7 research outputs found

    Impact of the surface roughness on the electrical capacitance

    Get PDF
    A new hybrid approach consists to use the advantages of both systems namely the high geometric aspects of the electrodes of the ultracapacitor and the high dielectric strength of polymer materials used in dielectric capacitors. The surface roughness of the electrodes of the ultracapacitor is manufactured with nano-porous materials; activated carbon and carbon nanotubes (CNTs). Many compositions of both carbonaceous materials are tested with different insulating materials (liquid and solid) to constitute the hybrid capacitor. It appears that the capacitance increases with the carbonaceous composition: An increasing from 15 to 40% is observed as compared to a plane capacitor, it can be twice with a 100 wt% of CNTs content. But, the impregnation of the insulating material in the surface roughness remains the key point of the realization of the hybrid capacitor. The roughness accessibility is a major property to optimize in order to improve the impregnation of the insulating material to increase the electrical capacitance

    Influence of carbonaceous electrodes on capacitance and breakdown voltage for hybrid capacitor

    Get PDF
    This paper presents a new type of capacitor and deals with a hybrid approach where the advantages of two systems, dielectric capacitors and the ultracapacitor are combined. The objective is to increase the capacitance and the energy storage capability, while or at least preserving or decreasing the volume of the passive components. In this aim, the surface area and structural properties of ultracapacitor electrodes and the high dielectric strength of a polymer material are associated. The surface roughness of the carbonbased electrodes, namely (activated carbon—AC, and carbon nanotubes—CNTs), has a good impact on the capacitance. However, the surface roughness also depends on the composition of carbonaceous materials and so does the capacitance. Moreover, the choice of the dielectric material is the key parameter. The better the impregnation of the roughness is, the better is the increase of the capacitance. Since the final objective is to improve the electrical energy stored by the capacitor, the effect of surface roughness on the breakdown voltage is also evaluated

    Rough Electrode Creates Excess Capacitance in Thin-Film Capacitors

    Get PDF
    The parallel-plate capacitor equation is widely used in contemporary material research for nanoscale applications and nanoelectronics. To apply this equation, flat and smooth electrodes are assumed for a capacitor. This essential assumption is often violated for thin-film capacitors because the formation of nanoscale roughness at the electrode interface is very probable for thin films grown via common deposition methods. In this work, we experimentally and theoretically show that the electrical capacitance of thin-film capacitors with realistic interface roughness is significantly larger than the value predicted by the parallel-plate capacitor equation. The degree of the deviation depends on the strength of the roughness, which is described by three roughness parameters for a self-affine fractal surface. By applying an extended parallel-plate capacitor equation that includes the roughness parameters of the electrode, we are able to calculate the excess capacitance of the electrode with weak roughness. Moreover, we introduce the roughness parameter limits for which the simple parallel-plate capacitor equation is sufficiently accurate for capacitors with one rough electrode. Our results imply that the interface roughness beyond the proposed limits cannot be dismissed unless the independence of the capacitance from the interface roughness is experimentally demonstrated. The practical protocols suggested in our work for the reliable use of the parallel-plate capacitor equation can be applied as general guidelines in various fields of interest

    Improving the Manufacture by Flexographic Printing of RFID Aerials for Intelligent Packaging

    Get PDF
    Flexography is a well-established high-volume roll-to-roll industrial printing process that has shown promise for the manufacture of printed electronics for smart and intelligent packaging, particularly on to flexible substrates. Understanding is required of the relationship between print process parameters, including ink rheology, and performance of printed electronic circuits, sensors and in particular RFID antenna. The complexity of this printing process with its shear and extensional flows of complex inks and flexible substrates can lead to undesirable surface morphology to the detriment of electronic performance of the print. This thesis reports work that progresses the understanding of the complex relationships amongst relevant factors, particularly focusing on the printability of features that have an impact on printed RFID antenna where increases in resistance increase the antennas resonant frequency. Flexography was successfully used to print RFID antenna. However, the large variation in print outcomes when using commercial inks and the limits on resistivity reduction even at the optimal print parameters necessitated the systematic development of an alternative silver flake ink. Increases in silver loading and TPU polymer viscosity grade (molecular weight) increased the viscosity. The ink maintained its geometry from the anilox cell between rollers, on to the substrate and print surface roughness increased. This, however, did not increase resistance of the track due to the high silver loading. Better understanding of the relationship between print parameters, print outcomes, ink rheology and performance of an RFID antenna has been achieved. Increases in silver loading up to 60wt.% improved conductivity. However, further increasing the silver loading produced negligible additional benefit. An adaption of Krieger-Dougherty suspension model equation has been proposed for silver at concentrations over 60wt.% after assessing existing suspension models. Such a model has proven to better predict relative viscosities of inks than Einstein-Batchelor, Krieger-Dougherty and Maron-Pierce equations. Increasing TPU viscosity grade was found to be a promising ink adjustment in the absence of changing print parameters, to produce a more consistent print. Better prediction of ink behaviour will allow for improved control of ink deposition, which for RFID applications can improve ink conductivity, essential for good response to signal. Further developments such as addition of non-flake particles and formulation refinement are required to enable the model ink to match the resistivity of the commercial ink

    Fabrication and nanoroughness characterization of specific nanostructures and nanodevice

    Get PDF
    Nanoroughness is becoming a very important specification for many nanostructures and nanodevices, and its metrology impacts not only the nanodevice properties of interest, but also its material selection and process development. This Ph.D. thesis presents an investigation into fabrication and nanoroughness characterization of nanoscale specimens and MIS (metal-insulator-semiconductor) capacitors with 2 HfO as a high k dielectric. Self-affine curves and Gaussian, non-Gaussian, self-affine as well as complicated rough surfaces were characterized and simulated. The effects of characteristic parameters on the CD (critical dimension) variation and the properties of these rough surfaces were visualized. Compared with experimental investigations, these simulations are flexible, low cost and highly efficient. Relevant conclusions were frequently employed in subsequent investigations. A proposal regarding the thicknesses of the deposited films represented by nominal linewidths and pitch was put forward. The MBE (Molecular Beam Epitaxy) process was introduced and AlGaAs and GaAs were selected to fabricate nanolinewidth and nanopitch specimens on GaAs substrate with nominal linewidths of 2nm, 4nm, 6nm and 8nm, and a nominal pitch of 5nm. HRTEM (High Resolution Transmission Electron Microscopy) image-based characterization of LER/LWR (Line Edge Roughness/Line Width Roughness) in real space and frequency domains demonstrated that the MBE-based process was capable of fabricating the desired nanolinewidth and nanopitch specimens and could be regulated accordingly. MIS capacitors with 2 HfO film as high k dielectric were fabricated, and SEM (Scanning Electron Microscope) image-based nanoroughness characterization, along with measurement of the MIS capacitor electrical properties were performed. It was concluded that the annealing temperature of the deposited 2 HfO film was an important process parameter and 700℃ was an optimal temperature to improve the properties of the MIS capacitor. Also, by quantitative characterization of the relevant nanoroughness, the fabrication process can be further regulated. The uncertainty propagation model of SEM based nanoroughness measurement was presented according to specific requirements of the relevant standards, ISO GPS (Geometric Product Specifications and Verification) and GUM (Guide to the Expression of Uncertainty in Measurement), and the method for implementating uncertainties was evaluated. The case study demonstrated that the total standard uncertainty of the nanoroughness measurement was 0.13nm, while its expanded uncertainty with the coverage factor k as 3 was 0.39nm. They are indispensable parts of LER/LWR measurement results

    Comprendre et optimiser les anodes microbiennes grâce aux technologies microsystèmes

    Get PDF
    De multiples micro-organismes ont la capacité de catalyser l’oxydation électrochimique de matières organiques en s’organisant en biofilm à la surface d’anodes. Ce processus est à la base de procédés électro-microbiens très innovants tels que les piles à combustible microbiennes ou les électrolyseurs microbiens. L’interface biofilm/électrode a été l’objet de nombreuses étudesdont les conclusions restent difficiles à démêler en partie du fait de la diversité des paramètres interfaciaux mis en jeu. L’objet de ce travail de thèse est d’exploiter les technologies microsystèmes pour focaliser l’impact de la topographie de surface des électrodes sur le développement du biofilm et sur ses performances électro-catalytiques. La formation de biofilmsélectroactifs de Geobacter sulfurreducens a été étudiée sur des électrodes d’or présentant des topographies bien contrôlées, sous la forme de rugosité, porosité, réseau de piliers, à des échellesallant du nanomètre à quelques centaines de micromètres. La présence de microrugosité a permis d’accroitre les densités de courant d’un facteur 8 par rapport à une surface lisse et son effet a étéquantifié à l’aide du paramètre Sa. Nous avons tenté de distinguer les effets des différentes échelles de rugosité sur le développement du biofilm et la vitesse des transferts électroniques.L’intérêt de la microporosité a été discuté. L’accroissement de surface active par la présence de micro-piliers s’est avéré très efficace et une approche théorique a donné des clés de compréhension et d’optimisation. Les connaissances acquises dans les conditions de culture pure ont finalement été confrontées avec la mise en oeuvre de biofilms multi-espèces issus d’un inoculum complexe provenant de sédiments marins
    corecore