112,624 research outputs found

    Presence and task performance:an approach in the light of cognitive style

    Get PDF
    The paper highlights the relationship between each of four bi-polar dimensions of personality cognitive style, such as extraversion–introversion, sensing–intuition, thinking–feeling and judging–perceiving, and the level of sense of presence experienced. Findings indicate that individuals who are more sensitive, more feeling or more introverted experience a higher level of presence. While not reaching statistical significance, differing cognitive styles appear to impact on task performance. The apparent negative relationship discovered between sense of presence and task performance should be considered in the light of task characteristics. We discuss the implications of these findings and how they contribute to an understanding of the complex relationship that exists between presence and task performance and how this subsequently ought to influence the design of virtual environments

    Usability Evaluation in Virtual Environments: Classification and Comparison of Methods

    Get PDF
    Virtual environments (VEs) are a relatively new type of human-computer interface in which users perceive and act in a three-dimensional world. The designers of such systems cannot rely solely on design guidelines for traditional two-dimensional interfaces, so usability evaluation is crucial for VEs. We present an overview of VE usability evaluation. First, we discuss some of the issues that differentiate VE usability evaluation from evaluation of traditional user interfaces such as GUIs. We also present a review of VE evaluation methods currently in use, and discuss a simple classification space for VE usability evaluation methods. This classification space provides a structured means for comparing evaluation methods according to three key characteristics: involvement of representative users, context of evaluation, and types of results produced. To illustrate these concepts, we compare two existing evaluation approaches: testbed evaluation [Bowman, Johnson, & Hodges, 1999], and sequential evaluation [Gabbard, Hix, & Swan, 1999]. We conclude by presenting novel ways to effectively link these two approaches to VE usability evaluation

    An Introduction to 3D User Interface Design

    Get PDF
    3D user interface design is a critical component of any virtual environment (VE) application. In this paper, we present a broad overview of three-dimensional (3D) interaction and user interfaces. We discuss the effect of common VE hardware devices on user interaction, as well as interaction techniques for generic 3D tasks and the use of traditional two-dimensional interaction styles in 3D environments. We divide most user interaction tasks into three categories: navigation, selection/manipulation, and system control. Throughout the paper, our focus is on presenting not only the available techniques, but also practical guidelines for 3D interaction design and widely held myths. Finally, we briefly discuss two approaches to 3D interaction design, and some example applications with complex 3D interaction requirements. We also present an annotated online bibliography as a reference companion to this article

    From Industry to Practice: Can Users Tackle Domain Tasks with Augmented Reality?

    Get PDF
    Augmented Reality (AR) is a cutting-edge interactive technology. While Virtual Reality (VR) is based on completely virtual and immersive environments, AR superimposes virtual objects onto the real world. The value of AR has been demonstrated and applied within numerous industrial application areas due to its capability of providing interactive interfaces of visualized digital content. AR can provide functional tools that support users in undertaking domain-related tasks, especially facilitating them in data visualization and interaction by jointly augmenting physical space and user perception. Making effective use of the advantages of AR, especially the ability which augment human vision to help users perform different domain-related tasks is the central part of my PhD research.Industrial process tomography (IPT), as a non-intrusive and commonly-used imaging technique, has been effectively harnessed in many manufacturing components for inspections, monitoring, product quality control, and safety issues. IPT underpins and facilitates the extraction of qualitative and quantitative data regarding the related industrial processes, which is usually visualized in various ways for users to understand its nature, measure the critical process characteristics, and implement process control in a complete feedback network. The adoption of AR in benefiting IPT and its related fields is currently still scarce, resulting in a gap between AR technique and industrial applications. This thesis establishes a bridge between AR practitioners and IPT users by accomplishing four stages. First of these is a need-finding study of how IPT users can harness AR technique was developed. Second, a conceptualized AR framework, together with the implemented mobile AR application developed in an optical see-through (OST) head-mounted display (HMD) was proposed. Third, the complete approach for IPT users interacting with tomographic visualizations as well as the user study was investigated.Based on the shared technologies from industry, we propose and examine an AR approach for visual search tasks providing visual hints, audio hints, and gaze-assisted instant post-task feedback as the fourth stage. The target case was a book-searching task, in which we aimed to explore the effect of the hints and the feedback with two hypotheses: that both visual and audio hints can positively affect AR search tasks whilst the combination outperforms the individuals; that instant post-task feedback can positively affect AR search tasks. The proof-of-concept was demonstrated by an AR app in an HMD with a two-stage user evaluation. The first one was a pilot study (n=8) where the impact of the visual hint in benefiting search task performance was identified. The second was a comprehensive user study (n=96) consisting of two sub-studies, Study I (n=48) and Study II (n=48). Following quantitative and qualitative analysis, our results partially verified the first hypothesis and completely verified the second, enabling us to conclude that the synthesis of visual and audio hints conditionally improves AR search task efficiency when coupled with task feedback

    Impact of model fidelity in factory layout assessment using immersive discrete event simulation

    Get PDF
    Discrete Event Simulation (DES) can help speed up the layout design process. It offers further benefits when combined with Virtual Reality (VR). The latest technology, Immersive Virtual Reality (IVR), immerses users in virtual prototypes of their manufacturing plants to-be, potentially helping decision-making. This work seeks to evaluate the impact of visual fidelity, which refers to the degree to which objects in VR conforms to the real world, using an IVR visualisation of the DES model of an actual shop floor. User studies are performed using scenarios populated with low- and high-fidelity models. Study participant carried out four tasks representative of layout decision-making. Limitations of existing IVR technology was found to cause motion sickness. The results indicate with the particular group of naïve modellers used that there is no significant difference in benefits between low and high fidelity, suggesting that low fidelity VR models may be more cost-effective for this group

    Three levels of metric for evaluating wayfinding

    Get PDF
    Three levels of virtual environment (VE) metric are proposed, based on: (1) users’ task performance (time taken, distance traveled and number of errors made), (2) physical behavior (locomotion, looking around, and time and error classification), and (3) decision making (i.e., cognitive) rationale (think aloud, interview and questionnaire). Examples of the use of these metrics are drawn from a detailed review of research into VE wayfinding. A case study from research into the fidelity that is required for efficient VE wayfinding is presented, showing the unsuitability in some circumstances of common metrics of task performance such as time and distance, and the benefits to be gained by making fine-grained analyses of users’ behavior. Taken as a whole, the article highlights the range of techniques that have been successfully used to evaluate wayfinding and explains in detail how some of these techniques may be applied
    corecore