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FOREWORD

This contract effort is being conducted by NASA as part of the Energy

Efficient Engine project. It is managed by the NASA-Lewis Research Center,

with Carl C. Ciepluch serving as the NASA Project Manager.

This semiannual report covers the work performed under Contract NAS3-20643

for the period of October 1, 1980 through March 31, 1981. It is published for

technical information only and does not necessarily represent recommendations,

conclusions, or the approval of NASA. The data generated under this contract

are being disseminated within the U.S. in advance of general publication in

order to accelerate domestic technology transfer. Since all data reported

herein are preliminary information, they should not be published by the recip-

ients prior to general publication of the data by either the Contractor or

NASA.

Selected portions of the data (that is, those data pertaining to specific

component design details) are considered to have significant early commercial

potential. As such, these data are designated as Category 2 Data under NASA

FEDD (For Early Domestic Dissemination) policy and are restricted from foreign

dissemination for at least 2 years from the date of this report. Category 2

data may be duplicated and used by the recipient with the expressed limitation

that the data will not be published or released to foreign parties during this

period without the expressed permission of the General Electric Company and

appropriate export licenses. Release of these Category 2 data to other domes-

tic parties shall only be made subject to the limitations that all recipients

must agree, prior to receiving these data, to abide by the limitations of the

FEDD legend on the cover of this report.
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INTRODUCTION

This is the sixth semiannual report under Contract NAS3-20643 - NASA

Energy Efficient Engine (E3 ) Component Development and Integration Program.

The report covers the period October 1, 1980 through March 31, 1981.

The program objective is the development of technology that will improve

the energy efficiency of propulsion systems for subsonic commercial aircraft

of the late 1980's or early 1990's. The following goals have been established.

•	 Fuel Consumption

A reduction in Flight Propulsion System (FPS) cruise installed
sfc of at least 12% compared to the reference CF6-50C engine.
(Cruise is defined as Mach 0.8 and 35,000 feet on a standard day
at maximum-cruise power without bleed or power extraction.)

•	 Direct Operation Cost (DOC)

A DOC reduction of at least 5% based on advanced aircraft with
E3 compared to scaled CF6-50C.

•	 Noise

FAR-Part 36 (as amended July 1978) with provision for engine growth
corresponding to future engine application.

•	 Emissions

EPA new engine standards January 1981.

CO (lb per 1000 lb thrust-hr per cycle) 3.0
HC (lb per 1000 lb thrust-hr per cycle) 0.5
NOx (lb per 1000 lb thrust-hr per cycle) 3.0
SMOKE (SAE-SN) 20.0

General Electric is projecting a reduction of 14.4% in cruise installed

sfc (0.572 versus 0.668 for the CF6-500 and a DOC reduction in excess of

the 5% goal. Noise and emissions projections are consistent with the estab-

lished goals.

In addition to the foregoing, growth of the FPS is being considered from

the outset. A minimum installed-thrust level of 36,500 lbf has been estab-

lished for the FPS at takeoff. A planned growth of 20% maximum-climb thrust



over the baseline rating is desired without compromise of the foregoing goals.

Components of the engine are to be designed with consideration for growth and

the competitiveness of the initial engine.

Commercial transport engine requirements will be factored into the develop-

ment effort, as appropriate, with the objectives of (1) making the resulting

technology useful for subsequent commercial application and 0' normalizing
the risk of any future commercial developments. Components of the engine are

to be designed with consideration for growth and the competitiveness of the

initial engine.

Four major technical tasks have been established for the E 3 program.

Task 1 addresses the design and evaluation of the E 3 Flight Propulsion Sys-

tem; this propulsion system is designed to meet the requirements for commer-

cial service and includes a flight nacelle. The Task 1 results will establish

the requirements for the experimental test hardware including the components,

core, and integrated core/low spool. Task 2 consists of the design, fabrica-

tion, and testing of the components and includes supporting technology efforts.

These supporting technology efforts are to be performed where required to pro-

vide verification of advanced concepts included in the propulsion system design.

In addition, more advanced technologies that are not specifically included in

the propulsion system design but which provide the potential for further per-

formance improvements are also to be explored. Task 3 involves the design,

fabrication, and test evaluation of a core engine consisting of the compressor,

combustor, and high pressure turbine. Integration of the core with the low-

spool components and test evaluation of the integrated core/low spool comprise

Task 4. At the conclusion of the program, the latest performance of the exper-

imental hardware (integrated core/low spool and concurrent core and component

efforts) will be factored into a final propulsion system/aircraft evaluation

(as part of continual, ongoing evaluations in Task 1) to determine achievable

performance as compared to program goals. Task 5 is a nontechnical task that

encompasses the Project/Program Management and Control System established for

the contract. The Master Program/Project Schedule is shown in Figure 1.

This report provides a review of the work accomplished during the first

39 months of the E 3 contract, with emphasis on accomplishments during the

2
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past 6 months. It is a progress report, and the data contained herein are

subject to change during the remaining period of performance. The report is

responsive to and consistent with the requirements of the Statement of Work.

Summary of Progress

The first 60 days under contract were devoted to planning the entire 5-

year program. This period culminated in the Wori: Plan, the basis of which is

the Work Breakdown Structures (WBS) established in accordance with the elements

contained in the contract Statement of Work. The WBS is presented in Table I

in an abbreviated form. Program and design highlights, progress, and overall

perspective are reported herein for the systems and components. All WBS items

in which work was performed during this report period are documented. Some of

the highlights during this report period are

•	 Sector combustor configurations have been tested which demonstrated

successful ground start ignition below the 452 core speed require-
ment

•	 Full annular combustor testing of the third development combustor

configuration for -ignition performance was completed; further devel-

opment testing is planned

•	 All LP turbine ICLS hardware has been released for manufacture

•	 Substantial progress has been made in the manufacture of Core engine

HPT hardware

•	 The 10-stage compressor vehicle was installed in the test facility

and testing is in progress

•	 All fan test vehicle hardware has been received; instrumentation and
assembly is approximately 502 complete

• Detail design and drawing releases for hardware fabrication for the

Core and ICLS engines is complete; procurement of limiting hardware

is being expedited

•	 Mechanical design and analysis of the turbine frame and mixer has
been completed

•	 Configuration design has positioned all major components and piping
requirements have been established

5



Table I. Work Breakdown Structure.

	

1.0	 Task 1 - Propulsion System Analysis, Design, and Integration

	

1.1	 Propulsion System

	

1.2	 Cycle and Performance

	

1.3	 Materials and Processes

1.4 Acoustic Development
1.5 Propulsion System Aircraft Integration and Development

2.0 Task 2 - Component Analysis, Design, and Development

2.1 Fan

2.2 Compressor
2.3 Combustor

2.4 High Pressure Turbine

2.5 Low Pressure Turbine
2.6 Turbine Frame and Mixer

2.7 Bearings, Systems, Drives, and Configuration

2.8 Engine Controls and Fuel System
2.9 Nacelle Structure

3.0 Task 3 - Core Testing

3.1 Initial Core Build
3.2 Second Core Build

3.3 Core Posttest Analysis

4.0 Task 4 - Integrated Core/Low Spool (ICLS) Testing
4.1 ICLS Engineering and Analysis
4.2 ICLS Fabrication
4.3 ICLS Assembly and Instrumentation
4.4 ICLS Test Facilities Engineering
4.5 ICLS Testing
4.6 ICLS Posttest Analysis

5.0 Task 5 - Management

5.1 Project Management

5.2 Configuration Management

5.3 Reporting

6



r

E
t

e	 Defined a new simplified engine model based on engine cycle data
curve fits for use in the digital control test stand.

A continuing problem has been experienced with regard to long lead times

for procurement of hardware, with subsequent impact on program schedules.

Schedule adjustments were made during this reporting period to accommodate

hardware slips and are discussed individually in the applicable WBS sections.
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1.0 TASK 1 - PROPULSION SYSTEM ANALYSIS, DESIGN AND INTEGRATION

Overall Objectives

The primary objectives of this task are to provide the preliminary

design of the flight propulsion system (FPS) and to evaluate the progress of

the FPS tc ensure that NASA program goals are being met. In addition, peri-

odic updates and reassessments of the FPS will be conducted to ensure that

FPS projections contain the most current information available from the com-

ponent technology development program. Periodic preliminary design reviews

?DR) based on material and data developed under this task v7_1' be conducted

t.) provide program status information.

As part of this task, cycle decks and performance projections for the

FPS will be developed and kept current. All system integration efforts are

conducted through this task, such as FPS layouts, overall assembly drawings,

parts lists, and design change monitoring. All aspects of the system, includ-

ing acoustic evaluation, aircraft integration, engine dynamics, reliability,

life management, and fan and compressor co*. ►pa:.ibility, are coordinated and

results incorporated under Task 1. Other results are the evaluation of the

system benefits of the FPS and a determination as to whether direct operating

cost and fuel savings goals are being met. Another objective of this task is

to conduct and carry on a supporting material technology program and to pro-

vide the reviews of the material selected for use in the program.

Task 1 also has the objective of providing preliminary Core Engine and

Integrated Core/Low Spool (ICLS) designs and appropriate efforts to integrate

the designs and to ensure that hardware support is provided, as appropriate,

for Core/ICLS testing. In addition, Core and ICLS PDR and Detail Design

Reviews (DDR) will be conducted based on the data generated during the task.

Development Approach

Evaluation and updates of the FPS will be accomplished by blending

information that becomes available from the preliminary design phases of the

FPS, Core, and ICLS with information that becomes availahle from Tasks 2, 3,

and 4 as the program proceeds.

8



Initially, layouts and system characteristics were developed from the

proposal FPS and any subsequent modifications that occurred before and after

the first FPS PDR. Information from the supporting efforts under the Propul-

sion System Design effort will be combined with that coming out of the other

Task 1 efforts, such as aircraft integration and evaluation, and acoustic

studies to update the FPS status.

As changes and new estimates of component and system performance become

available, new layouts and system evaluation updates will be generated for

the appropriate FPS PDR.

Continual monit)ring of the Core and ICLS design and hardware, along

with implementation of the system integration responsibility, will ensure

that accurate knowledge of the FPS configurations and characteristics is

always available. It also ensures that changes to the Core and ICLS that

could adversely affect the performance of the FPS will be known and that

action will be taken, when necessary, to prevent FPS degradation.

As the program proceeds, ail important aspects of the Core and ICLS

performance and characteristics will be translated into meaningful informa-

tion for FPS PDR's. Final program results and a final FPS projection will be

obtained and communicated in this manner.

Flight Propulsion System Description

General Llectric'F proposed E 3 Flight Propulsion System in a high

bypass, dual-rotor, axial-flow turbofan with a fan pressure ratio of 1.65

and an overall pressure ratio of 38 at the maximum climb power matchi:1g point.

At maximum cruise, the bypass ratio is approximately 7. For the sea level

takeoff (SLTO) maximum thrust rating of 36,500 pounds, the combustion temper-

ature for the FPS is projected to be 2450 F. A symmetrical nacelle with a

long-duct, mixed-flow nozzle completes the installation. A cross section of

the proposed installed engine is shown in Figure 1.1-1.

The major engine components are the fan rotor and stator module; the

core engine, consisting of the compressor, combustor, and two-stage turbine;

the low pressure turbine module, mounting provisions, and exhaust mixer; and

the core-mounted accessories.

9
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The fan rotor, consisting of a 32-blade fan stage and a 56-blade quarter

stage for core compressor supercharging, is driven by a five-stage turbine.

Titanium was utilized for blading to provide foreign onject damage (FOD) rug-

gedness. The quarter stage provides approximately 1.7 times as much air as

the core requires. The excess a'.r is bypassed into the fan exhaust duct, pro-

viding automatic flow matching and FOD separation. The fan turbine uses tip

shrouds and blade/vane root overlap to reduce leakage and aerodynamic losses.

A circumferentially continuous fan turbine casing (coupled with modulated

casing cooling) provides active clearance control. Increased blade numbers

are used in the next-to-last fan trubiue stage to raise puretone frequencies

and reduce perceived noise.

The fan frame is integrated with the fan outer duct and nacelle to pro-

vide a stiff, lightweight structure. The outer frame and duct are constructed

of graphite-epoxy materials; the inner frame is aluminum. Containment for the

fan blades is provided by a hybrid system of steel backed up by wrapped Kevlar.

Me core compressor has 10 stages of rugged, low-aspect-ratio blading to

reduce stress levels and eroa:^n, and it provides a compression ratio of 23

at the maximum-climb matching point. The last five stages of compressor have

active clearance control and a separate aft casing support to improve running

clearances. There aie five stages of variable-geometry vanes to improve

matching and efficiency at off-design conditions, and seventh-stage bleed is

available for starting.

The combustor is a double-annular design for low emissions and is pat-

terned after the combustor developed under a NASA low-emissions combustor

development program based on the CF6 engine. A shingle liner configuration

is employed; the hot shingle liner is nonstructural (except for cooling and

pressure loads) while the cool outer liner is used for all combustor support

and positioning functions. The outer combustor nozzles are used for low-

thrust conditions; as thrust is increased, the inner set of main nozzles

begins to function.

A two-stage turbine completes the core engine configuration. Advanced

directionally solidified Rend 150 is used for the Stage 1 and 2 blading and

i
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;e 1 vanes are constructed of an oxide-dispersion-

solidified (ODS) material that has provided good service in other high-temper-

ature nozzle applications. Both turbine disks are boltless designs with

smooth side elates for low windage losses. The cooling-air circuits have been

configured to provide the coolest air possible with no excess pressure losses

or leakage for increased thermodynamic efficiency. The cooling circuit for

the Stage 1 blades also provides a cooling layer over the compressor and tur-

bine interconnecting shaft. Active clearance control over the turbine is

achieved with an engine control function that selectively cools the support

rings of the shrouds, permitting blade running clearance to be changed ther-

mally under transient and steady-state conditions to permit minimum blade-to-

shroud average clearances.

A double-wall design is used in the aft hot sump to ensure that the

inner sump is adequately cooled. Two separate sources of cooling air purge

the outer and inner walls of the aft sump to prevent any inadvertent over-

heating. A center vent system exhausts the sump pressurization air back

through the exhaust cone to the engine nozzle region.

The engine accessory gearbox is located in the engine core compartment.

This location allows the nacelle diameter to be smaller for lower nacelle

drag. The basic engine design will accommodate an alternate accessory loca-

tion on the fan case if that arrangement is ultimately preferred by some

users.

The engine nacelle is a symmetrical, long-duct, mixed-flow design that

makes extensive use of lightweight composites to reduce cost and weight.

Sound suppression is integrated into the inner walls of the inlet, fan frame,

fan duct, core cowl, and nozzle. The thrust reverser is a directed-cascade

type with no links crossing through the fan duct. When deployed, cooling air

slots are opened to allow cool ambient air to enter the region aft of the

blocker doors to prevent the composite material from overheating due to hot

recirculating core exhaust gas. No thrust reverser is used for the core

stream since the core thrust is effectively spoiled by the overexpansion of

the mixer exhaust into the fan nozzle when the fan air is blocked off.

12



Mounting provisions permit the point mount loads to be transferred into

the engine in a smooth, attenuated manner. Thrust side and vertical loads

are transferred into the forward engine frame; roll side and vertical loads

are taken out by the aft mount attached to the LP turbine frame.

1.1 PROPULSION SYSTEM DESIGN

1.1.1 System Integration

Technical Progress

Analysis of transieit tip clearances determined a potential problem in

the high pressure turbine. Rubs could occur if the engine were accelerated

to power immediately after start-up. To avoid this, a heating circuit was

incorporated into the active clearance control system for the HP turbine.

This circuit ducts CDP bleed air to the impingement manifolds around the

turbine case and will be used at low power settings.

Two design changes discussed in the previous semiannual report were

inccrporated into an updated FPS cross section. These were the addition of

a flaired mixer/low pressure turbine and removal of the fluid film damper

from the aft support bearing. These changes are incorporated in Figure 1.1-1.

The PS materials are shown in Figure 1.1-2 and operating parameters and

cooling flows are shown in Figure 1.1-3.

The FPS parts list is comprised of the drawing status report which has

been regularly updated.

The key dimension drawing was updated three times. The changes concerned

refinements of the position of the forward bearing relative to the fan blade

and the position of the interface between the forward shaft and the LPT shaft.

The E3 Flight Propulsion System was utilized by two separately funded

NASA programs. These were the Materials for Advanced Turbine Engines (MATE)

Cost/Benefit Study and the Structures Performance, Benefit, Cost Study.

Also, existing E 3 aircraft integration material was provided to Lockheed-

California Company for their Integrated Technology Wing Design program with

NASA-Langley.

13
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Work Planned

• Update weight status

• Update secondary flow and operating parameters drawing

• Continue FPS refinement and optimization

• Prepare the second FPS Preliminary Deign Review

1.1.2 System Compatibility

Technical Progress

Distortion screens were designed for the compressor and fan component

test rigs. Test planning was conducted, coordinated with areo engineering,

for the 1-10 stage compressor test and the fan test.

Work Planned

Monitor the 1-10 stage compressor rig test and analyze the data for

determining stability characteristics of the compressor.

1.1.3 Engine Dynamics

Technical Progress

FPS

The FPS planar finite-element model was revised to more accurately rep-

resent the combustor, HP turbine, and LP turbine casings. Results from the

updated static analysis indicated that beam bending clearance loss was reduced

for this configuration. Table 1.1-I summarizes the projected beam bending

clearance required for maneuver load combinations, which represent actual

flight conditions. The dynamic analyses did not indicate any changes in the

core or LP system synchronous vibration characteristics for the revised con-

figuration.

The FPS/ICLS torsional natural frequency was calculated to be 16.4 Hz.

An extensive investigation into the potential sources of excitation concluded

that there will not be any engine problems related to this torsional fre-

quency.
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ICLS

t=.

	

	 A comprehensive ICLS LP system vibration analysis was completed, and the

clearance loss characteristics were defined for both normal and blade-out

unbalance. Table 1.1-II indicates the clearance required to prevent blade

rubs and rotor-rotor rubs due to normal unbalance. Table 1.1-III defines the

relative deflection expected between blades and case, and between rotors in

the event of a blade loss. Figure 1.1-4 illustrates the relative deflection

between the LP shaft and the HP rotor due to the loss of 1-1 /3 complete fan

blades. The blade-out results are cons,±rvative as no secondary load paths

have been accounted for due to stator-rotor rubs. This verified that although

a blade loss would cause blade rubs, no rotor-rotor or cast-rotor relative

deflections would exist, which could cause fan shaft failure, engine mount

failure, or any other catastrophic failure.

Core Test Vehicle

The Core Test Vehicle NOVAS analysis, a modal subsystem method, was com-

pleted and the vibration response characteristicb were shown to be consistent

with previouc results generated using VASTH. The analysis confirmed that the

damper design will provide effective vibration control for normal and high

unbalance.

A system vibration analysis of the Core Test Vehicle was conducted which

addressed to the response characteristics of the instrumentation tube. The

first n - 1 frequency was computed to be at 14,300 rpm based on the front of

the tube being pinned, which .!as conservative. Based on 0e front of the tube

being clamped, which was the design objective, the first n - 1 frequency was

computed to be at 18 , 100 rpm. Therefore, ' .he mode is not expected to prese^tt

a problem, since it is undamped, resulting in a sharp buildup which exists

completely above the speed range for either of the boundary conditions. A

shake test will be conducted to verify the frequency.

Two Shaft Damper Rig

The two shaft damper rig simulates the engine dynamics associated with

an LPT rotor mode that occurs at approximately 4000 rpm in the engine. This

21
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mode occurred above the rig 4600 rpm N1 red line speed, but the significant

response buildup relating to this mode was more than adequate for the purpose

of evaluating damper-system performance that could be directly related back

to the engine.

Figures 1.1-5 and 1.1-6 show the No. 6 bearing free floating-end flow

damper and the multishim, end sealed, spring-mounted superdampers that were

tested for evaluation of damper-system performance. Figures 1.1-7 and 1.1-8

show examples of the measured and predicted frequency response characteris-

tics. Figure 1.1-9 shows a comparison of the predictions and test data where

both are presented on a normalized basis.

Inspection of this figure shows that the analysis predicts effective

performance for the simple end flow damper up to approximately 550 g-in.

unbalance while the test results indicate that the limit of effectiveness for

the superdamper extends up to approximately 1900 g-in.

The analysis accounts for the increase in cii temperature due to the

damper work and indicates that the observed reduction in the superdamper

effectiveness is due to oil temperature rise in the damper annulus.

wnry v 1 annoA

Complete full-scale 10 stage HP compressor test and correlate results

with analysis.

Complete full-scale fan test and correlate results with analysis.

Complete ICLS final dynamic analysis and issue report.

Continue FPS dynamic analysis.

Continue FPS clearance studies based on maneuver loads which represent

flight conditions.

Write final report for the two-shaft damper rig.

s,
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4340

17-4 PH

Meehanite
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Inni 1

Tested

• Chrome Plated End Plates and Piston
Ring Bore

• Four Oil Supply Holes with Check
Valves

• Fifty-Two mil Radial Clearance

• Meehanite Arc Bound Piston Rings
(10 mil Installed End Cap)

• Four Shims with Drilled Oil Circu-
lation Holes

• 15 Hours 35 Minutes Total Testing
Time

Figure 1.1-6. Two Shaft Damper Rig Super Damper Configuration.
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1.1.4 Life Management

Technical Progress

An investigation of the effect of minor low cycle fatigue (LCF) cycles

during a flight on tiie life prediction of typical engine rotor components was

carried out. The stress and temperature at any given location on the rotors

varies considerably during a flight and there is a certain combination of

stress and temperature which causes a maximum LCF damage (major LCF cycle).

All other variations of stress and temperature which cause damage are consid-

ered minor LCF cycles. For example, thrust reverse contributes significantly

to minor LCF c ycles. An effort was made to quantify the LCF damage due to

minor LCF cvcles usinz experience from CF6-6 and CF6-50 rotors. Total damage

caused by a minor LCF cycles/flight was calculated as a percentage of the

damage/flight caused by the major LCF cycle. The investigation inficcted

damage due to minor LCF cvclev varies from a minimum of zero to a maximum of

55%. The LCF damage assessment was carried out, so that the experience gained

in the life extension programs for the CF6-6 and CF6-50 rotor components could

be applied to the 0 comixinents.
A review tit the effects of material facto-;: which might affect LCF crack

initiation was carried out. Electrical chemical machining (E( ':') and electri-

cal discharge machining (EDM) are planned for manufacturing of rotor compo-

nents of the E l 11PT. Studies have shown that significant component life

reduction may result from surface damage inflicted by the above processes

during manufacturing. It was recommended that manufacturing processes he

specified to avoid surface damage and, if possible, to specifv processing

which will enhance part LCF performance.

Work Planned

Consultation regarding Life Management Techniques to E- 1 design areas will

cunt inue .
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1.1.5 Reliability and Safety

Technical Progress

The Preliminary Hazard Analysis was issued. The objective of the hazard

analysis was to determine whether probable malfunctions, failures or improper

operations will result in hazardous "undesired events." A secondary objective

of the analysis was to identify the potential for an in-flight shutdown, which

is termed "undesirable" but not necessarily "hazardous." Based on the con-

figuration analyzed and the data available, no probable malfunction, nor any

probable single or multiple failure, nor any probable improper operation of

the engine will cause the probability of occurrence of a hazardous "undesired

event" to exceed an acceptable rate.

U-1, V l nnnnA

No specific tasks are planned.

1.1.6 Core Analysis and Design

Technical Progress

The engine cross-section drawing was updated. Changes were made in the

sumps, turbine, and rear frame. The drawing is shown in Figure 1.1-10.

The operating and cooling parameters are shown in Figure 1.1-11, the

materials in 1.1-12, and the piping in 1.1-13.

The weight and center of gravity were determined for the core engine

demonstrator.

Wishbone structure within the CDP bleed manifolding became overly

restrictive to the bleed flow. Flow restrictior%^ were reanalyzed and opened

up.

Selection of blade tip and seal clearances is underway. The criteria

is to model the clearances of a 3000-hour production engine operating at

cruise.

A stack-up analysis and evaluation of critical radial and axial clear-

ances is underway. The purposes of this study are
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•	 Ensure that the engine can be assembled

•	 Ensure that the critical clearances are within limits for successful

engine operation

•	 Provide data for selecting shim dimensions

•	 Document actual build clearances.

The results of this work will be a specification of required clearances and

monitoring of hardware clearances as hardware is assembled.

A drawing was established to define interfaces between the test engine

and the facility.

An engine stack-up roadmap drawing was essentially completed. This

defines responsibilities for stack-ups and records component stack-ups.

Work Planned

Conduct the core detail design review.

1.1.7 ICLS Analysis and Design

Technical Progress

The engine cross section is being updated. The inlet, nacelle, fan

frame, low pressure turbine, mixer, and sumps were revised. The updated

drawing is shown in Figure 1.1-14.

Operating and cooling parameters are shown in Figure 1.1-15 and materials

in 1.1-16.

Responses to additional questions resulting from the Preliminary Design

Review were supplied to NASA.

Weight and center of gravity of the test vehicle were established.

Mount link loads were reevaluated for a fan blade-out condition and were

refined for final mount geometry. Design refinement of the facility mount

links and mount lugs continues.
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The aft instrumentation strut was configured. This strut carries instru-

mentation and service lines to the aft slipring. It will be a 6 x 1-1/2 inch

streamlined fairing located behind a mixer lobe and extending from the tail-

cone into the pylon.

Combustor start sequence and means for light-off detection for the pilot

and main zones were established.

The key dimension drawing was updated with the same changes discussed in

Section 1.1.1.

The hot flowpath was updated. Inner and outer nacelle flow lines and the

mixer were changed.

The Multiple Engine Build Up List (MEBUL) was created. Previously, the

parts list was defined by the drawing status report.

Work Planned

Continue general support. Update cooling air and secondary flow draw-

ings.

1.2 CYCLE AND PERFORMANCE

Technical Progress

The effort during this reporting period has been concerned w*th four

tasks:

•	 Engine Deterioration Model

•	 Update of the ICLS Test Vehicle Cycle

•	 Cycle Deck logic modifications

•	 Core Test planning.

The first task has been completed whereas the other three tasks are still

in progress. Good progress has been made on the planned cycle deck logic

changes (Semiannual No. 5) which are nearly complete. The remaining tasks

are continuous through the engine test programs.
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Engine Deterioration Model

The effort to define a preliminary E 3 deterioration model based on the

CF6-50 Engine Performance Deterioration Report (NASA CR-15987) has be° ►: com-

pleted. Table 1.2-I shows a revision to the in-service performance losses

presented in Semiannual Report No. 5. The E 3 deterioration model was derived

by developing a CF6-50C deterioration model based on the hardware evaluation

as presented in Section 4.0 of the CF6-50 final report. This model defined

efficiency and leakage losses for a 6000-hour engine to produce a 3.26% ASFC

loss on the E 3 CF6-50C reference cycle deck. It should be noted that the

CF6-50 report shows a 6000-hour fan but that the other modules are shown for

4000 hours. It is assumed the same losses would exist for an extrapolation

to a 6000-hour time period.

The loss mechanism of each CF6-50C module was evaluated relative to the

E 3 design to forecast an improvement in the various loss items. The CF6 -50C

model was then adjusted for reduced performance losses and evaluated on the

E 3 FPS-4 cycle and found to show that a 51% reduction of the 3.2% ASK loss

was achieved. Table 1.2-II shows a comparison of the two models and the per-

cent ASFC results from the respective cycle decks.

The results of this investigation indicated that a more detailed evalua-

tion of the CF6-50C deterioration mechanisms should be made to ascertain the

validity of the E3 forecast deterioration model.

Update of The ICLS Test Vehicle Cycle

The ICLS test vehicle cycle has been updated to incorporate a 4% increase

in the HP turbine nozzle area (A4). The HP efficiency was also increased from

the ICLS Forecast l evel of 91.9% to the 92.4% level demonstrated in the compo-

nent test. The FPS-4 cycle definition is shown in Table 1.2-III and is the

same as reported in Semianntial No. 5.

Table 1.2-IV shows a comparison of the FPS-4, the ICLS -4 forecast, and

the new ICLS -4F test vehicle cycles for a 35,000 feet/0.8 Mach/t18° F day

flight condition. A copmparison with the table in Semiannual No. 5, shows
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Table 1.2-I. CF6-50C In-Service Performance Losses.

Estimated Losses, %

Cause Preliminary	 Final Report

Clearances

Fan + Booster 3 12.6

HPC 13 10.1

HPT 29 16.9

LPT 4 7.4

49 47.0

Leakages

HPC 10 5.8

HPT 6 3.1

LPT 3 5.2

19 14.1

Erosion

Fan + Booster 7 24.2

HPC 8 7.0

HPT 2 3.1

LPT 5 0.9

22 35.2

Miscellaneous 10 3.7

Total, % 100 100
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Table 1.2-II. Table Comparison of CF6-50C and E3
Deterioration Models.

Component CF6-50C E3 FPS % Reduction

Fan - n -2.45 -1.60 -35

Booster - n -0.16 -0.10 -38

Compressor - n -0.92 -0.75 -19

HPT - n -1.01 -0.35 -65

LPT - n -0.60 -0.40 -33

Leakage - % of W25 -0.135 -0.05 -63

X ASFC Loss -3.26 -1.59 -51

Table 1.2-III. FPS-4 Performance Parameters.

Parameter
Maximum Climb
35,000 feet/
0.8 M/+18° F

Maximum Cruise
35,000 feet/
0.8 M/+18° F

Takeoff
SLS/+27° F

Net Thrust,	 lb 9040 8425 36500
SFC (Standard Day) 0.546 0.542 0.294
Bypass Ratio 6.77 6.95 7.34
Overall Pressure Ratio 37.7 35.8 29.7

Fan Bypass Pressure Ratio 1.65 1.61 1.50

Compressor Corrected Airflow, (	 120.0 118.0 108.9
lb/sec

Compressor Pressure Ratio 23.0 22.4 20.0

HPT n^. • r Inlet Temperature,	 F 2345 _ 2277 2450
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the SFC increased from 0.554 to 0.555 and that compressor operating point

changed from a 22.6 pressure ratio and 119.2 lb/sec flow to 21.9 o,. 1.18.8,

respectively. Opening A4 decreases the NPT rotor inlet temperature, increases

the LPT inlet temperature slightly, and results in a rematch of the tan oper-

ating point to a slightly lower pressure ratio and flaw.

Eycle Deck Logic Modifications

Progress has been made in the planned modifications identified :n Semi-

annual Report No. 5. These were

•	 Active Clearance Control System (ACC)

•	 Centervent Flow Model

•	 Reverse Thrust Mode of Operation

•	 Cooling Flow Source and Sink Logic

•	 Revised Mixer Logic.

The ACC logic effort is on hold but will be reeumed during the next reporting

period. The remaining four items have been completed.

The centervent logic is employed to account for a substa:i,.ini amount of

air which eventually exhausts at the core nozzle and can be worth about 0.35%

in maximum cruise SFC with full fan flow modulation for the AAC system.

Figure 1.2-1 sh)ws a schematic of the centervent thrust model. Each flow

segment has an associated pressure loss to match the conditions at the vent

exit plane. It is planned to substantiate these losses during the ICLS *-?st

and use them in the flow prediction at the cruise condition.

Core Test Planning

Support is continuing for the core engine test plan. The core engine

test will be conducted in a cell which has a venturi flow measurement systf.m.

A new logic feature which was added to the cycle deck permits running

the deck as a core engine only model. This capability was developed As a

result of converting the original cycle deck system to the Executive Cycle

Deck system.
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The core deck model was checked out and used to generate a package of

core engine test prediction data which includes instrumentation losses and

the HPT efficiency and A4 changes. As a result of the updated data run, the

nominal nozzle area increased from 157 to 172 in2.

Work Planned

•	 Continue investigation of engine deterioration mechanism

•	 Continue support of core and ICLS test planning

•	 Resume work on the cycle deck ACC system model.

1.3 MATERIALS AND PROCESSES

1.3.1 Materials and Processes Component Support

Technical Progress

The metallurgical support activities for each component will be described

individually. The activities consisted primarii- of definition of materials

and processing details for drawings, monitoring 	 fabrication processes, and

material property evaluation.

HP Compressor 1-10 Rig Test

Technical support and coordination was provided in the fabrication and

instrumentation of hardware for this rig test. The vehicle went to test in

March.

HF Compressor

Four as-HIP PM Rene 95 logs were ordered for this program for the 6-10

spools. Mechanical property tests have been completed on test rings from

SIN 1, 2, and 3; test results are satisfactory. A test ring is being cut

from log SIN 4. Log SIN 1 is in the HP Compressor 1-10 rig test; SIN 2 will

go in the core, and later, the ICLS. SIN 3 is a backup.
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Vendor test results on Ti-17 hardware for the 1-4 spool were completed;

they were satisfactory. GE will conduct fracture toughness (K IC ) tests

in-house on test ring material from these Ti-17 forgings.

Full Scale Fan

Manufacture of the fan frame has been completed. Considerable support

was required in the evaluation, repair, and rework of welds. Other specific

items of support included evaluation of the anodized coating on the OGV's,

and flame spray repair of a mismachined flange on the slave midcase.

Combustor Test Rig

Metallurgical support was required in the evaluation of casting porosity

in some austenitic stainless steel castings; no other support was required.

LP Air Turbine

The first, second, fourth, and fifth stage nLzzles have been fabricated;

Stage 3 is still in process. The manufacture of this hardware has required

considerable metallurgical support in establishing and monitoring the precise

braze cycles and techniques, and processing sequences.

Unvu D1annaA

Support on component activities will continue in the form of material and

process definitions for drawings and hardware modifications, monitoring fabri-

cation processes, and evaluation of hardware from component tests.

1.3.2 Materials and Processes Engine Support

Technical Progress

This section describes the technical progress accomplished in support of

the Core, ICLS, FPS, and FPS growth engines. The major items of technical

support are discussed:

49



Material Selection

There were no changes in materials for the FPS during this reporting

period.

Support Activities

Materials and process drawing definitions continued to be provided for

the Core, ICLS, FPS, and FPS growth engi,ies.

Numerous detail drawings were issued including ducts, the diffuser,

Stage 2 HPT nozzle, the turbine casing, Stage 2 HPT shrouds, exhaust system

components, configurations, and the LPT shrouds, nozzles, blades, disks, and

rotor seals.

Coordination was provided on the supporting technology programs. Prog-

ress reviews were held in specific areas as follows:

WBS 1.3.3.1 Hardware Material Evaluation

Torsional LCF data

Plan for evaluation of HPC rotor

WBS 1.3.3.2 AF115 Support

•	 Test ring results

•	 Quench cracking problem, including corrective action

WBS 1.3.3.3 Disk Alloy Mechanical Behavior

All data generated was reviewed prior to impending publica-

tion

WBS 2.2.7.1 VSV Bushing

Status of endurance testing of bushings

WBS 2.4.7.1.1 Ceramic Shroud Process

Basis for change from wire mesh attachment to super peg attach-

ment

WBS 2.4.7.2.1 Thermai Barrier Process

Results of cascade rig and engine tests of TBC hardware



WBS 2.4.7.3.1 Alloy Mechanical Behavior

•	 Specimen status and test plan for evaluation of coated DS Rene

150.

Details of the above programs are in the appropriate WBS sections.

Work Planned

Engine support activities for the next 6 months will include material

and process drawing definitions, hardware problems, and monitoring fabrication

processes.

1.3.3.1 Hardware Material Evaluation

Technical Progress

The purpose of this program is to perform an evaluation of material to

be used in the E3 . Components to be included within this program are the

Flight Propulsion System (FPS) midfan shaft and the high pressure compressor

(HPC). Details of the work conducted in each of these subprograms are given

within the following paragraphs.

U;Afnn chofr

The FPS midfan shaft is to be manufactured from Marage 250. Additional

torsional-low-cycle-fatigue (TLCF) and high-cycle-fatigue data was generated

to verify estimated property curves provided to design. The results of these

experiments have been presented in previous semiannual reports. Four ad9i-

tional hollow-bar TLCF experiments were to be conducted during the present

reporting pericd to evaluate the effects of the ratio of maximum to minimum

diameter. Due to problems encountered in the testing of these four specimens,

which were attributed to the electronics and load cell of the test system, ;.t

was decided not to use the results of the tests. However, a TLCF design data

program for Marage 250 currently being conducted for another engine will sup-

ply the required information for E3.
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HiEh 1 essure Compressor

The HPC for the E 3 is to be manufactured from -60 mesh Rene 95. Because

of the significant size of this as-HIP'd component, the tensile, stress rup-

ture, low-cycle-fatigue, and cyclic crack growth experiments will be conducted

on specimens machined from various locations of the material. Table 1.3-I

summarizes the tests to be conducted along with specimen location.

{Fork Planned

Conduct HPC experimental program.

Table 1.3-I. HrC Experimental Material Test Program.

Number of
Tests At

Each Location* Total
Test

°
Direction, NumberO O

O
/—%
4Type Temperature, F Degrees Of Tests

Tensile RT 0 and 180 2 2 2 2 16
1200 0 and 180 1 1 1 1 8

Stress
Rupture 1200 0 and 180 2 - - 2 8

LCF 750 0 6 6
1000 0 6 3 6 15

CCGR 750 0 6 6
1000 0 6 3 6 15

74

*Location O1 represents outer corner position. 0
Location O2 represents outer bore position. O
Location O3 represents inner bore position. / O O
Location 04 represents middle position.
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1.3.3.2 AF115 Support

Technical Progress

The AF115 compacts from Special Metals have all been delivered with

the exception of the blade retainer compact which did not meet dimensional

requirements. This part is being remade but will be replaced for the initial

engine tests by an AF115 ring cut from the rim of a disk obtained from another

program. The Special Metals compacts all exceeded the specification strength

requirements, except for low yield strength and stress rupture lives in the

thick bore section of the forward seal disk. It appears that our preliminary

specification values were too ambitious for this 4.5-inch thick heat treat

section. This hardware will be accepted since the yield strength and stress

rupture capability in this location does not limit the part.

The Crucible compacts have all been heat treated and are ready to ship

pending test results. Several quench cracks were discovered in the Crucible

compacts, however, all the cracks cleaned up in machining, leaving sufficient

stock to machine the hardware. The quench cracking, however, did point out

the need to lessen the severity of the quench at Crucible on future hardware.

LCF testing was performed on QC compacts of the powder blend used to pro-

duce the AF115 hardware at Crucible. The data is tabulated in Table 1.3-II.

The data exceeds typical release requirements for Rene 95 and is a significant

improvement over the previous material evaluated in this program. All the LCF

bars, however, did initiate at Hafnium containing powder related defects, once

again indicating the need to further improve the cleanli-iess of melting/atom-

ization procedures for Hafnium bearing alloys.

Work Planned

R(;view and analyze the property data from the Crucible AF115 test rings.

Begin LCF testing of Special Metals AF115 material.
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Table 1.3-II. AF115 Low Cycle Fatigue Data.

1000° F, Strain Control, A-1, 20 CPM

Pseudo
Specification AET,	 % E,	 106 psi a/Alt., ksi NF

1-1 0.66 27.8 91.7 24,984

1-2 0.78 27.8 108.4 7,214

1-3 0.90 28.0 126.0 6,292

1-4 0.66 27.9 92.1 37,090

1-5 0.60 27.8 83.4 51,976

2-1 0.66 28.0 92.4 24,572

2-2 0.78 27.9 108.8 11,340

2-3 0.60 27.9 83.7 28,6C2

2-4 0.66 27.9 91.7 23,688

2-5 0.60 28.2 84.6 36,930

1.3.3.3 Disk Alloy Mechanical Behavior

Technical Progress

Two advanced disk alloy materials, namely as-HIP Ren g 95 and as-HIP

AF115, have been selected for use in the E3 . Reng 95 in the as-HIP condi-

tion has been utilized in other General Electric engines; however, limited

fatigue data has been developed at the temperatures of interest to this

program. Furthermore, -L50 mesh powder will be used in application of the E3

for its better fatigue characteristics, while in the past the earlier engine

components were manufactured from -60 mesh material. The other alloy, AF115,

is a nickel-base superalloy developed by General Flectric under an Air Force

Material Laboratory Contract ending June 1974. This material, which has

higher creep and stress rupture strengths than Ren g 95 at temperatures of

1000° to 1500° F, has not been designated for use in any other engine other

than the E 3 . Thus limited data is available for either of these two alloys.

The objective of this program was to produce design information and under-

standing of the materials behavior for a successful design of the E 2 . All

work within this program has been described in earlier semiannual reports.
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OF P00,1
1.4.1 System Acoustic Prediction

Technical Progress

The main effort during this reporting period focused on a system noise

prediction update. Takeoff noise levels for the E 3 aircraft were updated

through mixer scaled model test results. The results are shown in Table 1.4-I.

Work Planned

•	 None

Table 1.4-I. Takeoff Noise Est sate for E 3 Aircraft.

• With Mixer Benefit

• EPNdB

Boeing
Twinjet

Lockheed
Trijet

Lockheed
Quadjet

Douglas
Trijet

FAR36 93.8 100.4 104.2 100.9

Status Level 88.8 93.6 98.3 94.4

Margin -5.0 -6.8 -5.9 -6.5

Revised Level 88.1 93.3 98.0 94.0

Margin -5.7 -7.1 -6.2 -6.9

1.4.3 Mixer Acoustic Testing

Technical Progress

Aeroacoustic correlation of the tested mixer configuration was completed.

It predicted well in terms of sound power level, i.e., the source strength.

However, the accuracy of prediction for the SPL spectra at all angles was not

completely adeugate. Figure 1.4-1 illustrates the power level comparison.
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W^vk PlannoA

•	 None.

1.5 PROPULSION SYSTEM/AIRCRAFT INTEGRATION

1.5.1.3 Nacelle Performance Evaluation - Langley

Technical Progress

A recalibration of the E 3 baseline and extended nacelles was conducted

at Boeing at the request of NASA-Langley. It was discovered that the calibra-

tion data used for the E 3 nacelle in the Phase II test data reduction was

with powered simulator (TPS) Unit No. 5 but the wind tunnel test was run with

Unit No. 3. Thus a calibration with TPS No. 3 was necessary. Langley also

requested a check calibration of the extended nacelle on TPS No. 3. Final

calibration results were received from Boeing, and the nozzle coefficients

were derived and forwarded to Langley.

Recalibration results are showing another shift in the nozzle coeffi-

cients by 1% to 2%. This was seen previously but it was believed to be due

to differences in TPS units. Since the E 3 extended nacelle has been cali-

brated twice with the same TPS unit, and detailed comparisons of different

T7S units indicate very similar operating characteristics, the shifts are

apparently caused by some unknown factor from test to test. If the shifts

are an inherent part of the calibration procedure, the acccracy of wind

tunnel test results will be affected. Analysis of the calibration data will

continue to determine a reason for the coefficient shifts.

The above work is being performed under an extended contract to NASA-

Langley.

Wnr4 P1AnnnA

Analyze the Phase II wind tunnel test results if they are made available

from NASA-Langley and prepare a data memo.
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2.9 TASK 2 COMPONENT ANALYSIS DESIGN AND DEVELOPMENT

2.1 FAN

Overall Objectives

The primary objective of the fan development effort is to evolve a high

technology design able to meet or exceed all commercial certification require-

ments for noise, performance, life, and bird or ice ingestion. The general

configuration of the fan (Figure 2.1-1) will incorporate a high-bypass fan

stage with a part-span shroud followed by a quarte: stage to provide addi-

tional supercharging to the core compressor. The design of the nuarter stage,

and passages aft of it, will minimize foreign object ingestion into the high-

pressure compressor. The quarter stage will also provide good distortion

attenuation and tolerance to byi,ass variation without variable geometry.

blades will be solid titanium construction to provide the lightest weight

fan capable of meeting the operational environment impose "' by bird ingestion

requirements. The fan will have no life-limiting conditions for the expected

operation in commercial service including crosswinds, thrust reversals, and

tip rubs. The FPS fan efficiency goals are 0.882 bypass and 0.892 hub at Mach

0.8, 35,000-feet alti)^ude, standard day, maximum cruise power setting.

The fan design will be verified in a fully instrumented, full-scale fan

test beginnin g in the second quarter of 1981. Modifications required to attain

goals for performance or mechanical integrity will be identified from the test

results and incorporated into the fan design prior to the ICLS test.

Preliminary mechanical design studies were conducted in order to estab-

lish the general fan configuration with the best potential for meeting the-

overall program objectives. In June 1979, the fan-blade parameters related

to bird-ingestion tolerance were evaluated based on commercial service experi-

ence with improved blade design- now in production. The objective of this

selection was to ensure that the E 3 fan bladiug will be compatible with com-

mercial engine certification requirements.
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The final aerodynamic design of the fan rotor was completed during the

third quarter of 1979. The final mechanical design was completed in the fourth

quarter of 1979 with an Interim Design Review (IDR) in 1979 leading to the fan

Detail Design Review (DDR) in February 1980; design parameters are shown in

Table 2.1-I. Concurrent with the above effort, the final aerodynamic design

of the frame structures was also completed during the last quarter of 1979.

The final frame mechanical design was initiated at the beginning of 1979 and

conducted during the latter part of 1979. The slave frame design was reviewed

in an informal IDR on September 12, 1979 to allow an early start on the rela-

tively long procurement cycle of the slave frame. Fabrication of the slave

frame was completed during the first quarter of 1981.

Hardware of the fan rotor and the slave frame was available to initiate

the co:.!ponent test buildup by the end of the first quarter of 1981. Following

the instrumentation and buildup cycle, the fan component test will begin in

the second quarter of 1981. Test data from the component test will be ana-

lyzed to incorporate expected minor adjustments into the aerodynamic or mec:l an-

ical design effort during the third quarter of 1981. This refinement in the

design may then be committed to a rework cycle of the Full Scale Fan Test

(FSFT) hardware during the remainder of 1981, leading to its availability for

the ICLS buildup beginning early in 1982.

2.1.1 Fan Aerodynamic Design

Technical Progress

A very limited amount of activity has taken place in the Semiannual

reporting period in the area of fan aerodyus-nic design. The principal activ-

ity has been centered around planning and preparing for she fan test, now

scheduled for July 1581.

During this preparation period, the instrumentation plan has been tormu-

lated and work on the data reduction procedure has been initiated. The instru-

mentation place has been written and the final draft recently apprc-Jed by NASA.

This plan includes a description or the fan test vel * -le as well as the Large

Fan Test Facility (LFTF) located in Lynn, Massachusetts where the fan will be

tested. The aerodynamic instrumentation is described in detail, specifying
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Table 2.1-1. Fan Aerodynamic Design Parameters.

Parameters
Maximum Climb

35,000 feet/Mach

Maximum Cruise

0.8/+18° F

Takeoff

SLS/+27° F

Corrected Tip Speed, ft/sec 1350 1311 1198

Corrected Airflow, lbm/sec 1419 1396 1274

Flow/Annulus Area, lbm/sec-ft 2 42.8 42.1 38.4

Bypass Stream Pressure Ratio 1.65 1.61 1.50

Bypass Stream ldiabatic Effi-
ciency, percent 87.9 88.7 90.0

Core Stream Pressure Ratio 1.67 1.63 1.51

Core Stream Adiabatic Effi-
ciency, percent 88.5 89.2 89.7

Bypass Ratio b.A_ 6.9 7.3
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the location and type of sensor, and the associated performance calculations.

The vehicle and facility instrumentation are also described in the instrumen-

tation plan. A complete list of each instrument element as well as the instru-

mentation drawing is provided.

The data reduction plan is currently being formulated to determine what

performance calculations are required to best analyze the fan test results and

how these calculations are handled in the centralized data reduction computer

program. In addition to overall bypass and core stream performance, vane-

mounted and traverse instrumentation will be used to measure the individual

blade-row performance. Numerous wall static pressures, and boundary-layer

rakes will be used to analyze the flow properties near the wall boundaries

and to aid in the calculation of the flow at the bellmouth, bypass, core, and

booster measuring planes. Dynamic and steady-state pressures over the fan

rotor blade tip will be recorded for several data points and will be used to

determine the shock structure of the flow in the rotor tip blade passage.

The fan vehicle hardware quality is being monitored by aero personnel as

it is delivered for assembly. Instrumentation application to the blades and

vanes is also being monitored to assure good quality. The aerodynamic require-

ments for the calibration of the rakes and vane-mounted sensors halve been

specified to include the predicted range of test operation.

Work has begun recently to prepare the fan vehicle test plan including

the pretest predictions of the fan and quarter-stage.

The detailed design report of the fan test hardware was approved in its

final version and issued as required by NASA Contract NAS3-20643. The report

number is NASA CR-16514$.

Work Planned

s	 The fan aerodynamic performance map, pretest pred,-c'ions and test
plan will be finalized 3 month.: prior to the sch-doled fan component
test.

•	 The data reduction plan will be formulated and coordination with the

engineering and test personnel in Lynn, Massachusetts will continue.

•	 Test coverage, '_ta analysis, and reporting will be provided by fan
acro personnel on the fan vehicle which is scheduled to begin test
in July M-
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2.1.2.1 Fan Rig Rotor Mechanical Design

Technical Progress

All hardware required for the Full Scale Fan Test (FSFT) vehicle buildup

has been delivered.

LJ--L D1e —A

•	 Follow vehicle buildup and testing.

2.1.2.2 ICLS Fan Rotor

The forward fan shaft detail drawing has been issued and an order for

manufacture has been placed.

Work Planned

•	 Follow hardware procurement

•	 Issue the ICLS fan rotor assembly drawing.

2.1.3 Fan Stator Mechanical Design

2.1.3.1 Frame Interface Design

Technical Progress

The final interface requirements for the fan stator hardware required for

the FSFT were established and all the detail drawings issued by November. The

majority of the work effort involved the incorporation of the hardware required

to accommodate the gea-box radial driveshaft and the accessory supply lines

for the ICLS engine into the hardware configuration for the FSFT. This task

required the early establishment of frame interface locations for engine hard-

ware; the gearbox, radial driveshaft and mounting brackets, the nacelle inner

and outer cowl doors, service lines, controls, etc. This was necessary to

permit the design of the cut-back vanes, fairing, and extension at the 6:00

o'clock location that would interface with the test facility hardware for the

FSFT and still adapt to the engine hardware for the ICLS test. Conversion

63



from the FSFT configuration to the ICLS configuration at the gearbox location

requires a different service line extension and support hardware, an oil-tube

and retainer to prevent oil leakage into the bypass flow stream, and a gearbox

mounting adaptor to position the radial driveshaft throu-h the frame. The

detail drawings for this hardware will be issued in April 1981.

The remaining fau stator hardware required for the ICLS engine test

includes the engine mount brackets, the gearbox attachment brackets, and the

nacelle inner and outer cowl door seal rings. In February 1981, a review of

the gearbox mounting arrangement to the fan frame resulted in an acceptable

configuration and released the hardware designs for fabrication. While the

overall engine mount arrangement and the preliminary link pick-up points at

the fan frame have been established, several design iterations of the slave

engine pylon system have delayed the final approval of the interface between

the fan frame mounting brackets and the Test Facility pylon. A final config-

uration for the engine mount system should be available in April 1981. The

interface requirements of the inner and outer cowl door seal rings with the

test facility pylon structure and the fan frame have been established and the

detail should also be completed in April 1981.

During the past 6 months, engineering support has been required for the

fabrication of the fan frame hub in the Development Manufacturing Operation

at Evendale and for the final assembly, machining and instrumentation of the

fan frame assembly.

Work Planned

•	 Expedite the determination of the engine mount system configuration
to allow the release of ICLS hardware.

2.1.3.2 Fan Casin& Design

T - ..ical Progress

The fan casing for the full-scale fan test (FSFT) consists of a contain-

ment case and a midcase that are mechanically attached to tLe steel outer
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bypass case of the slave fan frame as shown in Figure 2.1-2. The effort dur-

ing this reporting period consisted of design support for the fabrication and

assembly of this hardware. The fabrication is now complete as is the initial

trial assembly.

Work Planned

•	 The final assembly of the FSFT vehicle will be supported.

2.1.3.3 Stage 1 Vane Design

Technical Progress

The mechanical design and the fabrication of the Stage 1 vane and the

vane assembly hardware has been completed.

The vanes and stator assembly hardware requiring aerodynamic and mechani-

cal instrumentation have been c 3leted and the remaining hardware inspected

prior to assembly for the fan test vehicle.

2.1.3.4 Quarter-Stage Vane Design

Technical Progressess

The mechanical design and fabrication of the quarter-stage vane and vane

assembly hardware have been completed and the required aerodynamic and mechani-

cal instrumentation have been installed. The stator assembly is currently

being inspected prior to delivery to the fan test vehicle assembly.

2.1.3.5 Frame Mechanical Design

Technical Progress

Design work on the frame has primarily involved the hardware for ZCLS.

Following a review of the gearbox mounting arrangement, the design was changed

to provide a more positive means of aligning the radial driveshaft and to

reduce the loads carried by the stationary flexible oil tube that encapsu-

lates the radial driveshaft. Figures 2.1-3 and 2.1-4 illustrate the current

arrangement at the gearbox interface with the fan frame. An adaptor bracket
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which bolts to the fan bypass cas;., will provide a pilot attachment to the

gearbox which establishes the positive alignment of the radial driveshaft to

the frame. The adaptor bracket will be aligned to the frame by laser optics

through three points; the drive-shaft centerline at the hub, the midspan bear-

ing bore at the bypass vane ID, and the piiou bore at the adaptor bracket.

The gearbox is supported off the frame by two vertical link brackets at

approximately +30 0 from bottom vertical, one tangential link bracket, and

a bracket and link to the mid:ase which provides fore and aft stability to the

gearbox.

Figure 2.1-5 illustrates the service line extension fei the IOLS config-

uratin,n. This extension is similar in Size to the extension required for the
FSFT but must satisfy different operating requir._ments. The extension for the

FSFT is fixed ^u the facility hardware at the ID and OD and is slip jointed

into the vane fairing. The thermal and pressure gradients that will be encoun-

tered during the FSFT are minimal. Consequently, one stiffener will be

employed to prevent any stress, deflection, or panel frequency problems. For

the ICLS engine test, where thermal and pressure gradients across the exten-

sion can become significant, stiffeners will be employed at three axial

locations.

The forward engine mount attachment to the fan frame is illustrated in

Figure 2.1-6. The mount brackets are located symmetrically about the top

vertical centerline at +45° on the aft face of the fan frame hub. Each

bracket connects to the Test Facility pylon system through a vertical link

and an axial thrust link. Vertical, side, and thrust loads are reacted et

the forward mount. The design configuration for the brackets is complete.

The detail drawing can be completed once the link connecting locations cur-

rently under study by the Test Facility Engineering group are finalized.

The cowl door seal ring designs are shown in Figure 2.1-7. The outer

seal ring is segmented into two approximately 150 * sectors and bolts to the

fan frame bypass case. The ring provides a _-adial seal and a bumper support

for the forward end of the outer nacelle door. additionally, the bracket

that supports the service line extension at the bottom bypass vane location

bolts to the seal ring. The inner seal ring bolts to the bypass vane aft
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inner support ring and supports the forward end of the nacelle inner cowl

door. The seal is designed for a tongue and groove attachment of the coal

door with a bulb seal provided to minimize leakage. The seal is also designed
S

to collect the cowl purge air required for fire safety. The flowpath portion

of the anal is set radially outward above the bypass vane inner flowpath. 	 j

This annulus collects the air which is then ported through holes in the seal

to the core cowl cavity. The adjustment of the seal flowpath for the purge

air can be seen in Figure 2.1-7.

Work Planned

•	 Complete design of forward engine mount hardware

•	 Support fan module assembly and test.

2.1.4 Fan Motor Design Testing

Bench test of the Stage 1 and Stage 2 blades has been completed. The

tests included determining resonant frequencies, nodal patterns, stress dis-

tribution, and end effects.

2.1.5 Fan Stator Design Testing

Technical Progress

The major portion of the fan stator bench testing has been completed.

Data for vane vibratory frequencies, corresponding nodal line diagrams, and

relative strain distributions has been determined for the bypass vane stage

including the cutback vanes, the Stage 1 vanes, and the core OGV's. In addi-

tion, unit static load tests were conducted on the Stage 1 vane and the core

OGV. Based oa :hese data, strain gage locations were established foa ;.sfety

monitoring the vanes during the fan component test and the engine teat. A

check of the engine gages is planned during the vehicle assembly to verify

vane frequencies and gage response. Figures 2.1-8 and 2.1-9 illustrate a

bypass vane and a Stage 1 vane setup during bench testing.

Work Plannec:

•	 Conduct final strain gage check on vanes during assembly.
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2.1.6 Full-Scale Fan Testing

2.1.6.1 Component Development and Evaluation

Technical Progress

During the past reporting period, the Component Development group has

continued to coordinate the activities of various organizations required to

assemble and test the fan rig. They completed the detailed instrumentation

print, along with the computerized data bank code list; started fabrication

of the assembly and balance tooling; initiated senor application onto the

fan frame, bypass vanes, and rotor blades; and continued the detailed review

of the assembly and balance procedures.

Work Planned

•	 Monitor fabrication of assembly tooling

•	 Coordinate and follow instrumentation and assembly of the fan

vehicle

•	 Assist in preparation of the Test Request

•	 Coordinate with Lynn Test Operation for vehicle testing.

2.1.6.2 Test Facilities Engineering

Technical Progress

Test Facilities Engineering has completed the detail design of inlet and

discharge hardware required for fan testing; completed the fabrication of all

inlet and discharge hardware; finished the fan vehicle assembly drawing; and

placed an order for fabrication of the distortion screen hardware.

Work Planned

•	 Complete fabrication of distortion screen hardware

•	 Provide engineering support during buildup of the fan vehicle.
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2.1.6.3 Instrumentation Design

Technical Progress

Designs have been finalized for the inlet airflow and distortion rakes

using existing designs from the CF6-8G program. New designs w':re completed

for the following rakes and manufacture was initiated of

•	 Compressor inlet P T/TT ar^ rakes and radial rakes for Planes 23 and

25

•	 Fan inlet boundary layer PT

•	 Planes 1.3/93 PT boundary layer

•	 Plane 14 PT/TT arc/radial rakes.
.z

i

	

	
Preliminary designs have been completed for all the component applied

aero and mechanical measurement sensors on the fan frame subassembly and

stress and temperr,ture sensors for the fan and booster rotors.

Cold probe calibration was completed for aero P T and TT sensors on

the Plane 23 and 25 rakes and the frame bypass vanes.

Work Planned

•

	

	 Complete final designs for all applied and separable instrumentation

sensors.

•

	

	 Provide aero calibration of selected P T and TT sensors on core OGV

and Stage 1 stator vanes.

• Provide engineering consultation and direction to the shops during

manufacturing, application and assembly of the test vehicle instru-

mented hardware.

•

	

	 Provide engineering coverage for stress monitoring of instrumented
rakes and consultation and initial test support for specialized data
gathering parameters.

2.1.6.4 Lynn Facilities Engineering

Technical Progress

Lynn Test Facilities Engineering completed the design of the required

facility hardware. Work was initiated on modifications to the test cell inlet

77



}

i

stack and is continuing. Completed design of discharge valve actuation system

and placed orders for required hardware.

U-1, D1 n.,n nA

•	 Complete modifications to inlet stack

•	 Remove and rework the bypass discharge valve system

•	 Install and check out discharge valve actuator system.

2.1.6.5 Development Assembly

Technical Progress

The Development Assembly group continued the preparation and publication

of the assembly and inspection procedures required to assemble the fan vehicle.

They also completed the design of assembly and balance tooling.

•	 Complete the procurement of fan assembly and balance tooling

•	 Complete the preparation and publication of the detailed assembly

and balance procedures.

2.1.6.6 Instrumentation Application

Technical Progress

The Instrumentation Application group initiated the necessary planning

for instrumentation of the fan vehicle hardware. They completed the fabrica-

tion of the Plane 93, 23, and 25 rakes; started this fabrication of the Plane

41 radial arc rakes and also the bellmouth inlet rakes; sad started the appli-

cation of mechanical and aerodynamic sensors to vanes and rotor blades.

Work Planned

Complete manufacture of all fan aerodynamic rakes and probes

•	 Complete the application of the required mechanical and aerodynamic
sensor to the fan hardware
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•	 Provide coverage during the assembly of the fan vehicle for leadout

and termination.

2.1.6.7 inn Testing

Technical Progress

Lynn test has continued to provide consultation to Evendale Evaluation

pertaining to the interface between vehicle and test facilities; they have

issued schedule and work requirements for rework of the bypass discharge

valve system and have provided technical assistance to Lynn Facilities on

stack modifications and the discharge valve actuation system.

Work Planned

•	 Remove and rework bypass discharge valve system

•	 Prepare cell for fan vehicle

•	 Install fan vehicle in test cell

•	 Conduct testing of fan vehicle.

2.1.7 Fan Fabrication

2.1.7.1 Fan Motor

Technical Progress

All components required for FSFT buildup have been received.

•	 Follow vehicle buildup.

:.1.7.2 Fan Stator

Technical Progress

The fabrication of the hardware required for the full scale fan test

(FSFT) has been completed. The core frame has been welded, final machined,

instrumented, and shipped to an outside vendor for final machining of the core

frame/bypass vane assembly. Figure 2.1-10 shows the core frame following cow-•

pletion of the EB-welding cycle.
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The fabrication of the fan stator vanes has been completed as has been

the stator assembly hardware from Mojave. Figures 2.1-11 through 2.1-13 show

the completed fan stator vanes. Included in this hardware are the cut-back

bypass vanes and the fairing and extension hardware for the bottom cut-back

vane.

The fan midease, containment case, and hardwall panels have also been

delivered.

With the completion of the hardware fabrication for the FSFT, orders will

be placed following issuance of the detail drawings for the hardware required

for the ICLS engine test. Hardware to be procured includes the gearbox brack-

ets, engine mount brackets, nacelle cowl door seal rings, and bottom bypass

vane hardware; service line extension and stiffeners, support bracket, and

radial driveshaft oil tube and pilot bracket.

Work Planned

e	 Initiate procurement of ICLS hardware.

2.2 HIGH PRESSURE COMPRESSOR

Overall Objectives

The primary objective of the compressor development effort is to evolve a

10-stage, high-performance, high-stage-loading design (Figure 2.2-1) capable of

achieving a pressure ratio of 23:1 at the maximise climb design point. The

primary aerodynamic design challenge will be to provide adequate levels of

stall margin at part-speed operation while maintaining the high efficiency

levels required for this compressor. The FPS compressor efficiency goal is

0.361 at Mach 0.8, 35,000 feet, standard day, maximum cruise power setting.

The mechanical design requirements include the development of an active

clearance-control system for the rear block of compressor stages to achieve

tip clearances at cruise compatible with efficiency and stall uargits goals

and to enhance performance retention. The compressor has fewer, longer chord
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airfoils (low aspect ratio) to increase blade life and general ruggedness and

to reduce performance deterioration and operational costs. The compressor is

short and stiff and, in conjunction with the short combustor and high pressure

turbine, permits the use of only two bearings to support the core rotor.

A sequential arrangement of the tests will allow refinements of the

design to be introduced throughout the compressor development test program.

The test program will culminate with the ICLS test in 1982.

Development Approach

Precontract aerodynamic design studies were completed in sufficient

detail to allow the detailed aerodynamic design to commence at contract initi-

ation. The initial contract efforts are devoted to the detail design and

testing of the first six stages of the compressor in component tests. The

PDR for the compressor was. therefore, completed very early in the program

(February 1978). An IDR was held in July 1978 before committing to the hard-

ware fahzication cycle for a 1-6 stage component test shown in Figure 2.2-2.

Following instrumentation and assembly, the 1-6 stage component test was com-

pleted dutinR the month of February 1980, and posttest analysis of the data

has been completed.

The detailed aerodynamic and mechanical design of the rear stages of the

compressot was completed in the first quartet of 1979 during the procurement

c ycle for the first six stages. This permitted an additional IN for the

entice* 10-stage compressor in late January 1979; compressor aerodynamic

design parameters ate shown in Table 2.2-1. Upon successful completion of

this im the hardware fot the last four stages of the compressor was released

for procurement.

Appropriate hardware from the 1-6 stage vehicle was merged with the hard-

wate procured for the aft stages to complete a 1-10 stage component buildup

shown in Figure 2.2-3. The first 1-10 sage component test was initiated dur-

ing the first quartet of 1981.

i
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Table 2.2-I. Compressor Aerodynamic Design Parameters.

Maximum Climb	 I Maximum Cruise
35,000 ft/0.8 Mach/+ 18' F

Takeoff
SLS/+27' F

Corrected Speed, % Design 100.0 99.5 97.7

Corrected Airflow, ihm/sec 120.0 118.0 108.8

Total Pressure Ratio 23.0 22.4 20.0

Adiabatic Efficiency 0.857 0.861 0.865

Polytropic Efficiency 0.903 0.905 0.908

Inlet Temperature, ° R 547.9 542.5 621.6

Inlet Pressure, psis 8.65 8.42 21.84
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Following analysis of the 10-stage test data, refinements in the mechani-

cal and aerodynamic design will be executed in modified hardware in a second

10-stage component test in late 1981.

A complete new set of hardware, refinements for which will be defined

based on the first 1-10 test, will be introduced into the first core engine

test planned for the first quarter of 1982. Upon successful completion of

this test, the low pressure system will be added to the core and built up

into the ILLS to be tested in late 1982.

2.2.1 Aerodynamic Design

Technical Progress

2.2.1.1 HPC Aero Component Design and Test

During the past 6 months, the aerodynamic design activity has been

limited to preparation for the 10-stage core compressor test. The principal

activity has centered about the formulation of the instrumentation and test

plans for the 10-state test. These plans were documented and given final

approval by NASA and were issued during the past semiannual period.

Preparations for the first 10-stage compressor test were carried out dur-

ing the past reporting period. The data acquisition and data reduction plans

were finalized and coordination with the Lynn plant engineering and test per-

sonnel continued to assure accurate and timely measurements and calculation

of all test data. Aero coverage of the test vehicle assembly was provided to

assure that hardware quality was consistent with the aerodynamic design intent.

Work Plannned

• The full-scale component test of the 10-stage core compressor will
be run in March and April 1981. Testing will include numerous data
points taken to define the performance of the compressor with both

clean inlet and distorted inlet conditions.

•	 Stator schedule optimization will be performed and interstage radial

traverses will be taken. The resulting test data will be analyzed
in detail and a test memo will be written.
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2.2.2 Rotor Mechanical Design

2.2.2.1 Design of 1-6 Rig

Technical Progress

This effort has been completed anti results have bet.n integrated into the

1-10 rig test.

Work Planned

•	 No further effort will be expended.

2.2.2.2 Design of First 1-10 Rig

Technical Progress

During this reporting period, the E 3 compressor first 1-10 rig design

effort involved:

•	 Tip grinding of Stage 6 through 10 blades

•	 Completion of buildup of the instrumented 1-10 rig assembly

•	 Installation of the 1-10 rig vehicle in the General Electric FSCT
facility in Lynn, Massachusetts

•	 Initiation of 1-10 rig testin?,.

Work Planned

•	 Complete the 1-10 rig testing

•	 Complete vehicle teardown and inspection

•	 Data reduction and reporting

2.2.2.3 Design of Second 1-10 Rig

Technical Progress

This task was initiated at the beginning of the first quarter of 1980.

At that time, the total effort involved procuring all new hardware, except
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}	 a 6-10 spool; and instrumentation, assembly, testing, and reporting on this

f	
effort. This effort is progressing on schedule. The second 1-10 rig build

will utilize the first 1-10 rig build hardware and have the option of replac-

ing the Stage 8, 9, and 10 Mod B blades with the Mod A blades or with reworked

Stage 7-10 rig blades.

Work Planned

•	 Upon completion of the first 1-10 rig test and data reduction, pos-
sible aerodynamic modifications to the Stage 7 through 10 blades

will be defined and drawings issued.

2.2.2.4 Design of the Core HPC

Technical Progress

During this period, the E 3 core HPC design effort invovled

•	 Release of alternate material for the manufacture of the CDP seal
due to unacceptably late forging delivery

•	 First article inspection of Stage 1, 2, 5, and 6 blades has been
completed, with the airfoils mechanically and aerodynamically

acceptable

•	 Design and release of an instrumentation lead-out duct which can
be disassembled and removed without rotor teardown (Figure 2.2-4)

•	 Blade instrumentation rework defined, quotes received, and orders

placed

•	 Based on the axial dovetail flow check conducted in WBS Item 2.2.4,

some desirable design changes to minimize leakage have been identi-
fied and incorporated into released hardware (including alternate

deep blade retainer rings for use on some axial dovetail stages to

reduce leakage).

2.2.3 Stator Mechanical Design

2.2.3.2 1-10 Design of 1-10 Rig, Build I

Technical Progress

Engineering coverage was provided during the interstage seal grind and

vehicle assembly. Calculated scope limits for strain gages mounted on Stage 7
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through 9 vanes to be used for safety monitoring during vehicle test. Scope

limits calculated for Stages IGV through 6 for the 1-b tig tart air applicable

for the 1-10 test. Safety monitoring is being provided during vehicle testing.

U__6 Vi .-AA

•	 Continue to provide safety monitoring during vehicle test

e	 Analyse test data and prepare summary of test results.

2.2.3.3 Design of 1-10 Rig, Build II

Technical Progress

Work on this WKS was initiated ;n March with design of instrumentation

rework and intervene circumferential seals on the cast stator vanes. Engi-

neeting coverage of ptocurerp'nt of the cast vanes was also provided.

e	 Continue coverage of cast vanes procurement.

2.2.3.4 Design of Core Engine

Technical Progress

Thermal, stress, and life analyses of the diffuser frame have yet to be

completed. Modeling problems and a preliminary internal design review have

resulted in talte detailed analyses. An internal design review is scheduled

near the end of this reporting period. Analyses will be completed next period.

Detail design of the VSV acuation system is continuing.

Design of all remaining hardware items is complete. Drawings of the VSV

bushings, OGV/diffuser frame machining, and Stage 7, 8, and 9 vane machining

were issued during this period. The inner support case (wishbone) was rede-

signed to accommodate the axial engine shim.

Engineering support of the hardware procurement is continuing.
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Work Planned

•	 Complete diffuser frame analyses

•	 Complete detail design of VSV actuation system

•	 Continue to support hardware procurement.

2.2.4 Rotor Design Testing

Technical Progress

All bench tests associated with the 1-10 compressor rig blades have been

completed. The tests include determination of airfoil natural frequencies,

nodal patterns, stress distribution, root end effects, and fatigue strength.

A dovetail leakage component test was conducted during the last reporting

period but data reduction and analysis was not completed until early in this

reporting period.

U--I, D1 s.. —A

•	 Bench testing of the core compressor blades will be initiated in

the second quarter of 1981.

2.2.6 Full-Scale Compressor Testing

2.2.6.1 Component Development and Evaluation

Technical Progress

Planning and coordination of compressor stator, front frame, dif iis,er

frame, rear frame instrumentation application, and leadout design methods was

completed; finalized preparation of a detailed instrumentation list and

instruementation drawing for the 10-stage vehicle; completed plans for the

termination of vehicle aerodynamic anJ mechanical instrumentation; completed

review of requirements for control room display and recording of vehicle oper-

ational and mechanical instrumentation; compieted preparation and issuance of

10-stage compressor test request; provided engineering direction for the work
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performed on the 10-stage vehicle in the assembly, instrumentation, inspection,

and machine shop areas; and provided engineering direction at Lynn during

installation of the 10-stags vehicle into the test facility and during the

initial testing phase.

Work P ] An ,oA

0	 Provide engineering direction at Lynn during the testing of the

10-stage compresso: vehicle

•	 Provide engin,-ering direction during disassembly of the 10-stage
vehicle and during assembly of the second 10-stage vehicle.

2.2.6.2 Test Facilities Engineering

Technical Progress

Fabrication of the 10-stage compressor vehicle Distort,-n hardware was

completed; provided engineering support to resolve problems encountered on

hardware provided for the 10-stage vehicle during the vehicle assembly and

test facility installation activities; they aiso provided engineering support

during initial vehicle testing at Lynn.

Work Planned

•	 Provide engineering support during the remaining 10-stage vehicle
testing

•	 P-..ovide engineering; support during the 10-stage vehicle disassembly
and during assembly of the second 10-stage vehicle.

2.2.6.3 Instrumentation

2.2.6.3.1 Instrumentation Application

Technical Progress

Application of aerodynamic sensors to the variable stator vanes was com-

pleted; finalized application of aerodynamic and mechanical sensors to the

forward and aft stator cases and to the Stage 7, 8, and 9 fixed stator vane

sectors; completed irstrumentation leadout and routing on the compressor
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rotor; completed fabrication of the compressor discharge Pt rakes and the dif-

fuser exit rake; completed aerodynamic and mechanical sensor application to

the front frame, rear frame, and diffuser frame hardware; completed the fabri-

cation of mounting hardware required for the radial traverse probes and touch

probes; completed fabrication of clearanceometer and dynamic pressure system

hardware required for installation on the 10-stage vehicle; provided instru-

mentation support during all assembly activity on the 10-stage vehicle to

leadout, route, and tie down instrumentation leads; and completed final rout-

ing and termination of 10-stage vehicle instrumentation sensors prior to ship-

ment of the vehicle to the Lynn test facility.

Work Planned

•	 Provide support during di3assembly of the 10-stage vehicle after

completion of Lynn testing

•	 Provide support during assembly of the second 10-stage vehicle.

2.2.6.3.2 Instrumentation Design

Technical Progress

Instrumentation application and leadout drawings for the compressor

stator, diffuser frame, and rear frame subassemblies were finalized; completed

the aerodynamic calibration of the compressor discharge rakes, variable stator

vanes, and fixed stator vanes Pt and Tt sensors; provided calibrated vibration

pickups for the internal and external vibration measurements; completed design

and configuration change to the clearance probes to update to latest improved

design; completed design changes and fabrication of traverse probe mounting

I ardware for Stages 6, 7, 8, and 9; defined the inlet rake stress measurement

requirements for test monitoring; completed the design of the stall detection

dynam;^ pressure system hardware; provided engineering support during the

final assembly and instrumentation application activity prior to shipment of

the vehicle to the Lynn test facility; and also provided engineering support

during test setup of the vehicle in the Lynn test facility and during the

initial testing phase.
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Work Planned

•	 Provide engineering support as required during the remaining

10-stage vehicle testing

•	 Provide engineering support during 10-Rage vehicle disassembly

•	 Initiate instrumentation engineering design work for the second

10-stage compressor vehicle.

2.2.6.4 Development Assembly

Technical Progress

Buildup and tip grind of the instrumented 10-stage compressor rotor were

accomplished; completed buildup of the aft stator case with uninstrumented

Stage 6, 7, 8, and 9 stator Janes and completed grinding of the honeycomb

shroud seals on these stages; completed buildup of the forward stator case

with the TGV through Stage 5 variable stator vanes; completed buildup and

final balance of the complete rotor system; obtained IGV and Stage 1, 2, 3,

4, 5, and 6 tangent angle checks on the variable stator vane; completed

buildup of the forward stator case with instrumented stator vanes; completed

buildup of the aft stator case with instrumented fixed stator vane sectors;

completed buildup of the front frame and diffuser frame subassemblies; com-

pleted buildup of the rear frame subassembly and initiated main vehicle

assembly effort; and completed main vehicle vertical assembly work and turned

vehicle horizontal and installed the vehicle transport dolly. Final vehicle

assembly work was completed and the vehicle was shipped to Lynn on February 6,

1981.

Wl Lr D1 nnn.A

•	 Perform partial disassembly of 10-stage vehicle after completion of
Lynn testing

•	 Initiate assembly of second 10-stage compressor vehicle.
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2.2.6.5 Lynn Testing

2.2.6.5.1 Test Facilities Engineering - Lynn

Technical Progress

Pressure check of the external bleed systems was completed; cleaned and

pickled all internal tank bleed system piping and manifolds; completed instal-

lation of water spray system and measuring section; completed the installation

of the flow measuring orifice plates into the bleed system piping; completed

fabrication of base section required to support inlet distortion screen hard-

ware; completed leak check of main flow discharge valve system. Assembled the

remachined coupling shaft, secured the forward water jacket, and rechecked the

axial dimensions in preparation for installation of the 10-stage compressor

vehicle; provided engineering support during installation of the vehicle into

the test facility and during installation of the internal test facility bleed

manifolds and piping to the vehicle; and also provided engineering support

during the initial testing of the 10-stage compressor vehicle.

w^rU VI.—a

•	 Provide engineering direction and support during the remainder of

the 10-stage vehicle test phase

•	 After removal of the 10--stage vehicle from the test facility,

inspect the test facility hardware and prepare hardware for second
10-stage vehicle.

2.2.6.5.3 Stage 1-10 Compressor Testing

Technical Progress

The necessary planning work required to prepare the test facility for

deliv3ry of the 10 stage compressor vehicle was completed; received the

10-stage vehicle at the Lynn test facility on February 10, 1981 and installed

to the test tank mounting hardware on February 12, 1981; completed connection

of the vehicle aerodynamic and mechanical instrumentation; connected the

internal tank bleed system piping to the vehicle; completed connection of
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vehicle lube, hydraulic, and air services; completed installation of vehicle

mounted vane angle position readouts, clearanceometers, and touch probes; com-

pleted installation of vehicle inlet hardware and mated with test facility

inlet ducting; and performed final vehicle and test facility checkouts and ini-

tiated testing on March 20, 1981.

7.1.. ^L D 1 .........1

•	 Complete aerodynamic performance testing of the 10-stage compressor
vehicle

•	 Complete removal of the 10-stage vehicle from the test facility and

ship to Evendale.

2.2.7 Variable Stator Vanes (VSV)

2.2.7.1 VSV Rushing Application

Technical Prugress

Further reduction of materials selections for variable stator bearings

for the cote engine test has been made, eliminating some earlier candidates

on the basis of unfavorable cost, performance, longer development time, or

materials availability problems. Selected for the core engine test are the

following:

Vane Stages	 Description

IGV-4	 Spacers*

IGV-4	 Bushings

4-6	 Bushings and Spacers

* th.ust washers

Material

Composite ZX (Skybond 703 resin)

Fabroid XV

Mechanical Carbon

This is not to say that other materials are totally excluded. Experiments!

bushings will be included as available for comparison, but the above selec-

tion will be the primary choices.
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Endurance wear tests are in progress to support the core engine and to

substantiate 18,000 hours service life; 2,500,000 rub cycles in the component

wear test corresponds to 18,000 hours Pervice life. Table 2.2-II shows endur-

ance wear tests which are in progress.

Table 2.2-II. Endurance Wear Tests (200,000 cycles HDTO
plus 2,300,000 cycles at cruise).

Test

Variable Variable Test Pressure Temperature

Stage Stage/ (psig) C F)
Material Geometry Load (lb) HDTO/Cruise HDTO/Cruise

ZX (703 resin) 1 1/62.8 10.2/12.4 3161190

ZX (NR-150 resin) 1 4/44.8 75.0/39.3 6c3/485

Fabroid :;V 1 1/62.8 30.2/12.4 316/190 (Completed)

Fabroid XV 4 4/37.6 75.0/39.3 623/485

Carbon PBH-20 4 5/30.2 75.0/53.9 723/581

The NR-150 version of Composite ZX has been shown to be superior in heat

resistance and wear to the Skybond 703 version. However, long term availabil-

ity of NR-150 is not guaranteed by DuPont. ZX (NR-150) is not planned for

engine test since the difference does not justify switching from 703 which is

adequate for this test. The endurance wear test of ZX (NR-150) at Stage 4

temperatures is intended to demonstrate the heat resistance, wear, and poten-

tial of such a system, should the availablility situation change in the future.

The following is a status and assessment of materials evaluated to date:

Fabroid X and Fabroid XV - Fabroid X is the TFE-glass fabric/polyimide

lined metal bushing with a 10-mil thickness liner, and with capability to

about 500° to 600° F. While Fabroid X is a long life, low wear rate material,

it was judged to be inadequate to attain 18,000 hours of E 3 service life. In

earlier IR&D effort, it was found that modifying the TFE-glass fabric liner

to incorporate double the TFE content, more than doubled the endurance wear

life. This modified liner is about 15-mils t`tick (hence the designation

"Fabroid XV").
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The first 2,500,000 cycle endurance wear test was completed successfully

using Fabroid XV at Stage 1 geometry and loading. Only 10 mile of wear were

measured on the bushing (only 5 mile of wear were measured on the ZX (703)

thrust washer), Table 2.2-111, Test 59. Thus under these Stage 1 conditions,

Fabroid XV should have substantial margin to attain 18,000 hours.

Another endurance wear test using Fabroid XV at Stage 4 conditions is

planned, but is awaiting delivery of new bushings, which were recently rede-

signed to add 0.20-inch length. Note that should Fabroid XV fail to meet

2,500,000 cycles at Stage 4 conditions, the alternate material is mechanical

carbon PBH-20.

Composite ZX - Using the 15-mil TFE-glass fabric, en all nonmetallic

bushing construction has been made which has the desgination Composite ZX.

There are two versions of it, either made with Skybond 703 polyimide resin

adhesive, or with DuPont NR-150 resin (Figure 2.2-5). ZX bushings could be

expected to give longer life than Fabroid XV bushings ac lighter weight, but

probably at substantially higher cost (especially the NR-150 version). Thrust

washers of Composite ZX (Skybond 703) similar to those shown in the upper

photo of Figure 2.2-5, are being procured for the core engine test.

GENR-150 - While GENR-150 is a production material, it suffers from two

drawbacks which have resulted in its elimination from the program.

•	 Dependence on NR-150 resin

•	 Higher than acceptable wear rate.

GENR-150 is the designation for bushings made from DuPont NR-150 poly-

imide resin reinforced with graphite fabric. The processing required to make

such parts was developed by GE (hence the designation GENR-150). Since that

time, the supplier has raised the price of the resin almost fivefold, and nas

announced it will accept no new applications, nor supply the resin after 1985.

For E 3 , the wear rate at Stage 4 conditions has been shown to be unac-

ceptably high. An endurance wear test was conducted on the older geometry

(0.805-inch length) Stage 4 bushing, made of Xylan coated GENR-150, bushing
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and washer. The endurance wear test was terminated at 1.2 million cycles,

exhibiting 32 mils of wear (Table 2.2-III, Test 58). Even at the new length

(1.00 inch) and thicker wall, it is doubtful that GENR-150 could attain 2.5

million cycles. No further effort with this composite is planned at this time

for E3.

PBH-20 Mechanical Carbon - Mechanical carbons remain as the only attrac-

tive bearing material for Stages 5 and 6 10' to 900' F). Mechanical carbon

is the term used to describe carbon-graphite pressed into a metal sleeve (or

backed by metal as in a thrust washer).

Since the last report, a parametric study has been completed on Pure

Carbon Co. * PBH-20 carbon bushings and washers (Table 2.2-IV). Test 57 repre-

sented an endurance wear test at Stage 4 conditions with 200,000 cycles at

700 * F and 75 psi pressure, plus the remainder of test at cruise conditions

of 580 * F and 40 psi. This bushing was not of the latest configuration,

having the older 0.805-inch length. The bushing wore out at a respectable

2.2 million cycles. This test will be repeated using the newer design at

Stage 5 conditions, and it can be expected to pass the 2.5 million cycles

target with ease.

Miscellaneous and Advanced Materials - TRW Bearing Division's "Filmide 7X"

material was dropped from further consideration because of dependence on

DuPont NR-150 and cost. Based on Test 56 (and other related experience), it

is doubtful that it has any advantage over GENR-150 in these applications.

DuPont has introduced two new grades of Vespel, which are intended to be

improved in heat resistance and dimensional stability over present Vespel

grades. DuPont data indicates excellent dimensional stability, with low

shrink and low weight loss as compared to present Vesepl after thermal oxi-

dative exposure to air at 675 * F, 70 psis for 100 hours. If this behavior is

*An excellent text on this class of materials has been published, written by

Dr. R. Robert Paxton, Chief Engineer of Pure Carbon Co., entitled, "Manufactured
Carbon: A Self-Lubricating Material for Mechanical Devices," CRC Press, 1979,

ISBN 0-8493-5655-5, and LCC 78-10107.
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substantiated by our evaluation, then a number of applications are possible;

where present Vespel, with its excessive shrinkage above 500' F, renders it

unsatisfactory for long service.

In IR&D effort, one objective is to identify less brittle, alternative,

dry bearing materials to replace mechanical carbons for service above 675' F.

One idea which might have application in E 3 is a metal bearing with multiple

carbon-grpahite button inserts. Thrust washers of a size to fit E3 Stage 4

geometry are on order for evaluation.

•	 Complete remaining endurance wear tests as outlined earlier

•	 Coordinate procurement and transitioning of bushings and washers
for core engine tests

•	 Issue Final Report.

2.2.8 High Pressure Compressor Fabr ication

2.2.8.1 Compressor Rotor

2.2.8.1.1 1-6 Rig

All hardware was received in the first and second quarters of 1979.

2.2.8.1.2 1-10 Rig Build A

Technical Progress

All hardware required for the 1-10 rig compressor rotor was received

during the last quarter of 1979 and the first and second quarters of 1980.

•	 None.
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2.2.8.1.3 1-10 Rig Build B

Technical Progress

No effort was expended on this item during this reporting period since

the 1-10 rig second build will use the same hardware as the first build with

the possible exception of modified Stage 7-10 blades.

Work Planned

•	 Following the first compressor rig test, Aerodynamic Design will

identify the desired Stage 7-10 blade design changes to be incor-

porated into the Build B blades. These modifications will be ini-

tiated.

2.2.8.1.4 Core

Technical Pro ress

A complete set of compressor rotor hardware is currently being procured

for the core engine buildup. Work on the forward spool is currently in pro-

cess. The Stake 5 disk has been received, as has the 6-10 spool originally

ordered under WBS Item 2.2.8.1.3. The CDP seal material has been released and

is now in the manufacturing cycle. The Stage 1, 2, 5, and 6 blades are in the

final stages of manufacture while the Stage 3, 4, and 7 blades are proceeding

on schedule. The Stage 0-10 blades are in dovetail forming; and airfoil

machining will proceed after t he design based on initial 1-10 rig test data is

determined. The instrumentation leadout duct has been released for manufac-

ture and material procurement has been started. Deep blade retainer rings,

designed to reduce axial dovetail leakage, have been released and placed on

order.

All core rotor hardware is on schedule for the core buildup.

Work Planned

•	 Incorporate instrumentation rework into rotor spool components

•	 Receive the balance of rotor hardware.
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2.2.8.2 Compressor Stator

2.2.8.2.2 1-10 Rig Stator Hardware, Build I

Technical Progress

Grinding of Stage 7, 8, and 9 interstage seals completed this WBS.

Work Planned

•	 None.

2.2.8.2.3 1-10 Rig Stator Hardware, Build II

Technical Progress

Manufacture of Stage 7, 8, and 9 interstage seals is complete.

Dimensional inspections of Stage 7 and 8 cast vane patterns denote that

patterns are within blueprint tolerances. Inspection of Stage 9 revealed a

deviation to the airfoil contour. This has been corrected by the pattern

vendor. One sample each of Stages 7 and 8 has been poured to test casting

parameters. Word from the vendor is that thes g r trails were successful. They

will be inspected by Engineering personnel.

u__t. nt ____A

•	 Cast Stage 9 trial sector

•	 Inspect Stage 7, 8, and 9 trial sectors

•	 Complete casting of all sectors

•	 Initiate machining of cast sectors.

2.2.8.2.4 Core Stator Hardware

Technical Progress

Manufacture of Stage 7, 8, a: •' 9 cast vane sectors is paralleling the

1-10, Build II sectors; thereforc the status of the core sectors is as

reported above.
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A sample pattern of the OGV has been poured as a casting trial. Tooling

required to produce patterns and cores for the diffuser frame is pragressing.

Tooling and material required for the front frame is being procured. Manufac-

ture of the aft compressor case is complete. Manufacture of the forward cosy

pressor case is about half complete. Manufacture of all other stator hardware

items is in various stages of completion.

Work Planned

•	 Work planned for cast sectors is the same as for 1-10 rig, Build II

•	 Complete casting of OGV ring

0	 Completi casting of diffuser

e	 Complete manufacture of all stator hardwarE items except machining
of the cast stator vanes.
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2.3 COMBUSTOR

Overall Objectives

The key objective of this program in to design and develop an advanced

combustion system capable of meeting both the stringent emissions and long-

life goals of the E3, as wsll as meeting all of the usual performance

requirements of combustion systems for modern turbofan engines. The speci-

fic E3 emissions goals are the emissions standards f: r carbon monoxide (CO),

unburned hydrocarbons (HC), oxides of nitrogen (NOx), and smoke that have

been specified by the SPA for newly certified subsonic aircraft engines.

These very stringent CO and K emissions goals require very high combustion

efficiencies at all engine operating conditions, including idle. The FPS

combustion efficiency goal is 0.995 minimum at high power settings with a

total pressure drop of 5.0% maximum.

To meet these emissions goals and other performance requirsmen.+, an

advanced, short-length, double-annular combustor design concept has been selec-

ted (Figure 2.3-1). This design approach was chosen based on the low-emissions

combustor design technology developed in the NASA Experimental Clean Combustor

Program (FCCP) and the NASA Quiet Clean Short Haul Experimental Engine (QCSEE)

Program. A comparison of the key combustor design parameters for the NASA E3,

NASA ECCP, and NASA QCSEF. combustor* is shown in Table 2.3-1. In these devel-

opment programs, it was demonstrated that with the double-annular combustor

design concept, low emissions levels could be obtained in addition to obtaining

the other combustor performance capabilities required for satisfactory opera-

tion of a turbofan such as the E 3 . To meet the long-life goals, an advanced,

double-walled, axially segmented, cooling liner design concept using both

impingement and film cooling has been selected. This advanced cooling liner

design concept, in conjunction Frith the very short length of this design, is

projected to result in a combustor configuration with the requisite long life

objectives.
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Table 2.3-I. Combustor Aerodynamic Design Parameter Comparison.

Combustion System

E3
Double
Annular

ECCP
Double
Annular

QCSEE
Double
Annular

Burning Length (in.) 6.7 12.9 7.0

Pilot Dome Height (in.) 2.4 2.7 2.3

Main Dome Height (in.) 2.0 2.4 2.0

Length/Dome Height - Pilot 2.8 4.8 3.0

Length/Dome Height - Main 3.4 5.4 3.5

Number of Fuel Injectors - Pilot 30 30 20

Number of Fuel Injectors - Main 30 30 20

Reference Velocity (ft/sec) 58 75 59

Space Rate (Btu/hr-ft 3-atm x 10-6 ) 7.0 5.8 8.1
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Development Approach

Basic Program (Double-An:ular Combustor Design)

The overall design definition and development approach have been selected

for the E3 combustor. The aerodynamic and mechanical design features identi-

fied for the diffuser, cowling, dome, and liner of the combustor were based on

proven design and analytical techniques evolved in other General Electric com-

bustor designs.

Initially, an extensive series of combustion system aeromechanical design

and design tradeoff studies was conducted using existing combustor design tools

and correlations to define the optimum combination of the basic combustor design

parameters. These design studies included the definition of the combustor inlet

diffuser, combustor cooling features, the number of fuel injectors, the swirl

cup design features, and the dilution airflow patterns. Based on the results

of these design studies, combustion system performance predictions and emission

levels were estimated. The final flowpath design was then incorporated into

a mechanical design layout.

Following these initial design studies, detailed stress analysis, heat

transfer analysis, and life prediction studies were made for both steady-

state and transient operation at the most adverse operating conditions.

Based on these detailed aerodynamic and mechanical design studies, the

detail features of the combustor evolved into engineering drawings for pro-

curement of development test hardware.

To evaluate and confirm these design analyses efforts, subcomponent tests

are being conducted. The purpose of these tests is to permit preliminary

development and refinement of the emissions and performance characteristics

of the combustor design prior to and during the full-annular combustor develop-

ment testing. These subcomponent development tests include diffuser tests to

develop the diffuser aerodynamic characteristics in order to obtain the

required combustor inlet conditions at the various simulated engine conditions

from idle to takeoff, individual swirl cup tests to develop the required fuel

preparation and introduction characteristics to obtain the desired combustion

zone stoichiometry, and sector combustor tests to develop the pilot-stage dome

features to meet the idle emissions goals and develop ground-start and altitude-

relight capability.
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The diffuser test program was conducted in a full size, full annular

test rig and is complete. These tests were run with ambient temperature air-

flow, and the diffuser was tested over a broad range of passage flow-split

values with three different inlet-velocity profiles. The results of these

tests, based on measured static pressure recovery and total pressure loss

coefficients for the inner and outer combustor domes, the centerbody passage,

and the inner and outer combustor liner passages, indicated that the diffuser

would perform satisfactorily in the development combustor test rig and in the

E3. The test results have been confirmed based on measurements recorded in

the development test rig.

The swirl cup spray-visualization tests were conducted to determine the

effects of combustor dome pressure drop, swirl cup fuel-to-air ratio, and

fuel-to-air momentum ratios on fuel spray characteristics such as spray angle,

stability, and atomization. The results of these tests were utilized to

select the swirl cup design features for the sector combustor and for the

full-annular combustor.

The sector combustor tests are being conducted with a 60 * sector of the

E3 combustor design. The emissions-related aspects of these tests are

primarily directed toward obtaining low CO and HC emissions levels in the

pilot stage at idle operating conditions and evaluating the crossfire and

fuel-staging characteristics between the pilot and main stages. Tests of

the baseline configuration sector combustor and several modifications to the

baseline are complete. The objective of the present testing will be to

select a preferred pilot-stage configuration to obtain even lower idle emis-

sions. The sector combustor tests will also contino- to develop ground-start

ignition capability. Several combustor configurations have been evaluated

in the sector combustor test rig that have demonstrated significant improve-

ment in low power emissions levels ar.d ground start ignition capability.

Later in the test program, the altitude-relight capability will be investi-

gated. Initially, these altitude-relight tests will be conducted with ambient-

temperature air. Configurations that light within the envelope will then be

tested both with cold air and with cold fuel (about -30° F) at the air tempera-

ture and pressure corresponding to the combustor conditions for the altitude

and Mach number being evaluated.
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A significant portion of the planned E3 combustor component development

effort is being performed with a full-scale, annular test vehicle that dupli-

cates the flowpath of the engine and can accommodate full-scale engine cosr-

bustor hardware. Testing in the combustor test vehicle is being peformed st

both atmospheric and elevated-pressure conditions.

The exit annulus of the test rig is at the same radial location as the

turbine nozzle of the engine. The test vehicle will simulate the cooling

flows of the turbine nozzle diaphragm and first-stage turbine blades.

The OGV/diffuser section of the full-annular test vehicle simulates the

aerodynamic characteristics of the airflow delivered to the combustor from

the engine compressor. Provisions to add inlet airflow profiling features to

simulate compressor-circumferential and radial distortion are also included.

The test rig prediffuser incorporates structural features identical to those

of the engine design, including flowpath simulation, strut supports, and

bleed capability at the prediffuser trailing edge. Pressure-measurement

instrumentation is provided along the diffuser flowpath surfaces to monitor

stability and performance.

The combustor section provides the structural pressure vessel to house

the combustor and duplicates the flowpath of the engine combustor housing.

Ignitor port locations can be incorporated at several circumferential posi-

tions to permit selection of location flexibility }ased on sector combustor-

component test data.

Two different exit instrumentation sections are being used with this

test vehicle. Atmospheric pressure tests are performed with a mechanically

actuated ring mounted from the outer flange. Temperature and pressure rakes

are mounted to the ring which is traversed around the combustor circumference.

With this test rig setup, the combustor airflow is discharged directly to the

atmosphere, and the reaction zone can be viewed directly from the combustor

exit. For testing at elevated pressure levels, a high pressure caning con-

tainiag five internal rotating gas sample rakes is used. This exit section

is capable of operation up t) pressures of 300 psia.

Two different types of full-annular combustor tests are being conducted:

(1) high pressure tests to develop the emissions, performance, and durability
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characteristics of the combustor at various simulated engine-operating condi-

tions from idle to takeoff and (2) atmospheric-pressure combustor tests to

develop the required combustor exit temperature distributions and ground-start

ignition capability. The altitude-relight capability of promising combustor

configurations will be evaluated in accompanying sector combustor tests.

The evaluation of the baseline combustor configuration as the first phase

of development testing has been completed. The design information acquired in

the baseline rest in conjunction with preferred combustor design features

evolved in the sector combustor development program were incorporated into a

modified version of the baseline design.

Cold-flow calibrations of this modified E3 combustor test hardware were

performed to verify that the various dome and liner cooling airflows were dis-

tributed as intended. Then full-annular tests were conducted at atmospheric

pressure to provide additional data on pattern factor, profile factor, and

ground-start characteristics. Following completion of the atmospheric tests,

evaluation of the improved design for reduced emissions was conducted at

ground idle operating conditions. A final high pressure test was conducted to

measure combustor metal temperatures at simulated high power conditions.

Following analysis of the data from this modified configuration, additional

development tests will be conducted to further improve the design.

Upon selection of the final design for engine installation, all of the

design features evolved in the development program will be incorporated in

the core engine combustor. This hardware will undergo a c amplete evaluation

of all facets of combustor operation including ignition, emissions, and per-

formance. The combustor will then be released to the core engine upon satis-

factory completion of the tests.

2.3.1 Aerodynamic Design

The E3 double-annular combustor concept is an advanced design approach

which must meet the engine performance requirements as well as the emissions

goals over a wide range of operating conditions. Some of the key operating

conditions for the E3 combustor are shown in Table 2.3-II. Operation of the

engine combustor at these varied conditions requires that the combustor fuel
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F

flow be staged to the two domes as shown in Figure 2.3-2. Therefore, consid-

erable aerodynamic development effort is anticipated to obtain satisfactory

operation over this wide range of operating conditions while meeting the very

challenging performance and emissions goals for this engine.

At the conclusion of the last reporting period, the Mod. I annular devel-

opment combustor had completed testing and the results have been published in

a Component Test Memo. In general, the results of the test were very encour-

aging with improv_^nents obtained in low power emissions, ground-start ignition,

and exhaust gas temperature distribution. The emissions levels are approaching

the program goal level and the exha-ist gas temperature distribution satisfies

the requirements at a pilot-to-total fuel flow level of 0.40 which is very

close to the design level of 0.35. However, the ignition performance requires

considerable improvement to provide satisfactory operation in the severe combus-

tor inlet environment encountered during ground start. As shown in Figure 2.3-3,

the pilot stage ignition performance is more than adequate to meet the ignition

fuel/air ratio schedule, but the main stage ignition performance will not per-

mit staging for operation on both pilot and main below 55% core speed. There-

fore, development activities were directed at design changes to improve the

main stage ignition while minimizing the impact on other key combustor perfor-

mance Farameters. One of the key differences between the pilot stage dome and

main stage dome is air velocity as shown in Figure 2.3-4. The purpose of the

higher main stage dome velocity is to reduce residence time in this stage to

lower emissions of NOx at high power operating conditions. However, these

high dome velocities which are accomplished through higher airflow and a smal-

ler dome volume adversely impact ignition performance.

Utiliing the design data acquired in testing the Mod. I annular configura-

tion and integrating the results obtained in the ongoing sector combustor devel-

opment program, a modified annular development combustor was evolved directly

primarily at improving main stage ground start ignition capability.

The overall impact of these design changes was expected to imrpove main

stage ignition performance to meet ground start requirements, further reduce

low power emissions levels, maintain combustor exit temperature distribution

to within limits, and reduce combustor metal temperatures in selected region.,.
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However, due to the extreme modifications to the main stage dome airflows, NOx

emissions were expected to increase. The key design changes identified for the

Mod. II combustor t-r.figuration were as follows:

•	 The pilot stage dome flows were reduced to obtain lower W and HC

emissions levels, as well as reduce the pilot stage incipient lean

extinction limit, thus providing increased fuel/air ratio margin
for main stage ignition. This airflow reduction war. accomplished
by reducing the pilot stage swirl cup airflow. In order to main-
tain overall combustor pressure drop, the pilot stage dilution
and centerbody cooling flows were increased proportionate amounts.

•	 To improve the main stage ignition, by reducing dome velocity, the

main stage swirl cup airflow was reduced substantially. The reduced
airflow in the main stage dome again was offset by increasing main

stage centerbody cooling, main stage primary dilution, and intro-
ducing an additional row of dilution in Panel 2 of the inner liner.

•	 To improve the mechanical integrity of the centerbody and increase

cyclic life of this component, the centerbody multijet cooling

ring was shortened 0.70 inch. Based on subcomponent test results,

shortening of the centerbody by this small amount had no adverse
impact on emissions of ignition performance.

Following completion of the hardware modifications, detailed measurements

were made to determine the various combustor airflow orifice sizes in the

regions modified. As in past design modifications, these flow area data are

then used to determine the expected airflow distribution ne well as pressure

drop characteristics at the prescribed combustor inlet operating conditions.

A comparison of the flow areas obtained for the Mod. i and Mod. II designs are

shown in Table 2.3-III.

To obtain a more accurate definition of the combustor aerodynamics expec-

ted during component test wl ich account for passage pressure variations,

frictional losses, and hole flow coefficient variations, an airflow analysis

was conducted using a machine program called Combustor Analysis (COBRA). This

program acc.,rately calculates all of the combustor flow parameters based on a

given set of combustor inlet flow conditions. A comparison of the analytical

results obtained for the airflow distribution for the Mod. I and Mod. II

development combustor configurations is shown in Figure 2.3-5.
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Table 2.3-III. Flow Check Results Mod. I and Mod. II
Combustor Hardware.

Effective Area, in.2

Measured Measured
Mod . I I Mod. II

Design (% Difference
_:od. II	 fr,,m Design

Outer Liner 6.53 7.21 7.02 + 2.7

Inner Liner 11.42 16.59 16.71 -	 1.0

Centerbody 6.00 7.18 7.55 - 4.9

Outer Dome 11.48 12.61 10.76 +17.2

Inner Dome 18.12 15.01 14.40 + 4.2

Total Combustor 53.71 58 . 55 56 . 45 + 3.7

In addition to defining the design definition for the development combus-

tor, an aerod ynamic design definition was evolved for the core engine combustor.

Pending satisfactory performance of the Mod. II development combustor, the core

engine hardware designs could then be released with minimum delay thereby

enhancing timely delivery of the core engine hardware. The hardware definition

for the core engine combustor was evolved utilizing an aerodynamic analysis pro-

gram called SODAC (Single Or Double Annular Combustor) which utilizes a known

airflow distribution as might be obtained from analytical output such as COBRA

and generates the required flow areas needed to obtain the desired airflow dis-

tribution. The selected flow distribution and resulting flow area definition

for the core engine combustor are shown in Table 2.3-IV.

Table 2.3-IV. Core Engine Combustor Design.

Effective	 Flow,
Area, in. 2	% We

Outer Liner 8.3 12.9

Inner Liner 13.2 24.0

Centerbody 8.7 18.1

Outer Dome 10.9 20.9

Inner Dome 14.4 24.1

Tota: Combustor 55.5 100.0
t'
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As in the earlier combustor test program, the procedure is to first

conduct atmospheric ignition tests followed by atmospheric performance evalu-

ation, then proceed to pressure and emissions testing. The results of the

Mod. II development combustor ignition test are provided in detail in Section

2.3.4.3. In general, the main stage ignition performance improvements expected

were not realized and, furthermore, pilot stage ignition deteriorated from its

previous excellent levels. Visual observations during the test indicated that

the dilution flow in the second inner panel penetrates across the end of the

centerbody and tends to quench the pilot zone. Therefore, the inner Panel 2

dilution was blocked. As expected, this modified configuration (Mod. IIA) had

a slightly different airflow distribution and higher pressure drop compared to

Mod. II, as shown in Figure 2.3-6, due to the change in combustor total flow

area. The test results for this modification showed significant improvements

in pilot stage ignition but no major improvement in main stage ignition, due in

part to the undesirable increase in main dome airflow resulting from the total

combustor area change. Two phenomena were observed during the Mod. IIA igni-

tion test which might explain the poor main stage ignition performance obtained.

First, penetration of the pilot zone flame through the crossfire tubes appeared

to be reduced compared to earlier tests and the flame appeared to be swept

rapidly downstream. Second, once ignition was obtained in the swirl cups

opposite the crossfire tubes, propagate.- to adjacent swirl cups was difficult

indicating a narrow fuel spray angle or poor stabilization in the combustion

zone. As shown in Table 2.3-V, the result of the Mod. II design changes was

to make the main stage dome velocity similar to the pilot stage dome. However,

the introduction of added cooling in the centerbody increased the ring annulus

exit velocity to values higher than in any other configuration tested. This

higher cooling ring exit velocity may have also suppressed the swirl cup fuel

spray angle. Therefore, additional modifications to the development combustor

were identified to eliminate or offset these local effects.

The key changes introduced into the Mod. III were as follows:

•	 Reduce main stage swirl cup primary swirler to induce a wider

fuel spray angle, enrichers the main stage swirl cup, and

further reduce main stage dome velocity, as shown in Table
2.3-V
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•	 Reduce main stage splashplate cooling to further reduce spray
angle suppression and dome velocity

•	 Reduce main stage dame outer cooling ring airflow uni-

formly to reduce spray angle suppression and incorporate

additional flow reductions locally in the region upstream

of the crossfire tubes

•	 Modify crossfire tubes to provide a sheltered region at

the forward position to enhance pilot zone flame penetra-
tion into the main zone

•	 To compensate for the combustor flow area reductions, the

aft outer and inner liner dilution holes will be increased
a proportionate amount.

Table 2.3-V. Velocity Comparisons.

- 46% PCNHR

- Velocity in FPS

Pilot Dome Main Dome

Main	 Dome

Cooling Ring

Baseline 13.3 19.7 31.5

Mod. I 9.3 21.3 35.3

Mod. II 9.7 17.8 47.9

Mod. III 9.3 14.3 32.0

The resulting airflow distribution expected from this modification is

shown in Figure 2.3-7 and compared to the Mod. II design at ground-start igni-

tion combustor inlet conditions. These design changes are expected to provide

the desired dome environment ti obtain satisfactory ignition of the main stage

during ground start.

Due to the major revisions in the development combustor airflow distri-

bution and modifications to the hardware definition, the core engine hardware

design definition has been placed on hold until the desired performance

results for the development combustor can be confirmed in the component tests.

The preferred core engine aerodynamic design definition and associated hard-

wear configurations will then be released for incorporation into the core

engine combustor hardware.

a
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Work Planned

•	 The results of the component tests of the Mod. III development
combustor configuration will be analyzed in detail. Based on

the findings from the combustor test data analysis and aero-

dynamic design studies, either additional modifications to
the combustor will be investigated or the preferred design
configuration will be evolved for the core engine combustor.

•	 Upon receipt of the core engine hardware, the necessary pre-

test inspections and aerodynamic analysis will be conducted

to ensure that the core engine combustor hardware meets the

design intent.

•	 An extensive detailed test plan will be evolved to provide for

a thorough evaluation of the core engine combustor design and

component performance.

•	 Conduct a detailed review of the development and core engine

designs.

2.3.2.2 Component Fabrication and Test Support

Primary activity under this task has been involved with procurement of

combustor hardware required for the core engine combustor. A listing of the

combustor hardware items which have been manufactured to date is provided in

Table 2.3-VI. The engine hardware still being manufactured is shown in Table

2.3-VII. As shown, several of these components have been placed on hold

pending final aerodynamic design definition of the initial engine combustor

build. The parts that are on hold are anticipated to be available in early

July of this year based on aero design release in April.

Design studies were conducted to identify an improved centerbody con-

figuration for the engine combustor. A design was idc:itified which featureb

thermal barrier coating to reduce centerbody panel opera::ng temperatures and

slitting of the centerbody tip to reduce the induced hoop loads in the center-

body structure. In conjunction with the centerbody design refinement studies,

a vibration analysis of the centerbody tip was made. In order to increase the

tip frequency above the low harmonic range, approximately 0.75 inch was

removed from the centerbody tip. This results in a significantly stiffer design.

The first flex frequency is 3000 Hz for the shortened design. These features

will provide adequate centerbody cyclic life for the E3 combustor applica-

tion. The improved centerbody configuration is shown in Figure 2.3-8.
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Table 2.3-VI. Available Engine Combustor Hardware.

Item Part Number Quantity

Outer Impingement Liner Forging 4013267-459P02 3

inner Impingement Liner Forging 4013267-460P02 3

Combustor Support Pine 4013249-922P01 65

Outer Aft Seal 4013249-931P01 2

inner Aft Seal 4013249-932P01 2

Centerbody Forging 4013267-586P01 2

Shingle Castings 4013249-913,914,915,911 325

Outer Liner Retainer 4013249-446P01 2

Inner Liner Retainer 4013249-447P01 2

Combustor Casing Forging 4013267-466P01 2

Inner Fuel Manifold 4013279-0 56GOI,G02 2 to

Outer Fuel Manifold 4013279-055GO1,G02 2 ea

Primary Fuel Manifold 4013279-055GOI,G02 2 ea

Primary Swirler Casting 4013267-587P01 205

Secondary Svirler Casting 4013249-442P01 205

Primary Svirler Housing Casting 4013267-585P01 205

Dilution Eyelet Casting 4013249-933POI,P02 200 es

Fuel Nozzle Seals 4013279-OOIPOI 125

Fuel Manifold Bracket 4013279-095601 20

Ignitor Dilution Eyelet 4013249	 )2P01 4

Shingle Retainer Rings 4013249-450P01,P02,P03 12

Instrumentation Seal 4013279-002P01 65

CDP Bleed Cover Plate 4013:79-012P01 8

CDP Bleed Seal Plates 401319-011P01 20

Ignitor Seal 4013204-109PO1 10

Outer Support Liner 4013249-929P01 2

Inner Support Liner 4013249-930P01 2

Fuel Nozzle Forging 4013279-042P01 95

Ignitors 4013204-112P02 12

Ignition Exciter box S10M52-PI10 2

Miscellaneous Fasteners 4.5 Combustor@

Outer Case Machining 4013297 GSOPOI 1

Liner Shingle Machining 4013249-919,920,921,917 110
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Table 2.3-VII. Engine Combustor Hardware Currently
Being Manufactured.

Item Part Number Qty Delivery Date

Outer Dome Assembly* 4013267-595GO1 1 July 15, 1981

Inner Dome Assembly * 4013267-596GOI 1 July 15, 1981

Outer Support Liner 4013249-568GOI 1 July 15, 1981
Hole Drilling*

Inner Support Liner 4013249-567G01 1 July 15, 1981
Hole Drilling

Centerbody 4013267-589GO2 1 July 15, 1981

Liner Dilution Eyelet * 4013249-933PO3,PO4 60 July 15, 1981

Ignitot Leads 4013284-325 6 July 1, 1981

Cowl Assembly 4013297-594GO3 1 May 1, 1981

*On hold.
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Work Planned

Manufacture of the core engine combustion-system components will continue

to be monitored. Revisions in combustor cooling and dilution flow levels will

be incorporated into component manufacturing drawings and the remaining engine

combustor components will be released.

2.3.3 Subcomponent Tests

The secte - combustor activities during this reporting period were direc-

ted at three areas of investigation. First, three sector modifications (Mods.

III, IV, and V) were evaluated for ignition and emissions performance improve-

ments. Second, the design definition of the desired fuel no •• zle shroud air

characteristics relative to emissions performance was identified for incorpora-

tion into the core engine fuel nozzles. Finally, test efforts in the sector

combustor were turned toward evaluating design modifications to the sector

which would improve the ignition performance of the annular combustor main

stage.

The Mod. III sector combustor configuration showed significant improve-

ments in main stage ignition compared to the Mod. II design. At true cycle

operating conditions, the main stage cross fire and the propagation limit was

estimated to occur at a core speed of 40% PCNHR. Based on tnese encouraging

results, the emissions performance of the sector combustor was evaluated next.

The key design changes for Mod. III included incorporation of a centerbody

with crossfire hole, reduced main stage swirl cup flow, reduced outer panel

dilution, increased centerbody cooling, increased pilot trim air to offset

flow reductions incorporated, and installation of development- type fuel noz-

zles identical to those used in full-annular testing. The resulting airflow

distributions from these modifications are shown in Figure 2.3-9 and are com-

pared to the Mod. II design.

The emissions test point schedule for low power emissions performance is

shown in Table 2.3-VIII. The results obtained for the Mod. TII design were

disappointing in comparison to the low levels of CO arvi PC emissions obtained

for the Mod. II design. The CO emissions fo: Vh;e. III at tk.e 6% ground

idle operating condition were about double the levels obtained for Mod. lI
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Table 2.3-VIII. Secnor Combustor Emissions Test Point Schedule.

Cyclr
Condition

P3
psi&

T3
F

W3
pps

Wbleed
pps

Wfp
pph

Wfm
pph

f/a
Overall

_W'=
.	

hit

4% Idle 50 379 3.19 0.24 106 0 0.010	 1.0
50 379 3.19 0.24 143 0 .0.0135	 1.0
50 379 3.19 0.24 212 0 0.020	 1.0
50 379 3.19 0.24 265 0 0.025	 1.0

6% Idle 60 435 3.85 0.29 128 0 0.010	 1.Q
60 435 3.85 0.29 156 0 0.0122	 1.0
60 435 3.85 0.29 205 0 0.0160	 1.0
60 43' 3.85 0.29 256 0 0.020	 11.0
60 435 3.85 0.29 320 0 0.025	 11.0

30% Approach 50 685 2.96 0.22 139 0 0.0141	 1.0
50 685 2.96 0.22 42 97 0.0141	 0.30
50 685 2.96 0.22 56 83 C.0141	 0.40
50 685 2.96 0.22 70 70 0.0141	 0.50
50 685 2.96 0.22 39 59 0.010	 0.40
50 685 2.96 0.22 79 118 0.020	 0.40
50 685 1	 2.96 0.22 99 147 0.025	 0.40
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as shown in Figure 2.3-10. The only major change between the Mod. II and Mod.

III configurations that might produce such a drastic effect on the CO and HC

emissions with the pilot stage only fueled is the fuel nozzles. The Mod. II

configuration featured simple/simplex prototype fuel nozzles while the Mod. III

°P atured the more complex development-type trumpet/airshroud/simplex fuel noz-

zles that have a narrower spray angle. This narrow spray angle in combina-

tion with the shroud air in the development-type fuel nozzles is suspected to

..e the cause of the increased emissions levels. A subsequent emissions test

with the fuel nozzle shroud air blocked off was conducted at the 6% ground

idle conditions only; the results showed an improvement of approximately 13% in

CO and HC emissions levels, also shown in Figure 2.3-10. Consequently, the

balance of the deterioration in the emissions levels is thought to be the

effect of narrower fuel nozzle spray angle. However, this same narrow spray

angle may also be a strong contributor to improved ignition performance

obtained during ignition testing of the Mod. III configuration.

The CO and HC as well as NOx emissions levels were also measured at simu-

lated approach conditions (30% FN SLTO) with the pilot stage only fueled and

with bush pilot and ma n stages fueled. With a pilot fuel flow-to-total fuel

flow ratio of 0.40, the fuel/air ratio was varied between 0.0140 and 0.020 and

emissions data were recorded at selected fuel/air ratios. The results are

shown in Figure 2.3-11 for CO and HC emissions and in Figure 2.3-12 for NOx

emissions. The improvement in CO and HC emissions at approach conditions with

both stages fueled is attributed to the sigr'ficantly richer main stage dome.

Conversely, the NOx emissions have also increased slightly.

The effect of varying the fuel flow split between the pilot and main

stages on the emissions levels was investigated during the test at a constant

design fuel/air ratio of 0.0143. The results are presented in Figures 2.3-13

and 2.3-14 and are compared to the Mod. II configuration results. The level

of emissions is less dependent on the fuel flow split in the Mod. III config-

uration than in the Moc:. II configuration. This was expected since the dome

stoichiometry in the pilot and main stage domes of the erector combustor are

more nearly equal in the Mod. III configuration.
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The design changes incorporated into the Mod. III configuration of the

sector combustor, specifically, the jse of the narrower spray angle develop-

ment-type fuel nozzles, resulted in a significant increase of the idle emis-

sions levels relati-.,e to the Mod. II configuration. However, the use of the

development nozzles resulted in improved ignition performance.

To determine the impact of the fuel nozzle design on emissions, a series

of investigative tests was conducted with the Mod. III sector combustor at the

6% ground idle operating condition. The primary purpose of these tests was

to determine the effects of the fuel nozzle spray angle and the fuel nozzle

shroud air on CO and HC emissions levels.

The fuel nozzle features investigated included blocking off the fuel noz-

zle shroud air, the use of prototype simplex peanut fuel nozzles in place of

development nozzles, and air shrouded, higher flow, development-type fuel noz-

zles. The key design features and corresponding emissions levels obtained are

shown in Table 2.3-IX.

The lowest CO and HC emissions levels war; obtained with the Mod. IIIB

configuration that incorporated the prototype simplex peanut fuel nozzles with

an 85' spray angle. However, these levels are still significantly higher than

the CO and HC emissions levels obtained for the Mod. II configuration which

featured the same fuel nozzles. The key difference between the Mod. II and

Mod. IIIB configurations is in the pilot stage dilution where the Mod. IIIB

dilution airflow level is approximately 50% of that of the Mod. II configura-

tion. It is suspected that this low dilution airflow did not adequately pene-

trate the combustion zone and, hence, did not enhance mixing of the fuel and air.

The presence of an air shroud around the fuel nozzle increased the CC and

HC emissions by approximately 13% as can be deduced from comparing the Mod. III

and IIIA results. file shroud airflow in the pilot stage constitutes approxi-

mately2.0% of *.he total sector combustor airflow raisi ng the pilot stage

swirl cup airflow level from 1E..6% to 18.6% We when shroud air is present. This

increase in the swirl cup airflow could result in the higher CO and HC emis-

sions. However, inspection of the fuel nozzles after each test indicated that

the shroud air is necessary to prevent fuel nozzle plugging and carbon buildup

on the venturi. Since shroud air is required to prevent fuel nozzles and ven-

turi carboning, it will be included in the swirl cup airflow in future tests

and the desired flow level optimized.	
143
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One of the key concerns raised for the mechanical design of the core

engine combustor was the life expectancy of the centerbody, which is not seg-

mented like the outer and inner cooling liners. The centerbody is cantile-

vered and heated on both sides at high power operating conditions. To

improve the life characteristics of the centerbody, the trailing edge was

axially segmented to reduce the thermal stresses. However, the stiffness of

the multijet cooling ring was also reduced resulting is a low natural frequency

that might be excited in the engine operating range and produce a high cycle

fatigue due to vibration. To offset the reduced stiffness of the slotted and
cantilevered multijet, a redu : tion in length of the trailing edge of the

centerbody was investigated.

The key emphasis of the next sector combustor modification ( Mod. IV) was

to determine if short-,ping the centerbody would adversely affect ignition per-

formance and low power emissions, specifically CO and HC emissions levels. In

addition, an increase in pilot stage dilution flow was included as indicated by

the Mod. III test results. A comparison of the airflow distribution between

the Mod. IV and Mod. III configurations of the sector combustor along with the

noted key airflow modifications is shown in Figure 2.3-15.

As in previous test investigations, prioi to conducting the emissions

test, a standard atmospheric ignition test as well as a pressure ignition test

were conducted at selected combustor inlet conditions simulating the 9/27/79

E3 ground start operating line. The ignition test pointe selected for the

pressure test are shown in Table 2 . 3-X along with the atmospheric test point

schedule. The pressure ignition test results were excellent in terms of the

lightoff and lean blowout fuel-air ratios, especially at high core speeds

associa^ed with operation above atmospheric inlet pressures. The results of

the pressure ignition test are compared with the results of the pressure igni-

tion test of the Mod. III sector combustor configuration in Figure 2.3-15 for

the pilot and main stages. In general, the Mod. III and IV configurations pro-

vide very similar ignition performance and would be expected to provide satis-

factory ignition at core speeds above 40% PCNHR based on the measured test

results.

Next, the emissions performance was investigated for the ground idle and

approach operating conditions utilizing the same test conditions as for
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Table 2.3-X. Sector Combustor Ignition Test Point Schedule.

Based on E3 9/27/79 start model
•	 Sector flow conditions (annular flow /6)

(Pressure Test)

XNRH P3 T3 We We
% psis F pps P3

21 15.0 72 0.46 4.29

58 27.0 230 1.25 7.30

70 36.2 310 1.75 8.05

(Atmospheric Test)

21 14.7 72 0.45 4.29

32 14.7 105 0.56 5.50

46 14.7 160 0.61 6.17

58 14.7 230 0.6E 7.30

70 14.7 310 0.71 8.05
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previous investigations. The test results were very encouraging in that CO

and HC emission levels similar to those of the Mod. III configuration were

obtained, as can be seen from Figure 2.3-17 where these two emission cate-

gories are shown versus the metered fuel/air ratio. The CO and HC as well

a-% NOx emissions levels were also measured at simulated approach (30% FN SLTO)

conditions with the pilot stage only fueled and with both pilot and main stages

fueled. The results are shown in Figure 2.3-18 for CO and HC emissions and in

Figure 2.3-19 for NOx emissions. The results indicate a small increase in CO

and HC emissions and a slight decrease in NOx emissions compared to the Mod.

III design when both domes are fueled.

One of the effects of trimming back the multijet ring was an increase in

multijet airflow. This increase is due to a step size hole in the ring.

Therefore, cutting back the multijet ring ex posed the larger diameter hole and

increased the airflow in the region. The increased CO and HC emissions and

decreased NOx emissions at the approach conditions is probably the result of

quenching and mixing action from this higher airflow. This increased quenching

appears to affect the main stage system more than the pilot stage since the CO

emissions were not affected with the pil.)t stage only fueled. However, the

NOx emissions were reduced due to downstream quenching. Also, the CO emis-

sions are higher when the fuel flow is biased to the main stage when both domes

are fueled. This higher-than-desired centerbody cooling flow will not exist

in the full-annular development combustor.

The design changes incorporated into the Mod. IV configuration of the

sector combustor, specifically the reduction in centerbody length and increased

pilot primary dilution, resulted in similar ignition performance and idle emis-

sions levels relative to the Mod. III configuration. However, the modifica-

tions did result in higher CO and HC emissions levels and lower NO x emissions

levels at the approach power conditions.

One cf the major changes to the sector combustor was the substantial

reduction in main dome airflow accompanying the Mod. III configuration. How-

ever, no additional major modifications in flow area were made to offset the

dome airflow reduction. Therefore, the Mod. V configuration was directed at

compensating for the Mod. III main dome airf l,,w reduction by increasing the
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main stage primary dilution airflow. The increase in main stage primary dilu-

tion hole size is expected to provide several improvements in the design.

The increased flow area will result in a further reduction in swirl cup flow

as a percentage of total flow. This reduction is expected to further reduce

idle emissions and improve ignition performance. The increased dilution flow

in the main stage is also expected to further reduce NO x emissions. However,

this reduction in emissions must not result in any deterioration in ground

start ignition performance of the main stage system. In addition, the

increased overall flow area should provide combustor pressure drop character-

istics near the design value.

A comparison of the airflow distribution between the Mod. V and Mod IV

configurations is shown in Figure 2.3-20 with key airflow modifications noted.

Some change in all of the airflow quantities occurred due to an increase in

the overall flow area from the Mod. IV level.

A standard atmospheric ignition test and a pressure ignition test were

conducted at selected combustor inlet conditions. The pressure ignition test

results were excellent in terms of lightoff and lean blowout fuel/air ratios,

especially those of the main stage crossfire where a significant improvement

over the Mod. IV configuration was obtained. The main stage lean blowout fuel

flows for the Mod. V were too low for accurate measurement by the available

flow meter. The pilot stage pressure ignition test results for the Mod. V

configuration are shown in Figure 2.3-21. In general, the pilot stage ignition

performance remained unchanged except at the low speed point where the lower

combustor inlet temperature for the Mod. V configuration adversely affected

lightoff. Figure 2.3-21 also shows the sum of the pilot stage lean blowout_

and main stage crossfire fuel/air ratio versus core speeds along with the

9/27/79 E 3 start schedule for both Mod. IV and Mod. V. The figure suggests

that the E3 start requirement will be met at core speeds of 24% and higher

compared to 40% and higher core speeds for the Mod. IV configuration.

Next, emissions performance was investigated for the ground idle,

approach, and SLTO operating conditions. The test results were very encour-

aging in that CO and HC emissions levels were lower than the Mod. IV levels,

1
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and closely approached the target levels at the 6% ground idle conditions,

as can be seen from Figure 2.3-22 where these two emissions categories are

plotted against the metered fuel/air ratio.

The CO and HC emissions levels obtained at 30% FN SLTO approach con-

ditions are plotted versus the metered fuel/air ratio in Figure 2.3-23 where

they are compared to Mod. IV configuration test results. As can be seen, a

significant reduction in CO and HC emissions was obtained with the Mod. V con-

figuration when both sector combustor stages are fueled. With the pilot stage

only lit, the CO emissions level increased from 1.8 g/kg of fuel for the Mod.

IV configuration to 3.0 g/kg of fuel for the Mod. V configuration. This is

due to the fact that the change incorporated into the Mod. V configuration

resulted in a slightly richer pilot stage bringing the fuel/air ratio in the

pilot dome region *o slightly above stoichiometry. In the Mod. IV configura-

tion, the dome fuel/air ratio was slightly below stoichiometry. However, the

CO and HC emissions levels are still extremely low.

The E3 target levels for CO and HC emissions at approach conditions are[

functions of CO and HC emissions at idle conditions. A summary of the sector

combustor configurations tested to date is shown in Figure 2.3-24. This fig-

ure suggests that the HC emissions will meet the F 3 target level for several

of the configurations tested with either pilot only or pilot and main stages

fueled. The CO emissions on the other hand, fall short of meeting the E 3 tar-

get level for this emissions category in spite of the improvements obtained

with the current Mod. V configuration at both idle and approach conditions

with a 40/60 fuel flow split. It is apparent from the figure that additional

improvement in CO emissions at ground idle conditions is needed to meet the

target level for this emission category.

In addition to CO and HC emissions, NOX emissions were measured at simu-

lated 30% FN SLTO approach conditions. The results are r'iown in Figure 2.3-25

versus the metered fuel/air ratio for a 40/60 fuel 'low split between the pilot

and main stages. As expected, the NOX emissions were slightly higher for the

M 1. V configuration compared to the Mod. 1V design due to the richer main stage

!'ome.
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NOx emissions were also measured at the simulated sea level takeoff

conditions. Figure 2.3-26 presents a plot of NO X emissions versus selected

fuel/air ratios with a pilot-to-total fuel flow ratio of 0.40. The NO x emis-

sions level corresponding to the design fuel/air ratio of 0.0244 when adjusted

to the true cycle conditions is 30.2 g/kg of fuel compared to a target level of

17.5 g/kg of fuel. This data represents the first measurement of NOx emis-

sions at high power conditions since the main stage dove airflow was r.-duced	 }

to improve ignition performance. As expected, the NOX emissions level for

Mod. V is somewhat higher than levels obtained for the Mod. II configuration

(26.4 g/kg of fuel) which was the last main dome high airflow configuration

tested. As expected, due to the similarity in airflow levels between the pilot

and main stage domes, fuel split has no significant effect on the NO x emissions

levels. Previous full-annular combustor testing has demonstrated generally

lower NOX emissions levels than the sector combustor with similar design fea-

tures. Therefore, the NOx levels for an annular configuration similar to

Mod. V would be expected to more closely approach the target level. However,

the resultant levels would still be expected to be above the goal level. In

summary, the increased main stage primary dilution in the Mod. V configuration

of the E3 sector combustor met the main stage ignition requirements and pro-

vided a significant reduction of the CO and HC emissions levels at the 30%

FN SLTO approach conditions. However, the NOx emissions at sea level takeoff

conditions increased over the levels obtained from previous testing of earlier

configurations with a leaner main stage dome. A summary of the sector com-

bustor development program emissions status in terms of the EPA parameter, is

shown in Table 2.3-XI.

Prior to conducting further emissions investigations in the sector com-

bustor, efforts were directed toward identifying the optimum level of fuel

nozzle shroud airflow required consistent with low levels of CO and HC Pmis-

sions and no fuel nozzle carboning. Several shroud airflow levels were tested

in the Mod. III and V configurations at ground idle conditions in piggyback

tests to determine the effects of shroud air on 00 and HC emissions. The fuel

nozzles and shroud configurations tested along with the resulting emissions

levels obtained are summarized in Table 2.3-XII.
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Ô
-iO

Ln
O

N

co

N
d
it

m
•-1

k+

Ln	 ,n	 Ln
M	 N	 r-1

-,anA 3 o 231 /$ 1(XON)1H

162



ORIGINAL PACE is

OF POOR QUALITY

Table 2.3-XI. Sector Combustor Configuration Emissions
Results Summary.

Configuration

Approach
Staging

Mode

Calculated EPA Parameter
lb/1000 lb Thrust Per Hour Cycle

CO HC NOx

Baseline Pilot	 Only 5.70 0.53 3.30
Pilot + Main 6.67 0.73 2.39

Mod.	 I Pilot	 Only 3.42 0.37 4.08
Pilot	 ., Main 4.53 0.52 3.53

Mod.	 II Pilot	 Only 2.11 0.27 4.06
Pilot + Main 2.98 0.42 3.51

Mod.	 III Pilot	 Only 4.28 0.60 4.87
Pilot + Main I	 4.76 0.63 4.43

Mod.	 IV Pilot	 Only 4.01 0.73 3.84
Pilot + Main 5.10 0.80 3.49

Mod. V Pilot	 Only 3.35 0.34 4.68
Pilot + Main 3.53 0.38 4.32

Target 3.00 0.40 3.00
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1

Based on these results, a core engine fuel nozzle shroud design was

selected. The shroud air is supplied through 12 holes 0.062 inch to diameter

and constitutes approximately 1.2Z of the total combustor airflow. This

design is expected to provide adequate carboning prevention without adversely

impacting  the CO and HC idle emissions based on the sector test results.

One additional sector combustor configuration was evolved to attempt to

further reduce CD and-HC emissions and improve the fuel/air ratio distribution

at the sector combustor exit. However, prior to carrying out the investigation,

the sector combustor effort was redirected to support the full-annular test

program to help identify design features for the main stage dome design to

improve ignition performance.

Work Planned

Sector activities will initially be directed at identifying fixes for the

annular combustor. Following this effort, the sector combustor configuration

will investigate the emissions performance of Plot!. VI. Following completion

of these tests, altitude relight capability of the selected sector combustor

configuration will be evaluated.

2.3.4.2 Annular Test Rig

At the conclusion of the last double-annular development combustor test,

several areas on the test rig were identified where improvements are required

to improve test rig performance or da l-a quality. The key items of concern are

•	 Partial plugging of the gas sample rake orifices from carbon
deposits

•	 Inadequate water supply to the gas sample rake system at
simulated high power operation

•	 Difficulty in removing combustor instrumentation routed
through the test rig center passage

•	 Interference between the temperature rake thermocouple
elements and the atmospheric test rig exit -nnulus during
data acquisition of combustor exit temperatures with the
traverse system

•	 Poor diffuser performance reatilting from extremely flat
inlet velocity profiles entering the pred_ffuser section
of the test rig.

C ` 3	
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Visual inspection of the gas ample rake inlet orifices, along with air-

flow calibration, revealed that many of the gas ample rake orifices were

either plugged or partially blocked with carbon or water deposits, thus pre-

venting uniform sampling and an adequate supply of exhaust gas to the analysis

equipment. Partial plugging of the rakes was suspected during test of the Nod.

I combustor and confirmed by gas analysis results, as shown in Figure 2.3-27.

The orifices in the gas sample rakes were set at 0.025-inch diameter to

supply adequate sample flow while providing choked flow across the orifice.

The pressure drop across the orifice results in a rapid temperature drop in

the exhaust gas thereby helping to freeze the exhaust gas reactants until they

reach the exhaust gas analyzers. To reduce the potential for plugging gas

sample rake orifices, the hole diameter was increased from 0.025- to 0.040-inch

diameter. The increased orifice size is expected to eliminate orifice plugging

and provide adequate sample flow while maintaining a choked pressure ratio over

most of the operating range.

Another problem encountered with the gas sample rakes was an insufficient

cooling water supply at simulated high power operating conditions. At test

conditions where the test section presbures were high and the cooling water

flow rate demands were high, the losses through the supply hoses were exces-

sive resulting in an inadequate water supply to some rakes. As a result,

several of the rake elements were damaged and the rakes had to be removed for

repair. To prevent this occurrence in future tests, the rake cooling water

will be supplied from the instrument spool rotating shaft through slots in

the mounting hub, as shown in Figure 2.3-28. This approach will eliminate

any flow restrictions and provide sufficient cooling water at all test

conditions.

During initial buildup of the test rig, the instrumentation routing

hoses, shown in Figure 2.3-29, had to be fabricated from makeshift hardware

because the original hoses were not available. The makeshift hoses, though

adequate for baseline testing, make it difficult to lead the combustor instru-

mentation in and out of the rig. The original routing hose hardware was

obtained and installed to minimize combustor installation.

i
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Data obtained during the baseline and Mod. I development combustor tests,

indicated that the inlet velocity profiles entering the combustor inlet dif-

fuser were very flat, as shown in figure 2.3-30. Additionally, the turbulence

levels would be expected to be fairly low since the air enters from a long

plenum chamber with few obstructions in the flowpath. Therefore, the com-

bustor inlet diffuser performance would not be expected to be optimised and

would result in high pressure losses in the prediffueer annulus. The test

rig results were confirmed by comparing the full annular test rig inlet dif-

fuser pressure losses with those obtained in the combustor inlet diffuser

model tests where the velocity profiler was eliminated. As shown in Table

2.3-XIII, the baseline and Mod. I combustor configuration pressure losses are

very similar to those obtained in the model tests.

To obtain better diffuser performance in the annular test rig, a center

peaked velocity profiler, similar to that used in the full annular model tests,

has been fabricated and installed in the test rig. The profiler is shown instal-

led in the test rig in Figure 2.3-31. The level of improvement obtained in the

model test is shown in Table 2.3-XIV. The same level of improvement is expec-

ted in the annular test rig. The reduced combustion system pressure losses

should improve combustor dilution and mixing resulting in an overall combustor

system performance improvement. The only negative aspect of the installation

of the velocity profiler is a slight reduction in test section pressure capa-

bility. The added pressure loss of the profiler will reduce the overall test

rig pressure level by about 8%. However, this slight decrease in pressure

capability is not expected to impact the development program in any way.

The final modification to be incorporated into the test rig is a correc-

tion to the thermocouple rake traversing system used during atmospheric per-

formance tests. During 'he traverse operation at high temperature operating

conditions, interference between the test rig annulus flow guides and the

thermocouple rake elements occurred in several circumferential locations.

This interference appears related to an out-of-round condition in the outer

using or traverse ring when heated. The traverse ring is currently not avail-

able to investigate the problem, therefore, corrective action has not yet been

identified. However, prior to conducting the next annular atmospheric test,

the interference problem will be investigated and the necessary rig modifica-

tions identified.
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Table 2.3-XIII. Test Rig Diffuser Total Pressure Losses.

Mod-1
Configuration

Baseline
Configuration

Diffuser Test
Flat Profile

Prediffuser 2.52 1.86 2.12
Outer Passage

Outer Dump 1.26 1.83 1.92

Total Outer 3.78 3.69 4.04

Prediffuser 1.82 1.79 1.93
Inner Passage

Inner Dump 1.32 0.99 1.12

Total Inner 3.14 2.78 3.05

Centerbody No Data 2.30 2.77

Outer Dome No Data 2.53 1.16

Inner Doge 2.57 1.72 1.47

l

Table 2.3-XIV. Diffuser Total Pressure Losses.

- Model Test Results
- SLTO Conditions

Description

Outer Passage

Inner Passage

Centerbody

Outer Dome

Inner Dyne

Diffuser Test
Centerpeaked

Profile

3.Ob

2.08

1.83

1.21

1.44

Diffuser Test
Flat Profile

)+.o4

3.05

2.77

1.16

1.47

f
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Work Planned

Investigate atmospheric traverse system interference problem.

2.3.4.3 Full-Annular Test

The objective of the full-annular combustor test program is to develop

t':e emissions and performance features of the E3 double-annular combustor

design utilising technology from the GE/NASA Experimental Clean Combustor

Program (ECCP) and the GE/NASA Quiet Clean Short-Haul Experimental Engine

(QCSEE) program as well as evolving new technology. The key objective of

this task is to release a combustor, to the core and ICLS engines, which will

have verified in component tests that it wiV meet the emissions and perfor-

mance goals of the V program.

To accomplish this task, two different types of full-annular combustor

tests are being conducted: (1) high pressure tests to develop the emissions,

performance, and durability ^haracteristics of the combustor at various simu-

lated engine-operating conditions from idle to takeoff, and (2) atmospheric-

pressure combustor tests to develop the required combustor exit temperature

distributions and ground-start capabilities. The altitude-relight capabili-

ties of promising combustor configurations will be evaluated in accompanying

sector combustor tests. Past experience has shown that altitude relight per-

formance results obtained in sector-combustor tests are quite representative

of full- , annular combustor altitude-relight performance.

Initially, cold-flow calibrations of the E3 combustor test hardware

are performed prior to the initiation of the combustion tests to ensure that

the overall combustor pressure drop is within limits and that the various

dome and liner cooling airflows are distributed as intended. Following the

verification of the combustor design flow areas, the initial full-annular

test is conducted at atmospheric pressure to provide data on ground-start

characteristics, pattern factor, and profile factor. No emissions data are

obtained during these tests. This type of atmospheric testing has b.ien the

main tool for developing the excellent exit-temperature performance of other

General Electric combustors. High-pressure tests are then conducted to

determine the emissions levels and other performance characteristics of the

combustor test configuration over a range of simulated engine-power settings

from idle to takeoff.
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These high pressure investigations will be conducted primarily at simu-

luted standard day engine operating conditions representing ground idle,

takeoff, climb out, and approach conditions commensurate with the specified

EPA landing/takeoff cycle. In addition, combustor performance at other simu-

lated engine power conditions is investigated as part of the tests. At cer-

tain test conditions, variations of the fuel-flow split between the two com-

bustor annuli are investigated to determine the effects of fuel biasing on

emissions and combustor metal temperatures.

Upon selection of the final design for engine installation, all of the

design features evolved in the development program will be incorporated in

the core engine combustor. This hardware will then undergo complete evalu-

ation of all facets of combustor operation including ignition, emissions, and

performance. This combustor will be released to the core engine upon satis-

factory completion of the tests.

Preparations for the Mod. II full-annular development combustor were com-

pleted in a similar fashion as had been carried out on the baseline and Mod. I

designs. Detailed test plans defining the requirements for the ignition,

atmospheric performance, and pressure emissions test were prepared and submit-

ted to the test organization for implementation. These test plans provided

test instrumentation and test condition requirements as well ad testing pro-

cedures. The combustor was supplied to the test organization for instruments-

tion and buildup. The instrumentation requirements were very similar to those

described for the baseline configuration. However, the centerbody thermo-

couples were embedded in the hot side of the metal rather than fixed to the

surface as in the Mod. 1 test. This approach was selected to avoid secondary

junctions in the gas path which would give erroneous indications of high metal

temperatures.

After completing the instrumentation, the combustor was installed in the

test rig in preparation for ground start ignition tests. The fuel nozzles that

were installed in the test rig were equipped with 26.5 pph at 100 paid simplex

fuel nozzles for both the pilot and main stage fuel system. These fuel nozzles

duplicate the primary fuel spray characteristics of the duplex core engine fuel

nozzles. The combustor inlet operating conditions for the ground start test

are shown in Table 2.3-XV.
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Table 2.3—XV. Ignition Test Schedule for Development
Combustor Configurations.

StarL
Time
sec

XNRH

%

Tg,
F

P39
psis

W36,
pps

10 21 60 Atmospheric 2.76

15 28 60 Atmospheric 3.71

18 32 105 Atmospheric 3.40

30 46 160 Atmospheric 3.64

40 58 230 Atmospheric 4.09

70 312 Atmospheric 4.26

55 77 445 Atmospheric 5.13

10 21 75 15.0 2.80

30 46 160 20.9 5.20

40 58 230 27.1 7.50

-- 4% Gldle 379 49.9 17.3
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The ground *tart test result* obtained tur the Mud. 11 configuration were

disappointing. The pilot stage ignition results are shown in Figure 2.3-32

and are compared to the Mod. T results. The main stage results were Meatis-

factory, failing eo meet the ground start ignition requirements by a pride mar-

gin as shown in Figure 2.3-33. 	 \

Visual observations of the flame in the pilot stage indicated that the

inner liner dilution flow in Panel 2 .ras penetrating across the end of the

centerbody as shown schematically in Figure 2.3-34. The inner liner Panel 2

dilution holes were blocked off while the combustor was still installed in

the test rig to investigate the effects of this d lution flow. An improvement

in pilot and main stage ignition was obtained for this configuration (Hod.

IIA) compared to the original design (Mod. II) as shown in Figure 2.3-35.

However, the main stage ignition performance is still inadequate to meet the

ground -tart ignition requirements. Therefore, the combustor has been removed

from the test rig for more extensive modifications.

As part of the ignition development program, systems tests will be con-

ducted using the full-annular test rig hardware in the Gall A3 facility. These

systems tests will be directed at simulating the fuel system hydraulic response

during the proposed ground-start ignition sequence. The core engine hydraulic

characteristics and fuel control inputs will be simulated by a series of elec-

trically actuate) solenoids and check valves to measure delay times associated

with fuel nozzle till times and ignition delay times.

The fuel system set up is shown schematically in Figures 2.3-36 and

2.3-37. The response time of the fuel system and ignition delay time will be

recorded on real-time Sanborn charts to measure pressures and combustor tempera-

ture indications. the proposed test conditions to be evaluated are shown in

Table 2.3-XVI. These tests will be conducted after main stage ignition capa-

bility is evolved to a satisfactory performance level.

Work Plrnned

kfter the modified combustor is received, additional tests will be carri.td

out to develop the ignition performance of the develoµsent combustor. Upon
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Figure 2.3-36. Test Cell Simulation of Engine Fuel System Response.
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completion of the ignition development, the atmospheric performance and emis-

sions performance evaluations will be conducted. Additional tests will be

conducted as required to assure meeting all of the key combustor performance

requirements.

2.3.8 Combustor Fabrication

Required modifications were made to the development combustor hardware in

the development testing effort. The Build II modifications were incorporated

in November 1980. The combustor was then flow checked and delivered for com-

ponent test buildup.

Close contact has been maintained with the fuel nozzle manufacturer to

assure delivery of this complex engine component by May 1981. Vendors will

complete manufacture of all main combustor components in the spring of this

year. The combustor components will be available for buildup in July 1981.
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2.4 HIGH PRESSURE TURBINE
I

Overall Objective

The objective of the HP turbine effort is to develop, evaluate, and

demonstrate an efficient, two-stage turbine. The turbine design incorporates

features that provide the best balance of efficiency and direct operating

costs while achieving required component-life requirements.

Performance achievements shall be aimed at developing high turbine effi-

ciency using moderately loaded airfoils. The HPT efficiency goal for the

fully developed FPS is 0.924 at Mach 0.8, 35,000-feet altitude, standard day,

maximum cruise power setting. Additionally, the turbine incorporates an

active clearance-control system to achieve and maintain improved clearances

for enhanced performance, particularly in climb and cruise operation.

Development Approach

The overall program plan for the HP turbine is to establish a turbine

mechanical system and configuration that will achieve the projected levels of

turbine efficiency and mechanical integrity. The aerodynamnic design studies,

initiated in March 1978, are devoted to the design for the air turbine and the

aerodynamic airfoils definition for the core and the ICLS engines; current

design parameter values are shown in Table 2.4-I. In November 1978, an

Intermediate Design Review was presented for the overall air turbine test

program, the aerodynamic blade and vane airfoil definition, and the mechanical

and heat transfer designs. In March 1979, the Preliminary Design Review was

presented and approved for the aerodynamic, mechanical, and heat transfer

designs.

The detailed mechanical design began in April 1979 and consisted of an

18-month effort to integrate the experience gained from the materials pro-

gram, heat transfer cascade tests, air turbine tests, and preliminary mechani-

cal and systems design. The High Pressure Turbine Design Review was presented

to NASA on October 10, 1980 and was approved in December 1980. The review con-

sisced of a presentation of all the technological disciplines associated with
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the turbine (that is, heat trs fer, mechanical, aero, and systems review).

Upon NASA's approval of the design, the balance of the turbine components not

yet released (as an advanced release) were authorized for manufacture. One

set of hardware will be purchased which will also be used for both the core

and ICLS engine testing. Adequate spares have been ordered for flowpath com-

ponents. Fabrication and manufacturing interface with vendors has continued

within this reporting period.

Components will be instrumented for the core engine tests for engine

monitoring and safety. All engine hardware should be delivered for assembly

between the third and fourth quarter of 1981 for engine tests. Necessary

refinements will be included from the experience gained from the core engine

tests and applied to the ICLS engine tests. Posttest analysis will be per-

formed and evaluated for both engine systems.

The major effort of the mechanical design group during this reporting

period was in coordinating the manufa•_.turing effort for the procurement of

various turbine components. The present manufacturing status can be

described as follows:

s	 All structural rotating and structural static parts are ahead of
or on schedule

•	 Flowpath components are from 4 to 16 weeks behind schedule due to
long tooling cycles and some required tooling mcaifications.

The Stage 1 h,tade is presently the most limiting part in tei:-is of delivery

for the core engine build.

The thermal barrier coating program has progressed through the completion

of the ccating development and coating selection phase. The selected candi-

date 20% Y203 (YZO) has been applied to turbine components from the CF6-50 for

a planned 1500 "C" cycle engine test. This test is planned to begin in April

1981 and to be completed by June, 1981. Engineering shall monitor the progress

of the coated parts during engine testing.

The ceramic process and development program began in March 1978 and ex-

tends to the second quarter of 1981. The ceramic shroud program is essentially
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divided into four major phases. Phases I and II addresb the material screen-

ing evaluation, the process parameters, and candidate selection and develop-

ment. Phases III, IV, and V comprise fabrication and component tests.

Two basic ceramic shroud design configurations were tested in the CF6-50

engine between June and September 1981. After 625 cycles, the test was dis-

contiraed due to turbine FOD. Based on the posttest analysis from this test,

the superpeg shroud design was selected as the prime candidate for the E3

Stage 1 HP shroud.

The two-stage air turbine test was completed and its results reported

in the last semiannual report. At present, further refinements of the test

data are being completed to establish the turbine efficiency.

2.4.1 High Pressure Turbine Aero Design Analysis

Technical Progress

A detailed design review of the high pressure turbine was held on October

10, 1980 at NASA-Lewis.

A test memo for the two-stage air turbine rig was issued.

The aerodynamic design portion of the high pressure turbine detailed

design report was written.

Testing of the two-stage air turbine vehicle was completed on September

11, 1980 us :rated in the previous reporting period. A layout of the test

rig is shown in Figure 2.4-1. A summary of turbine operating parameters

at rig conditions is presented in Table 2.4-II. Analyses of the data, to

date, indicate that the quoted level of efficiency is substantiated.

Posttest analysis of the two-stage air turbine data was initiated and

will continue through the next reporting period. Circumferential cobra

prove traverses were taken at design point operating conditions. Measure-

ments of turbine exit-total pressure, total temperature, and absolute flow

angle were made. Figure 2.4-2 shows the radial profiles of pressure, swirl,

and temperature obtained by integration of the circumferential traverses.

Pressure and temperature have been normalized by their respective inlet values.

Positive swirl is in backward running direction.
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Table 2.4-11. Summary of Turbine Operating
Parameters at Rig Conditions.

Test Predicted

Flow Function, WY/P 18.19 18.06

Energy Extraction, a h/T 0.0827 0.0814

Corrected Speed, N/VT 236.4 236.2

Pressure Ratio, PT/PT 5.02 5.04
Total-to-Total

Stage Loading, * p 0.658 0.648

Root Reaction, RxR 0.381 0.337

Efficiency,	 nT 0.925 0.916
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Contour plots of the exit flow conditions are depicted in figures 2.4-1

through 2.4-5 for pressure, swirl, and temperature, respectively; circumferen-

tial arc is 0.34 radian. Stage 2 vane wakes are readily observed.

All test readings were scrutinised to identify any errors attributable to

malfunctioning instrumentation, incorrectly set point, or point instability.

Where possible, these readings were corrected; otherwise, eliminated. All

readings with identifiable instrumentation errors have been reprocessed.

Work Planned

e	 Complete posttest analysis

e	 Prepare air turbine test report

e	 Support instrumentation and assembly of core engine.

2.4.2 High Pressure Turbine Heat Transfer Design

Extensive work continued to be performed in the area of heat transfer

design of the high pressure turbine. This work has been directed at complet-

ing the detailed design heat transfer analysis of the turbine flowpath com-

ponents and turbine structure. A successful review of the turbine heat trans-

fer was conducted with the Engine Product Review Board. Minor changes were

suggested and incorporated into the analysis. A successful detail design

review was also presented to NASA on October 10, 1980. The detailed design

report which finalizes the 18-month effort has been drafted and almost com-

pleted.

The detailed work effort on the high pressure turbine during the last

6 months is herein presented.

Stage 2 Blade

From production engine experience, turbine hardware can experience for-

eign object damage (FOD) caused by some part of the turbine hardware breaking

off and hitting the blades. Because of this and the unique nature of the
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Stage 2 blade cooled circuit, an FOD analysis was conducted. The purpose of

this analysis was to define the cooling flow variation to the blade if a hole

caused by FOD penetrated the leading edge radial cooling passage. The blade

flow variation is presented in Figure 2.4-6 for en FOD hole up to 0.25-inch

diameter at the 60% span. The leading edge flow circuit flow is increased

quite drastically but, at the same time, the flow to the second and third

radial cavity drops from 0.33% to 0.3% when a 0.25-inch diameter hole is

opened up. The corresponding pitch-line temperature distribution with and

without the 0.25-inch diameter holes is presented in Figure 2.4-7. This

analysis shows a 67' F drop in the bulk metal temperature with the biggest

variation occurring at the leading edge where the inside part of the airfoil

drops as much as 182' F. The end result of this analysis shows no cata-

strophic loss of blade life due to a loss in cooling.

A similar analysis was conducted for the blade tip cap. The tip cap

will be a one-piece construction and brazed in place. There will be no

mechanical retention device, as in the first stage. This is feasible since

the blade tip gas temperatures are significantly lower on Stage 2. Because

the Blade 2 tip-cap retention is relying completely on the braze, a thermal

analysis was conducted to determine the impact of the possibility of a braze

failure and tip-cap loss. The compressible flow network program, like in the

previous analysis, was used for this analysis also. Without the tip cap,

the core support holes become the flow circuit restriction. The blade flow

went from 0.76% W 25 to 2.38% W25 with no tip cap. The flow in any radial

cavity, as shown in Figure 2.4-8, did not drop. The cooling flow in the

last two radial passages of the forward circuit went up at least from 0.332%

to 0.386%. This analysis, in general, indicated no problem if a Stage 2 blade

lost its tip cap.

High Pressure Turbine Active Clearance Control System

The impingement cooling scheme for both the first and second stage rotor

clearance control has been finalized. Fan air is used to impinge on the HP

casing. The fan air is extracted from the bypass duct through a split scoop

that separates the HP and LP active clearnce control (ACC) air. The air,

once inside the scoop, is slowed efficiently through a 2:1 area ratio diffuser
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1

in an effort to recover as such as possible of the Mach 0.5 fan duct dynamic

head. After diffusion, the HP ACC air is ducted to the modulation valve in

the pylon. After flowing through the valve, the air is delivered to a 270'

circumferential rectangular duct, in the area of the HP turbine, that is

built into the core cowl. From this circumferential duct, the air is routed

through four pipes to the impingement manifold surrounding the HP turbine

casing. There are four impingement manifolds surrounding each of the two

turbine stages as shown in Figure 2.4-9. The impingement manifolds are of

rectangular cross section and allow for the required proximity of the 0.025-

inch-diameter impingement holes to the casing clearance control rings and

bolt flanges. The clearance of each stage in the HP turbine is accomplished

by impinging the fan air on the casing, ACC rings, and bolt flanges. The com-

partment outside the HP casing, has been isolated frca the rest of the engine

volume between the core engine and the inner fan duct flowpath by mean& of

the fire safety wall. This is necessary since the pressure, after impingement,

is lower than the fan duct static pressure at maximum ACC flow rates. With

this isolated cavity, the spent ACC air can then discharge through the struts

in the rear frame to the aft cenVer body. From there the air discharges out

the vent stinger at a velocity such that most of the thrust is recovered from

the ACC air.

The HP turbine ACC analysis, to date, has been based on the assumption

that the typical engine, in airline service, has been allowed to warm up to

a stabilized idle temperature level. Production engine experience indicates

that this is not always the case and shorter warm up times are quite possible.

Because of this, an extensive study of the cold and warm engine start, short

idle, and maximum takeoff transient has been conducted.

The purpose of this analysis was to define the impact on the minimum

clearance after accel to maximum takeoff power. Presented in Table 2.4-III

6 the pinch clearance for the cold engine start and warm engine start. The

rearm engine start occurs, in airline service, when the engine has been shut

down for a period of time, such as a half hour before being restarted. The

rotor structure and casing cools off during the engine shutdown, but not at

a uniform rate. The casing cools down at a faster rate than the rotor since
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it is significantly less massive. The shutdown heat transfer analysis in-

dicated that the Stage 1 casing cools to a temperature that was 125' F below

the rotor average temperature after a half hour wh- p le the Stage 2 casing

cools to a temperature that was 200' F lower than the rotor.

Table 2.4-III. Maximum Takeoff Pinch Clearance After Short Start.

Time at

Idle, Seconds

Cold Start

Pinch, Mils

Warm Engine Start

Pinch, Mils

Stage 1 Blade 200 16 12

300 21 16

400 23

500 25

Interstage Seal 200 -15 -8

300 -9 -4

400 -4
500 0

Stage 2 Blade 200 15 6

300 19 16

400 2/•

500 25

The results ot	 analysis indicate that a substantial reduction in the

takeoff turbine blade pinch clearance occurs on both the cold and warm engine

when the engine is not given sufficient time to warm up, If the engine accels

from idle to maximum takeoff occurs after only a 2 to 3 minute start and warm

up, the pinch clearance can easily be reduced from the desired 25 to 10 ails.

This then could easily produce a bl;ide tip rub since the pinch will happen

when high engine loads and vibration occur. In order to overcome this poten-

tial problem, a means of heating the casing, after start, has been devised.

The casing heating scheme is accomplished by impinging 0.3% of core compressor

discharge air on the outside of the casing during the idle power condition for
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200 seconds. After 200 seconds of casing heating, a valve would turn off the

warm compressor discharge air and the valve would remain closed until the

engine had been shut down for at least 15 minut's. If an zcceleration to maxi-

mum takeoff occurred while the casing heating valve was open, it would remain

open for '10 seconds after reaching full power. There is no advantage in con-

tinuing to heat the casing beyond the 30-second point since the clearance

pinch had occurred, and continuing to ho-at the casing would result in extra

power loss caused by the compresso- discharge air being taken from the cycle

and exc-us clearances in the turbine.

Under normal engine operation, the casing heating valve would open just

after th-z engine achieved idle rpm and would remain open for 200 seconds. The

valve would then be shut for the rest of the engine mission. This would have

virtually no impact on engine cycle performance and would yield significant

improvement in the pinch clearances during takeoff. Preeente-1 in Table 2.4-IV

is the pin%:h clearance for the cold and warm engine start with ex t ernal casing

heating for 200 seconds or 30 seconds after accel to full power, whichever

occurred first.

The data from Table 2.4-1V shows that the warm engine start/short idle/

maximum take^oft produces the most limiting pinch during takeoff. The improve-

ment that can be achieved with the casing heating scheme becomes evident when

a comparison is made betwecn the two configurations. For the 200 seconds

start/idle, there is y 9-mil increase in the pinch clearance for both the first

and second stage blade tip and a 2-mil increase for the interstage seal during

takeoff. This casing heating system still doce not get the minimum turbine

pinch c:earance back to the desired 25 mils during maximum takeoff. The mini-

mum pinch clearance is now N and 15 mils on the first and second stages,

respectively, with the casing heating scheme. This indicates that the buildup

clearance might have to be increased if 25 mils is truly required at maximum

takeoff. Since this analysis is completely analytical and only has the heat

transfer analysis practice from other engines factored in, the engine turbine

tthe•rmal characteristics need to he defined before the optimum flight propul-

sion system ACC can be cleariy defined. Because of of this, the casino heating

system is being incorporated into the 101..5 engine. This will then allow the



-^-,-•,-aim-^--_^.^-,^^--^-^-^-^.-.^^ ,nu,.^.

ORIGINAL Pia(- - fS
OF POOR QUALITY

complete evaluation of the ACC with and without the casing heating system. A

true system evaluation can then be made to define the need of the heating

system in the FPS.

Table 2.4-IV. E3 HP Turbine Maximum Takeoff Pinch
Clearance with External Heating
During Engine Warmup.

Engine Warmup
Time, sec

Heating
Time, sec

Cold Engine
Pinch, mils

Warm Engine
Pinch, mils

Stage 1 Blade 200 100-230 25 21

*300- 100-330 29 22

*300+ 100-300 26 19

400 100-300 27

500 100-300 28

Interstage Seal 200 100-230 -10 -6

300- 100-330 -3 -2

300+ 100-300 -6 -4

400 100-300 -2

500 100-300 +2

Stage 2 Blade 200 100-230 27 15

300- 100-330 31 19

300+ 100-300 24 17

400 100-300 26

500 100-300 28

*300- indicates that the takeoff occurred prior to the heating system valve
closure signal and this allowed the heating to continue 30 seconds into
takeoff mission.

300+ indicates the heating system valve closed at the 300-second point,
prior to takeoff accel.
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High Pressure Turbine Rotor Structure Heat Transfer Analysis

The heat transfer analysis consisted of complete mission from cold engine

start up through the flight mission and engine shutdown. Extensive iterations

and feasibility studies were conducted in an effort to yield a transient tem-

perature distribution that would not overstress or overtemperature any com-

ponent. The areas that presented the biggest challenge were

•	 Compressor discharge seal disk bolt flange

•	 Inducer seal disk bolt flange

•	 Impeller disk bore and rabbet

•	 Stage 1 disk bore

•	 Interstage seal disk bolt circle and seal teeth

•	 Stage 2 disk bore

•	 Aft seal disk bolt circle.

All the problems were caused by transient temperature gradients except

the interstage disk seal teeth which were temperature limited. Because of the

massiveness of the disk bores, their thermal response was very slow. This

created large temperature gradients during the early part of the takeoff

transient.

An additional problem occurred at the Stage 2 disk bore where the axial

and radial thermal stresses combined to limit the transient rupture life at

that location. This problem was overcome when the heat transfer to the bore

was increased. This increased the transient temperature right at the bore

surface and caused a higher thermal compressive stress. When combined with

the mechanical tensile stress, the effective stress was reduced. The end

result was a disk that met the rotor structure life objectives of the growth

engine. The improved heat transfer to the bore was accomplished by both

increasing the flow under the disk to 0.2X W 25 and reducing the radial gap

from 100 to 50 mils near the center of the bore. The radial gap could not

be reduced by a drop in the disk bore, so a 50-mil hump was placed on the
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outside of cover *haft at the center aAial location of the Stage 2 bore.

These two approaches not only increased the heat transfer by a factor of

three, but the flow increase, also improved the thermal response of the air

flowing under the disk.

The HPT rotor shutdown temperature transients have also been defined.

This data indicates that all the iisks undergo a temperature reversal where

the disk rim coal* off to a temporat"ire that is le*a than the bore tempera-

ture. This temperature reversal UraJient puts the bore into compression and

will have a definite impact on the cyclic life of the disks. The temperature

gradients Set up to 300' F at about a -t hour after shutdown. After this time,

the temperature gradients start to diminish.

Stage 1 glade

Even though the do%ailed ..#sign of the Stage l blade has been completed,

work is continuing in s.pport o3 the hardware iabricatiun. The current work

on the Stage 1 Er lade+ involves the trailing edge+ cast cooling *lots. because

of the dedicate natstro of the trailing edge cooling circuit, the casting yield

from the first pour was very low. To alleviate the problem, the crossover

holes from the last serpentine cavity have been increased in sis* as shown in

Figure 2.4-10.

Work Planned

* Follow engine hardware fabrication for core and IG1S to assure
design intent; make necessary adjustments for hardware that is
not to print .

`:.4.1.'' HVh Prossuro Turbine Detailed Mechanical
Noaslos and S tructures D*sip

Technical Progress

The detailed design review of the mechanical design was presented at

NASA-Lewis on October 10. 1 480. Approval of the design by NASA was offi-

cially received in December 1480. The approval then permitt*d the balance

of the hardware not on order (as long lead items) to be released to menu-

facturing.
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The detailed design culminates an 18-month effort by mechanical, heat

transfer, aero, and materials engineering to define the final turbine geometry

configuration.

Assembly drawing for the Stage 2 nozzle and shroud support is in process

of completion. The drawing includes grind dimensions for Stage 1 and 2

shrouds, and Stage 2 nozzle inner honeycomb seal.

The stress analysis for the impingement manifold has been updated to

include the use of compressor discharge pressure (CDP) air. The use of CDP

air is only used during flight conditions with no idle warmup (only 200

seconds have elapsed after initial engine start up). The heating of the

casing will compensate for the reduced clearance reduction due to the casing

being at a lower temperature.

Work Planned

•	 Release Stage 2 nozzle and shroud assembly.

2.4.3.3 Detailed Mechanical Blades and Rotor Design

Technical Progress

The detailed design review for the HP turbine blades and rotor structure

was presented at NASA-Lewis on October 10, 1980. The design was approved by

NASA in December 1980. The detailed design consisted of an 18-month effort by

the mechanical, heat transfer, aero, and materials engineering to define the

final turbine geometry configuration.

Extensive stress and life analyses to determine the low cycle fatigue

(LCF) life capabilities for all the major components were accomplished during

this time period. The analyses included the effect of flight transient con-

ditions on stress and LCF l i fe capabilities. Extensive uses of finite-element

analysis was accomplished to determine the localized stresses for the various

components.
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Work Planned

•	 All Rene 95 and AF115 HIP material shall be analyzed using residual
life analysis methods

a	 Release turbine rotor assembly drawing

•	 Initiate balancing procedure methods.

2.4.3.4 Manufacturing Interface and MRB Discrepancies

Technical Progress

Major effort by engineering to cover manufacturing cycle, schedules, and

dimensional discrepancies for various components were in the following areas.

Stage 1 Nozzle

Engineering reviewed the band castings' core and wax die fixtures.

Changes were recommended by the casting vendor to improve yields and were

incorporated in the design. The band hold drilling features were also

reviewed and approved.

Due to band core die late delivery, the manufacturing and fabrication

schedule for the nozzle assembly had to be revised. Schedule milestones are

being maintained to determine the progress of work, and identify areas where

schedule improvements can be made.

Stage 2 Nozzle

Engineering approved the outer band casting dimensional inspection after

review. The inner baud castings are presently being reviewed.

The vane airfoil cores are showing indications of low core yields. The

major problem is cracking of the trailing edge turbulence promoters and the

inner flowpath core support. A review is underway to determine the extent

of the problem prior to defining a solution.
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Stage 1 Blade

Blade core cracking along the trailing edge crossover holes has been the

major problem limiting the completion of the blade casting process. Observed

breakout of cores during casting, plus the very low core yields, necessitated

a redesign of the trailing edge hole sizes.

A redefinition of the trailing edge crossover hole size has been made.

The core die rework to include these changes is being completed.

Stage 2 Blade

The only problem discoverd in the process for Stage 2 blade casting was

core cracking in the radii of the three small holes located at the bottom of

the turning ribs. These holes are used as part of the cores to improve air-

foil rib to shank support. The radii around these holes have been increased

and core yields have increased.

The first two casting molds processed show casting yields of approximately

50%; further improvements are expected.

Stage 1 Ceramic Shrouds

Review of the wax pattern for the ceamic shroud showed the pegs to be out

of print. Core die rework to correct this problem was accomplished and the

review of the second wax pattern was approved.

Stage 2 Solid Shroud

The Stage 2 solid shroud received dimensional and visual inspection by

Engineering and was approved. Forty shrouds have initially been cast and

final inspections are being completed.

Work Planned

e	 Maintain manufacturing support

e	 Determine ways to improve Stage 2 vane core yields

e	 Continue to review any dimensional discrepancies and determine if

rework is required.
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2.4.3.5 HPT Core - ICLS Support
t

Technical Progress
t

Instrumentation definition and locations have been completed. Turbine
F

rotor sensor routing has been defined and the disk rework drawing, which adds

holes for instrumentation routing, has been issued.

Blade and nozzle instrumentation requirements have also been defined.

Rework drawings for these parts are in process of initiation.

Work Planned

•	 Release blade and nozzle rework drawings for instrumentation

•	 Review drawings released through evaluation for instrumentation

routing of rotor and stator parts.

2.4.5 High Pressure Turbine Cooling Development Testing

Technical Progress

Due to the critical nature of the HPT and LPT active clearance control,

it is important that the system be completely understood before engine testing

if the total system payoff is to be realized. The active clearance control

system for both the HPT and LPT consists of a scoop to recover fan discharge

air, a control device to schedule the correct amount of air, and a distribution

system to cool the exterior casings of the respective turbines. Spent air,

after cooling the casing, it routed through the LPT aft frame to the stinger

where it is injected out the back with sump purge air and compressor purge

air.

Between the fan discharge and stinger, there is not a dominating pressure

loss 90 not pressure loss in the system can be considered insignificant. Due

to this requirement, it is essential that ACC air extraction from the fan duct

be carried out as efficiently as possible. The current extraction system calls

for a high performance scoop installed in the side of the pylon skirt. The

scoop, shown in Figure 2.4-11, will be split down the middle to segregate the

HPT and LPT active clearance control air.
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The model test, carried out in a wind tunnel at one-half scale, will have

three objectives. Of primary importance will be detailed data on recovery

pressure for various scoop flows throughout the range of fan discharge air

Mach numbers. It is of equal importance to verify the extent of interaction

between the LPT and HPT scoop flows. Secondary to the former will be an

attempt to experimentally verify the analytical prediction of the aerodynamic

penalty associated with putting the scoop in the fan duct.

During this reporting period, the detailed drawings of the ACC scoop

model and test duct assembly were completed and released for hardware acquisi-

tion in November 1980. The completed scoop assembly was received from the

vendor in February 1981 and is shown in Figure 2.4-12. Instrumentation of the

scoop was completed shortly after receving the hardware. Installation of the

instrumented scoop assembly, shown in Figure 2.4-13, in the test facility was

completed on March 18, 1981 with flow and instrumentation checkout taking

place at the time of this writing. Testing will begii, immediately after

checkout is complete.

The testing will cover a range of duct Mach numbers (0.2 to 0.55) in

order to simulate the conditions that exist in the fan duct throughout the E3

flight envelope. Flow extraction will range from zero to a maximum flow of

0.122 pps per side. Thirty-five test points will be set at various combinations

of duct Mach numbers and scoop flows. Recovery plenum pressure, and upstream

and downstream total pressure traverse measurements will be taken at each

point. The results will be analyzed so that accurate scheduling of ACC air

will be achieved in the engine test. Wake drag losses will be studied to

ensure that they are within acceptable limits.

2.4.7.1.1 Ceramic Shroud Process

Technical Progress

Ten ceramic shrouds were tested in a CF6-50 factory engine. Based on

the posttest analysis, the superpeg shroud was selected as the prime ceramic

shroud configuration for E3 core and the ICLS engine testing. The wire

mesh configuration, which did not perform as well as the superpeg desig-., ha4

been deleted from the program.
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An effort was then initiated to improve the plasma spray process far coat-

ing the superpeg shroud. Superpeg panels were fabricated to simulate the

superpeg shrouds and were coated using several variations in the plasma spray

process. Improved spray techniques have been identified but slight refinement

is necessary to optimize the coating process.

Two superpeg shrouds were fabricated and plasma spray coated with Zr02 -

Y203 powder obtained from two different vendors. These shrouds are awaiting

thermal shock testing to identify a Zr02 powder source.

Development of a nondestructive evaluation procedure for detecting Zr02

coating delaminations is in progress. Holographic and infrared techniques are

presently being evaluation.

A program plan was formulated to provide for fabrication of the Stage 1

and 2 superpeg and solid shrouds for E3 core and ICLS testing.

Work Planned

•	 Complete superpeg spray process identification

Identify Zr02 powder vendor

•	 Complete development of coating NDE procedure.

2.4.7.2.1 Thermal Barrier Processes

Technica l Progress

The objective of this program is r:;.) develoy a thermal barrier coating

(TBC) system and demonstrate its adequacy for the energy efficient engine.

Previous semiannual reports have described the progress of earlier tasks in

which the original eight candidate coating systems were reduced to three,

and then to a single coating system. The selected coating is a two-layer

(duplex) system consisting of a Ni-22Cr-10A1-1Y bond coat and a Zr02-

20ZY203 top coat.

A substantial amount of processing effort aimed at obtaining uniform,

durable coatings on four high pressure turbine components has been reported.

•
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The coating process selected for the vanes consists of manual arc plasma

spraying of both coating layers at atmospheric pressure. For the blades,

automatic manipulators were used with the bond coat applied by vacuum plasma

deposition (VPD) and the ceramic coating applied by conventional stmosphereic

spraying.

The results of mechanical property testing comparing thermal barrier

coated specimens to uncoated specimens was reported in the previous semiannual

report. The presence of the TBC was found to have no measurable effect on the

low cycle fatigue, high cycle fatigue, and stress-rupture properties of X-40,

Rene 80, and DS Rene' 150.

Also reported was the coating of HPT components for rig and engine

testing and the d ainage of TBC Stage 1 HPT blades in the cascade rig test due

to problems with the cooling air pressure.

Cascade Rig Test

The thermal barrier coated CF6-50 Stage 1 HPT blades, which were damaged

in the cascade rig test, were evaluated using metallography and electron

microprobe analysis. A thin deposit which formed on the surface of the

ceramic coating during the test was found to contain Fe, Ni, Cr, Co, Cu, and

Al. The source of this deposit is believed to be contaminants in the air

supply lines to the test cell and possible surface material losses from the

transition components which funnel the hot gases tram the combustion to the

airfoils.

The TBC remained intact in most areas, even adjacent to the leading edge

of the airfoils where local melting of the Rene 150 blades had occurred.

Metallographic examination indicated that the TBC remained adherent until the

substrate material was lost. Microprobe examination of the blade near the

molten zone showed strong aluminum depletion in the bond coat and the EA

NiCrA1Hf environmental coating. In addition, this .region showed a homogeniza-

tion of the nickel content of the bond coat, EA coating, and the substrate. In

a region which had experienced lower tem,leratures during the test (trailing

edge, suction side), these compositional changes were not observed.
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While problems with the test apparatus limited the information which

was obtained in the cascade rig test, the durability of the TBC under the

severe test conditions was encouraging.

Engine Testing

Six thermal barrier coated blades w -e delivered to CF6-50 Engine Systems

for engine testing.

The blades were assembled in a rotor, balanced, and tip ground. No damage

was observed on the TBC blades after the tip grinding operation. The blades

were then assembled in the engine and scheduled to run for 1500 "C" cycles.

Examination of the blades after 16 hours of engine checkout revealed

coating damage on all of the TBC blades. The damage was restricted to the

upper third of the leading edge on the airfoils and appeared to be small

pock marks in the ceramic layer. The damage is believed to have been caused

by impact of material lost from development shrouds in the first stage of

the high pressure turbine. Subsequent boroscope examination of the blades

during the test showed no observable progression of the damage to the lead-

ing edge after 316 "C" cycles. However, examination after 467 "C" cycles

showed additional ceramic coating loss at the leading edge. No coating

loss was observed aL any other location on the blades. The test was

terminated after 626 "C" cycles due to turbine FOD.

Extensive loss of blade material occurred at the leading edge and blade

tip for all Stage 2 blades. The ceramic coating losses from the remaining

airfoil surface were about 40% to 70% on the pressure side (concave) and

30% to 40% on the suction side (convex). The bond coat, however, remained

considerably intact over all the remaining airfoil surface.

The photomicrograph in Figure 2.4-14 shows the coating damage which was

sustained on the auction side of the airfoil near the leading edge. Neatly

all of the ceramic top coat was lost due to impact damage. The metallic

deposit seen in this micrograph was thickest in this region and covered all

of the pressure side of the airfoil and about half of the auction side. The
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deposit was analyzed to be Rene 80 material originating from Stage 1 blades.

The coating microstructure in the area which had not sustained impact damage

is shown in Figure 2.4-15. The coating is in very good condition and shows

no evidence of cracking or separation at the bond lines. X-ray diffraction

analysis of the ceramic coating showed the 20Z Y203-ZrO2 to be mostly cubic,

with a small percentage of the monoclinic phase.

Formation of an oxide layer at the topcoat/bond-coat interface, such

as had been observed in laboratory specimens, was not generally apparent.

This is probably due to the relatively short time (•166 hours) at elevated

temperature in the engine test. However, in some areas near the leading and

trailing edges, formation of the oxide layer was observed. These areas

experienced much higher temperatures than the bulk of the airfoil as was

evidenced by the variation of coloration of the oxidation product which formed

on the Reng 80 deposit on the TBC surface.

During this report period, a number of additional CF6-50 high pressure

turbine components were thermal barrier coated and submitted to CF6-50 Engi-

neering for engine tests scheduled to start in April 1981. These components

are described below.

Stage 1 HPT Vane Segments - The first stage vanes were coated in July

1980. Eight vane pairs were separate%' .nd the individual vane halves were

coated in designated areas with nominal thicknesses of 0.005-inch NiCrAIY

bond coat and 0.012 inch Zr02-2 p %y203 top coat. Both coating layers were

manually sprayed in air. The ceramic surface was smoothed by hand polishing

with grit paper under flowing water. The vane halves were then rewelded and

inspected. (This procedure had been evaluated on a vane which subsequently

underwent a series of thermal cycle proof tests. The TBC showed no damage in

the rewelded zone or in any other area.) Four vane pairs have been assembled

for engine testing.

Stage 2 HPT Vane Segments - The areas selected to be coated on Stage 2

vanes did not require the cast pairs to be separated and rewelded; otherwise

the TBC and the coating procedure were the same as for Stage 1 vanes. Eight

vane segments were coated and submitted for engine testing.

F
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Stage_2 HPT Blades - Ten Stage 2 blades have been submitted for engine

testing. All of the blades were coated with nominal thicknesses of 0.005 inch

NiCrAIY bond coat and 0.010 inch Zr02-Y2O3 ceramic top coat. The bond coat

was applied in a low pressure, inert gas environment using automated manipula-

tion. The ceramic surface was polished to a smooth finish to improve aero-

dynamic efficiency.

Three of the blades have a Zr02-20ZY203 ceramic top coat which was applied

by a programmed robot manipulator. During this report period, six additional

blades were coated in a manner similar to that described above, except that

two ceramic powder compositions were used. Three of the blades were coated

with Zr02-20XY2O3 and three with Zr02-8%y2O3. Both powders were obtained from

the same source (Metco, Inc.) and were manufactured by the same procees. Of

these six, two of each are being used for engine tests.

The last three of the ten blades being engine tested are part of a group

of blades coated at GE-CRD under NASA Contract NAS3-21727. The ceramic top

coat is Z r02-8%y2O3 manufactured by Zircoa-Corning, and it was applied by

manual plasma spraying. There were several other material and coating process

variables which differentiate these blades from those coated at GE-AEBG.

Work Planned

The next planned activity is the evaluation of engine-tested, thermal

barrier coated, high pressure turbine components from a CF6-50 engine sched-

uled for test in the second quarter of 1981.

2.4.7.2.2 Materials Development - Thermal Barrier Cascade Rig Test

Technical Progress

The objective of the thermal barrier coated Stage 1 blade test in the

cascade rig is to determine the coating durability in a simulated engine

environment. This test, prior to committing the Stage 1 blade for engine

test, would provide the level of experience necessary to ensure success

during engine tests. The cascade rig test would also be useful in comparing
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actual temperature measurements versus predicted temperatures. A total of

1000 "C" cycles were planned. The test's excursion would be from idle to

maximum transient takeoff, 2-minute hold at takeoff, and deceleration to idle

conditions.

During the initial cycling, it was apparent that the measured tempera-

tures were well below the predicted temperatures. The gas stream and coolant

temperatures were therefore increased. Additionally, the level of cooling

flow to the blade was reduced by a reduction in the air supply pressure to

the blade.

After a total of 605 cycles, the blades were inspected and two of the

blades were found to have experienced local leading edge burnout from approxi-

mately 55% to 85% span. The blades were supplied to the Materials Engineering

group for metallurgical examination. The results are reported in Section

2.4.7.2.1.

The cause for the burnout was concluded to be due to the pressure reduc-

tion of the air cooling feed to the leading edge circuit. The cooling pressure

had been reduced to a level such that no leading edge flow existed. The tem-

perature reading at the leading edge pitch line under this condition was

measured to be 2186° F. At this point, the cooling flow was increased for

additional cycle tests and the blades, which showed the blade leading edge

burnout, were inspected.

It became apparent that further tests would not be desirable since the

measured temperatures could not be obtained without a redesign of the blade

cooling circuit. This program has, therefore, been terminated until further

evaluation of the type of cooling circuit definition that should be made.

Work Planned

No further work is planned at this time.

I
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2.4.7.2.4 CF6-50 Thermal Barrier Coating Heat Transfer Evaluation

Technical Progress

The purpose of this program is to supply the heat transfer support in

the development of the zirconia coating for the turbine flowpath components.

As the first phase of that development, the zirconia will be evaluated in the

CF6-50 turbine.

The problems encountered d^_--ing cascade testing of the Stage 1 zirconia-

coated blade have been reported in the previous semiannual report. No further

testing has been done on that blade. How:ver, a considerable amount of ana-

lytical work has been done on reassessing and updating temperature distribu-

tions on the HP turbine Stage 2 blades and vanes using the latest thermal bar-

rier conductivity data.

Stage 2 Vane

The Stage 2 high pressure turbine vane coating configuration for the

CF6-50 engine test is shown in Figure 2.4-16. This configuration was selected

in order to minimize the thermal unbalance between the airfoil bulk and lead-

ing and trailing edge temperatures. The vane airfoil and bands are integrally

cast in pairs thus the entire airfoil surface could not be coated because of the

Line-of-sight coating technique. The trailing vane (Vane B) was therefore not

coated on the trailing edge to prevent a thermal mismatch between the suction

and pressure side surfaces.

The vane airfoil and bands were partly coated (Figure 2.4-16) with a 20%

yttria-stabilized zirconia (Zr02-2O%y2O3) bonded to base Rene 80 by a layer

of NiCrAlY. The thickness of the thermal barrier coating and bond layer was

0.012 and 0.005 inch, respectively. A three-dimensional steady state heat

transfer analysis has been carried out to investigate the effect of thermal

barrier coating on vane temperature. The results are shown in Figures 2.4-17

through 2.4-70. Figures 2.4-17 and 2.4-18 show the outer band temperature

distribution, with and without thermal barrier coating for Vanes (A) and (B).
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Figure 2.4-17. CF6-50 Stage 2 Vane A and Outer Band.
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Figure 2.4-18, CF6-50 Stage 2 Vane B and Outer Band.
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Figure 2.4-19. CF6-50 Stage 2 Vane A.
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Coated Versus (Uncoated)

Shaded Area TB Coated (20% Y„0„)

Figure 2.4-20. CF6-50 Stage 2 Vane B.
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Figurer, 2.4-19 and 2.4-20 show the vane aerofoil temperatures (with and with-

out TBC) at 502 span for Vanes (A) and (B). It can be seen that the tempera-

tures in the coated region are substantially lower than those in the uncoated

region.

Four pairs of vanes have been thermal barrier coated and are shortly to

be engine tested.

Stage 2 Blade

Considerable analytical heat transfer work has been carried out on the

thermal barrier coated CF6-50 Stage 2 HP turbine blade. Transient heat trans-

fer analysis has been completed, evaluating the effect of thermal barrier

coating spallation on blade temperature. A three-dimensional, steady-state

heat transfer analysis has also been completed on this blade.

Two combinations of yttria-stabilized zirconia coatings have been eval-

uated: 82 yttria-stabilized zirconia and 202 yttria-stabilized zirconia.

The thermal barrier coating thickness was 0.010 inch and was held on to

the base Reng 80 by a 0.004-inch layer of NiCrAIY.

The three-dimensional, steady-state heat transfer analysis was carried

out to evaljate the effect of thermal barrier coating on blade temperature. A

temperature distribution at 202 blade span is shown in Figures 2.4-21 and

2.4-22 for ':re 82 and 202 Y203 coatings. It can be seen that the thermal

barrier coating has a considerable effect on blade te^^oerature, reducing the

bulk metal temperature from 1665 F (no coating) to 1568' F (202 Y 203 coating).

The transient heat transfer analysis for the various spall conditions

was carried out using the cycle shown in Figure 2.4-23. The analysis assumed

a boundary layer restart at each spallation. The thermal barrier conductivity

data used is shown in Figure 2.4-24. This data is the most recent available

and was also used for the steady state and the Stage 2 vane heat transfer

analysis.

The effect of coating spallation on transient blade temperature distri-

bution at 502 blade span is shown in Fi gures 2.4-25 through 2.4-32 for the two

different coatings investigated. It can be seen that the 202 Y203 coating
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results in lower blade temperatures than the 8% Y203. However, this coating

It more prone to spallation then the 8% combination and, therefore, both are

to be evaluated on an engine test.

2.4.7.2.5 Thermal Barrier Analysis and Test Support

Technical Progress

Thermal barrier coated Stage 2 vanes and Stage 2 blades experienced FOD

during the CF6-50 engine test. The test was scheduled for 1500 "C" cycles

and was discontinued after 625 "C" cycles.

Engine teardown revealed the vanes and blades to have experienced con-

siderable damage. Metallurgical examination of these tarts can be found in

WBS 2.4.7.2.1.

A CF6-50 engine is scheduled to initiate a 1500 "C" cycle test in April

1981. As part of the TBC program, the following components will be tested

in this engine:

•	 Four Stage 1 nozzle segments

s	 Eight Stage 2 nozzle segments

•	 Ter Stage 2 blades.

Work Planned

Monitor and follow the CF6-50 engine test with TBC parts.

2.4.7.3.1 Alloy Mechanical Behavior

Technical Progress

The successful application of directional alloys to aircraft engine

turbine blades and vanes requires careful definition and evaluation of the

mechanical behavior of these materials in order to capitalize on their high

strength potential and at the same time avoid failures in new modes or weaker

off--axis directions. The present effort is aimed at developing and applying

understanding of the behavior of the candidate directional materials DS

F

243



Rent 150 and MA754 so tbat they may be successfully applied in blades and

vanes of the E3.

As described in previous semiannual reports, two major areas of activity

are being Addressed: (1) thin wall creep rupture of DS Rene 150 and (2) low

cycle and thermal fatigue of DS Rene 150 and MA754 under conditions relevant

to blade and vane fatigue cracking.

Progress in these areas in the past 6 months is described below.

Thinwall Creep and Rupture of DS Rene 150

Work on this portion of the program has been completed and was reported

in the last 6-month progress report.

Complex Fatigue Effects

Work on this portion of the program has progressed to the point of having

final machined tubular LCF specimens of Rene 150 and MA754 (both longitudinal

and transverse orientations) on hand. Coating of these specimens has been

delayed until coating selection for the HPT blade has been made. This decision

will not'be finalized until June, although it is known that EA NiCrAlAf will

not be used. Some specimens had already been coated with this coating and

will have to bn stripped.

Work Planned

•	 The detailed test plan for the tubular LCF specimens will be final-

ized with E 3 design, including number and configuration of simulated
leading edge cooling holes to be introduced into specimens. These
holes will be drilled, and then, when the coating choice is final-
ized (June), the specimens will be coated.

•	 LCF testing will begin at the end of the 6-month period.

2.4.8.1 Stage 1 Blade Manufacturing

Technical Progress

The casting of the Stage 1 blade, which was to be done by GE Albuquerque

has been redirected to another casting source. The new vendor selection was

based on a lower competitive cost and schedule.

-3
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The blade casting cores have been experiencing very low riet4s. These

are mainly due to the cracking of the crossover holes located in the trailing

edge region of the blade airfoil. The acpearance of these cracks and cracks

in the trailing edge pins consistently appeared during the core curing pro-

cess. The limited quantity submitted for use in the mold :acting also

resulted in high casting rejects due to core breakage along the same cross-

over holes.

In order to improve the core and casting yields, a rework for the core

die was defined. Rework involved increasing all trailing edge holes to a

larger size opening with increase in the bler.9 radii. Also, the first pin

array diameter was slightly reduced. These proposed changes were reviewed

with the casting and blade core vendors, and agreement was reached to pro-

ceed and rework the core die to the new hole geometry. The core rework was

completed March 19, with approximately S weeks required fot the first rework

core deliveries.

A combination of core die rework, core die late delivery, low store yields

and low casting yields resulteG in the Blade 1 manufacturinx being 16 weeks

behind schedule. Engineering interface with the casting vendor will continue

to determine whether casting delivery dates can be improved.

Blade manufacturing quoted costs are within planned funding. Total

Blaue 1 manufacturing costs are lower than funding available for this part.

Work Planned

•	 Continue close interface with casting vendor

•

	

	 Ini..`ite Phase II blade process pro_edure, which involves tip cap

braze, after receiving blade castings

•	 Initiate blade machining.

2.4.8.2 Stage 2 Blade Manufacturing

TerAnical Progress

The casting of the Stage 2 blade is being done by the same casting vendor

being used for the Stage 1 blade. Due to late core die delivery, the blade

casting is approximately 8 weeks behind schedule.
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Two blade casting molds were poured to determine casting soundness and

blade dimensions from the first inspection. These dimensions are presently

being evaluated. Preliminary airfoil thickness inspections indicate that all

inspections are within the tolerance dimensions.

♦ 	 Initiate tip cap braze

•	 Release castings tc machining vendor

•	 PVD coat blade.

2.4.8.3 Stage 1 and 2 Disk Manufacturing

Technical Progress

The Stage 1 and 2 disk machining is ahead of schedule. Both disks are

presently completing polishing operations. The disks shall be reworked for

hole drilling in the aft disk arm (for both stages) for instrumenation

routing. Once this operation is completed, the disks shall then be shot-

peened.

Borh disks in their present state are shown in Figures 2.4-33 and 2.4-34.

Total manufacturing cost for both disks is lower than estimated. This

cost reduction is lrimarily in the tooling costs.

Work Planned

0	 Completa disk manufacturing

•	 Review flame spray procedures for weld tacking instrumentation on
disk surface

•	 Assemble for balancing.
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2.4.8.4 Rotating Shafts and Seals

Technical Proiress

Stage 1 Aft Blade Retainer

The first attempt to produce the HIP AF115 material log was unsuccessful.

Inspection of the log showed the can to contain lower density than acceptable.

The cause of this was traced to the cans which had leaked during the auto -

clave process.

Due to the log being rejected, an alternate plan was defined that would

still meet required delivery. This plan consisted of making the first retainer

from available Rene 95 form and the second retainer from AF115 can available

through the MPTL. NACA is reviewing the use of Rene 95 for the blade retainer

for the core engine use.

The velder is in the meantime processing a new log with an expected

delivery of May 15, 1981. This log shall be used as a spare.

Delive.-y of the machined blade retainers is still within the required

schedule for core engine buildup.

Stage 2 Aft Blade Retainer

Machining error in one of the two retainers caused a blade retainer to

be scrapped. The backup available spare has been released to manufacturing.

Both pieces are expected to be delivered by May 1, 1981 (ahead of schedule).

Interstage Disk

The interstage disk HIP AF115 cans were inspected and found to contain

surface cracks. A dimensional rework drawing was supplied by engineering that

, 11owed machining of the cracked surface, but still met the minimum envelope

required for final machining. This was successful and the two disks were

shipped to the machining vendor.

Presently, ti ►e original quoted machining time must be reducad to meet

the required delivery schedule. Purchasing will nnw rev: • the machining

time and determine methods for improved delivery.
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Impeller

One of the three impeller HIP cans showed ultrasonic indications that were

above specification levels. This part has been rejected, while the remaining

two were found to be acceptable. Because of the length of time required to

procure the material and to process the part through the HIP operation, the

replacement part is being cancelled. Therefore, the total order is for two

cans.

The machining of one impeller is proceeding according to schedule and will

be available for core assembly as planned.

Inducer Seal Disk

Three inducer seal disks have been HIP'd from AF115 material and all three

were accepted. One disk is presently pl anned for the program. Machining is

continuing and its delivery is within Cie requirement for core buildup.

HP Shaft

The HP shaft manufacturing has been completed. The shaft is shown in

Figure 2.4-35. The material for this component is Inco 718.

Forward Outer Liner

The forward outer liner, made from Reng 95 material, was successfully

HIP'd. This part is being machined and its delivery schedule is within the

required assembly date.

Aft Shaft/Seal Disk

Machining of the aft -haft/seal disk is being completed. Material is

Inco 718. Part delivery is expected to be the same as that planned for core

engine buildup.

Aft Seal Disk Damper

Ttie aft seal disk damper has been completed and is shown in Figure

2.4-36; the material is Inco 718.
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Inner Tube

The inner tube machining is continuing as planned. Two inner tubes

are being machined. The first contains holes for instrumentation leadouts

to the slipring. After core engine test, this part will be replaced with an

identical piece, except that it will not contain any holes. The second piece

will be used for the ICLS test.

Work Planned

•	 Purchasing will determine the methods of improved time delivery for
the interstage disk

•	 Initiate and review flame spray locations for various components;
flame spray is used to weld tack instrumentation leads

•	 Monitor assembly and balancing for turbine rotor.

2.4.8.5.1 Stage 1 Nozzle Diaphragm Fabrication

Technical Progress

Stage 1 Outer Band

The Stage 1 outer band wax die rework was made to improve expected cast-

ing yields. These minor reworks were in areas of radii and local widths for

improved casting fills.

The first 30 outer band castings were delivered and the first pa*.t dimen-

sional inspections were approved. Machining of film holes for cooling air

passages has now been co-npleted. Parts are in process of being Codep-coated.

Stage 1 Inner Band

Inspection of the band castings indicated the flowpath contour to be

excessively out ,)f print, and therefore rejected. Tool vendor rework of the

flowpath inse	 within the core die was made to correct this problem.

Thirty inner band casting-1 were received for further proceaving. First

casting dimensional inspection has been accepted. The machining vendor is in

process of adding film holes to this part.
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Airfoil

The vane airfoil is machined from MA754 material. Airfoil machining

contour has been completed. The two airfoil cavities are presently being

formed by EDM process.

Work Planned

•	 Review with Manufacturing the possibility of reducing the time

required to EDM the inne- band hole machining

•	 Interface and monitor progress of nozzle fabrication.

2.4.8.5.2 Stage 2 Nozzle Diaphragm Fabrication

Technical Progress

Outer Band Casting

The outer band casting, made from Rene 8C material, has been delivered

within schedule. First casting inspection has been reviewed and accepted.

The castings will now be processed through the EDM of the airfoil contour in

the band flowpath surface.

Inner Band Casting

The inner band casting has been processed and is presently being inspected.

Dimensional inspection and casting soundness are being completed and will be

reviewed by Engineering.

Vane Airfoil

Core die late delivery and cracking of local areas of the processed cast-

ing cores have caused the airfoil casting to be 14 weeks behind schedule for

the nozzle fabrication. The airfoil casting, which is then brazed to the

inner and outer band casting, is the limiting item for the brazed nozzlc

fabrication.

•
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Core cracks have primarily been observed in the inner flowpath portion

of the airfoil where the core printout inters-acts the airfoil section and

also in the trailing edge turbulence promoters. A larger blend radius for

both cracks has now been used for both cracked locations to improve core

yield.

m.,,y v i .., A

•	 Determine improvements necessary to improve core yields

•	 Initiate airfoil casting process

•	 Initiate nozzle fabrication assembly.

2.4.8.6 Support Structure and Inducer Fabrication

Technical Progress

Inducer and Balance Piston Honeycomb Seal

Rc_igh machining for the Rene 41 static structure and the Inco 903A

material for the seal were completed and EB-welded. Visual zyglo and X-ray

inspection of the weld are being processed. Delivery of this component

for instrumentation and core assembly is as scheduled.

Stage 1 Inner Seal

Rough machining of the Rene 41 structure and Inco 903A seal, with the

subsequent EB-welding of these two materials, have been completed. Visual

zyglo and X-ray inspection indicate the weld joint to be acceptable. Final

machining is in process.

Stage 1 Nozzle Support

The inner nozzle support was roi:gh machined from forgings and then EB-

welded at the end mating surfaces. Final machining has been completed. The

remaining manufacturing involves hold f?snge drilling any' mounting the basket

captive nuts on the flange which is used for supporting the inner seal.

f
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Outer Casings and Outer Support Structures

All hardware for the casings and outer support structures is being

machined. Killing is being completed for all pads in the casing for instru-

mentation probes and for the active clearance control measurement probe. All

hardware delivery dates are within the program schedule requirements.

The active clearance control impingement manifolds are on order with the

delivery date scheduled for October 1981.

Ceramic Shrouds

Wax patterns for the shroud have been approved by Engineering. An

initial delivery of 40 castings is expected by April 30 for machining and

ceramic coating application. Of these initial 40 casings, rtine are planned

for machining to the soid shroud configuration.

Stage 2 Solid Shrouds

The first initial 40 shroud castings have been poured and inspected.

Work Planned

•	 Continue manufacturing interface

•	 Review and approve instrumentation drawings

•	 Interface with evaluation during component subassemblies.



2.5 LOW PRESSURE TURBINE

Overall Objectives

The objective of the low pressure turbine development effort is tn pro -

vide a high efficiency LP turbine having material and configuration features

that provide maximum opportunity for mechanical success.

Performance improvements will be aimed at achieving the highest turbine

efficiency compatible with moderate —to—high turbine aerodynamic loading. The

FPS low pressure turbine efficiency goal is 0.917 at Mach 0.8, altitude 35,000

feet, standard day, maximum climb power setting. Also considered are off —

design operating points in order to ensure a viable system throughout the

operating regime of the engine.

Mechanical integrity iR a major goal of the LP turbine mechanical design.

The aeromechanical goals are that the blades and vanes should have no insta-

bilities within the operating range of the LP turbine.

Development Approach

The overall development plan for the LP turbine provides a systematic

approach to its design. This involves (1) early identification of critical

areas and (2) compo•-.ent design that can accommodate the critical requirements.

The major LP turbine deve l opment areas arc (1) tho aerodynamic design and air

turbine evaluation; (2) the system and mechanical design, which is carried

out concurrently —ith the aero work; (3) hardware fabrication; (4) component

bench tests; and (5) instrumentation, assembly, and engine test.

Preliminary LP turbine aero design of the initial flowpath, as well as

blade and vane airfoils, comprised the major initial effort which .Yas reviewed

at the aero IDR in July 1978. Block I air turbine blading was released at

that time; flowpath derinition was made the following month. Mechanica l. and

heat transfer design paralleled this aero effort, and an overall IF turbine

IDR was held in November 1978 followed by the LP turbine PDR in May 1979.

Block I air turbine testing of Stages 1 and 2 was completed in August 1979.
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Aero modifications were factored into Block II blading and sequentially

released over the period of January through March 1980. An IDR of this work-

was held in February 1980. Table 2.5-I lists pertinent aerodynamic parameters

for the LP turbine as taken from FPS cycle data. It should be noted, however,

that the actual Block II aero design was executed to a flow function 4% open

relative to the FPS maximum climb condition (Table 1.2-IV). Procurement of

Block II hardware is underway, and air turbine tests of all five LP turbine

stages are planned beginning with a two stage configuration test in May 1981.

Detailed mechanical design was initiated in June 1979 after the ?DR

milestone. The next majoi milestone was the ICLS go-ahead decision given in

November 1979, ahead of the scheduled January 1980 date. Continuing detail

mechanical design, incorporating the Block II airfoil configurations, was a m-

marized fir an August 1980 IDR, and a DDR was held in December 1980. Release

of fabrication orders began in September 1980 with cast parts, although

advanced forging releases have been made as early as June 1979. The earliest

manufactured blades and vanes will be utilized for bench testing. Bench test-

ing will allow identification of responsive locations on the airfoils, where

instrumentation will be applied, starting the third quarter of 1981. All

components will then be assembled into the ICLS demonstrator; testing is to

begin the second quarter of 1982.

2. 50.1 LPT Aerodynamic Design

Tp:hnical Progress

The LP turbine detailed design review was held at NASA--Lewis on December

11, 1980. Block I rig test results, Block II detailed aeru design and per-

formance prediction, and planned Block Ii rig test schedules were presented

as part of the DDR. Formal nctification was received from NASA in January

1981 that release of funds for the Block II rig tests had been approved.

The Block II Test and Instrumentation Plan was issued during this report-

ing period.

All hardware for the two-stage build has been received and instrinnenta-

tion and assembly are it, progress. All hardware for the five-stage build

will be received by the end of April 1981.
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Table 2.5-I. LP Turbine Aerodynamic Design Parameters (fps Circle).

Ur RPM T49
' F

P49
psi&

Ah
T

Btu/lb-0 R

N_
fi

rpm/° R

V,
Wdi
p

lbm-° R
T5

o F
sec-psia

SLS T/O 3293 1577 72 0.0695 73.0 1.37 80.7 1071
+63' F day

Max Climb 3538 1489 38 0.0780 80.1 1.27 80.4 940
+18' F day

Nax Cruise 3437 1438 36 0.0770 78.9 1.30 80.5 907
+18' F day
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The following is the latest estimate of the Block II test sch•,Iule:

•	 Instrument and Assemble Two-Stage 	 In Progress

•	 install and Test Two-Stage	 4-27-81

•	 instrument and Assemble Five-Stage 	 4-21-81

•	 Install and Test Five-Stage 	 6-22-81

•	 Complete Testing	 7-17-81

Work Planned

•	 All Block II Testing will be accomplished during the next reporting

period

•	 The LPT Aerodynamic portion of the Detailed Design Report will be

prepared.

2.5.2 Low Pressure Turbine Heat Transfer Design

During the past 6 months, the detailed heat transfer design was com-

pleted. A detailed design review was held with the Engineering Product Review

Board. A few minor changes were suggested by the Board and have been factored

into the design. A successful review of the detail design was also conducted

with NASA. The detail design report is currently being written and will be

published during the next reporting period.

During the past 6 months, several studies have been conducted in an

effort to complete the detailed design.

HP/LP Wheel Space Purge Design

The LP gas stream and cavity pressures at the 86' F ambient temperature

maximum takeoff cycle point are presented in Figure 2.5-1. These cavity

pressures were used to define the seal blockage flow rates and various sink

pressures for the cooling air. The prime source of LP turbine cooling air is

the fifth stage compressor bleed which is delivered to the turbine through

six pipes, equally spaced around the Stage 1 LP nozzle cooling supply mani-

fold. This manifold, which is integral with the casing and the outer transi-

tion duct hanger, allows the cooling air to distribute itself uniformly around
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the inside of the casing. The cooling air then is fed into the 72 nozzle

vanes and across the flowpath to the inner nozzle support structure. The cool-

ing air warms up about 130' F while flowing through the vanes. Most of the

nozzle cooling is done near the leading edge where the highest stresses occur.

Once the cooling air reaches the nozzle hub, it is delivered into the wheel

space supply plenum through 72 spoolies. The total cooling air passing

through the nozzle is 1.2% W25 and of this, 0.14% is used to help purge the

nozzle inner flowpath structure. Of the retaining 1.062 that enters the 360°

wheel space supply plenum, 0.56% is supplied to the forward wheel space

cavity. The plenum supply pressure is 79 psia while the forward wheel space

cavity pressure is 70.8 psi. This yields a 1.08 pressure ratio across the

forward wheel space injection holes. The holes are angled 60' in the circum-

ferential direction which yields a tangential velocity of 488 ft/sec. This

tangential velocity reduces the amount of boundary layer pumping that the high

pressure rotor has to do. The wheel space cavity pumping analysis that was

conducted indicates that the air will be about 50% of wheel speed. Since the

aft cavity, the low pressure rotor cavity, is at a pressure of 59.5 psis, the

cooling air injection pressure ratio is higher, thus a higher tangential

velocity is achievabl-. The low pressure rotor is rotating at less than 30% of

the high pressure rotor speed, which allows the tangential velocity leaving

the injection holes to be better than twice the LP rotor wheel speed. With

this system, a substantial amount of work will be obtained from the injected

air as it is pumped up on the rotor disks.

Of the 0.56% W25 that is injected into the forward wheel space cavity,

0.4% leaks back through the interturbine seal and into the low pressure rotor

cavity. Extensive seal clearance studies have been conducted on the intertur-

bine seal to assure the proper quantity of blockage air. Over the engine

operating range, it is expected that the seal clearance will vary between 10

and 27 mils, as shown in Figure 2.5-2 - the closest clearance occurring during

a cold start takeoff transient of a new seal with the most open clearance

occurring at nominal cruise power for a deteriorated seal. The seal will

flow 0.67% W25 when the clearance has opened up to 36 mils. This could only

occur as part of an engine failure and only then will hot flowpath gases start

to be injested into the HP turbine aft rotor cavity. In conclusion, the seal

blockage air is satisfactory from an engine safety standpoint.
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Further work in the area of wheel space cavity purge is being completed

in an effort to better understand the leakage/purge for the ICLS engine. The

changes in LPT aerodynamics in the Stage 1 nozzle will change the seal block-

age characteristics somewhat.

Stage 1 Vane Heat Transfer Analysis

i
The rib locations in the Stage 1 vane were located in such a manner that

the heat transfer at the leading edge outer band was increased while keeping	 4

the pressure losses to a minimum. Turbulence promoters were put in the lead-

ing edge cooling cavity of the vane as shown in Figure 2.5-1 in an effort to

further enhance the cooling side heat transfer. The wall thickness of the

vane leading edge in the region of the vane/band fillet was kept to a level

that was no higher than the vane leading edge at the 90% span.

A detailed steady state analysis at both the 95% and 90% span locations

was completed. Steady state temperatures at both locations are presented in

Figures 2.5-3 and 2.5-4. These temperatures indicate that the desired leading

edge metal temperature reduction was achievable and the pressure losses in

getting the air through to the rotor cavity were kept to a minimum.

Low Pressure Turbine Casing Heat Transfer Analysis

The CF6-6 engine experience was factored in the heat transfer analysis

of the low pressure turbine casing. The heat transfer data indicated that the

leakage/gas circulation heat transfer around the shroud hangers was signifi-

cantly higher than expected. This rest transfer data was factored into the E3

low pressure turbine casing. The analysis then indicated that the shroud

hangers on the first two stages exceeded the 1250' F temperature limit. In

order to overcome the excess temperature problem on the Inco 718 casing, the

hangers were shortened and the contact area between the hot shrouds support

and hangers was minimized. The heat conduction area between the hanger and the

casing was also increased. The analysis was redone for the minimum and maxi-

mum active clearance control casing cooling air. The results of this analysis

are presented in Figure 2.5-5 for minimum cooling and Figure 2.5-7 for maximum
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cooling at the and of the 2-minute takeoff mission. The analysis indicates

that with 0.082 W25 casing ccOli.ng the second stage nossle hangers are still

over 1250' F. With the maximum cooling of 0.32 W25, the Stage 2 nozzle

hangers are well below the 1250' temperature. These areas will be watched

very closely in the ICLS to define whether the 0.022 additional flow will be

required to keep the casing hanger temperatures at an acceptable level.

The casing cooling is accomplished through means of an impingment mani-

fold which extends around the complete LP casing. The cooling is supplied by

way of a scoop which is located in the fan bypass duct. The cooling air is

then modulated by means of a valve which is located in the air supply line

between the fan duct scoop and the LP casing impingement manifold. The

impingement manifold consists of 4' to 90' sectors with one axial distribu-

tion plenum for each section, as shown in Figure 2.5-7. Half-inch-diameter

tubes, emanating from the axial distribution plenum, supply the cooling air

circumferentially around the casing. The cooling air then leaves the tubes

through 0.025-inch impingement holes evenly distributed in each circumfer-

ential tube. The 0.025-inch-diameter hole is the minimum size that extensive

commercial experience has shown does not cause a plugging problem. The hole

spacing in each ring has been adjusted to give the desired cooling for each

turbine stage. The spacing varies between an Xn/D of 9 up to 16 with 4411

holes, to yield a total impingement flow area of 2.165 in2.

Stage I Nozzle Support Structure

As reported in the last semiannual report, the nozzle support structure

has a tendency to separate from the casing during flight descent. This occurs

since the nozzle support structure is exposed to the more effective cooling of

the turbine purge air as it enters the LP turbine casing and flows circumfer-

entially around and into each vane. A 360' shield had been placed over the

seal ring to shield the seal from the turbine purge air. This helped reduce

the seal gap to 5 mils. Further shielding is bein,; incorporated :n an effort

to slow the cooling response oven more. This shielding consists of six sheet

metal baffles that are located opposite the pipes that feed the cooling air

into the casing. These baffles will be 6-inches wide and will be bolted to
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the nozzle support structure. Presented in Figure 2.5-8 is the baffle and

the change in average ring temperatur • . The detailed thermal growth/mechanical

growth analysis is currently in progress but the change in temper.tures is

projected to cut the seal clearance about ir. half. With an increase in the

buildup interference fit of the seal, the gap will be eiiminated.

Wnrle VI innad

e	 Follow hardware bui,uup to assure proper design intent cooling/
purge of the low pressure turbine.

2.5.3.2 LPT Rotor Mechanical Design

Technical Progress

Work during this reporting period has resulted in the completion of the

major d e tail design calculations, their presentation at the NASA LPT Detail

Design Review, and the completion and issuing of all rotor detail drawings ',r

the ICLS engine. A detailed description of these accomplishments and the

final design configuration follow.

The LPT Detail Design Review was held on December 11, 1980. Formal noti-

fication of des+ign approval was received on January 8, 1981.

The present rotor design is essentially the same as in the Septemaer 1980

semiannular repoit with a few additions.

Blades

Analyses were performed to determine combined disk-blade vibration fre-

quencies and to establish that there were no resonances in the engine operat-

ing range. The two, four, and sit diameter modes were investigated and their

Campbell diagrams were plotted as shown in Figures 2.5-9 through 2.5-13. A

review of these plots showed that even the potentially limiting mode, the two

diameter, was no problem. This had greater-than-desired frequency margin with

the 2-per-rev excitation line throughout the engine operating range.

.-M
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Figure 2.5-9. Stage 1 Coupled Blade Disk Campbell Diagram.
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274



OF POOR Q ^ * "*Y

F

600

500

400

u
d
c
d

w 300

200

100

0

Speed, rpm

Figure 2.5-11. Stage 3 Coupled Blade Disk Campbell Diagram.
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The LPT blades are retained in their dovetial slots by two different

methods. On Stages 1, 2, and 3, they are retained from aft movement by inte-

grally cast retainers on the ends of the dovetails as shown in Figure 2.5-14.

They are retained against forward movement by the rotor seals. On titages 4

and 5, the blades are retained against forward and aft movement by bent-tab

retainers as shown in Figure 2.5-15.

The Stage 1, 2, and 3 blade retainers were designed so that they would

not exceed material limits when a maximum expected force (larger than the

calculated steady-state force) was applied at the end of the retainer. Fig-

ure 2.5-14 shows that all three retainers either meet or exceed the required

strength.

The designs of the Stage 4 and 5 blade retainers were based on correla-

tions with CF65 load tests. Thickening of the retainers was necessary to

increase their pushout strengths to meet requirements. The depths of the disk

dovetail slots were increased slightly to accommodate the thickened retainers.

Based on the data shown in Table 2.5-II, the blade retainers are expected to

have pushout strengths greater than their calculated design loads.

Table 2.5-II. Blade Retainer Sizing: Stage 4 and 5.

Stage
Thickness,

in.

IMIN

in.

Pushout
Force, lb

Calculated
Load, lb

Test Data (CF6) 0.080 1.17 x 10-5 480 345

E 3 4 0.090 0.92 x 10-5 377(est) 238

5 0.100 1.41 x 10-5 578(est) 390

Rotor

Detailed analyses were conducted to determine the disk stress concentra-

tions caused by the bolt holes, scalloped flanges, and cooling air grooves

(on the flange faces). These analyses show that a slight modification of the

foward area of the Stage 1 disk will be needed to reduce the stresses at the
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• Configuration - Sheet Metal

• Material - Inco 718

• Analysis/Design - Utilize CF6-50, -80 Load Tests

Stage 4
	

Stage 5

Figure 2.5-15. Blade Retainers - Stages 4 and 5.
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1

bolt holes. This modification can be accompllished within the present rough

machined forging envelope with no schedule delay.

The bore of the Stage 4 disk has been modified to allow additional

radial space for a sump seal change. The disk bore radius has been moved

outward 0.64 inches and thickened radially and in the fillet blend. The new

desigi meets full cyclic life and overepeed requirements with a weight penalty

of less than 3 pounds.

Drawing Releases

With the release of the Stage 4 and 5 blade retainer drawings in mid-

February, all rotor detail drawings have been issued.

Drawings Issued

The following is a list of the LPT rotor detail drawings issued to date,

all of which were issued during this reporting period, with the exception of

the forgings.

Drawing Number Item

4013267-136 Disk, Stage 1-5 Forgings

4013205-784 Disk, Stage 1 Machining

4013205-785 Disk, Stage 2 Machining

4013205-786 Disk, Stage 3 Machining

4013205-787 Disk, Stage 4 Machining

4013205-788 Disk, Stage 5 Machining

4013267-070 Seal, Stage 1-5 Forgings

4013205-968 Seal, Stage 1 Machining

4013205-969 Seal, Stage 2 Machining

4013205-983 Seal, Stage 3 Machining

4013205-970 Seal, Stage 4/5 Machining

4013267-251 Blade, Stage 1 Casting

4013267-252 Blade, Stage 2 Casting

4013267-253 Blade, Stage 3 Casting
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Drawing Numbet Item

4013267-254 Blade, Stage 4 Casting

4013267-255 Blade, Stage 5 Casting

4013267-2?1 Blade, Stage 1 Machining

4013267-272 Blade, Stage 2 Machining

4013267-273 Blade, Stage 3 Machining

4013267-274 Blade, Stage 4 Machining

4013267-275 Blade, Stage 5 Machining

4013296-060 Blade Retainer, Stage 4

4013296-061 Blade Retainer, Stage 5

J644P08* Bolt, Stage 1 Forward

4013205-905 Bolt, Stage 1/2, 2/3, 4/5

4013205-887 Bolt, Stage 3/4

4013205-913 Bolt Retainer, Stage 3/4

4013205-897 Nut, Stage I Forward

J980P05* Nut, Stage 1/2,	 2/3,	 4/5

3980P06* Nut, Stage 3/4

* - Standard Drawings

Work Planned

•	 Complete the analysis of the disk bolt hole stress concentrations
and incorporate any changes that are required

e	 keview ICLS operating conditions and the resulting effects on life
and clearances, both axial and radial

•	 Complete the rotor assembly drawing and ICLS engine parts listing

•	 Complete detail design resort.
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2.5.3.3 LPT Stator Mechanical Design

Technical Progress

Work during this reporting period has resulted in the completion of the

major detail design calculations, their presentation at the RASA LPT Detail

Design Review, and the completion and issuing of all stator detail drawings

for the ICLS engine. A detailed description of these accomplishments and the

final design configuration follow.

LPT Shroud Configuration

All five stages of the LPT shrouds are shown in Figure 2.5-.6. A detail

.drawing has been issued for each stage of shrouds. Representative shapes are

shown in greater detail in Figures 2.5-17, 2.5-18, and 2.5-19. All of these

shrouds have been configured using the same design concept. At the front of

each shroud, they engage a hook portion of the LPT casing. A tengential stop

brazed into the shroud clip engages a slot in the casing hook. The clip cap-

tures the aft leg of the preceding stage nozzle and retains it against the

casing hook. This clip serves two functions: (1) it positions the shroud

radially at the front and (2, it resists unseating of the aft leg of the noz-

zle. This is accomplished without the use of a bolted flange and results in

a lightweight design.

At the aft end, each shroud, except for Stage 5, is trapped radially

between a casing hook and outer flowpath portion of the adjacent nozzle as

shown in Figures 2.5-17 and 2.5-18. Stage 5 is positioned radially by a sheet

metal part of the shroud at the aft end that clips over the casing hook as

shown in Figure 2.5-19.

Axially, each shroud is positioned against the adjacent hardware - that

is, the respective stage nozzle for shrouds Stages 1 through 4 and the turbine

frame flange for Stage 5. This axial contact with the adjacent hardware pro-

vides a spring load that forces the nozzles aft against their axial stops on

the casing hooks, and forces the tangential stop& in the shroud forward into

their slots. The spring load is developed by the windage shields at the for-

ward inner extremity of each shroud stage.
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Figure 2.5-18. LPT Stage 3 Shroud Maximum Temperatures at End of Takeoff.
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Figure 2.5-19. LPT Stage 5 Shroud Max. Temperature at End of Takeoff.
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Clearance for relative thermal expansion between the shroud and casing

is provided axially in the forward clip to casing hook interface, and between

the tangentially stop to the forward end of its slot interface. Such position-

ing of the tangential stop provides the key to lock the nozzle, shrouds, and

case into their selected tangential positions.

Shroud Temperature and Material

The maximum temperatures for representative stages of the shrouds are

shown in Figures 2.'-17 through 2.5-19, and occur at the end of the takeoff

condition. To withstand these temperatures, the shrouds are fabricated from

Hastelloy X honeycomb (H/C) brazed to Rene 41 sheet stock. The H/C seals

are provided to accommodate blade tip seal teeth rubs with minimal tooth

wear.

Insulation

Insulation blankets have been designed and detail drawings have been

issued for 13 locations in the LP turbine. These locations are shown in

Figure 2.5-16 and are as follows: two in the transition ducts (inner and

outer), three over the first stage nozzle and shroud, and eight over the

remaining four stages of shrouds and nozzles. These insulation blankets

are composed of an insulation material encased in Inco 600 foil. Use of

these insulation blankets reduce energy loss from the LPT and lowers the

temperature requirements of the LPT casing material.

LPT Cooling Manifold

The LPT cooling manifold design is shown in Figures 2.5-20 and 2.5-21.

The design is complete and detail drawings have been issued. The LPT cooling

manifold is a part of the Active Clearance Control (ACC) system. The func-

tion is to distribute air from the fan air flow to be impinged on selected

portions of the LPT case. There are ten such selected locations which are

aligned radially with the outer diameter of the ten nozzle and shroud sup-

port hooks. By controlling the temperatures of these support hooks, the

casing diameter size is controlled which, in turn, controls the shroud seal
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clearance at the blade tip of all five stages. Thus the efficiency of the LP

turbine which is dependent on this clearance is improved.

The LPT cooling manifold design consists of four sectors each covering a

t 90* arc sector. Each sector is a backbone/rib type configuration - that is,

an axial distribution manifold with 10 circumferential tubes extending from

each side of the manifold. Each axial manifold is subdivided into an aft

and a forward part. The forward part of the manifold contains the seven dig

-tribution tubes impinging on the first four stages of the LP turbine, while

the aft portion contains the three distribution tubes impinging on Stage 5

of the LP turbine. The two parts of the manifold are connected by a bolted

flange. By using a blankoff plate, the impingement cooling can be eliminated

or metered to Stage 5. This provides the option to study the effectiveness

of the ACC cooling and tip clearance control on Stage 5 of the LP turbine.

The material used to fabricate the cooling manifold (including the tubes

and support brackets) is 321 stainless steel. The construction is a welded

and brazed assembly of tubing and sheet stock. The manifold assembly has been

designed with liberal tolerances and soft tooling considerations to achieve

cost effectiveness in fabrication of small lot orders such as this cooling

manifold hardware for ICLS.

The positioning of the cooling manifold is accomplished by a forward, mid,

and aft mount at both the axial manifold backbone and at the tube support on

each side of the axial manifold. The forward mount is a hard mounted, bolted

joint. The midmount is a bolted joint, spring mounted to allow axial slip.

The aft mount is composed of two pins captured in, and protruding from, the

LPT aft flange. These pins engage the aft end of the manifold and the tube

supports to provide tangential positioning yet allow axial slip. By allowing

axial slip at both the mid and aft support, the differential thermal expan-

sion between the LPT case and the cooling manifold is accommodated.

Another feature of the cooling manifold is the capability of separating

the HPT/LPT casing interface flange (that is, removal of the LPT module) with-

out requiring the removal of the cooling manifold. This is accomplished by

positioning the forward mount brackets on the aft side of the bolted flange

and designing the HPT/LPT flange bolts to be inserted from the aft side of the
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flange. Another important benefit of this bolting arrangement is the small

envelope required by the bolt head versus the large envelope required by a nut

and protruding bolt threads with its large tolerance buildup. The smaller

head envelope allows the front tube of the cooling manifold to be positioned

over the front shroud support hook without compromising the impingement dis-

tance of the cooling air.

Outer Transition Duct Support

The outer duct support design is basically the same as last reported.

Provisions were made on the drawing for 14 temperature and pressure probes

for ICLS testing which mount on the HPT casing and pierce the outer duct

support. A heat shield was added to the aft support arm to keep the arm

from being overcooled by fifth stage air during decel and thus minimize

separation from the HPT casing (Figure 2.5-22).

i

i
Forward Inner Seal Support

The forward inner seal support design has not changed since last reported,

except for a slight change in the tangential load stop design where cast lugs

on the inner duct were replaced by pressed-in pine on the support (Figure

2.5-23).

f

Aft Inner Seal Support

The aft inner seal support design was modified slightly to facilitate

fabrication, and the new configuration is shown in Figure 2.5-23. Basic

changes to the support include changing from EB-welded joints and brazed

joints to TIG-welded joints, changing the support material over the forward

most honeycomb seal from sheet metal to a rolled ring and changing the tan-

gential load stops from lugs to pressed-in pins. A gang channel nut plate,

which also serves as a windage shield, was added.

Radial clearances between ;he static seals and the ro r .sting seals were

calculated at several mission points and are shown in Figure 2.5-24.



Stage 1 LPT Nozzle

The Stage 1 nozzle is basically the same as last reported. Minor changes

include a 0.070-inch forward shift in the aft ni;zzle attaciseent to accommodate

a shim between the HPT and LPT casings, changing from cast lugs to pressed-in

pins on the inner shroud for tangential load stops, and the elimination of the

vane leading edge type T49 probe for ICLS (Figures 2.5-22 and 2.5-23).

The material specified for the FPS design is Rene 125. Material selec-

tion was based on creep and rupture requirements of the FPS design. However,

for the ICLS engine, the material was changed to Rene 77 to reduce cost.

The lower creep and rupture strengths of Rene 77 are still adequate for

the relatively short ICLS test program.

Inner and Outer Transition Ducts

The inner transition duct design was changed slightly since last reported

to incorporate a slot in the aft rail which accommodates the tangential load

stop pin in the forward inner seal support (Figure 2.5-23).

The outer transition duct design has not changed except to accommodate

the 14 temperature and pressure probes which pierce the ducts as well as the

outer duct support for ICLS testing.

Stage 2 throu&h 5 Nozzles

The forward hook on all of the Stage 2 through 5 nozzles has been beefed

up to reduce steady state stresses. This decision was based on experienced

gained from a production engine of similar design. Also, the inner band inter-

lock design, which was originally on the E 3 Stage 2 and 3 nozzles and which

has been added to the Stage 4 and 5 nozzles, is expected to provide sufficient

damping to preclude vibration problems with the nozzle segments.

LPT Rotor/Stator Radial Clearances

The LPT radial clearances have been initially set using a 0.015-inch

radisl rub at the rotating seals and a 0.012-inch radial rub at the blade
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tip shrouds during maximum climb with nominal cooling as the design point.

Using rotor centrifugal and thermal growths as well as stator thermal growths,

cold clearances were calculated. Maximum takeoff, worst open, and worst cold

clearances r re also calculated and are shown in Figures 2.5-25 and 2.5-26.

Included in the tables are the summations of asymmetric deflections with

symmetric clearances or rubs. These values do not consider the cumulative

effect of a severe rub on subsequent flight conditions.

Drawings Issued

The following is a list of all LPT stator detail drawings issued to date:

Drawing Number

4013267-261
4013267-262
4013205-792

4013267-263

4013205-793

4013267-264
4013267-265
4013205-909

4013205-929
4013267-281

4013267-282

4013267-283
4013267-284
4013267-285

4013205-91.1
4013205-948
4013205-949
4013205-910

4013205-930
4013205-972
4013205-950

4013205-951
4013296-918
4013296-019
4013296-021

4013296-022
4013296-023
4013296-169

4013296-204
4013296-168

4013296-102PO2

4013296-102PO3

J980P05e

Item

Stage 1 Nozzle Casting

Stage 2 Nozzle Casting (Hollow)
Stage 2 Nozzle Casting (Solid)

Stage 3 Nozzle Casting (Hollow)

Stage 3 Nozzle Casting (Solid)
Stage 4 Nozzle Casting
Stage 5 Nozzle Casting
Outer Duct Casting

Inner Duct Casting
Stage 1 Nozzle Machining

Stage 2 Nozzle Machining

Stage 3 Nozzle Machining

Stage 4 Nozzle Machining
Stage 5 Nozzle Machining

*-'*-'ter Duct Support Machining
Vwd Inner Seal Support Machining

Aft Inner Seal Support Fabrication
Outer Duct Machining

Inner Duct Machining
Gang Channel Nut Assembly
Air Tube

Windage Shield
Heat Shield
Strip Seal
Strip Seal - Stages 2, 3, b 4
Strip Seal - Stage 5

Seal, Nozzle Sagment
Borescope Plug

Borescope Cap

Borescope Plug Assembly

Spacer, Sleeve (0.625 Long)

Spacer, Sleeve (0.100 Thick)

Nut, Self Locking 12 Pt.
(Waspaloy Silver Plate)
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Drawing Number Item

4013205-984GO1 Manifold, Air - LPT Stator, Forward
4013205-984602 Manifold, Air - LPT Stator, Forward
4013205-984603 Manifold, Air - LPT Stator, Forward
401.)205-985GO1 Manifold, Air - LPT Stator, Aft
4013205-998POl Bracket, Tube - Support
4013205-999POl Bracket, Support - Manifold
4013296-003POI Support, Tube - Manifold, LPT Stator
4013296-004POl Plate, Block Off
4013296-00002 Plate, Block Off
4013296-062POl Bracket, Manifold
9108M97P01 Washer, Spring - Tension
4G13296-063PO1 Pin, Headed
4013295-088POl Bushing
4013296-089POI Bushing
4013296-102POl Spacer,	 Sleeve (0.265)
4013296-102PO2 Spacer, Sleeve (0.625)
4013296-102PO3 Spacer, Sleeve (Core Use) (0.100)
4013296-103POl Clip, Spring
R356PO8e Clamp-Loop, Cushioned, Teflon

Impregnated Asbestos (Type Z)
J626PO4* Nut - 10 Point (A286 - Dry Lub)
J979PO4* Nut - 12 Point (Silver Plt - Waspaloy)
J644F07A* Bolt - 12 Point (In 718) (0.250 0 X 0.625)
J644PO9e Bolt - 12 Point (In 718) (0.250 0 X 0.750)
4013296-153POl Insulation, Nozzle Stage 2
4013296-153PO2 Insulation, Nozzle Stage 3
4013296-153PO3 Insulation, Nozzle Stage 4
4013296-153PO4 Insulation, Nozzle Stage 5
4013296-099POI Insulation, Shroud - Forward, Stage 1
4013296-098POl Insulation, Aft - Stage 1 Shroud
4013296-084POl Insulation, Shroud, Stage 2
4013296-086PO2 Insulation, Shroud, Stage 3
40:3296-084PO3 Insulation, Shroud, Stage 4
4013296-086POl Insulation, Shroud, 	 Stage 5
4013296-081GO1 Bolt, Slab Head (Inco 718)
4013296-081GO2 Bolt, Slab Head (Inco 718; Shoulder)
4013296-102POl Spacer,	 Sleeve (0.265 Long)
4613205-966GO1 Case, LPT Stator
4013267-065PO3 Caee, Forward - Low Pressure Turbine
4013267-066PO3 Case, Aft - Low Pressure Turbine
4013205-931GO1 Shroud, LPT Stator - Stage 1
4013205-932GO1 Shroud, LPT Stator Stage 2
4013205-933GO1 Shroud, LPT Stator Stage 3
4013205-934GO1 Shroud, LPT Stator Stage 4
4013205-935GO1 Shroud, LPT Stator Stage 5
4013296-152POl Insulation, Duct Outer

4013296-152PO2 Insulation, Duct Outer
4013296-152PO3 Insulation, Duct Outer
4013296••08?PO1 Insulation, Duct Inner
4013296-164POI Insulation, Nozzle Stage 1
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Work Planned

•	 Complete Detailed Design Report

•	 Review ICLS operating conditions and the resulting effects on life
and clearances, both axial and radial.

2.5.3.4 LPT Hardware and Test Support

Technical Progress

Cost estimates have been obtained for LPT blade vibration tests and hot

fatigue tests. The vibration Lests will consist of (1) obtaining nodal

patterns and modes of frequency, (2) obtaining stress distributions, and (3)

obtaining end effect influences on Stage 1 only. The hot fatigue tests will

consist of staircase fatigue tests in the first flexural mode.

Work Planned

•	 Monitor blade bench test work through design initiation and procure-
ment of test fixtures

•	 Provide engineering support to vendors

•	 Complete nozzle bench test planning and issue Test Project Sheets

•	 Incorporate vendor requested changes into the detail drawings

•	 Complete assembly drawings

•	 Initiate instrumentation rework drawings.

2.5.6.1 LPT Rotor (Bench Blades and Tooling)	 a

Technical Progress

The blade casting tooling design is complete on an five blade stages and

the tooling vendor has been released to build.

Partial quotes have been obtained for machining the blades (less the 	
a

required tip shroud interlock hard coat). The possibility of thermal spraying

Triballoy T800 on all five stages of blades is being considered. A local ven-

dor capable of performing this operation has been found.
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Work Planned

e	 Place orders for blade machinings.

e	 Complete blade casting tooling and cast initial parts in each stage.

2.5.6.2 LPT Stage I Nozzle

Technical Progress

The Stage 1 nozzle castings are on order. Price as quoted is slightly

over plan and the delivery date is later than required. Recent efforts to

reduce the cycle time have been fruitful, and close cooperation will continue

with the vendor to deliver castings as close to the required date as possible.

The nozzle machining drawing has been released to Development Machining Opera-

tion (DMO) fot planning along with initial funding.

wnrk Dlannod

•	 Complete casting tooling.

2.5.6.3 LPT Stage 2 through 5 Nozzle Fabrication

Technical Progress

The LPT Stage 2 through 5 nozzle castings have been placed on order. As

with the Stage 1 nozzle, the Stage 2 through 5 nozzle cost quotes are over

plan, and delivery dates are later than required. Visits have been made to

tooling vendors, efforts to reduce casting costs and pull in dates have been

successful, and we will continue to work with the vendor to make additional

cuts in cycle time. Several vendor requested changes have been adoptee.,

including making datum pad integral with gusset walls and moving inspection

as well as cutoff points away from wax weld lines. Several more changes are

now being reviewed.

The Stage 2 through 5 nozzle machining drawings have been released for

quotations.

Wnr4 Al,nnoa

•	 Place nozzle machinings on order

s	 Work with the vendors to re?uce delivery time

s	 Review and incorporate additional casting changes.
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2.6 TURRINE FRAM AND MIXER

r

i"

fi

Overall Objectives

While the g3 design is based on previous experience with proven engine

frames to insure a long life andand a Maintainable structure, the g3 frame will

be specifically designed with imptovow. nta to noo k. the FPS requirements.

Petformanc* improvements in engines with confluent exhaust noaalea can be

achieved b y forced mixing of the core and fan flows. A convoluted mixer is

planned for the FPS which effectively m xes the hot, high-velocity, core gas

with the relatively lower velocrtr fait air to produce a more unifron velocity

at the nonsle throat and improve- thormodyramic cycle efficiency. The FPS

mixot effectiveness goal is 0.7" at Mach - 0.8, altitude w 33,000 feet, Stan-

datd day, maximum-cruise powv, setting.

Dover mr.nt A + ► oath

Cutient technology telated to the attiodynamic design of high-bypass

mixers is not fully developed. Excellent computer technique* are available

which allow good aviodynamic flowpath design in terms of iow pressure losses

with no separation. However, adequate design ctitetia that provide guidance

fot selecting a mixet with high mixing effectiveness and low pressure loss

does not exist. Thus the fitst step in the development of a high perfotmance

mixet fot the 10 will he to establish a data base from which an advanced tech-

nology. high ^otfvtmance mixet, may be designed.

A scale-modol mixot patamrttic toot was conducted early in the E 3 program.

The models. 121 scale, with tested in a static thrust stand at both cold flow

and simulated hot flow conditions. Selected mixer geometric parameters were

systematically vatird and tooted in ordet to identify those parameters which

significantly impact mixing offectiveness. The mixer models selected were

consistent with the E 3 thermodynamic cycle and wet* within practical mechan-

ical and installation consttaints. Results of this test identified initial

mixing effectiveness and piessute lose design criteria.
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Following the parametric test, five of the scale models were evaluated

for noise characteristics. Results of the acoustic tests indicated a two-to-

four PNdB noise reduction relative to the separate flow exhaust nozzle. Addi-

tionally, no discernible difference in noise level for the various mixers

tested was observed. Thus noise generation did not effect the selection of

the final mixer design.

Results of the mixer parametric test have been uaed to design and fabri-
	

{

cate scale models for a follow-on mixer performance test. This test was aimed 	
i

at evaluating overall mixer/exhaust system variables with more emphasis on the

total E 3 exhaust system. The follow-on test was added to the original program

and was intended to provide the design information necessary to achieve an

additional 10% mixing effectiveness (75X) relative to the original program

goals (65X). Results of the follow-on tests identified significant exhaust

system performance characteristics leading to performance improvements and

also pointed out the significance of mixer sidewall shape on mixer performance.

Because of the discovery of the significance of mixer sidewall shape on

performance in the follow-on test, the verification test was expanded to

investigate mixer shape. Additionally, it has been determined that a change

to the flowpath in the last several stages of the turbine and turbine frame

can improve the mixer performance by an estimated 0.2% sfc at Mach 0.8 maxi-

mum cruise. This change was called the flared turbine design, and it was

decided that it would be desirable for an FPS design but not timely for the

ICLS flowpath. Thus the verification test included a test of a selected best'

design for the ICLS flowpath based on the previous tests and analytical

studies and a mixer shape investigation on the flared turbine FPS flowpath

design. Three mixers will be designed and tested for the FPS flowpath, and

the best mixer will be selected for simulated thrust reverser testing.

After the successful completion of the mixer verification tests, the

detailed mechanical design of the mixer for the ICLS test vehicle was con-

ducted. This design included an acoustic excitation analysis to establish

that no acoustic vibration conditions exist which would result in fatigue

life less than the design life of the part. The analysis was carried out
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by determining the elastic and dynamic characteristics of the panel in ques-

tion by use of the MASS computer program. These results, together with a

damping factor based on the type of construction and the predicted or measured

acoustic-pressure levels, were entered into RANDEX, a computer program for

predicting the response of structures to random excitation. From RANDEX,

the expected root mean square (RMS) cyclic panel stress levels were obtained.

The design of the E 3 turbine frame initially involved preliminary lay-
,

outs and analysis in order to ensure an adequate radial spring constant. The

detail design of the turbine frame involved detailed stress analysis under

limiting frame load conditions, such as flight maneuver extremes, rotor imbal-

ance, and transient start-up conditions. Analysis of these load and thermal

stress conditions was accomplished by use of a three-dimensional, finite-

element computer program, Mechanical Analysis of Space Structures (MASS). By

using enough nodes in setting up the analytical model, the elastic behavior

and stress levels existing under any combination of loading and thermal stress

can be determined. Metal temperature distributions, for use in the MASS anal-

ysis, are determined by a transient heat transfer analysis computer program.

The NASA Project Manager has approved the detailed design, and the full-

scale turbine frame and mixer are being fabricated. After completion of the

manufacture, the hardware will be available for engine assembly.

2.6.1 TRF/Mixer Aero Design

Technical Progress

The exhaust nozzle extensions which provide nozzle area variation for the

core engine tests were revisee due to concern over the ability to estimate the

effective area of the previously defined orifice plate nozzles. The new exten-

sions have been changed to conical nozzles and will provide effective areas of

nominal, +21X, and -15X.

The nozzle exit survey rakes to determine mixing effectiveness for the

ICLS engine tests were defined. The PT and TT immersions were scaled directly

from the scale model mixer tests with the exception of the innermost element
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which is set at a 4.0-inch radius to avoid interference with the center vent.

A tentative test plan was also defined to provide input for selection of the

total number of rakes required (more rakes and less readings versus less rakes

and more readings). These rakes will be add-ons to an existing NASA emissions

rake mounting system which is capable of remote control variation in an infi-

nite number of circumferential positions.

The ICLS mixer design was selected and finalised based on analysis of the

scale model test results. A cross section of the mixer is presented in Fig-

ure 2.6-1. The mixer will have 12 lobes with the sidewalls scalloped to pro-

mote better mixing. The mixing penetration has been selected to maximise the

internal performance tradeoff between mixing effectiveness and mixer pressure

loss. Tailpipe length likewise has been selected to maximize total system

performance including internal performance, external nacelle drag, and weight.

Full scale hot flowpath coordinates were defined for the mixer and exhaust

system consistent with the design selection.

The ICLS turbine rear frame/mixer DDR was presented at NASA-Lewis on

November 20, 1980 and a follow up for the mixer waA presented on January 21,

1981. Background scale model test data and analytical studies leading to the

rational for the ICLS design were presented. Design acceptance and authori-

zation to proceed with hardware procurement were given by the NASA E 3 Project

Office.

The static pressure which will exist at the base of the ICLS center vent

tube in the exhaust nozzle was estimated using the STC program for an SLS max-

imum power condition. Based on the analysis, in its present location, the

static pressure will be 8% above ambient pressure with the nominal nozzle exit

area. The tube would have to extend beyond Station 365 to reach the ambient

pressure level. Data from scale model tests of similar configurations indi-

cate the base pressure to be 1% to 3% above ambient. The test data is con-

sidered to be more accurate than. the analytical result, and it is concluded

that the base pressure could be 1% to 3% above ambient pressure in its present

location. An opportunity exists to measure this pressure on the ICLS exhaust

system in the forthcoming mixer test at F1uiDyne (WBS 2.6.4) in April. An

inquiry will be made to F1uiDyne to modify the model to include simulation of

the vent and to conduct tests at several SLS points.
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	 The FPS mixer design will be completed following analysis of the

Phase III scale model mixer test (WSS 2.6.4).

2.6.2 Turbine Frame and Mixer Mechanical Design and Analysis

Technical Progress

A cross section of the current turbine frame/mixer is shown on Figure

2.6-2. The only significant design changes incorporated into the turbine

frame/mixer hardware during the subject reporting period were to accommodate

test instrumentation. The portion of the aft inner core cowl situated beneath

the pylon was made into a separate piece by means of axial flanges on either

side. This allows removal of both sides of the cowl without disturbing the

instrumentation leads or the cla arance control air valves which are now

mounted on this plate. It also permits removal of the cowl without removal

of the pylon fairing. The portion of the mixer shroud located under the pylon

hae also been designed as a separate piece which gives us additional room for

instrumentation lead out and simplifies removal of the mixer, since the mount

link covers and the pylon fairing can remain in place. In addition, a service

strut has been added aft of the mixer to lead out the aft slipring instrumen-

tatior. and services.

The detailed Transient Heat Transfer (TNT) analysis has been completed.

A cross section of the three-dimensional computer mo&?l used for ti.Le analysis

is shown in Figure 2.6-3. The worst internal temperature differentials, and

thus the worst thermal stresses, were found to occur 60 seconds after the

engine's initial acceleration to takeoff power, following a 200-second warm

up.	 A plot of this temperature response is shown in Figure 2.6-4. These

transient temperatures were input into the detailed structural computer model

of the frame (MASS) and combined with the maximum loads that might be exper-

ienced during normal operations. The resultant stresses are illustrated in

Figure 2.6-5. The worst stresses were found to occur in the outer casing

polygonal panel between the 12 and 1 o'clock struts. Stress concentration

.factors were added to these stresses to compensate for the welds and steps
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in the chew-milled outer panel. The resultant worst stresses were 73 ksi at

the panel butt weld and 72 ksi in the panel's chem-milled region. The

frame's low cycle fatigue life under these stresses is greater than 100,000

cycles.

The two removable ground handling mounts, which, when attached, are

bolted to the 2 and 10 o'clock struts, have been stress analyzed. The lugs

are designed to withstand a load of 3 g vertical (9600 pounds) and 4 g hori-

zontal. Under these conditions, the lug tearout stress is only 2.4 ksi, while

the material's 0.02% yield strength is 116 ksi. The lug is attached to the

strut end by two 7/16-inch bolts. The stress in these bolts could be up to

77 ksi, which results in a safety factor of two. When the engine is mounted

in the test _facility, these mounts are removed, and cover plates are added.

Figure 2.6-6 illustrates these ground handling features.

An acoustic fatigue analysis was conducted on the frame heat Rhieie (Fig-

ure 2.6-7). The shield is made up of 12 circumferential pieces of corrugated

Inco 718. It is captured in front between the frame and low pressure turbine

flanges, and in the back at the frame/mixer interface. The acoustic environ-

ment was estimated from the sound pressure levels measured for the CF6-50 core

nozzle duct outer wall. From this analysia, it was determi ►.ed the plate nat-

ural frequency is 218 hertz, and the acoustic dynamic pressure is Prms

0.0082 psi Y15i. This produces an acoustic stress of 34.8 ksi. For an
unlimited high cycle fatigue life, the allowable stress is 40 ksi, yielding

a safety factor of 1.2.

The frame struts are used to route rear sump lubs tubing outboard of the

sump area. There are four tubes for this purpose. A 0.5-inch-diameter oil

supply tube is located in the 9 o'clock strut. There are two 0.75-inch-

diameter scavenge line tubes, one in the 5 o'clock and one in the 7 o'clock

strut, and a 0.315-inch-diameter seal drain tube is located in the 6 o'clock

strut. The natural frequency of each of these tubes is listed on Figure 2.6-8.

The seal drain tube has the lowest natural frequency of the three, at 328

hertz, and is well above the maximum fan speed of 58 hertz.
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An analysis was conducted to verify the strength of all the bolt jointed

flanges and rabbets in the turbine frame section. The sump cone/fraste flange

has 48 3/8-inch-diameter bolts. Under ultimate load conditions, the bolts

have a safety factor of 1.3 over the 2/3 Johnson's yield strength, and the

rabbet safety factor of 1.4 over the 0.2% yield strength. The low pressure

turbine/frame flange has 120 0.25-inch-diameter bolts, with a bolt safety

factor of 1.4 and a rabbet safety factor of 1.3, also under ultimate load con-

ditions. The centerbody/frame has 48 bolts of 0.25-inch diameter; and under

a 10 g load condition, the bolt safety factor is 1.5.

The final ICLS mixer shape has been defined. An acoustic excitation

analysis was conducted to establish that no acoustic vibration conditions

exist which would result in fatigue life less than the design life. The

elastic and dynamic characteristics of the mixer were determined by use of

the MASS computer program. A view of the model is shown in Figure 2.6-9.

The results show a panel mode natural frequency of 147 hertz, an adjacent

chutes in-phase chute flopping mode natural frequency of 73 hertz, and an

adjacent chutes out-of-phase chute flopping mode natural frequency of 99

hertz. These results, together with a welded design damping ratio of 0.0076

and the estimated acoustic-pressure levels based on measured levels for the

CF6-50 core nozzle, were input into a RANDEX computer program used for pre-

dicting the response of structures to random excitation. From RANDEX, the

maximum root mean square (RMS) cyclic panel stress was found to be 11.1 ksi.

The fatigue limit stress for the 321 stainless steel mixer at these condi-

tions is 30 ksi, which yields a safety factor of 2.6. A Campbell diagram,

which shows that all the mixer natural frequencies fall outside the engine

operating range, is illustrated in Figure 2.6-10.

11,e inner portion of the fan flowpath aft of the core cowl is an inte-

gral part of the mixer. This piece was analyzed for strength due to an inward

loaded pressure differential of 6 psi, and thermal stresses. Results of this

analysis led to the addition of a citcumfetential stiffener six inches aft of

the leading edge. The material thickness is 0.04 inch, and the critical buck-

ling pressure is 11.6 psi, giving a safety factor of almost two. The maximum

thermal stress occurs where the mixer is attached to the turbine frame by
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means of 10 local brackets on the lca pressure turbine /frame flange. The

frame and brackets are hotter than the mixer piece and tend to impose local

radial loads on this sheet metal cowl. The resultant stresses were up to

60 ksi, which allows for a low cycle fatigue life on the ICLS design of 8000

cycles.

Mechanical design and analysis of the turbine frame and mixer has been

completed. The total weight of the frame, mixer, core cowl, and centerbody,

including fasteners, is 653.5 pounds. The weight breakdown is as follows:

frame 275.5 pounds, mixer 127.0 pounds, core cowl 164.9 pounds, forward cen-

terbody 53.7 pounds, aft centerbody 10.1 pounds, and fasteners 22.3 pounds.

A detailed design review of the turbine frame was held at NASA-Lewis on

November 20, 1980. The mixer detailed design review was held January 21, 1981.

The detailed designs of all components were approved by NASA. The detailed

drawings for all hardware are complete, and all hardware has been released for

manufacture.

Work Planned

s	 Support manufacturing for the fabrication of the core and ICLS
hardware.

2.6.4 Scaled Mixer Performance Testing

Technical Progress

The STC/Spalding analysis to determine the effect of mixer shape on mix-

ing effectiveness was completed. Three mixers with varying mixer shapes were

analyzed with the revised STC/Spalding analysis which included circumferential

as well as radial streamline analysis. Results indicated some minor improve-

ments in mixing effectiveness but no significant gains. It was decided to

extend the analysis to include an evaluation of one of the mixers tested in

the Phase II test. Comparison of the predicted exit temperature profile with

the measured profile from the model test is shown in Figure 2.6-11. The com-

parison was not as good as expected and indicated that the STC/Spalding anal-

ysis procedure still required improvement before a high degree of confidence

in its use is achieved.

320



N
W
cim

^ O

d.

i CA^N

O.lN

IV
N

t^	 .o	 1w	 IRW	 N

or

 1 
VA 

FA^+^ tS
QUAD

0 a
3 ^:	 co

CL

M
m
r4
.4

0

M
a
M

h

F: K
00

1
1 y ^

4f	
c
0

r_O	 'n

a	 ,^

M

w	 m

E	 ^'v
m	 -4
F-
x

W
m
N
m
M

.d
O4

321



As a result of the inability to obtain a clear indication of the typen of

mixers to be evaluated in the third mixer test from the Spalding analysis, a

selection of test configurations was made with NASA concurrence based on the

analysis and interpretation of the previous test results. The matrix includes

the ICLS mixer/flowpath, three mixers for the FPS flared turbine flowpath, a

centerbody variation, the C-D nozzle simulation, and reverse thrust simula-

tion. The three FPS mixers include a baseline mixer similar to the ICLS

design, an 18-lobe mixer, and a large mixer with a nonsysmietric cutback which

will be defined just prior to test. A revised test specification was sent to

F1uiDyne for cost quotation. F1uiDyne requested that mylars be provided of

the mixer cross wections to facilitate model fabrication; these were provided

in early January. Preparation of the Test and Instrumentation Plan for NASA

has been completed.

F1uiDyne has slipped the Phase III mixer test to the end of March, 3 weeks

past their quoted start date. This represents a total slip of essentially

1 month from the initial plan; the test will now occur in April-May. The

reason is that a program currently in the F1uiDvne Channel 11 hot flow stand

is running behind schedule. There is no significant effect of the slip on the

E 3 program; the ILLS mixer has already been released for the engine test, and

the FPS design can be updated at any time.

Work Pit^ned

e	 Conduct the Phase III scale model mixer test and begin final data

analysis and formal report preparation.

2.6.5 Turbine Frame/Mixer Fabrication

Technical Progress

The detailed drawings fot all the hardware have been released to the shop.

Approximately 15% of the necessary material is in-house. The long lead time

machining work has been placed.
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Core Turbine Frame

The core engine slave turbine frame and-related exhaust system hardware

are shown in Figure 2.6-12. Hardware fabrication is USX complete. Most of

the minor parts have completed manufacture, the frame hub and outer case have

been formed, and the slots for the struts have been cut in both the hub and

outer case. The struts have also completed manufacture.

Work Planned

e	 Continue planning, material procurement, and fabrication of both
ICLS and core engine hardware.
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2.7 BEARINGS, SYSTEMS, DRIVES, AND CONFIGURATIONS

Overall Objectives

Bearings, systems, drives, and configuration components encompass the

following:

•	 Main shaft support bearing and seal components

•	 Accessory drive system

•	 Lube system, including rotor thrust balance

•	 External piping and wiring configuration of the engine.

The main shaft bearings will be designed to properly support the engine

rotor systems. These bearings will mee: the design requirement for engine life

considering fatigue and skidding criteria. They will operate with minimum heat

rejection and within specified limitations.

The accessory drive system will provide the means to drive the engine-

required accessories. Adequate horsepower capability, the proper pad speeds,

and direction of rotation are the primary design objectives. Provision for

two starter pads will be provided on the Core/ICLS accessory gearbox. Critical

speeds of all gearbox shafting will be kept at least 20% above the engine opera-

ting speed. The internal configuration of the accessory gearbox will be

designed so that lubricating and cooling oil will be easily scavenged from it.

During engine operation, the gearbox will operate within specified temperature

limits.

The lube system will be designed to provide a flow network that will

deliver and remove specific amounts of oil from various areas of the engine

while maintaining predetermined pressure drops in the individual circuits.

The rotor thrust balance will be determined as p- rt of the lube system activity,

and the thrust load on the fan and core thrust bearings will be established

to be compatible with the life requirements of the bearings.

The objective of the configuration design is to provide the required

external wiring and piping between various components of the engine. Piping

is sized to meet specified flow velocities. The piping and wiring array will

be capable of operating in the temperature and vibration environment of the

engine.
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Development Approa°h

To achieve the foregoing objectives, a development program has been

established that consists of five subprograms defined as follows:

•	 •	 Forward Sump Mechanical Design (WBS 2.7.1.0

•	 Aft Sump Design (WBS 2.7.1.2)

•	 Lube System Design (WBS 2.7.1.3)

•	 Accessory Drive System (WAS 2.?.2)

•	 Configuration (WBS 2.7.3).

The major layout design of the forward and aft sumps was accomplished

during 1978 through the third quarter of 1979. Preliminary design work was

aimed at obtaining a viable design for the Flight Propulsion System. :_udies

have been made integrating the sumps with the core (high pressure) and low-

spool (low pressure) rotor systems. Bearings and support housing designs are

being analyzed in terms of rotor speeds, loads (including blade-out), coat,

weight, and maintainability.

The Core PDR was held in the second quarter of 1979, and an Integrated

Core/Low Spool (ICLS) IDR was held in the third quarter of 1979. With NASA

approval, the detail mechanical design has been initiated with planti^-' .,omple-

tion in the fourth quarter of 1980. The Core bearings and sumps DiB. a.,i held

in the fourth quarter  f 1980. The ICLS UDR is planned for early in the

second quarter of 1981. The ICLS bearings and sumps IDR was held in the first

quarter of 1980.

Following NASA approval, most of the hardware procurement and fabrication

will proceed.

Two bearing tests have been planned to establish lubrication methods, pro-

vide heat-rejection data, and establish other design parameters for the core

thrust bearing and the intershaft bearing. The thrust-bearing underrate cool-

ing test (WBS 2.7.7.4) will be completed in two phases. The first phase was

completed during the second quarter of 1979, and the second phase (which will

test an E3 core thrust bearing) will be completed in the second quarter of

1981. The intershaft bearing test simulating the aft intershaft heArinl

a
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arrangement of the E3 design (WBS 2.7.4.3) scheduled to run in the fourth

quarter of 1979, was run in the first quarter of 1980. More testing will be

needed after rig modifications are made.

The lube system preliminary and detail design efforts will support the

mechanical design work in such areas as lube system network, main shaft seal-

pressurization networks, and rotor thrust. The PDR for the l^jbe system was

scheduled and completed as part of the Core and ICLS PDR's. During the

detailed mechanical and design effort, the lube system activity will be con-

centrating on finalizing such parameters as (1) lube flow and pressures, (2)

seal AP's at various operating conditions, and (3) the rotor thrust-balance

status.

While preliminary mechanical studies are continuing on the sump systems,

a parallel work effort will be going on in the accessory drive area. The

design effort will be in support of the FPS being designed under the Task I

effort. The effort will be centered on the power takeoff (PTO), accessory gear-

box (AGB), and the connecting shafting. The PDR for the accessory drive sys-

tem was scheduled and completed as part of the Core PP°. Detail design work

has now been completed for the Core/ICLS engine.

During 1978 and running through the first quart r of 1979, the configura-

tion effort was concerned with coordir9tion with all the interfacing units and

design layouts of all external wiring and piping. All detailing will be com-

pleted by the second quarter of 1981. Vibration tests were also planned as a

supporting effort for the scheduled Core and ICLS tests.

In addition to the aforementioned effort, design and procurement of spe-

cific test rig hardware has been provided in support of the 1-6 and 1-10 com-

pressor tests and the full-scale fan test (FSFT).

2.7.1.1 Forward Sump Mechanical Design

Technical Progress

During this reporting period, design effort has been applied in the fol-

lowing areas:

•	 FSFT forward sump

•	 Core engine forward sump design

•	 Forward sump for ICLS engine.
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FSFT Forward Sump

The FSFT forward sump configuration is shown in Figure 2.7-1. The design

is described in Semiannual Report No. 5 and all hardware is now available for

assembly.
i

Instrumentation leadout methods have been identified and rework drawings 	 i

have been completed. Test instrumentation requirements have been defined and 	
s

are summarized as follows:

•	 Two temperature thermocouples each bearing

•	 Sump cavity pressure measured one place

•	 Seal pressurization cavity pressure

•	 Outer air cavity pressure and flow

•	 Bearing lube flows and pressures

•	 Vibration pickups mounted on bearing housings.

Core Forward Sump Design

The present design status of the forward core sump is ehown in Figure

2.7-2. The design is basically the same as reported in Semiannual Report No. 4

and detail drawings have been completed and hardware is in the manufacturing

cycle.

Minor changes have been made in the rotating labyrinth seal which supports

the rotating portion of the slipring. These changes have been made to incor-

porate an instrumentation duct in the forward end of the compressor rotor. The

labyrinth seal locates and traps the instrumentation duct in the compressor

rotor and allows instrumentation leadout through the slipring assembly.

Forward Sump for ICLS Engine

The ICLS forward sump is shown in Figure 2.7-3. The configuration incor-

porates hardware that is comm with the F T and will be tested first during

the fan test.

All detail drawings have now been issued for the ICLS forward sump and

hardware is in the manufacturing cycle.

The major emphasiL during this reporting period has been on the No. 1

bearing area which is shown enlarged in Figure 2.7-4.
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M 11 "mom

The No. 1 bearing is mounted in a 17-4 PH housing and is located axially

by a forward shoulder and a clamp plate. The assembled clamp load is 24,000

to 55,000 pounds which is greater than the bearing expected thrust load of

15,000 pounds. The clamp plate material is AMS 6415 and the assembly stresses

and operating stresses are below the strength capability of the material.

The clamp plate stresses have also been checked at expected blade-out

conditions and stresses are below the material yield point.

To secure the clamp plate to the bearing housing, 30 0.4375-inch-diameter

bolts are used which are more than adequate to react the thrust bearing loads.

The design analysis of the forward stub shaft (Figure 2.7-4) included

blade-out condition, and all stress levels are below the yield strength of the

AMS 6415 shaft material. Buttress threads are used on the threaded nut to

prevent nut from "jumping" threads under extremely heavy thrust loads. This

nut is keyed in place by a trapped retainer.

Operating conditions for the thrust bearing have been analyzed and the

internal radial clearances and fits established. Both the housing and shaft

fit have been designed to remain tight throughout the operating speed range.

The contact angle operating range is below 23' and 32' which is consistent

with good design practice.

The fits and clearances for the No. 2 bearing have also been established.

The effect of the radial growth of the LPT shaft forward spline has been con-

sidered in the clearance calculation along with the normal -haft fits. The

design intent is to maintain a shaft fit of 0.0002 to 0.00 W inch tight. The

operating clearance w 4 11 be 0.0036 to 0.0048 inch.

Work Planned

•	 Continue procurement of hardware for Core and ICLS engine

•	 Provide engineering coverage during mechanical checkout of 1-10
compressor rig

•	 Support assembly of FSFT rig.
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E°

Technical Progress

During this reporting period design effort has continued in the following
E

areas:

•	 Aft sump for the Core engine

•	 Aft sump for the ICLS engine

•	 ICLS LPT shaft design.

Aft Sump for the Core Engine

The Core aft sump is shown in Figure 2.7-5. All hardware is in the manu-

facturing cycle. No serious problems have been encountered during the manufac-

turing process and hardware should be available in adequate time for engine

buildup.

Engineering coverage will continue during the manufacturing cycle.

Aft Sump for the ICLS Engine

The aft sump used in the ICLS engine is shown in Figure 2.7-6. All draw-

ings have been completed with the exception of the LPT shaft and the No. 5

bearing housing. Material is available or on order for both of these parts.

Some modifications have been made to the sump since the last reporting

period. These include revising the aft air seals as a result of a thermal

stability analysis and modifying the centervent tube to prevent possible oil

leakage due to an oil buildup.

The fits and clearances for the No. 4 and No. 5 bearing have been estab-

lished for the ICLS operating conditions.

The No. 4 (Intershaft) bearing is designed to run with a slight inter-

ference between the rollers and the inner and outer rings. This interference

will be tightest at maximum speed and is estimated at -0.002 inch. This design

approach is being used to minimize the tendency of roller to race skidding that

is prevalent in high DN, lightly loaded bearings. Running with this tight fit

affects the life of the bearing but calculated 1,10 life is greater than 5000

hours which is more than adequate for the overall test program.
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The No. 5 bearing has been released for manufacture.

This bearing will be underrate cooled by a lube jet mounted in the aft

c::ver. Rotating oil passages are designed so that 20% of the lube jet oil

goes to the No. 5 bearing and 80% travels forward and is di-trib uted to the

No. 4 beari .s

The detailed analysis of the No. 5 bearing housing is being completed

and the detail drawing should be available in the second quarter of 1981.

ICLS LPT Shaft Design

The design analysis of the LPT shaft has been completed and the shaft con-

figuration :s shown in Figure 2.7-7. The shaft is machined from a one-piece

Inco 718 forging which should be available early in the second quarter of 1981

by which time the finished detail drawing should be available.

Figures 2.7-8 and 2.7-9 show the calculated stresses in the shaft and

cone area, respectively. In all areas, the life calculated is greater than

the design requirements of 10 4 takeoff cycles.

The forward spline has been configured to use existing tooling and in

basically a modified 10/20 pitch spline. The LCF life in the spline area con-

sidering stress concentrations, is in excess of 15,000 cycles.

W^,U D 1 nnnoa

•	 Complete drawings for LPT shaft and No. 5 beari«g housing and place

an order

•	 Continue engineering coverage during procurement of Core and ICLS

hardware.

2.7.1.3 Lube System Design

Technical Progress

During this reporting period major emphasis has been on the Core engine

system analysis.
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The lube system for the Core engine is shown in Figure 2.7-10, and lube

supply capacity versus scavenge capacity is shown in Table 2.7-I.

Table 2.7-I. Lube Supply Versus Scavenge Pump Capacity.

Component	 Lube Supplied, gpm	 Scavenge Capacity, gpm

Forward Sump	 4.2	 17.35

Aft Sump	 2.6	 7.75

Accessory Gearbox	 2.7	 11.20

Bypassed Oil	 7.3	 N/A

16.8

From Table 2.7-I, it can be seen that the sup='y pump (an existing pump

is being used) capacity is greater than that req ,.N -.i by the engine. The

"extra" oil will be bypassed back to the lube tank as is shown in the lube

system schematic. Table 2.7-I also shows that the minimum scavenge ratio is

2.98 which should be more than adequate according to GE design practices.

Figure 2.7-i1 shows the relationship of the Core thrust bearing load

versus Core percent corrected speed for the Core engine. The curve shows

rotor thrust calculations for both a 14.7 psia inlet and a 23 psia inlet at

nominal A8 with the balance piston cavity at 50 psia The balance piston

cavity pressure can be adjusted but for these operating conditions the Core

thrust bearing load will vary between 2500 and 6000 pounds.

Figures 2.7-12 and 2.7-13 show an update on the pressures and flows

around the Core engine sump.

The swap pressure will be lowered below atmospheric pressure to keep the

sump seal flow in the right direction. Sump pressures at ambient inlet con-

ditions w ; ll be 10 to 11 psia. With the sumps maintained at these pressures,

the external air/oil separators will be flowing 0.05 lb/sec and 0.07 lb/sec

for the forward and -ift sump, respectively.
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Work Planned

•	 Continue to coordinate lube system with other engine functions

•	 Update lube system flow model and reconfirm system lube flows

•	 Update secondary flow system and rotor thrust for ICLS engine.

2.7.2 Accessory Drive System

Technical Progress

All detail drawings for the accessory drive system are now issued and

either out for quote or ordered. Figures 2.7-14 and 2.7-15 show cross sec-

tions of the PTO and AGB, respectively.

Figure 2.7-14 shows, in detail, the PTO housing which is fabricated from

17-4 PH. The housing is basically a sector design whose concept has been used

successfully for other GE engines.

Work Planned

•	 Continue, procurement of all hardware.

2.7.3 Configuration Design

Technical Progress

All major components have been located and piping requirements have bea^

established. An existing oil tank is being used and simple modifications have

been identified for mounting to the engine.

Major emphasis during this reporting period has been on completing draw-

ings for the Core engine. Approximately 30 remain to be issued and these will

be completed early 'In the second quarter of 1981.

Work Planned

•	 Complete detail drawings for Core and ILLS engine

•	 Continue procuring hardware.
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2.7.4.3 Intershaft Bearing Test

Technical Progress

The design for the required modifications to the intershaft test rig have

been completed and hardware is shown in Figure 2.7-16. This modification will

allow the application of a radial load to the test bearing which will simulate

the expected operating radial load of the engine.

A new test bearing is being procured and is in the final stages of manu-

facture. Depending on delivery of test bearing, testing should be completed

during the next reporting period.

Work Planned

•	 Procure test bearing

•	 Complete bearing test.

2.7.4.4 Bearing Underrace Cooling Test

Technical Progress

The second phase of testing will be completed dependent on the delivery of

the test bearings and the rig hardware.

Rig modifications have been identified and a cross section of the rig -d

shown in Figure 2.7-17. Rig hardware drawings have been completed and hardware

is either out for quote or on or4.:r.

It is expected that the bearings will be available in April 1981 and the

rig hardware shortly thereafter.

Work Planned

•	 Complete procurement of test bearings and rig hardware

•	 Complete testirg.

2.7.5 Bearing, Systems, Drives, and Configuration Fabricezion

Technical Progress

Assembly of 1-10 compressor rig has been completed and rig is in test.

All major hardware is available for the FSFT assembly and buildup has started.

r
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All hardware is either out for quote or being procured for the forward

and aft sump of the Core engine.

Hardware for the accessory drive system, which is common to both the

Core and ICLS engine, is out for quote or on order. Quotes have not been

received for the machining of the main housing which is the last major part

to be ordered. The first casting for the accessory gearbox main housing has

been poured and inspections are being made. Results of these inspections

should be available in April 1981.

All bearing procurement is basically proceeding on schedule with no

known problems.

,fork Planned

•	 Continue procurement of Core related hardware.
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2.8 CONTROL AND FUEL SYSTEM

Overall Objectives

The primary objectives of the control and fuel system program is to define

a system for E 3 which provides operational capability and reliability equal

to or better than that provided by current transport engine control and fuel

systems, which thoroughly exploits the fuel conservation features of E 3 , and

which employs digital electronic computation suitable for interfacing with an

aircraft flight control computer. An addin.onal objective is to demonstrate

the system functionally on the Core and ICLS engines.

'The proposed control and fuel system for the E 3 is based on many of the

proven c.ancepts and component designs used on the CF6. The major difference

is in the addition of full-authrrit_y digital'elec-Ironic computation, which

provides significant improvements in control flexibility, accuracy, and air-

craft/engine integration capability-

The digital control is expected to contribute to the low fuel consumption

of the E 3 by providing automatic power management and optimum control of

variable geometry on the engine over the full range of operating conditions

which will be encountered. The control will also help reduce 3eterioration

in engine efficiency by automatically preventing engine overspeed, overpres-

sure, or overtemperature.

The E3 fuel system employs fuel handling concepts that are basically

similar to the CF6. In the flight design, an engine-driven, positive-displace-

ment gear pump with an incegral centrifugal boost element is used for pumping.

A pump-mosinted heat exch>!nger, downstream of the L ear pump element but upstream

of the s . ,tem filter and fuel metering section, provides chi dual functions of

cooling the engine lute eil and heating the fuel to prevent filter icing.

Fuel metering is r=complished by the combined use of the fuel metering valve

with a bypass valve that returns excess fuel :.o the inlet of the gear pump

element. DownEtream from the metering valve, excess heat f-om the air being

bled from the compressor for use in the aircraft environmental control system

(ECS) is transferred into the fuel, thereby imTroving engine system efficiency

by returning waste heat to the engine cycl.P and ieeicing the ECS air cooling
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requirements. After passing through this heat exchanger, the metered fuel is
divided as necessary to accommodate the double-annular combustor.

The system also controls several variable geometry elements on the engine

including the variable stator vanes and starting bleed valves on the compressor

and air valves for controlling clearance in the compressor, NP turbine, and

LP turbine.

Engine starting will be accomplished using a gearbox-mounted, air-turbine

starter similar to that used on the CF6. Scheduling of fuel flow during the

starting sequence will be done by the digital control, which will also provide

ignition sequencing logic by energizing the ignition as a function of a start-

ing command input and de-energizing ; t when the engine has accelerated beyond

the point where ignition is needed. The ignition will also be automatically

energized if the digital control detects deceleration conditions that indicate

a burner blowout has occurred.

Development Aparoach

The control and fuel system design and development effort began with a

preliminary design phase in which various system and component design options

were defined and evaluated. Particular emphasis was placed on tLe method of

incorporating advanced technology features such as the full authority digital

control, air/fuel heat exchange for waste heat recovery, active clearance con-

trol, and fuel flow division for the double-annular combustor. The initial

study work resulted in the definition of a preliminary control system design

in late 1978. A preliminary design review of this system was held at NASA-

Lewis in October 1978 and the design was further reviewed as a part of an

overall engine preliminary design review in November 1978.

With the basic system design concepts established, the next task was to

define detailed system and component requirements for the demonstrator engine

program and proceed with detailed component design. This task, which was

essentially completed in 1979, involved several different types of activity.

In the system design area, the basic system and component requirements were

established and documented. Concurrently a number of supporting analytical
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activities were carried out under the Dynamic Analysis subprogram using can-

=	 puler simulations to investigate engine and control characteristics and to

define requirements, particularly those related to control stability and

response. Meanwhile, component design and development activity were proceed-

ing as described below.

Fuel control design and development is being done under WBS 2.8.3.1. For

the Core and ICLS, a modified F101 fuel control will be used. Detailed

requirements for the control have been defined and transmitted to the control

vendor. Control modification-; were defined in detail, the modifications

reviewed with NASA in March 1980, and implementation of the modifications is

underway for the core engine under WBS 2.8.6 and for the ICLS under 4.2.4.

Design of the digital control is being carried out under WBS 2.8.3.2.

The basic control design process includes initial circuit design, experimental

circuit refinement using a laboratory breadboard control, and chassis design.

Because construction of the laboratory breadboard requires procurement of

electrical parts prior to the control system detailed design review (DDR)

scheduled for early 1981, an interim design review (IDR) of the digital con-

trol was conducted in March 1979.

Construction of the brea'board was completed in March 1981 and it is

being used to check out the initial control software program which has been

defined as a part of the Dynamic Analysis activity (WBS 2.8.2). A software

refinement and checkout is scheduled in the second quarter of 1981 to accom-

modate changes which are expected to result from the analysis of data from

engine component testing.

The digital control resulting from the above design effort will be an

off-engine unit suitable for both the Core and ICLS engines. It will be built

and tested under WBS 2.8.6. This control will definitely be used on the Core

engine but it is planned that an on-engine unit, constructed under a separate

program, will be used for the ICLS engine. The on-engine unit will incorpo-

rate an advanced, hybrid, electronic packaging concept.

The main zone fuel shutoff valve covered by WBS 2.8.3.3 is a -iew valve

designed to assist in the fuel flow division required by the double annular

combustor. (This valve, previously called the flow divider valve, was renamed
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becnuse the majority of the flow division task is performed by the fuel noz-

zles in the system design that has evolved and this valve serves primarily

as a shutoff.) Detailed design of this valve was completed and reviewed with

NASA in early 1980. Fabrication and test of the valve for the core engine is

proceeding under WBS 2.8.6 and 2.8.5.2, respectively.

The air/fuel heat exchanger work under WBS 2.8.4.1 began with thermal

model studies to examine, in detail, the potential fuel savings available by

transferring heat from tit compressor bleed air to the engine fuel. Early in

the second quarter of 1980, the results of these studies were assessed by NASA

and General Electric and a decision was made to delete the hardware demonstra-

tion originally planned for the waste heat recovery concept. This was done

primarily because the concept, although unique in function, is implemented

with standard components that do not represent n*:w technology.

Design of control system accessories and sensors is being carried out

under WBS 2.8.4.2 and 2.8.4.3. These components do not represent advanced

technology and consequently, for economic reasons, will be modifications of

existing designs. Detailed component requirements were established in 1919

and transmitted to the appropriate design organizations (predominantly out-

side vendors) to nerve as a basis for detailed definition of component modi-

fications. The designs were reviewed in a March 1980 IDR and released for

procurement.

As a result of the efforts described above, a full set of control system

components will be available in 1981 and wili be assembled into a complete

system for bench testing in late 1981. Subsequently, the components will be

installed for operation of the core engine.

Control system hardware from the core engine will be used on the ICLS

except that an on-engine digital control will be used as noted previously

and a fan speed sensor and LP turbine clearance control subsystem will be

added. The ICLS control system components will also be bench tested as a

complete system prior to operation on the engine. Additional control system

hardware will be procured to provide a limited, yet adequate, supply of spare

parts.
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i	
2.8.1 Control System Design and Analysis

Technical Progress

Some additional system design work was required during this reporting

period in conjunction with the introduction of two potential new control func-

tions. A temporary reset of the fuel flow split between the two zones of the

double-annular combustor has been proposed to promote main zone ignition

during engine starts and an HP turbine casing heating feature has been pro-

posed to provide clearance margin for accelerations made before engine temper-

atures have stabilized after startup.

Fuel Flow Split Reset

The potential need for a fuel flow split reset was identified as a result

of combustor component testing. For engine starts with the double-annular

combustor, ignition can be achieved best at low motoring speed by fueling the

pilot zone only but, once ignition has occurred, it is desirable to light the

main zone and accelerate to idle with fuel split evenly between main and pilot

zones to provide a uniform temperature profile. However, combustor testing

has shown that the even fuel split does not provide sufficient fuel for igni-

tion in the main zone. Fortunately, the data also shows that pilot zone fuel

can be temporarily cut back after pilot ignition without blowout so that the

main zone can be temporarily enriched for ignition purposes.

One method considered for providing temporary main zone enrichment was to

retain the same basic fuel distribution arrangement, Figure 2.8-1(a), but to

add resistance to the pilot supply line and control the main zone shutoff valve

so that it is partly closed for normal main zone operation and temporarily
i

opened fully for main zone ignitic a enrichment during a start. This approach

was rejected because it creates excessive fuel system pressure at high flow.

The fuel distribution system modification shown in Figure 2.8-1(b) has

been identified as a suitable means of providing the desired flow split reset.

With the pilot zone and main zone valves fully open and offering little flow

resistance, fuel flow will be s plit in accordance with fuel nozzle character-

istics as in the current system. With the pilot zone valve closed, the ori-

fice restricts pilot flow and enriches the main zone for ignition.
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The pilot zone valve will be controlled by an on/off signal from the dig-

ital control. During a start, both valves would be closed until an increase

in 149 gas temperature Le sensed by the control at which point the main zone

valve is opened. Once the main zone is lit and the engine accelerates a small

amount above the speed existing at the initial T49 rise point, the pilot zone

valve is opened for the acceleration to idle. At idle, the main zone valve is

closed for low emissions as in the existing system.

This new fuel supply arrangement will be implemented on the Core and ICLS

with experimental flexibility provided by including a manual control option

for the pilot zone valve and providing for pilot supply orifice replacement.

HP Turbine Casing Heating

Studies using the clearance model developed under WBS 2.8.2 indicated

that radial clearance in the HP turbine would be quite small if the engine

was accelerated to high speed before engine temperatures had stabilized at

idle after a start. To prevent insufficient clearance under such conditions,

air bled from the compressor can be introduced into the HP turbine clearance

control piping to heat the casing during the stabilization period after a

start. The system identified for doing this is shown on Figure 2.8-2.

Compressor discharge air for the HP turbine casing heating function is

taken from the customer bleed system upstream of the control valving in this

system. The air is passed through a solenoid operated on/off valve into a

flow control orifice and then to the HP turbine clearance control piping sys-

tem immediately downstream from the clearance control valve. The solenoid

valve is controlled by the digital control through a relay with contacts

supplied from 28 volt d.c. power. The initial control strategy, which is

still under study, will include both manual and automatic operating modes.

Detail Design Support

There has been considerable control system design effort applied during

this reporting period in support of the detailed design of control strategies,

system components, and system configuration. Control system requirements were
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i
defined in more detail and control strategies were refined. The critical con-

trol strategies were translated into digital computer form under WBS 2.8.2 and

then subsequently further transformed under WBS 2.8.3.2 into digital control

machine language.

System design support was also given to the refinement of control system

component details and to the detailed definition of system configuration (that

is, component locations, x.ounting, and interconnections). 	
3

Work Planned	
i

•	 Conduct the control system Detailed Design Review
	 t

•	 Design electrical cables

•	 Define the changes necessary in the existing initial control strate-

gies and schedules in the digital control to accommodate the core
engine

•	 Monitor and expedite, when necessary, the acquisition of control

system hardware for control system bench testing and subsequent
core engine testing

•	 Direct bench system testing of the core engine control system.

2.8.2 Dynamic Analysis

Technical Progress

Two significant tasks were completed during this reporting period: the

translation of initial control strategy into computer program form and the

defiri.LLG. of a new simplified engine model for use in the digital control

test stand. Two other tasks originally planned for this period - Failure

Indication and Corrective Action (FICA) strategy completion and core engine

control schedule definition - were delayed. The FICA was delayed primarily

to promote timely completion of the basic control strategy but the delay was

also consistent with a NASA/GE agreement to forego FICA demonstration on the

core engine where control system functions are limited (no LP system to con-

trol; no compressor staLcr control, the stator stages being controlled indi-

vidually by test facility devices). Control schedule definition was delayed
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because the schedules are to be based on engine component test results and are

thus affected by the compressor test delay.

Control Strategy Translation

The control strategy translation task involved starting with the strategy

in block diagram or logic diagram fora and translating it into a computer pro-

gram suitable for further transformation into digital control computer lan-

guage. This effort resulted in a program that is structured as shown on Fig-

ure 2.8-3. The relatively short main program sequentially calls upon the

various control strategy subprograms. Many of these subprograms call upon

additional subprograms !hat perform input sensing and output servo-driven

functions. One fourth level subprogram, a square root function, is called

upon at various points in other subprograms.

As part of the control program development process, modules of the pro-

gram were checke4 out on a computer with checkout driver programs which

applied a wide range of inputs to individual elements to verify that outputs

were correct. The complete program was also checked out by running it with

the E 3 transient model on a hybrid computer. The finished program was

transmitted to the Digital Control Design group where it was transformed into

control language under WBS 2.8.3.2.

Simplified Engine Model

The need for a new simplified engine model for use in the digital con-

trol test stand arose early in this reporting period. Initially, an engine

model based on simplified engine component equations as utilized in the dig-

ital control FICA strategy was to be used in the test stand. Recent experi-

ence with a digital control for another engine, however, indicated that use

of a simplified engine model based on engine cycle data curve fits would expe-

dite preparation of the test stand and thus expedite checkout of the initial

digital control breadboard. Therefore, a model of this type was developed.

A diagram of this model is shows, in Figure 2.8-4.
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Work Planned

•	 levise the subidle engine model to reflect engine component test

results and investigate starting characteristics with the revised

model

•	 Prepare core engine fuel schedules for starting, acceleration, and
deceleration based on engine component test results

•	 Provide support if problems are encountered in implementing the

control strategy software in the digital control under WBS 2.8.3.2

•	 Assist in the definition of control system input simultations for

the core engine control system bench test.

2.8.3.1 Friel Control Design

Technical Progress

In conjunction with the new fuel flow split reset function (Section

2.8.1), it was necessary to define a new valve for use in the pilot zone fuel

supply network as shown on Figure 2.8-2(b). A two-way, two-position valve is

required, capable of operation in response to an existing digital control sig-

nal designed for driving a torque motor servovalve. The valve must have neg-

ligible leakage in the closed position with an inlet-to-discharge presavre dif-

ferential up to 30 psi. In the open position, the valve must pass 5000 pounds

per hour flow with no more than 5 psi pressure drop.

An inexpensive and readily available valve which appeared to be suitable

for this application was a modified J79 pressurizing and drain valve operating

in conjunction with a standard torque motor servovalve. While defining the

details of the P and D valve modification, however, it was discovered that

inadequate valve opening force exists under certain conditions. The valve

relies on a fuel manifold pressure higher than servovalve return pressure for

opening. The low cracking pressure of the E 3 fuel nozzles results in a fuel

manifold pressure lower than fuel inlet pressure (servovalve return) for much

of the starting sequence. Therefore, it was concluded that a valve was needed

which was servo-powered in both directions.

A review of available valves indicated the best alternative to be an E3

main zone shutoff valv	 ith the position feedback transducer deleted for

economy. This utilizes an existing valve design and provides a commonality of
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spare parts with nother element of the E 3 system. Steps have been taken to

procure the neceboary additional main zone shutoff valve parts to make up a

pilot zone reset valve.

TNe remaining fuel system design activity has been associated primarily

with acquisition and modification of hardware. Mounting and connection hard-

ware for fuel system components have been identified and placed on order.

A modified fuel pump drive spline has also been identified which will allow

the use of an existing CF6 gear in the E3 gearbox and avoid the cost of a

new gear. The relief valves in each of the F101 fuel pumps which will be

used for core dnd ICLS testing were adjusted upward as required by the E3

fuel system. Relief valve cracking pressures were increased from 1020 to

1230 paid.

Work Planned

•	 Release control schedules for the fuel control

•	 Support fabrication and test of fuel system hardware.

2.8.3.2 Digital Control Design

Technical Progress

Digital control progress was made in both hardware and software. The

hardware activity was associated w-th construction and checkout of the digi-

tal control breadboard. Some problems were encountered with the power supply

in the control which is a new design incorporating a primary section supplied

from the engine-driven control alternator and a secondary section supplied

from an aircraft (or tes t facility) 28 volt d.c. source. The power supply

1

}

elemeas had been developed independently and when they were mated for the

first time some incompatibilities were evident, the most troublesome being

noise spikes in the 5-volt regulator output and excessive current drawn from

the 28 volt d.c. source. These problems necessitated considerable experimen-

tal modification and prevented meeting the December 1980 goal for completion

of the breadboard.

By early 1981, the 5-volt regulator noise problem was corrected but the

28 volt d.c. draw problem persisted; therefore, a decision was made to proceed
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with breadboard fabrication using only the primary section of the power supply

in order to expedite initial software checkout. The breadboard was suffi-

ciently complete for the start of software checkout early in March 1981.

A separate power supply breadboard has been constructed and it is being

used to develop the dual-power supply while the main control breadboard is
1

involved in software checkout.

Preparation of the initial control software was done in parallel with

breadboard fabrication but it was completed earlier because of the breadboard

delay. The control strategy computer program, developed under WBS 2.8.2,

served as the basis for the control software. A digital control source pro-

gram was prepared which included the control strategy program along with

input/output processing material, memory assignment information, and a variety

of material related to further transformation of the prograa into digital con-

trol machine language. This source program was then run with compiler and

assembler programs in the time-share engineering computer to produce the

machine language program for the digital control memory. Checkout of this

program began in March on the control breadboard as noted above.

Another software task completed during this reporting period was the

coding of a simplified engine model for the digital control test stand. The

computer in this test stand is of the same design as the digital control com-

puter. The model, which was developed under WBS 2.8.2, was incorporated into

a source program and run through the same. compile/assemble process as the con-

trol program to produce a machine language version of the model for the test

stand computer. The model wAs successfully checked out in the test stand cow

puter early in 1981.

Work Planned

•	 Complete checkout of the initial control woftware in the breadboard

•	 Develop a satisfactory design for the dual-power supply

•	 Prepare software for the core engine digital control

•	 Support fabrication and test of the core engine digital control.
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2.8.3.3 Main Zone Shutoff Valve

Technical Progress

Activity has Leen limited in this area with almost all design work com-

pleted prior to this reporting period. A minor design change was made to

incorporate filter fittings in the valve to provide additional protection

against co atamination in the test fuel system. The only other activity was

the identification and ordering of mounting and piping interface items for

the valve.

Wnr4 P1'nnad

0	 Support fabrication and testing of the main zone shutoff valve
for the core engine.

2.8.4.2 Accessory Design

Technical Progress

The need was established for a new air valve for the HP turbine casing

heating function described under WBS 2.8.1. A two-way, two-position valve

was needed that can tolerate compressor discharge pressure and temperatures,

has negligible leakage in the closed position, ani can pass up to 0.35 of

core airflow in the open position. A commercially available, solenoid-

operated Whittakers Controls poppet valve was identified and ordered for

this application.

The other activity in this area was predominantly associated with hard-

ware procurement and preparation for test. Collapsible links for the start

bleed valve actuation system were placed on order as were a variety of mount-

ing and connecting hardware items. Some items of test equipment required for

air valve testing were also identified.

A detailed review of the vendor's design for the compressor clearance

control valve was conducted. This three-way rotary shear valve is one of the

few E3 accessories that is a custom design rather than a modification of an

existing design. The d aign was found to be basically satisfactory with just

a few recommendations for changes. Material changes from 440 to 17-4 steel
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for the input shaft and from 416 to 410 steel for the rotor were recommended

and an improved lever retention means was suggested. The design is now

released for manufacturing with these changes incorporated.

Work Planned

•	 Support the acquisition and bench test of accessory hardware.

2.8.4.3 Control System Sensors

Technical Progress

Detailed design of the T3 sensing probe has been completed based on a

test instrumentation thermocouple probe which has been applied on several

previous engines. M improved lead-out attachment concept has been incorpo-

rated to make the probe less susceptible to handling damage which has occa-

sionally been experienced with the basic probe design. The swaged, magnesium

oxide-filled metal sheath in which the thermocouple junction is encased is

led out, looped, and spliced into a flexible, metal-covered lead before clamp-

ing to the probe housing. This design reduces the chance of overstressing and

breaking the swaged metal sheath as has happened in the past.

The pressure sensor package has also been designed. The four pressure

transducers will be mounted in separate housings along with associated elec-

tronics and the housings will be mounted side by side in a module which will

mount within the digital control. Pressure ranges for the transducers have

been confirmed and procurement activity has been initiated for all the pressure

sensing hardware.

Progress has also been made in sensing system design for the HP turbine

discharge temperature and the three engine casing temperatures that are used

in the clearance control. strategy. For the HP turbine discharge temperature

input to the digital control, 5 of the 35 thermocouple signals from the T42

test instrumentation rakes will be connected in parallel and spliced into the

control system electrical cabling. These 5 signals will each be from differ-

ent radial and circumferential locations and will be used exclusively for the

control system.

369



For casing temperature sensing, skin thermocouples will be smunted on

each of the engine casings that are being used for clearance control (aft

compressor, HP turbine, and LP turbine) for exclusive control system use.

Three thermocouples will be used at each location, one for initial uve and

two for spares. Each of the thermocouples will be spliced into a wiring

junction to which the control system cabling will be attached.

The toothed disk tnat will be mounted to the fan shaft fo p-oviding a

fan speed sensor target has been designed. The disk will have six identical,

equally spaced teeth. Initially it had been planned that one tooth would be

higher than the others to provide an orientation signal for fan balancing;

but other means are available for doing this and it is desirable to have

equal radii teeth set to run at t'..e minimum practical clearance from the

sensing head in order to provide adequate low speed signal strength.

Activity this reporting period also included the placing of orders for

fuel metering valve rotary position transducers and PS3 sensing plugs along

with miscellaneous sensor related attaching hardware. Also, a minor electri-

cal connector orientation change was made on a start bleed valve position

transducer to avoid interference with recently defined air system piping.

Work Planned

•	 Complete the design of the T42 and casing temperature sensing

systems in conjunction with Instrumentation Design

•	 Order T3 sensors and remaining miscellaneous sensor interface

hardware

e	 Design the electrical compressor stator position feedback sensing

system.
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2.9 MCSLLS STRUCTURES

Overall Objectives

The flight nacelle configurations for the E3 will incorporate advanced

composite structures and sound-suppression features to meet or exceed con-

mercial certification requirements for noise, performance, life, and thrust

reversal of the fan bypass flow. The general configuration of the composite- 	
s

structure hardware will be a flight inlet, a fixed-cascade thrust reverser,

and a fan nozzle and inner cowl hinged to the upper pylon. Kevlar 49, graph-

ite, and fiberglass/epoxy skins will be combined for strength, toughness,

light weight, and low production cost. The nacelle structure will have no

life-limiting conditions for the expected operation loads of commercial avia-

tion, including crosswinds and thrust reversal. System mode frequencies of	
f

the nacelle will avoid strong sources of vibration excitation throughout the

engine operating range. Fabrication goals, maintenance goals, and performance

goals for the structure's hardware will contribute to the overall goals of the

E3 flight propulsion system to reduce specific fuel consumption and direct

operating costs (DOC).

Composite-structure nacelle components for the flight propulsion system

will be designed through detail layouts but will not be built. Weight esti-

mates will then oe updated based on these layout studies. Components to be

studied include the flight inlet, thrust reverser, fan nozzle, and inner cowl.

A boilerplate inlet, an outer fan duct, and an inner fan duct will be

built to duplicate the engine flowpath contour for acoustic and performance

testing. There will be no thrust reverser in the boilerplate configuration,

but space will be left to simulate its effect.

Development Approach

The preliminary aerodynamic design effort was completed in 1978. The

acoustic panel design as well as the preliminary mechanical design effort was

also completed in 1978.
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Having completed the preliminary design, the detailed aerodynamic and

sech4nical design of the flight-engine composite nacelle was started in

January 1979 and was completed in December 1979 with the results presented at

the Nacelle PDR in May 1980. The design layouts will provide an accurate

basis for calculating weights, costs, and potential performance gains.

Beginning in January 1980, a boilerplate nacelle structure is being

designed to duplicate the performance characteristics of the flight-engine

design. While no thrust reverser will be incorporated into this boilerplate

design, space will be provided to simulate its effect on performance. The

boilerplate design was discussed in the Nacelle PDR in May 1980 and will be

the subject of a DDR in May 1981.

2.9.1 Nacelle Aero Design

Technical Progress

Definition of the second ICLS conic nozzle to be used for nozzle exit

survey tests was completed. The nozzle exit station is the same as the per-

formance nozzle (348.30) and the exit radius is 31.766. The area increase

above the performance nozzle is approximately 5% at the exit to account for

the blockage of the survey rake. This nozzle design is based on the assump-

tion that the existing NASA emissions rake system will be used for the survey

testing. The blockage effect was estimated from an analysis of the rake geom-

etry and previous confluent exhaust, engine test results.

Analysis and design of the core component vent scoop system was com-

pleted. The system was designed to provide six air changes per minute at high

engine speed conditions. Several approaches were considered in the scoop

design selection. The final configuration is a simple annular slot 0.10-inch

high contoured to minimize pressure drag. The slot is located just behind the

fan frame at Station 200 and is an integral part of the core cowl innerring

attached to the fan frame.

Wall static pressures and boundary layer rake requirements were defined

for the ICLS aero/acoustic inlet bellmouth. This instrumentation will be used

to assess the inlet boundary layer/recovery for performance tests and to ver-

ify that the wall Mach number distributions will be as predicted for the noise
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tests. Fifty-eight static pressures were defied from a point just downstream

of the inletlbellmouth lip to the fan face in several axial and circumferen-

tial rows. One boundary layer rake will be installed at 70' (clockwise from

top centerline, aft looking foward) for all ICLS performance testing. This

mount pad lc stion exists as part of the instrumentation requirements for the 	 1

fan component test. The nine element boundary layer rake which will be used

for the component test will also be used on ICLS. Additionally, three linear

potentiometers will be installed on the outside of the bellmouth at the slip

joint at 0% 45% and 90' from top centerline (aft looking forward) to measure

relative radial movement between the bellmouth and fan casing for all engine

performance testing. These two measurements combined with analytical calcula-

tions will provide an appropriate analytical adjustment to the inlet recovery

and engine performance data if required.

Work Planned

e	 The FPS nacelle design will be updated as required to reflect the
results of the Phase III scale model mixer test, WBS 2.6.4.

2.9.2 Nacelle Mechanical Design

Technical Progress

The objective of this task is to design and analyze boilerplate nacelle

hardware for the ICLS engine test. The basic hardware to be fabricated

includes Lhe inlet, outer cowl doors, core cowl doors, fan nozzle, and pylon

side walls.

This structure was basically defined in the previous semiannual report

and a drawing of the inlet was also shown. The layout drawings of all the

ICLS nacelle hardware have now been completed except for incorporation of the

instrumentation requirements.

The outer cowl doors are shown in Figure 2.9-1. The doors are hinged to

the pylon and latched together at the bottom with five latches and a tie bar

(Figure 2.9-2). The tie bar is required at the forward end due to the fact

that the doors are cut back in this area to accommodate the lower pylon.
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The core cowl doors, shown in Figure 2.9-3, are hinged to a floating

apron structure and latched together at the bottom. Again, provisions had to

be made to accommodate the lower pylon. Since there was no way to provide

structural continuity to the doors through the lower pylon, they will be

latched directly to the fan frame at their lower forward edges. Aft of the

pylon, the doors are latched to each other at three locations as shown in

Figure 2.9-4. The original concept for the construction of these doors was

to make the primary structure a conical steel shell. Orce the piping and

accessories were located, it was apparent that this concept did not provide

sufficient space. In order to provide more room in this area, the lower 90°

of the doors was moved outward as shown in Figure 2.9-3. This change did not

alter the position of the flowpath surface but made the standoff blocks for

the acoustic panels shorter.

The pylon structure will be attached to the facility structure. The pylon

incorporates an air scoop and plenums to provide air to the clearance control

valves as shown in Figure 2.9-5. The pylon is sealed at the bottom and open

at the top.

The fixed fan nozzle is shown in Figure 2.9-6. It is rigidly attached to

.he facility structure. The forward end contains a grooved rig which accepts

a tongue on the aft end of the outer cowl doors. This joint is loose axially

but prevents any significant rotational motion between the two structures.

Acoustic treatment is provided for all of the nacelle hardwarr. One

change made during the last reporting period was to make the acoustic treat-

ment in the inlet int-ar?1 with the structure rather than having replaceable

panels. The acoustic treatment in the fan exhaust will be of the replaceable

panel type with the possible exception of the forward portion of the fixed fan

nozzle.

Work Planned

The ICLS instrumentation requirements will be incorporated in the nacelle

layout drawings and design support will be provided for the fabrication effort

to be conducted under WBS 2.9.4.
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Figure 2.9-3. Core Cowl Doors - End View.
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3.0 TASK 3 - CORE TESTING

Overall Objectives

•	 Design, fabricate, assemble, and test a core engine and obtain

experimental evaluation of g3 components operating as a system.

•	 Develop methods by which performance of the core can be measured as

to its suitability as a core for the projected Flight Propulsion
System.

•	 Evaluate performance and mechanical integrity of the core to identify
changes required to meet program goals. Within program timing and

cost constraints, incorporate design improvements identified from
component and core testing into core and ILLS hardware.

Development Approach

The core engine will incorporate the individual components designed and

tested in part or full scale in Task 2 (Component Analysis, Design, and

Development). These components will include the high-pressure compressor; the

combustor; and the high-pressure turbine, including clearance control devices

and a control system adequate to permit starting, steady-state operation, and

slow transients. The purpose of the core test will be to evaluate the per-

formance, stability, and mechanical integrity of the components running

together as a system, and to identify desirable changes for their incorpors-

tion into the ILLS or the Flight Propulsion System.

The core test vehicle will be assembled with extensive performance and

mechanical instrumentation, including

•	 Gas path steady state total temperature and pressure rakes at com-
pressor inlet, compressor exit, and turbine exit

•	 Rotor mechanical speed measurement

•	 Fuel flow measurement

•	 Compressor rotor and stator strain gage insrumentation based on FSCT
results sufficient to monitor mechanical integrity

•	 Turbine rotor and stator strain Rage instrumentation sufficient
to monitor mechanical integrity

•	 Inlet airflow instrumentation
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•	 Variable guide vane setting readout

•	 Measurement of compressor rotor tip clearances for Stages 3, 5, and
10

•	 Compressor interstage steady-state instrumentation, incorporated, as

necessary, to determine compressor interstage conditions

•	 Measurement of HPT rotor tip clearances

•	 Parasitic flowpath instrumentation, included to help evaluate the
design of sump venting and cooling systems, and to establish the

levels of parasitic flows under actual operating conditions; direct

measurement of parasitic flows will be done wherever such measure-
ments are practical in the hardware configuration

•	 Temperature measurements of the ompressor and turbine casings for
evaluation of active clearance cLntroL effectiveness

•	 Temperature measurements of HPT rotor, etator, and other hot struc-
tures.

The core vehicle test program will be designed to exercise k.he compo-

nents over a sufficiently wide range to cover operating requirements in the

ILLS. This will include operation at SLS ambient inlet conditions and with

inlet heat/ram operation. In addition to covering the ICLS operating range,

the characteristics of the core engine will be explored up to the levels of

corrected airflow (120 pps) required for Flight Propulsion System operation

throughout its flight envelope. This will provide an important part of the

basis for extrapolating ICLS performance to altitude conditions outside the

range of ICLS testing.

Prior to testing, a core engine computer model will be constructed on the

basis of component rig tests and core engine configuration assembly measure-

ments. This model will represent the anticipated performance of the core

engine and will be used in the generation of pretest predictions and in the

analysis of test results.

Using the core engine computer model as a base, a data reduction program

will be developed to analyze the measurements during testing. This will ensure

consistency of calculation procedures between the core engine computer model

and the data reduction program, and substantially facilitate the construction

of a Status Performance model.
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As the engine test results are obtained, the performance of the individ-

ual components and the overall core system will be compared to the performance

of the pretest prediction model. Deviations in performance will be identified

and reasons for those deviations will be determined. As a result of this

analysis, desirable changes will be identified for incorporation in the ICLS

or the Flight Propulsion System design.

At the conclusion of the core test, a Core Test Status performance com-

puter model will be established. This will be used to project ICLS perform-

ance on the basis of the core engine demonstrated performance. In conjunction

with the ICLS test results plus projected improvements anticipated from further

component development, the essential basis for Flight Propulsion System per-

formance projections will be provided.

3.1.1 Core Engineering and Analysis

Technical Progress

During this reporting period, the primary task continued to be maintain-

ing the coordination effort between DesiQ,n Engineering and the contributing

support organizations (Instrumentation Design, Development Assembly, and Test

Facility Engineering). The majority of the work effort was in the following

arees:

•	 Definition of preliminary test plan

•	 Definition and refinement to the assembly and instrumentation plans

•	 Refinement of the assembly schedule

•	 Monitoring hardware design for assembly and maintainability

considerations

•	 Defining and documentating vehicle and facility interfaces and

hardware responsibilities

•	 Supplying hardware rework definition for the application and lead-

out of instrumentation

•	 Definition of in-assembly machining operations required to main-

tain engine clearances

•	 Definition of rotor balance procedures and tooling requirements
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•	 Initiating work on subassembly buildup procedures

•	 Initiating design activities for instrumentation design, test
facility hardware, and assembly tooling

•	 Initiating core interface drawing.

Work Planned

•	 Major emphasis will be to complete the major subassembly buildup

procedures, design, and begin procurement of assembly tooling and
initiate the detailed design for instrumentation application

•	 The actual application of instrumentation to engine hareware and the

assembly of the core will begin

•	 The detailed design of test facility hardware will be initiated along

with the procurement of long lead time items

•	 Coordination and monitoring effort between Design Engineering and

the contributing support organizations will continue.

3.1.2 Core Instrumentation and Assembly

3.1.2.1 Instrumentation Design

Technical Progress

The major work effort during the past 6 months was in defining methods

for the application and leadout of instrumentation sensors and associated

vehicle hardware rework requirements. These preliminary design activities

were in the following areas.

•	 Defined compressor rotor leadout paths, rework requirements, and in-

strumentation leadout duct design

• Defined an improved method for routing and sealing compressor aft

stator case leads; this will help alleviate the assembly problems
encountered on the 1-10 compressor test vehicle

•	 Defined mounting and sealing provisions for all rakes

•	 Work continued on defining application and leadout provisions for

the combustion case, turbine stator, turbine rotor, and rear frame
subassemblies
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•	 Selected accelerometer locations and types

e	 Began layout of compressor traverse probes and their installation

•	 Provided definition to Design Engineering as required for hardware

design releases.

Work Planned

a	 Complete definition of application and lead routing techniques for

the remaining vehicle components

e	 Begin detailed design for all rakes and probes plus initiate and

complete application drawings as required to meet the vehicle

assembly schedule.

3.1.2.3 Core Assembly

Technical Progress

Initiated aseembiy planning work ef.orts to provide written assembly

procedures. Procedures for the Stage 1 HPT not:le assembly have been com-

pleted and reviewed by Design Engineering. Assembly procedures for the HPT

shroud, combustion case, and front frame subassemblies are in progress. Pre-

liminary designs for HP turbine rotor tooling have been submitted by Design

Engineering, and are currently being reviewed. The torquing wrench for mating

the high pressure rotor main joint has been designed and is in the process of

being procured for an integrity test. The detail design for the compressor

EROM and vehicle balance tooling has been initiated.

Work Planned

•	 Provide core vehicle subassembly written procedures as required to

meet the assembly schedule

s	 Procure main rotor joint torquing tool and perform an integrity

test to verify its acceptance for use on the core

•	 Initiate design of assembly and balance tooling and procure tooling

as required to meet the assembly schedule.
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_..._., Core Signal Conditioning

Technical Progress

Completed design of the HP turbine rotor optical clearance probes and

have released drawings for quotes. Modifications to the engine level

assembly drawing to show probe installations are in process. All long lead

time electrical components have been placed on order.

Work Planned

•	 Procure material and begin fabrication of clearance probes

•	 Begin work on signal conditioning design

•	 Assist in the redesign of the CDP air cooling cart; this cart is

required to cool engine CDP air before being used as purge air for
the clearance probes; modifications to the cart may be required

to completely satisfy the core vehicle's requirments.

3.1.3 Core Test Facilities Engineering

Technical Progress

Preliminary design of the cell inlet and air supply ducting was initiated.

Much of the existing cell ducting can be utilized for the core test including

the main air filtration and flow meauring hardware. Design of the slave sta-

tor actuation system continued during this reporting period. Interferences

between instrumentation traverse probes on the compressor stator case and the

actuators have been defined and are currently being resolved. All engine-to-

cell interfaces and slave systems have been defined.

Work Planned

•	 Complete the preliminary design and begin the detailed design of

facility hardware

•	 Place all long lead time material and hardware on order

•	 Review requirements for the core optical cleara^ice probe

cooling cart and define what modifications to the existing

cart are required.
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4.0 TASK 4 - ICLS TESTING

Overall Objectives

•	 Design, fabricate, assemble, and test a turbofan demonstrator engine

and obtain experimental evaluation of E 3 components operating as

asystem

•	 Develop methods by which performance of the turbofan demonstrator

engine can be measured as to its suitability toward the projected

Flight Propulsion System	 3
s

•	 Evaluate performance and mechanical integrity of the turbofan demon-

strator engine to identify changes required to meet program goals.

Development Approach

i
The turbofan engine will incorporate the individual components designed :

and tested in part or full scale in Task 2 (Component Analysis, Design, and	 I

Development). These components vill include the high-pressure compressor, 	 1

the combustor, the high-pressure turbine, the fan, the low-pressure turbine,

and the mixer including clearance control devices and a control system adequate

to permit starting, steady-state operation, and slow transients. The current 	 a

plan is to use the applicable core test vehicle and full-scale fan test vehicle

component hardware in the assembly of the ICLS. This assumes that there will

be no major hardware modifications required as a result of the individual com-

ponent tests. The purpose of the ICLS test will be to evaluate the performance,

stability, and mechanical integrity of the components running together as a

system, and to identify desirable changes for the Flight Propulsion System.

The turbofan test engine will be assembled with extensive performance and

mechanical instrumentation, including:

•	 Gas path steady-state total temperature and pressure rakes at the
fan inlet, compressor inlet, compressor exit, HP turbine exit,

LP turbine exit, and mixer exhaust

•	 Thrust

•	 Rotor mechanical speed measurements

•	 Fuel flow measurement
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•	 Fan rotor and stator strain gage instrumentation based on FSFT

results sufficient to monitor mechanical integrity

•	 Low pressure turbine rotor and stator strain gage instrumentation

sufficient to monitor mechanical integrity

•	 Inlet airflow instrumentation

•	 Variable guide vane setting readout

e	 Combustor static pressure (control pressure) measurement

•	 Compressor interstage static pressure instrumentation; incorporated,

as necessary, to determine compressor interstage conditions

•	 Direct measurement of HPT rotor tip clearances

e	 Parasitic flowpath in.3trumentation, included to help evaluate the

design of sump venting and cooling system, and to establish the
levels of parasitic flows under actual operating conditions; direct

measurement of parasitic flows will be done wherever such measure-

ments are practical in the hardware configuration

e	 Measurements of baseline and fully suppressed acoustical character-

isti ss

e	 Exhaust emissions measurement

•	 Temperature measurements of the compressor, HPT, and LPT cases suf-

ficient to evaluate active clearance control effectiveness

s	 Temperature meab,: rements of LPT rotor, stator, and other hot struc-

tures.

The ICLS test program will be designed to test the components over the

entire range of ICLS operating conditions. All testing will be at ambient

inlet conditions. In addition to covering the ICLS operating range, the char-

acteristics of the core engine will be explored up to the levels of corrected

airflow (120 pps) required for Flight Propuslion System operation throughout

its flight envelope. This will provide an important part of the basis for

extrapolating ICLS performance to altitude conditions outside the range of

ICLS testing.
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Prior to testing, an ICLS computer model will be constructed on the basis

of component rig tests, core engine test, and the ICLS configuration assembly

measurements. This model will represent the anticipated performance of the

ICLS engine and All be used in the generation of pretest predictions and in

the analysis of test results.

Using the ICLS computer model as a base, a data reduction program will

be developed to analyze the measurements during testing. This will ensure

consistency of calculation procedures between the ICLS computer model anal the

data reduction program, and substantially facilitate the construction of a

Status Performance model.

Au the engine test results are obtained, the performance of the indi-

vidual components and the overall engine system will be compared tv the per-

formance of the pretest prediction model. Deviations in performance will be

identified and reasons for those deviations will be determined. As a result

of this analysis, desirable changes will be identified for the Flight Propul-

sion System design.

4.1.1 ICLS - Preassembly Engineering and Analysis

Technical Progress

During this reporting period, the primary task conti-aed to F?e the def-

inition and engineering coordination effort between Design Engineering and

the contributing support organizations. The majority of the work effort was

in the following areas:

•

	

	 Definitiot! of preliminary assembly, instrumentation, and test
facility plans

•

	

	 Initiation of facility mount design; coordinated definition of

engine mount link loads and cell to engine interfaces

•

	

	 Monitoring progress of the full scale fan test vehicle hardare and

instrumentation designs to assure compatibility with ICLS

•

	

	 Monitcring hardware design for assembly, maintainability, and
installation considerations

•

	

	 Supplying hardware rework definition for the application and ieadout

of instrumentation
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•	 Definition znd documentation of engine-to-facility interfaces

•	 Definition of LP turbine rotor balance and assembly procedures

•

	

	 Definition of in-assembly machining procedures required to maintain
engine clearances.

Work Planned

•

	

	 Continue with the coordination and definition Jfort between Design
Engineering and the support organizations

•

	

	 Initiate instrumentation design for the fan and LP tubine sub-
assemblies

•	 Continue to refine the assembly and instrumentation plan

•	 Define cowling rework for instrunmentation application

•	 Define main engine level installation of LP turbine module procedure.

4.2.2.1 LPT Rotor Hardware

Technical Progress

Blades

Details on the blades are reported in Section 2.5.6.1.

Rotor

All five major disks have been rough machined, ultrasonically inspected,

and macroetched. They .rill be final machined after receipt of tooling required

for machining. A significant cost savings has resulted due to machining the

dovetails by wire EDM rather than broaching.

Forgings for the LPT rotor seals have been received and quotes for their

machining are significantly below plan.
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Work Planned

•	 Place orders for blade machinings

•	 Initiate machining LPT rotor seals and continue machining the disks.

4.2.2.2 LPT Nozzle Hardware

Technical Progress

Nozzles

Details on the nozzles are reported in Sections 2.5.6.2 and 2.5.6.3.

Other Hardware

All necessary forgings for the LPT seal supports are available.

Machining drawings for the forward inner seal support and aft inner seal

support have been issued and released to Development Machining Operation (DMO)

for planning. Several changes were made to the aft inner seal support design

to facilitate fabrication, including changing two brazed joints and two

EB-welded joints to four TIG-welded joints. Additional minor changes to these

drawings are now being reviewed.

Work Planned

•	 Complete nozzle casting tooling

•	 Cast initial nozzle pieces.

4.2.2.3 LPT Casings

Technical Progress

Forgings for the outer duct support are available for machining.

The outer duct support machining drawing has been issued and has been

released to DMO for planning and machining. Several minor changes to the

drawing are now being reviewed. All miscellaneous hardware including nuts,

bolts, washers, rivets, etc. are on order.
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Casing

Fabrication planning is continuing in-house for the LPT casing.

In-process heat treat required prior to machining has been completed. hough

machining of the separate forward and aft shells is scheduled for April, to

be followed by welding of the shells and final machining.

LPT Cooling/Active Clearance Control Impingement Manifold

Detail drawings for the LPT cooling manifold have been issued, planned

funding has been released, and quotes have been requested. All quotes have

not yet been received, but of those returned, the low bid is below the planned

funding.

Drawings for all the manifold mounting harware have been issued. W/A'a

to release funding for procurement of these miscellaneous mounting hardware

parts are in process.

Work Planned

s	 Place all machining orders

•	 Continue fabrication of casing

0	 Initiate fabrication of outer duct support.

4.2.2.4 LPT Shrouds and Seals

Technical Progress

The inner and outer transition duct casting drawings have been issued end

orders have been placed for the castings. The duct machining drawings have

been issued and released to DMO for machining. DMO has reviewed the drawings

and minor changes are planned to facilitate manifacture. All spline and hour-

glass seal drawings (seals which fit between nozzle segments) have been issued

and released for quotations.
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LPT Shrouds Stages 1 through 5

All five shroud fabrication drawings have been issued and have been sent

out for Quotes; planned funding has been released for procuresient.

Insulation Blankets for LPT

Detail drawings have been issued defining .ill the insulation blankets in

the LPT. Locations are inner and outer transrtavn duct between HPT and LPT,

over all five stages of the LPT shrouds, and o-o r the nozzles in Stages 2

through 5. Planned funding has been telessed fo- procurement of all the insu-

lation blankets. These patts are now rele3aec for quotes.

Work Planned

e	 Plact remaining hardware on arcet

e	 Incorporate manufactuting requested changes into the duct machining

drawings.

4.2.3 Bearing, Systems, Drives, and Configuration Fabrications

Technical PtoRless

All dtawings fur the ILLS forward and aft sumps have been issued with the

exception of the LPT shaft And the No. 5 bearing housing. Material for these

two major parts is on itdet and shaft material should be available early in

the second quarter of 1981. Housing material should be available by laid-1981.

All sump hardware with the exception of the shaft and housing are either

out for quote of on otdet.

Work Planned

e	 Place ITT shaft and W. 5 beating housing on older

e	 Continue ptocurement of other hardware.
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4.4 ICLS TEST FACILITY ENGINEERING

Technical Progress

Began work on preliminary design of ICLS/facility mount system. Defini-

tion of forward mount brackets, pickup coordinates, link loads and links have

been completed. Aft mount link design is still in process. Also working on

cowling interfaces. The inlet-to-fan frame soft mount has been defined.

Working with Design Engineering to define cowling support requirements.

Work Planned

•	 Complete facility mount design

•	 Define facility slave service requirments for ICLS

•	 Define cooling cart tequirements for turbine optical clearance 	 k
probes and outdoor testing.
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Technical Progress j
I

During this reporting period, the following has been accomplished:

• Final review of the E3 Preliminary Hazards Analysis was completed
and the Hazards Analysis was issued. 	 The hazards analysis concluded
that, "based on the configuration analyzed, no probable malfunction,
single or multiple failures, nor improper malfunction will cause
the probability of occurrence of a hazardous 'undesired event' to
exceed an acceptable rate."

• Components were selected for review of Quality Plan requirements
and these Quality Plans were requested from the component manufac-
turer.	 To date, approximately 60% of the Quality Plans for the
components selected have been reviewed by Engineering and found to
be adequate.

• Assembly of the 1-10 Compressor Test Rig was completed, documenta-
tion was reviewed and the assembly was shipped to GE-Lynn for test.
The installation in the GE-Lynn Compressor Test Facility including
the Test Control and Data Center was reviewed.	 All systems were
found to be acceptable for this test.

f

• Participated in Component design, and program and hardware reviews
throughout the reporting period.

Work Planned
a

• Monitor test of 1-10 Compressor Rig
d

• Review and monitor the buildup and test of the E 3 fan at the Fan
Test Facility at GE-Lynn

•	 Continue to obtain Quality Plans for selected components for Engi-
neering Review

•	 Continue to monitor and review all aspects of the programs partici-
pating in program and design reviews to assure compliance with the
Quality Assurance Program Plan.
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