804 research outputs found

    Impact of stellar companions on precise radial velocities

    Full text link
    Context: With the announced arrival of instruments such as ESPRESSO one can expect that several systematic noise sources on the measurement of precise radial velocity will become the limiting factor instead of photon noise. A stellar companion within the fiber is such a possible noise source. Aims: With this work we aim at characterizing the impact of a stellar companion within the fiber to radial velocity measurements made by fiber-fed spectrographs. We consider the contaminant star either to be part of a binary system whose primary star is the target star, or as a background/foreground star. Methods: To carry out our study, we used HARPS spectra, co-added the target with contaminant spectra, and then compared the resulting radial velocity with that obtained from the original target spectrum. We repeated this procedure and used different tunable knobs to reproduce the previously mentioned scenarios. Results: We find that the impact on the radial velocity calculation is a function of the difference between individual radial velocities, of the difference between target and contaminant magnitude, and also of their spectral types. For the worst-case scenario in which both target and contaminant star are well centered on the fiber, the maximum contamination for a G or K star may be higher than 10 cm/s, on average, if the difference between target and contaminant magnitude is Δm\Delta m < 10, and higher than 1 m/s if Δm\Delta m < 8. If the target star is of spectral type M, Δm\Delta m < 8 produces the same contamination of 10 cm/s, and a contamination may be higher than 1 m/sComment: Accepted for publication in A&A on 29/12/2019 - 14 page

    Real-time ventricular cancellation in unipolar atrial fibrillation electrograms

    Get PDF
    Unipolar atrial fibrillation (AF) electrograms (EGMs) require far-field ventricle cancellation to recover hidden atrial activations. Current methods cannot achieve real-time cancellation because of the temporal delay they introduce. We propose a new real-time ventricular cancellation (RVC) method based on causal implementation optimized for real-time functioning. The method is similar to the classical average beat subtraction (ABS) method but it computes the ventricular contribution before the ventricular activation finishes. We compare the proposed method to the ABS on synthetic and real EGM databases for the time and frequency domains. All parameters and their optimal values are analyzed and validated. The RVC method provides a good reconstruction of the unipolar EGMs and a better local activation time detection than the classical approach with average F1scores 0.7307 and 0.7125, respectively. The spectral analysis shows that the average power after ventricular cancellation is reduced for frequency bands between 3 and 5.5 Hz, demonstrating that the proposed method removes the ventricular component present in the unipolar EGM signals compared to the ABS method. The phase mapping analysis on the RVC method presented lower error when comparing the annotated EGM cycles with the phase inversion intervals. In terms of performance ABS and RVC behave similarly, but the real-time capability of the latter justifies its preference over the offline implementations. In the clinical environment other online investigations, e.g., rotational activity assessment, dominant frequency or local activation time mapping, might benefit from the real-time potential of the proposed cancellation method.This study was supported by grants PI18/01895 from the Instituto de Salud Carlos III, and RD16/0011/0029 Red de Terapia Celular from the Instituto de Salud Carlos III, projects RTI2018-099655-B-I00; TEC2017-92552-EXP from Ministerio de Ciencia, Innovación y Universidades, Y2018/TCS-4705, PRACTICO-CM Comunidad de Madrid, and the support of NVIDIA Corporation with the donation of the Titan V GPU used during this research

    One Health antimicrobial resistance research coordinating workshop

    Get PDF

    Neutron Detection by Noble Gas Excimer Scintillation

    Get PDF
    The field of neutron detection has many essential applications, from nuclear reactor instrumentation, oil-well logging, radiation safety, and, in recent years, homeland security. Due to the shortage and increasing cost of the neutron absorber used in most conventional gas-filled proportional counters, there has been an increased motivation for the development of alternative methods of neutron detection that do not rely on 3He. Excimer-based neutron detection (END) is a potential alternative with many advantages, notably the lack of dependence on 3He. Similar to traditional proportional counters, END operates on the interaction of a neutron with a neutron absorbing nucleus (10B, 6Li, or 3He). The energetic charged particles produced in these reactions lose energy in the surrounding gas background and cause ionization and excitation of the noble gas molecules. The difference between END and traditional gas-filled detectors, which collect the ionized charge to produce a detectable signal, is the formation of noble gas excimers (Ar2*, Kr2*, or Xe2*). These excited dimers decay from an excited state back to ground level and emit far-ultraviolet (FUV) radiation in the form of photons which can be collected using a photomultiplier tube (PMT) or other photon detector. The most important advantage to these potential detectors is the fact that they do not rely on the use of 3He. The excimer scintillation yield from rare noble gases following the 10B neutron capture reaction in both 10B enriched BF3 gas and reticulated vitreous carbon foam (RVC) coated with a layer of B4C is the focus of this thesis. Experimental data were collected at the National Institute of Standards and Technology (NIST) and on a recently established thermal neutron beamline at the Maryland University Training Reactor (MUTR). The comparison of these data to data from previous thin-film experiments provides the groundwork for the continuation of future END work using these materials, which will be used to develop and optimize a deployable neutron detector based on excimer emission

    Kinematic discrimination of ataxia in horses is facilitated by blindfolding

    Get PDF
    BACKGROUND: Agreement among experienced clinicians is poor when assessing the presence and severity of ataxia, especially when signs are mild. Consequently, objective gait measurements might be beneficial for assessment of horses with neurological diseases. OBJECTIVES: To assess diagnostic criteria using motion capture to measure variability in spatial gait-characteristics and swing duration derived from ataxic and non-ataxic horses, and to assess if variability increases with blindfolding. STUDY DESIGN: Cross-sectional. METHODS: A total of 21 horses underwent measurements in a gait laboratory and live neurological grading by multiple raters. In the gait laboratory, the horses were made to walk across a runway surrounded by a 12-camera motion capture system with a sample frequency of 240 Hz. They were made to walk normally and with a blindfold in at least three trials each. Displacements of reflective markers on head, fetlock, hoof, fourth lumbar vertebra, tuber coxae and sacrum derived from three to four consecutive strides were processed and descriptive statistics, receiver operator characteristics (ROC) to determine the diagnostic sensitivity, specificity and area under the curve (AUC), and correlation between median ataxia grade and gait parameters were determined. RESULTS: For horses with a median ataxia grade ≥2, coefficient of variation for the location of maximum vertical displacement of pelvic and thoracic distal limbs generated good diagnostic yield. The hoofs of the thoracic limbs yielded an AUC of 0.81 with 64% sensitivity and 90% specificity. Blindfolding exacerbated the variation for ataxic horses compared to non-ataxic horses with the hoof marker having an AUC of 0.89 with 82% sensitivity and 90% specificity. MAIN LIMITATIONS: The low number of consecutive strides per horse obtained with motion capture could decrease diagnostic utility. CONCLUSIONS: Motion capture can objectively aid the assessment of horses with ataxia. Furthermore, blindfolding increases variation in distal pelvic limb kinematics making it a useful clinical tool

    Power Quality Concerns in Implementing Smart Distribution-Grid Applications

    Get PDF
    This paper maps the expected and possible adverse consequences for power quality of introducing several smart distribution-grid technologies and applications. The material presented in this paper is the result of discussions in an international CIGRE-CIRED joint working group. The following technologies and applications are discussed: 1) microgrids; 2) advanced voltage control; 3) feeder reconfiguration; and 4) demand-side management. Recommendations are given based on the mapping

    Biomechanics of predator–prey arms race in lion, zebra, cheetah and impala

    Get PDF
    The fastest and most manoeuvrable terrestrial animals are found in savannah habitats, where predators chase and capture running prey. Hunt outcome and success rate are critical to survival, so both predator and prey should evolve to be faster and/or more manoeuvrable. Here we compare locomotor characteristics in two pursuit predator–prey pairs, lion–zebra and cheetah–impala, in their natural savannah habitat in Botswana. We show that although cheetahs and impalas were universally more athletic than lions and zebras in terms of speed, acceleration and turning, within each predator–prey pair, the predators had 20% higher muscle fibre power than prey, 37% greater acceleration and 72% greater deceleration capacity than their prey. We simulated hunt dynamics with these data and showed that hunts at lower speeds enable prey to use their maximum manoeuvring capacity and favour prey survival, and that the predator needs to be more athletic than its prey to sustain a viable success rate

    Analysis of the backpack loading efects on the human gait

    Get PDF
    Gait is a simple activity of daily life and one of the main abilities of the human being. Often during leisure, labour and sports activities, loads are carried over (e.g. backpack) during gait. These circumstantial loads can generate instability and increase biomechanicalstress over the human tissues and systems, especially on the locomotor, balance and postural regulation systems. According to Wearing (2006), subjects that carry a transitory or intermittent load will be able to find relatively efficient solutions to compensate its effects.info:eu-repo/semantics/publishedVersio

    Enhanced Flow Migration in Full Annular Ultra Compact Combustor

    Get PDF
    Since combustion efficiency in modern jet engines has stabilized, attention has turned to improving the combustor by improving the thrust-to-weight ratio. The Ultra Compact Combustor (UCC) is a means to reduce the weight of the combustor while ensuring exhaust meets increasingly stringent government emission standards. Combustion occurs within the UCC under a g-load in the circumferential direction, which maintains combustion efficiency while decreasing axial combustor length. Previous analysis optimized the combustion chamber flame characteristics with a common upstream air source. Previously, issues for the UCC were inspired by integration into a traditional axial turbojet. The focus of this investigation was to increase migration of the hot combustion products to the middle of the hybrid vane’s exit plane. This was done by varying the dimensions of the UCC combustion cavity, the air driver configuration into the cavity, as well as adding a radial vane cavity into the center-body guide vanes. In order to accomplish this, a temperature measurement collection technique called thin filament pyrometry was implemented to obtain high fidelity data. Also, the AFIT UCC required an accurate initial emissions baseline to be established; this baseline consisted of collecting five different gaseous species for each considered geometry. These data points were then compared against each other and previously collected temperature values. Optimal exit efficiency and temperature profiles were obtained through modifications to the hybrid vane passage and the air driver geometry
    corecore