241 research outputs found

    Metamaterial Absorbers for Mitigating Unintentional Radiated Emissions

    Get PDF
    Unintentional radiated emission spikes are one of the causes of failure in electromagnetic compliance tests of high-speed systems. In this thesis, a new absorber solution for mitigating such emissions is proposed using the concept of metamaterial structures. The absorber is placed inside the high-speed system shield box to match the low (almost zero) impedance of the metal walls to the wave impedance of unwanted radiations. As a result, waves reflected from the shield box are attenuated which eventually reduces the emissions leaked outside of the box. The effectiveness of the proposed solution is demonstrated through simulations and experimental evaluations of emissions from a 2D patch antenna array board representing a PCIe Gen 3 interface. The metamaterial absorber is implemented with PCB fabrication technology using resistive thin film layers. Two in-house radiation measurement setups are designed for this research to show the correlation between full-wave simulation results and the measurement of the fabricated prototype. The designed absorber reduces the emissions by more than 5 dB in the worst-case scenario of radiation source excitation. This provides a low-cost remedy for a marginally failing system to pass the EMC test without any change to the system board. For design and evaluation of the proposed metamaterial absorber solution, a clear methodology is presented in this thesis. The effects of the location of radiation sources, inter-component coupling, and shield box height on the design and performance of the proposed solution are investigated. In theoretical analysis, in addition to classical microwave cavity theory a new approach is employed by modeling the metamaterial absorber with a bulk material layer with complex permittivity and permeability. The bulk material design approach expedites theoretical evaluations and opens the door for further design explorations

    Energy efficient engine component development and integration program

    Get PDF
    Accomplishments in the Energy Efficient Engine Component Development and Integration program during the period of April 1, 1981 through September 30, 1981 are discussed. The major topics considered are: (1) propulsion system analysis, design, and integration; (2) engine component analysis, design, and development; (3) core engine tests; and (4) integrated core/low spool testing

    Energy efficient engine component development and integration program

    Get PDF
    The technology that will improve the energy efficiency of propulsion systems for subsonic commercial aircraft is investigated. A reduction of 14.4% in cruise installed sfc (0.572 versus 0.668 for the CF6-50C) and a direct operation cost reduction in excess of the 5% goal is projected. Noise and emissions projections are consistent with the established goals

    Energy efficient engine component development and integration program

    Get PDF
    The development of the technology to improve energy efficiency of propulsion systems for subsonic commercial aircrafts was examined. Goals established include: (1) fuel consumption, reduction in flight propulsion system; (2) direct operation cost; (3) noise, with provision for engine growth corresponding to future engine application; and (4) emissions, EPA new engine standards

    Modelação comportamental e pré-distorção digital de transmissores de rádio-frequência

    Get PDF
    Doutoramento em Engenharia ElectrotécnicaNos atuais sistemas de telecomunicações, os transmissores de rádio-frequência são desenvolvidos tendo maioritariamente em conta a eficiência da conversão da potência fornecida da fonte em potência de rádio-frequência. Este tipo de desenho resulta em amplificadores de potência com características de transmissão não-lineares, que distorcem severamente o envelope de informação no processo de amplificação, gerando distorção fora da banda. Para corrigir este problema utiliza-se um processo de compensação não linear, sendo que a pré-distorção digital se tem favorecido pela sua flexibilidade e precisão. Este método é tipicamente aplicado de uma forma cega, por força bruta até se obter a compensação desejada. No entanto, quando o método se mostra ineficaz, como se verificou em amplificadores de potência baseados em transístores de nitreto de gálio, é difícil saber o que modificar nos sistemas para os tornar de novo úteis. De forma a compreender e desenhar sistemas de pré-distorção digital robustos é necessário, por um lado, perceber o comportamento dos amplificadores de rádio-frequência, por outro, perceber as limitações e relações entre os modelos digitais e o comportamento real do amplificador. Nesse sentido, esta tese explora e descreve estas relações de forma a suportar a escolha de modelos de pré-distorção, desenvolve novos modelos baseados no comportamento dos transístores, e propõe métodos de caracterização para os amplificadores de RF.In current telecommunication systems, the main concern when developing the radio frequency transmitter is power efficiency. This type of design generally leads to a highly nonlinear transmission characteristic, mainly due to the radio frequency power amplifier. This nonlinear transmission severely distorts the information envelope, leading to spectral regrowth, out-of-band distortion. To correct this problem a nonlinear compensation process is employed. For this application, digital predistortion is generally favored for its flexibility and accuracy. Digital predistortion is mostly applied in a blind manner, using brute force until the desired compensation is achieved. Because of this, when the method fails, as it has in gallium nitride based power amplifiers, it is difficult to modify the system to achieve the desired results. To understand and design robust predistortion systems, it is both necessary to have knowledge of the power amplifiers’ behavior, on one hand, and understand the limitations and relations between the digital models and these behaviors, on the other. To do this, this thesis explores and describes these relationships, granting support to the digital predistortion model choice, it further develops new predistortion models based on the physics of the transistors’ behaviors, and it proposes methods for the characterization of radio frequency power amplifiers

    Design/cost tradeoff studies. Appendix A. Supporting analyses and tradeoffs, book 2. Earth Observatory Satellite system definition study (EOS)

    Get PDF
    Attitude reference systems for use with the Earth Observatory Satellite (EOS) are described. The systems considered are fixed and gimbaled star trackers, star mappers, and digital sun sensors. Covariance analyses were performed to determine performance for the most promising candidate in low altitude and synchronous orbits. The performance of attitude estimators that employ gyroscopes which are periodically updated by a star sensor is established by a single axis covariance analysis. The other systems considered are: (1) the propulsion system design, (2) electric power and electrical integration, (3) thermal control, (4) ground data processing, and (5) the test plan and cost reduction aspects of observatory integration and test

    From nanometers to centimeters: Imaging across spatial scales with smart computer-aided microscopy

    Get PDF
    Microscopes have been an invaluable tool throughout the history of the life sciences, as they allow researchers to observe the miniscule details of living systems in space and time. However, modern biology studies complex and non-obvious phenotypes and their distributions in populations and thus requires that microscopes evolve from visual aids for anecdotal observation into instruments for objective and quantitative measurements. To this end, many cutting-edge developments in microscopy are fuelled by innovations in the computational processing of the generated images. Computational tools can be applied in the early stages of an experiment, where they allow for reconstruction of images with higher resolution and contrast or more colors compared to raw data. In the final analysis stage, state-of-the-art image analysis pipelines seek to extract interpretable and humanly tractable information from the high-dimensional space of images. In the work presented in this thesis, I performed super-resolution microscopy and wrote image analysis pipelines to derive quantitative information about multiple biological processes. I contributed to studies on the regulation of DNMT1 by implementing machine learning-based segmentation of replication sites in images and performed quantitative statistical analysis of the recruitment of multiple DNMT1 mutants. To study the spatiotemporal distribution of DNA damage response I performed STED microscopy and could provide a lower bound on the size of the elementary spatial units of DNA repair. In this project, I also wrote image analysis pipelines and performed statistical analysis to show a decoupling of DNA density and heterochromatin marks during repair. More on the experimental side, I helped in the establishment of a protocol for many-fold color multiplexing by iterative labelling of diverse structures via DNA hybridization. Turning from small scale details to the distribution of phenotypes in a population, I wrote a reusable pipeline for fitting models of cell cycle stage distribution and inhibition curves to high-throughput measurements to quickly quantify the effects of innovative antiproliferative antibody-drug-conjugates. The main focus of the thesis is BigStitcher, a tool for the management and alignment of terabyte-sized image datasets. Such enormous datasets are nowadays generated routinely with light-sheet microscopy and sample preparation techniques such as clearing or expansion. Their sheer size, high dimensionality and unique optical properties poses a serious bottleneck for researchers and requires specialized processing tools, as the images often do not fit into the main memory of most computers. BigStitcher primarily allows for fast registration of such many-dimensional datasets on conventional hardware using optimized multi-resolution alignment algorithms. The software can also correct a variety of aberrations such as fixed-pattern noise, chromatic shifts and even complex sample-induced distortions. A defining feature of BigStitcher, as well as the various image analysis scripts developed in this work is their interactivity. A central goal was to leverage the user's expertise at key moments and bring innovations from the big data world to the lab with its smaller and much more diverse datasets without replacing scientists with automated black-box pipelines. To this end, BigStitcher was implemented as a user-friendly plug-in for the open source image processing platform Fiji and provides the users with a nearly instantaneous preview of the aligned images and opportunities for manual control of all processing steps. With its powerful features and ease-of-use, BigStitcher paves the way to the routine application of light-sheet microscopy and other methods producing equally large datasets
    • …
    corecore