𝑠
∙ [1 − 𝑧𝑧𝑖,𝑡

𝑠 − 𝑦𝑦𝑖,𝑡
𝑠] 

 

Non-anticipativity Constraints: 

𝑃𝑔𝑖,𝑡
𝑠 = 𝑃𝑔𝑖,𝑏𝑖𝑛𝑑       , 𝑡 = 𝐵𝑖𝑛𝑑𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 

𝑅𝑆𝑖,𝑡,𝑟𝑡𝑦𝑝𝑒̃
𝑠 = 𝑅𝑆𝑖,𝑟𝑡𝑦𝑝𝑒,𝑏𝑖𝑛𝑑̃      , 𝑡 = 𝐵𝑖𝑛𝑑𝑖𝑛𝑔 𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙 
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