1,146 research outputs found

    A binaural grouping model for predicting speech intelligibility in multitalker environments

    Get PDF
    Spatially separating speech maskers from target speech often leads to a large intelligibility improvement. Modeling this phenomenon has long been of interest to binaural-hearing researchers for uncovering brain mechanisms and for improving signal-processing algorithms in hearing-assistive devices. Much of the previous binaural modeling work focused on the unmasking enabled by binaural cues at the periphery, and little quantitative modeling has been directed toward the grouping or source-separation benefits of binaural processing. In this article, we propose a binaural model that focuses on grouping, specifically on the selection of time-frequency units that are dominated by signals from the direction of the target. The proposed model uses Equalization-Cancellation (EC) processing with a binary decision rule to estimate a time-frequency binary mask. EC processing is carried out to cancel the target signal and the energy change between the EC input and output is used as a feature that reflects target dominance in each time-frequency unit. The processing in the proposed model requires little computational resources and is straightforward to implement. In combination with the Coherence-based Speech Intelligibility Index, the model is applied to predict the speech intelligibility data measured by Marrone et al. The predicted speech reception threshold matches the pattern of the measured data well, even though the predicted intelligibility improvements relative to the colocated condition are larger than some of the measured data, which may reflect the lack of internal noise in this initial version of the model.R01 DC000100 - NIDCD NIH HH

    An evaluation of intrusive instrumental intelligibility metrics

    Full text link
    Instrumental intelligibility metrics are commonly used as an alternative to listening tests. This paper evaluates 12 monaural intrusive intelligibility metrics: SII, HEGP, CSII, HASPI, NCM, QSTI, STOI, ESTOI, MIKNN, SIMI, SIIB, and sEPSMcorr\text{sEPSM}^\text{corr}. In addition, this paper investigates the ability of intelligibility metrics to generalize to new types of distortions and analyzes why the top performing metrics have high performance. The intelligibility data were obtained from 11 listening tests described in the literature. The stimuli included Dutch, Danish, and English speech that was distorted by additive noise, reverberation, competing talkers, pre-processing enhancement, and post-processing enhancement. SIIB and HASPI had the highest performance achieving a correlation with listening test scores on average of ρ=0.92\rho=0.92 and ρ=0.89\rho=0.89, respectively. The high performance of SIIB may, in part, be the result of SIIBs developers having access to all the intelligibility data considered in the evaluation. The results show that intelligibility metrics tend to perform poorly on data sets that were not used during their development. By modifying the original implementations of SIIB and STOI, the advantage of reducing statistical dependencies between input features is demonstrated. Additionally, the paper presents a new version of SIIB called SIIBGauss\text{SIIB}^\text{Gauss}, which has similar performance to SIIB and HASPI, but takes less time to compute by two orders of magnitude.Comment: Published in IEEE/ACM Transactions on Audio, Speech, and Language Processing, 201

    IMPACT OF MICROPHONE POSITIONAL ERRORS ON SPEECH INTELLIGIBILITY

    Get PDF
    The speech of a person speaking in a noisy environment can be enhanced through electronic beamforming using spatially distributed microphones. As this approach demands precise information about the microphone locations, its application is limited in places where microphones must be placed quickly or changed on a regular basis. Highly precise calibration or measurement process can be tedious and time consuming. In order to understand tolerable limits on the calibration process, the impact of microphone position error on the intelligibility is examined. Analytical expressions are derived by modeling the microphone position errors as a zero mean uniform distribution. Experiments and simulations were performed to show relationships between precision of the microphone location measurement and loss in intelligibility. A variety of microphone array configurations and distracting sources (other interfering speech and white noise) are considered. For speech near the threshold of intelligibility, the results show that microphone position errors with standard deviations less than 1.5cm can limit losses in intelligibility to within 10% of the maximum (perfect microphone placement) for all the microphone distributions examined. Of different array distributions experimented, the linear array tends to be more vulnerable whereas the non-uniform 3D array showed a robust performance to positional errors

    Coding Strategies for Cochlear Implants Under Adverse Environments

    Get PDF
    Cochlear implants are electronic prosthetic devices that restores partial hearing in patients with severe to profound hearing loss. Although most coding strategies have significantly improved the perception of speech in quite listening conditions, there remains limitations on speech perception under adverse environments such as in background noise, reverberation and band-limited channels, and we propose strategies that improve the intelligibility of speech transmitted over the telephone networks, reverberated speech and speech in the presence of background noise. For telephone processed speech, we propose to examine the effects of adding low-frequency and high- frequency information to the band-limited telephone speech. Four listening conditions were designed to simulate the receiving frequency characteristics of telephone handsets. Results indicated improvement in cochlear implant and bimodal listening when telephone speech was augmented with high frequency information and therefore this study provides support for design of algorithms to extend the bandwidth towards higher frequencies. The results also indicated added benefit from hearing aids for bimodal listeners in all four types of listening conditions. Speech understanding in acoustically reverberant environments is always a difficult task for hearing impaired listeners. Reverberated sounds consists of direct sound, early reflections and late reflections. Late reflections are known to be detrimental to speech intelligibility. In this study, we propose a reverberation suppression strategy based on spectral subtraction to suppress the reverberant energies from late reflections. Results from listening tests for two reverberant conditions (RT60 = 0.3s and 1.0s) indicated significant improvement when stimuli was processed with SS strategy. The proposed strategy operates with little to no prior information on the signal and the room characteristics and therefore, can potentially be implemented in real-time CI speech processors. For speech in background noise, we propose a mechanism underlying the contribution of harmonics to the benefit of electroacoustic stimulations in cochlear implants. The proposed strategy is based on harmonic modeling and uses synthesis driven approach to synthesize the harmonics in voiced segments of speech. Based on objective measures, results indicated improvement in speech quality. This study warrants further work into development of algorithms to regenerate harmonics of voiced segments in the presence of noise

    Binary Masking & Speech Intelligibility

    Get PDF

    Methods of Optimizing Speech Enhancement for Hearing Applications

    Get PDF
    Speech intelligibility in hearing applications suffers from background noise. One of the most effective solutions is to develop speech enhancement algorithms based on the biological traits of the auditory system. In humans, the medial olivocochlear (MOC) reflex, which is an auditory neural feedback loop, increases signal-in-noise detection by suppressing cochlear response to noise. The time constant is one of the key attributes of the MOC reflex as it regulates the variation of suppression over time. Different time constants have been measured in nonhuman mammalian and human auditory systems. Physiological studies reported that the time constant of nonhuman mammalian MOC reflex varies with the properties (e.g. frequency, bandwidth) changes of the stimulation. A human based study suggests that time constant could vary when the bandwidth of the noise is changed. Previous works have developed MOC reflex models and successfully demonstrated the benefits of simulating the MOC reflex for speech-in-noise recognition. However, they often used fixed time constants. The effect of the different time constants on speech perception remains unclear. The main objectives of the present study are (1) to study the effect of the MOC reflex time constant on speech perception in different noise conditions; (2) to develop a speech enhancement algorithm with dynamic time constant optimization to adapt to varying noise conditions for improving speech intelligibility. The first part of this thesis studies the effect of the MOC reflex time constants on speech-in-noise perception. Conventional studies do not consider the relationship between the time constants and speech perception as it is difficult to measure the speech intelligibility changes due to varying time constants in human subjects. We use a model to investigate the relationship by incorporating Meddis’ peripheral auditory model (which includes a MOC reflex) with an automatic speech recognition (ASR) system. The effect of the MOC reflex time constant is studied by adjusting the time constant parameter of the model and testing the speech recognition accuracy of the ASR. Different time constants derived from human data are evaluated in both speech-like and non-speech like noise at the SNR levels from -10 dB to 20 dB and clean speech condition. The results show that the long time constants (≥1000 ms) provide a greater improvement of speech recognition accuracy at SNR levels≤10 dB. Maximum accuracy improvement of 40% (compared to no MOC condition) is shown in pink noise at the SNR of 10 dB. Short time constants (<1000 ms) show recognition accuracy over 5% higher than the longer ones at SNR levels ≥15 dB. The second part of the thesis develops a novel speech enhancement algorithm based on the MOC reflex with a time constant that is dynamically optimized, according to a lookup table for varying SNRs. The main contributions of this part include: (1) So far, the existing SNR estimation methods are challenged in cases of low SNR, nonstationary noise, and computational complexity. High computational complexity would increase processing delay that causes intelligibility degradation. A variance of spectral entropy (VSE) based SNR estimation method is developed as entropy based features have been shown to be more robust in the cases of low SNR and nonstationary noise. The SNR is estimated according to the estimated VSE-SNR relationship functions by measuring VSE of noisy speech. Our proposed method has an accuracy of 5 dB higher than other methods especially in the babble noise with fewer talkers (2 talkers) and low SNR levels (< 0 dB), with averaging processing time only about 30% of the noise power estimation based method. The proposed SNR estimation method is further improved by implementing a nonlinear filter-bank. The compression of the nonlinear filter-bank is shown to increase the stability of the relationship functions. As a result, the accuracy is improved by up to 2 dB in all types of tested noise. (2) A modification of Meddis’ MOC reflex model with a time constant dynamically optimized against varying SNRs is developed. The model incudes simulated inner hair cell response to reduce the model complexity, and now includes the SNR estimation method. Previous MOC reflex models often have fixed time constants that do not adapt to varying noise conditions, whilst our modified MOC reflex model has a time constant dynamically optimized according to the estimated SNRs. The results show a speech recognition accuracy of 8 % higher than the model using a fixed time constant of 2000 ms in different types of noise. (3) A speech enhancement algorithm is developed based on the modified MOC reflex model and implemented in an existing hearing aid system. The performance is evaluated by measuring the objective speech intelligibility metric of processed noisy speech. In different types of noise, the proposed algorithm increases intelligibility at least 20% in comparison to unprocessed noisy speech at SNRs between 0 dB and 20 dB, and over 15 % in comparison to processed noisy speech using the original MOC based algorithm in the hearing aid

    Analysis of very low quality speech for mask-based enhancement

    Get PDF
    The complexity of the speech enhancement problem has motivated many different solutions. However, most techniques address situations in which the target speech is fully intelligible and the background noise energy is low in comparison with that of the speech. Thus while current enhancement algorithms can improve the perceived quality, the intelligibility of the speech is not increased significantly and may even be reduced. Recent research shows that intelligibility of very noisy speech can be improved by the use of a binary mask, in which a binary weight is applied to each time-frequency bin of the input spectrogram. There are several alternative goals for the binary mask estimator, based either on the Signal-to-Noise Ratio (SNR) of each time-frequency bin or on the speech signal characteristics alone. Our approach to the binary mask estimation problem aims to preserve the important speech cues independently of the noise present by identifying time-frequency regions that contain significant speech energy. The speech power spectrum varies greatly for different types of speech sound. The energy of voiced speech sounds is concentrated in the harmonics of the fundamental frequency while that of unvoiced sounds is, in contrast, distributed across a broad range of frequencies. To identify the presence of speech energy in a noisy speech signal we have therefore developed two detection algorithms. The first is a robust algorithm that identifies voiced speech segments and estimates their fundamental frequency. The second detects the presence of sibilants and estimates their energy distribution. In addition, we have developed a robust algorithm to estimate the active level of the speech. The outputs of these algorithms are combined with other features estimated from the noisy speech to form the input to a classifier which estimates a mask that accurately reflects the time-frequency distribution of speech energy even at low SNR levels. We evaluate a mask-based speech enhancer on a range of speech and noise signals and demonstrate a consistent increase in an objective intelligibility measure with respect to noisy speech.Open Acces
    corecore