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Abstract

The complexity of the speech enhancement problem has motivated many
different solutions. However, most techniques address situations in which
the target speech is fully intelligible and the background noise energy is low
in comparison with that of the speech. Thus while current enhancement
algorithms can improve the perceived quality, the intelligibility of the
speech is not increased significantly and may even be reduced.
Recent research shows that intelligibility of very noisy speech can be im-
proved by the use of a binary mask, in which a binary weight is applied to
each time-frequency bin of the input spectrogram. There are several al-
ternative goals for the binary mask estimator, based either on the Signal-
to-Noise Ratio (SNR) of each time-frequency bin or on the speech sig-
nal characteristics alone. Our approach to the binary mask estimation
problem aims to preserve the important speech cues independently of the
noise present by identifying time-frequency regions that contain significant
speech energy.
The speech power spectrum varies greatly for different types of speech
sound. The energy of voiced speech sounds is concentrated in the har-
monics of the fundamental frequency while that of unvoiced sounds is,
in contrast, distributed across a broad range of frequencies. To identify
the presence of speech energy in a noisy speech signal we have therefore
developed two detection algorithms. The first is a robust algorithm that
identifies voiced speech segments and estimates their fundamental fre-
quency. The second detects the presence of sibilants and estimates their
energy distribution. In addition, we have developed a robust algorithm to
estimate the active level of the speech. The outputs of these algorithms
are combined with other features estimated from the noisy speech to form
the input to a classifier which estimates a mask that accurately reflects
the time-frequency distribution of speech energy even at low SNR levels.
We evaluate a mask-based speech enhancer on a range of speech and noise
signals and demonstrate a consistent increase in an objective intelligibility
measure with respect to noisy speech.
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Chapter 1

Introduction

The use of systems involving speech-based communication technology is now ubi-

quitous; such systems include mobile phones, hearing aids and video-conferencing

technology. The perceived quality, and in more severe cases the intelligibility, of the

speech signal in these systems is reduced when they are used under the adverse noise

conditions encountered in real environments such as offices, crowded public spaces,

or railway stations.

To illustrate the passage of a speech signal from talker to listener, a typical single-

channel speech recording chain is shown in Fig. 1.1. The desired speech signal passes

through a convolutive acoustic channel before reaching the microphone, where it

is combined with sound from other acoustic sources in the environment and it is

transduced into the electronic domain. The speech signal can become degraded by

further additive noise as well as by possible non-linear distortion within the electronic

domain.

It is convenient to classify speech signal degradations into the following three

classes which differ in their causes and potential remedies:

(i) additive background noise that can arise in either the electronic or acoustic do-

mains, although serious signal degradation is normally caused only by acoustic

noise from unwanted sources in the environment;

(ii) convolutive effects including echo and reverberation; and
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Figure 1.1: Typical speech recording chain.

(iii) non-linear speech distortion which may, for example, be introduced by amp-

litude limiting or clipping in the microphone, amplifier or Coder-Decoder (CODEC).

In recent decades a diverse range of solutions has been proposed to address these

degradation effects. Speech enhancement techniques aim to restore corrupted speech

signals by removing or compensating for degradation without damaging the speech

signal itself. The work in this thesis is concerned with the enhancement of single-

channel speech signals that have been corrupted by levels of additive noise that are

high enough to affect the intelligibility of the speech.

In this chapter, we highlight some properties of speech and noise signals, outline

the basis of common speech enhancement algorithms and provide an overview of

evaluation methods. Finally we state the research motivation and aims, we summarise

the layout of the thesis and highlight the thesis contributions.

1.1 Characteristics of speech signals

Speech sounds can be broadly divided into two categories: voiced and unvoiced.

Voiced sounds are produced when the vocal folds are vibrating, producing a quasi-

periodic signal, while unvoiced sounds are articulated without vibration of the vocal

folds. Speech consists of a sequence of vowels and consonants together with brief
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silences between phonemes and words [113]. Vowels are created by a voiced sound

without any constriction in the vocal tract. Consonants, however, can be originated

by a voiced or an unvoiced sound and are classified [93] as:

Stops: which occur when the air flow is blocked and suddenly released.

Nasals: produced when the air is stopped in the oral cavity but not through the

nasal cavity.

Approximants: produced when there is a constriction but not narrow enough to

result in a turbulence.

Fricatives: a narrow constriction in the vocal tract resulting in a turbulent air flow.

Each of the phonemes included in the different classes share common spectral charac-

teristics. In Fig. 1.2 we illustrate a speech spectrogram labelled with the five different

classes: vowels (V), stops (S), nasals (N), approximants (A) and fricatives (F). As

we can observe, there are noticeable differences between the spectral shape of some

of the classes. Vowels, together with the nasal and approximant voiced consonants,

have clear horizontal striations corresponding to the fundamental frequency and its

harmonics. Fricatives, however, have an aperiodic noise pattern, especially in higher

frequency regions whereas stops are characterised by a silent interval followed by a

burst of noise. Stops and fricatives can either be voiced or unvoiced, but in both

cases the spectral distribution is similar. The time and energy distribution of the

different phoneme classes calculated over the training set of the TIMIT database [37]

is shown in Fig. 1.3. In the time distribution, Fig. 1.3(a), we can observe how vowels

occupy 52% of the time, followed by fricatives, approximants, stops and nasals. Vow-

els are also the predominant phoneme class in the energy distribution, Fig. 1.3(b),

where they account for 83% of the total energy, followed by approximants (11%) and

fricatives (4%). Stops and nasals only account for approximately 1% of the energy

each.
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Figure 1.2: Speech spectrogram of the sentence: ‘Not surprisingly this approach did
not work’ divided into five different classes of phonemes: vowels (V), stops (S), nasals
(N), approximants (A) and fricatives (F).

(a) Time distribution

Fricatives: 18%

Nasals: 8%

Vowels: 52%

Stops: 10%

Approximants: 12%

(a) Energy distribution
Fricatives: 4%

Nasals: < 1%

Vowels: 83%

Stops: 1%

Approximants: 11%

Figure 1.3: (a) Time and (b) energy distribution of the different phoneme classes
calculated over the training set of the TIMIT database [37].
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Figure 1.4: Comparison of the universal LTASS recommended in Table II of [19] and
the LTASS of the artificial voice [71] defined in (1.1).

1.1.1 Long term average speech spectrum

The frequency distribution of the time-averaged power spectrum of speech is known

as the Long Term Average Speech Spectrum (LTASS). It was found in [19] that the

LTASS of speech signals was largely independent of language and could be represen-

ted therefore by a universal LTASS. Relative to this universal LTASS, the frequency-

averaged standard deviation of an individual speaker’s LTASS was found to be about

3 dB. An LTASS of the artificial voice, which is aimed at reproducing the charac-

teristics of real speech over the bandwidth 100Hz � 8 kHz was proposed in [71]. The

LTASS of the artificial voice is defined as

LdB(f) = �376.44 + 465.439(log10 f)� 157.745(log10 f)
2 + 16.7124(log10 f)

3 (1.1)

where LdB(f) is the normalised power spectra in dB relative to 1 pW/m2 sound in-

tensity per Hertz at the frequency f .

A comparison of the proposed universal LTASS in Table II of [19] and the LTASS

of the artificial voice in (1.1) [71] is shown in Fig. 1.4. Although there are some

differences in their spectral power density distributions, most of the power is, in both

cases, concentrated in frequencies below 1000Hz.
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1.2 Characteristics and estimation of noise signals

Noise, in contrast to speech, can originate from any kind of source and have any

spectral and temporal characteristics. There are, however, some common assumptions

made about the noise when approaching the speech enhancement problem:

(i) the power spectrum of noise is more stationary than that of speech, and

(ii) speech and noise are statistically independent.

Many speech enhancement techniques require an estimation of the noise power

spectrum, or, equivalently, the SNR at each time-frequency bin. The accuracy of the

noise estimation technique has a major impact on both the quality and intelligibility

performance of the processed speech.

The first noise estimation approaches used Voice Activity Detector (VAD) es-

timators to identify noise-only intervals. The noise could be then calculated by a

temporal average during the speech absences using an averaging time-constant that

depends on the assumed stationarity of the noise. A detailed review of several VAD

estimators can be found in [16].

A minimum statistics approach was introduced to estimate the noise in [107, 108].

The basis of this approach is that over a given time-interval there will be pauses in

the speech in every frequency band and consequently the minimum value of the noisy

speech spectrum within a frequency band will correspond to the noise power.

The noise power spectrum can also be calculated by using a Minimum Mean

Squared Error (MMSE) estimator. In [48], an MMSE estimator was used to minimise

the power of the difference function between the estimated and the true noise power

spectrum. This algorithm was found to perform best in a comparative evaluation

of several noise estimation algorithms in [136]. The work in [48] has been further

extended in [39], where a soft decision Speech Presence Probability (SPP) was used

to update the noise adequately. While decreasing the computational complexity of

the original algorithm, the estimation accuracy was maintained.
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1.3 Single channel speech enhancement

In this thesis, we are concerned with single-channel speech enhancement in which

only a single microphone is used. If, in contrast, an array of microphones is available,

the speech enhancement problem can be approached differently and the SNR of the

desired signal can be improved by coherent averaging or beamforming [12].

Numerous approaches for single-channel speech enhancement, mainly driven by

the requirements of telecommunications companies and hearing aid manufacturers,

have been developed over many years. A number of speech enhancement algorithms

operate in the time domain and typically use adaptive filters [124, 125] or Kalman

filters [41, 154, 130]. The majority of algorithms, however, perform the enhancement

in a transform domain in which both speech and noise signals are sparse and are

therefore more easily separated; these algorithms are described in more detail below.

In this thesis, we represent the noisy speech signal in the time-domain as y(⌧) and

we assume that it can be decomposed as

y(⌧) = s(⌧) + n(⌧) (1.2)

where ⌧ is a sample index and s(⌧) and n(⌧) are the time-domain speech and noise

signals respectively.

1.3.1 Enhancement in the Karhunen-Loève domain

The Karhunen-Loéve Transform (KLT), also known as Principal Components Ana-

lysis (PCA) [121], is a statistical procedure which allows the orthogonal transforma-

tion of a set of observations of a number of correlated variables into a set of values of

linearly uncorrelated variables called principal components. The number of principal

components is less than or equal to the number of original variables.

In speech enhancement, subspace methods use the KLT to decompose the noisy

signal vector within a frame into mutually orthogonal subspaces that are dominated

by speech and noise energy respectively. Under the assumption that speech inter-
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vals of around 20ms can be treated as time-invariant and modelled by a low order

Autoregressive (AR) process, the vector of speech samples within a frame of this

length lies within a low-order subspace. If this subspace is identified, the speech

samples can be constrained to lie within it by applying an orthogonal projection onto

this subspace.

A speech enhancement algorithm introduced in [28] dealt with white noise by

retaining only a specific number of singular values after applying singular value de-

composition. Subspace enhancement became popular following [33], in which the

noise components in the speech subspace were also removed. The method assumes

that the noise is white, and uses an eigendecomposition of the autocovariance matrix

of the noisy speech, which consists of the sum of a low-rank matrix arising from the

speech and a multiple of the identity matrix arising from the noise. The approach

has been further developed in [64, 114] to deal with coloured noise.

Although the KLT provides good speech and noise separability, the transforma-

tion into the Karhunen-Loéve (KL) domain is computationally expensive because a

different transformation must be determined for each frame.

1.3.2 Enhancement in the time-frequency domain

The dominant domain in which speech enhancement algorithms operate is the time-

frequency domain. The reason for this is that transforming the signal into the time-

frequency domain is much less computationally expensive than the KL transform,

but still provides a separation between speech and noise. Several approaches follow

the steps shown in Fig. 1.5 and enhance the signal by applying a time-frequency gain

modification.

The most common signal transformation is the Short Time Fourier Transform

(STFT), where the first step consists of splitting the discrete input signal, y(⌧), up

into frames such that for frame t,

y(t, u) = y(⌧)w(⌧ � tL) (1.3)
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Figure 1.5: Block diagram of time-frequency gain modification techniques.

where ⌧ is a sample index, w(⌧) is a windowing function with finite support N , u =

⌧�tL and L is the interframe increment. The window function, w(⌧), is used to avoid

spectral artefacts due to discontinuities at the frame boundaries. After performing

the decomposition of the signal into overlapping frames, the Fourier transform is

calculated on each frame to obtain the STFT

Y

�(t, f) =
N�1X

u=0

y(t, u)e�j2⇡fu (1.4)

If no further processing is done, the original signal can be perfectly reconstructed

from Y

�(t, f) by applying the inverse Fourier transform and joining the frames up

using overlap-add processing [1, 2]

y(⌧) =
X

t

y(t, ⌧ � tL)⌫(⌧ � tL) (1.5)

where ⌫(⌧) represents the synthesis window, often chosen to be the same as the

analysis window w(⌧). The condition for perfect reconstruction is that the product

of the analysis and synthesis windows sums to 1, such that

X

t

w(⌧ � tL)⌫(⌧ � tL) = 1 (1.6)

Motivated by the measured characteristics of the inner ear, Patterson et al. [120]

proposed a gammatone filterbank as an alternative way of performing the time-

frequency decomposition of a speech signal. The impulse response of the filter centred
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Figure 1.6: Response of a gammatone filterbank composed of 8 gammatone filters
equally spaced on the ERB rate scale.

at frequency fc can be expressed as

g(⌧) = ⌧

n�1 exp(�2⇡b⌧) cos(2⇡fc⌧ + �) (1.7)

where n is the order, b is a bandwidth parameter and � is the phase. Figure 1.6 illus-

trates the frequency response of a gammatone filterbank containing 8 filters equally

spaced on the Equivalent Rectangular Bandwidth (ERB) rate scale [115]. The output

signal of each gammatone filter is later divided into overlapping time frames, as seen

in equation (1.3). Gammatone filterbanks are often used in Computational Auditory

Scene Analysis (CASA) approaches, which are inspired by the processing performed

by the human auditory system. To follow the same steps as our auditory system, in

CASA approaches the output of each gammatone filter is usually further processed to

model the inner hair cells [112]. The disadvantage of using a gammatone filterbank to

perform a time-frequency decomposition is that perfect reconstruction of the signal

is not possible [51].

1.3.2.1 Spectral subtraction

The spectral subtraction approach was introduced in [11] and it is based on the

assumption that the complex spectrum of the input signal, Y �(t, f), can be expressed

as the sum of the speech signal complex spectra, S�(t, f), and that of the background
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noise, N�(t, f), such that Y �(t, f) = S

�(t, f)+N

�(t, f). If we are able to estimate the

noise, we can then recover the speech signal by a simple subtraction. The phase of the

noise, however, is usually unknown but it is shown in [31] that, under certain modelling

assumptions, the optimal MMSE estimate of the phase of S�(t, f) is the phase of the

noisy speech component, Y �(t, f). Accordingly most enhancers modify the magnitude

of the noisy speech spectral components while leaving the phase unaltered. This

process can be expressed as

b
S

�(t, f) = G(t, f)Y �(t, f) (1.8)

where G(t, f) represents a real-valued gain function. In the simplest form of spectral

subtraction this gain is defined by

GSS(t, f) = max

(
|Y �(t, f)|� | bN�(t, f)|

|Y �(t, f)| , 0

)
(1.9)

where | bN�(t, f)| represents the noise amplitude estimate. Because of errors in the

noise estimate, the enhanced speech will have residual noise, either broad-band or

narrow-band. Narrow-band residual noise is commonly known as musical noise due

to the tonal components it generates. Many modifications to the gain function have

been proposed since then in the literature to attenuate residual noise [8, 141], leading

to a more general gain function

GSS(t, f) = max

8
><

>:

⇣
|Y �(t, f)|� � ⌘| bN�(t, f)|�

⌘1/�

|Y �(t, f)| , �| bN�(t, f)|

9
>=

>;
(1.10)

where � controls the domain in which the gain is calculated, � sets the noise floor and

⌘ the noise oversubtraction. Recently, a theoretical analysis of the amount of musical

noise generated by spectral subtraction was performed in [67], where it was found

that a small � leads to a musical noise reduction. A subjective evaluation confirmed

this finding, where the lowest tested � was equal to 0.05.
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1.3.2.2 Minimum mean square error estimators

Many speech enhancement methods, following the same structure as spectral sub-

traction, apply a gain function to the noisy time-frequency spectrogram. This gain

function is often calculated using MMSE estimators to minimise a specific cost func-

tion given assumed models for the speech and noise processes. Systems based on

Wiener filtering [99, 110] minimise the power of the difference between the estimated

and clean speech power spectra. The gain function of the Wiener filter is given by

GWF (t, f) =
⇠(t, f)

⇠(t, f) + 1
(1.11)

where ⇠(t, f) is the a-priori SNR, defined by

⇠(t, f) =
S(t, f)

N(t, f)
(1.12)

where S(t, f) and N(t, f) represent the power spectrogram of speech and noise re-

spectively.

In [31], the aim of the enhancer is to optimise the estimate of the real spectral

amplitudes under the assumption that speech and noise spectral components are stat-

istically independent Gaussian random variables. The same authors further extended

their algorithm in [32] where they minimised the mean-square error of the log-spectral

amplitude. The authors reported that this results in lower residual background noise

and improved perceived quality. The gain function can be expressed as

GMMSE(t, f) =
⇠(t, f)

⇠(t, f) + 1
exp

✓
1

2

Z 1

�(t,f)

e

�z

z

dz

◆
(1.13)

where

�(t, f) =
⇠(t, f)

1 + ⇠(t, f)
�(t, f)

�(t, f) is the a-posteriori SNR

�(t, f) =
Y (t, f)

N(t, f)
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and Y (t, f) represents the power spectrogram of the noisy input signal.

To improve the performance of the MMSE algorithm, perceptual masking models

have also been introduced [47]. Their motivation is to incorporate the concept of

frequency or temporal auditory masking within the human auditory system to remove

only the audible noise in the speech signal.

The assumption in [31, 32] that speech and noise spectral components can be mod-

elled as independent Gaussian random variables does not hold when the correlation

length of the speech is larger than the analysis window. To overcome this problem,

several researchers [101, 109] have extended the MMSE approach under the assump-

tion of a super-Gaussian distribution for speech and/or noise. They have found that

this leads to a reduction in residual noise but sometimes at the expense of poorer

noise quality.

1.3.2.3 Binary masks

The time-frequency gain modification approaches described above apply a gain func-

tion, G(t, f), to each time-frequency cell whose value normally varies continuously

over the range 0 to 1. A binary mask enhancer, in contrast, uses a gain function that

takes one of two values, 1 and ✏, where ✏ is a small value typically in the range 0 to

0.1. The most widely used goal is to estimate the so-called Ideal Binary Mask (IBM)

[122], which is defined as

IBM(t, f) =

8
<

:
1 if SdB(t, f) > NdB(t, f) + LC,

0 otherwise.
(1.14)

where SdB(t, f) and NdB(t, f) are the power of the speech and noise signals in decibels

respectively and the Local Criterion (LC) is the threshold above which the time-

frequency bin is believed to be dominated by the target signal, often set to 0 dB.

There are several motives for the use of binary masks. First, the enhancement

problem has been changed from one of estimation to one of classification which al-

lows the use of classification techniques from detection theory and machine learning.

Second, it is known from psychoacoustics that the ear perceives only the domin-
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ant signal within each frequency band and that weaker signals are masked by the

strongest one. Thus it makes sense to attenuate time-frequency cells in which the

SNR is so poor that they do not contribute to intelligibility. Third, it has been shown

experimentally that arbitrarily noisy speech can be made fully intelligible by using

an appropriate binary mask derived from the true speech and noise spectrograms

[87]. Fourth, within time-frequency regions where G = 1, the enhancer will avoid

introducing modulation artefacts and will preserve low level signal components that

may contribute to intelligibility even though they cannot be detected explicitly by

the algorithm.

A speech enhancer using binary masks was introduced in [83, 82]. The classi-

fication of each time-frequency cell was on the basis of the likelihood ratio of two

Gaussian Mixture Models (GMMs) trained respectively on training data cells whose

local SNR was above and below a threshold. For each frequency channel, the 45-

element input feature vector comprised a 15-element modulation spectrum for that

channel together with its time and frequency derivatives. The enhancer was evaluated

on noisy speech at �5 and 0 dB and consistently improved the subjective intelligibil-

ity. Binary masks for enhancement have also been estimated using Support Vector

Machines (SVMs) [45], deep belief networks [149] and sparse coding techniques [91].

A more detailed discussion of binary masks and the methods used to estimate them

is given in Chapter 2.

1.3.2.4 Gain curves comparison

A comparison of the gain curves of the algorithms outlined in this section is shown

in Fig. 1.7 where they are plotted against the a-priori SNR, ⇠. As we can observe,

for high values of ⇠, all algorithms tend to a maximum gain of 1. For values of ⇠

higher than 5 dB, the Wiener filter and the log-spectral amplitude MMSE estimator

behave in a similar way, while for lower ⇠ values, the Wiener filter attenuates the

signal more aggressively. Spectral subtraction has the most gradually changing gain

while the binary mask gain changes abruptly from 1 to 0 when ⇠ becomes negative

(assuming LC = 0 dB). Besides the differences in the gain curves, the performance
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Figure 1.7: Gain curves of different time-frequency domain speech enhancers.

of all algorithms significantly depends on the reliability of the estimated noise power

spectrum and/or a-priori SNR.

1.4 Evaluation of speech enhancement systems

The performance of a speech enhancement procedure can be evaluated according to

two different perceptual criteria: speech quality and speech intelligibility. Speech

quality assesses how comfortable the listener is when listening to the signal. Various

characteristics affect the speech quality, such as the level of the residual noise and the

final distortion of the signal. In contrast, speech intelligibility is characterised by the

percentage of an utterance that a listener is able to identify correctly.

The methods used to evaluate either speech quality or intelligibility can be divided

into two groups: subjective methods and objective methods. Subjective methods

require the participation of human listeners, and can use absolute scoring if a single

stimulus is evaluated at each time or preference scoring if a comparison is made

between two or more signals. A popular absolute scoring quality measure is provided

by the Mean Opinion Score (MOS) [70]. The MOS value is calculated as the average

score provided by a number of trained listeners who rate the quality of the speech

on a scale from 1 (bad) to 5 (excellent). Subjective intelligibility evaluation typically

requires listeners to identify words that are placed in an unpredictable context (e.g.

“The birch canoe slid on the smooth planks”) with the intelligibility score taken as
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the percentage of content words correctly identified.

Subjective methods, although the only way to obtain true measurements of speech

quality and intelligibility, are expensive in both time and resources. Objective meas-

ures, in contrast, do not require any external evaluation and estimate the intelligibility

or quality using some analysis of the signal, providing an efficient approach for eval-

uation. Objective measures can be subdivided into (i) non-intrusive methods, which

only use the degraded signal for the analysis, and (ii) intrusive methods, which also

require the original clean speech signal.

In the next subsections, we focus exclusively on objective measures to evaluate

both speech quality and intelligibility and their correlation with subjective ratings.

In the scope of this research, the original signal is available and therefore intrusive

methods are our main interest for evaluation purposes.

1.4.1 Objective methods for speech quality evaluation

Speech quality objective measures are widely used to evaluate the performance of

speech enhancement techniques. The simplest and most widespread intrusive quality

measures are based on the SNR. There are many different variations, some of which

can be found in [138], but the most popular is the segmental-SNR. The segmental-

SNR is calculated by splitting the signals into frames and later averaging the calcu-

lated SNR in dB in all the frames that contain speech. Although of low computational

complexity, a study published in [62] found that, when used after a speech enhancer,

it does not correlate well with subjective quality scores at moderate SNRs of 5 dB

and 10 dB.

An intrusive objective method for assessing the quality of noisy speech is defined

in [72], named Perceptual Evaluation of Speech Quality (PESQ) and standardised as

ITU-T P.862. The PESQ algorithm provides a quality score on a scale from �0.5 to

4.5 by imitating the process the sound undergoes in our auditory system. This score

can be converted to the MOS scale [70] by a mapping function defined in [73], such
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that

MOSest = 0.999 +
4

1 + e

�1.4945c+4.6607
(1.15)

where c is the PESQ quality score. This mapping function is illustrated in Fig. 1.8,

where we observe that, above a PESQ score of 1, the PESQ score is approximately

linearly related to MOS.

The performance of PESQ on processed speech using speech enhancement al-

gorithms was evaluated in [85], finding high correlations, between 0.83 and 0.96, with

the subjective measures. More recently, an extension of the PESQ algorithm, the

Perceptual Objective Listening Quality Analysis (POLQA), was developed to add

new capabilities and handle higher bandwidths and was standardised as ITU-T P.863

[74].

1.4.2 Objective methods for speech intelligibility evaluation

Over the years, several intrusive methods for speech intelligibility evaluation have

been developed to identify how understandable the speech signal is to the listener.

One of the earliest approaches was proposed in [34], which led to a standard method

for calculating the Articulation Index (AI), ANSI 3.5–1969, [92, 3] and later the

Speech Intelligibility Index (SII), ANSI 3.5–1997, [4]. The idea behind these methods

is to estimate the speech information that is audible across different frequency bands

and weight the output according to the contribution of that particular frequency
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band to speech intelligibility. The Speech Transmission Index (STI) [132, 53, 133]

adapted the idea behind AI and SII to measure the effect on intelligibility of a trans-

mission channel, dealing with the effects of reverberation and non-linear degradations

by measuring the reduction in signal modulation. Various evaluations of STI-based

algorithms performed in [53, 102, 42] show that although a good intelligibility correl-

ation is achieved for speech corrupted with additive noise or reverberation, they are

unable to predict the effects of speech enhancement algorithms on intelligibility.

With the aim of predicting intelligibility after non-linear processing, a number of

intrusive approaches based on correlation measures between the clean and processed

signal have been developed. In [42] the authors proposed a normalised correlation

measure which gave reasonable results for predicting non-linear processed speech in-

telligibility. The coherence between the signals was also proposed in [80] to estimate

noise and distortion effects, achieving a better prediction performance than that of

the SII. Many other algorithms based on correlation methods have subsequently been

proposed since [52, 103, 77, 134]. An assessment of various intelligibility evaluation

methods is performed in [50], where the results indicate that the intelligibility after

speech enhancement algorithms is best predicted by the Short-Time Objective Intel-

ligibility (STOI) measure [134]. STOI first applies the STFT to the input signals and

interpolates it into a log-frequency scale. The linear correlation coefficient between

the clean and modified time-frequency bins is then calculated over approximately

400ms windows and averaged over all bands and frames. This intrusive algorithm

provides a value between 0 and 1 which is expected to have a monotonic relation-

ship with the speech intelligibility and can be mapped to an absolute intelligibility

prediction score with the logistic function

INTest =
100

1 + exp(ad+ b)
(1.16)

where a and b are free constants (set to �14.5435 and 7.0792 for the Dantale corpus

[143]) and d is the STOI value. The mapping function from (1.16) is plotted in

Fig. 1.9. We can observe that for STOI values above 0.7, almost perfect intelligibility
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Figure 1.9: Mapping function from the STOI score to the predicted intelligibility for
the Dantale corpus [143].

is predicted, while below 0.3 the speech is too corrupted to be understood.

1.5 Performance of speech enhancement algorithms

An example of how intelligibility and quality degrade with additive white noise is

shown in Fig. 1.10. STOI [134] is used to estimate the speech intelligibility and PESQ

[72] to estimate the quality. Figure 1.10 shows how, in presence of white noise, the

estimated quality degrades steadily below 50 dB SNR. The predicted intelligibility,

however, remains high for positive SNRs but decreases rapidly below 0 dB SNR.

Many speech enhancement techniques operate in the SNR range where the speech

intelligibility is still high while the speech quality has decreased substantially. The

aim of the speech enhancer in this SNR range is to improve the speech quality while

maintaining its intelligibility.

A detailed analysis of the performance of several speech enhancement algorithms

both in terms of speech quality and intelligibility can be found in [66]. It was found

that, even though the characteristics of each method differ, no enhancement system

was capable of improving both quality and intelligibility. The algorithms which per-

formed best in terms of quality were not the same ones that performed best in terms

of speech intelligibility. Furthermore, no algorithm provided significant improvements

in intelligibility. Previous experiments by [5] reached the same conclusion showing
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Figure 1.10: Average estimated MOS values using PESQ and predicted intelligibility
using STOI values over 100 files of the test set of the TIMIT database [37], where the
utterances have been corrupted with white noise at different SNR levels.

that mostly intelligibility gets worse although perceived quality may improve. While

the previous studies were performed only for the English language, an intelligibility

evaluation for Chinese, Japanese and English is performed in [96]. The results vary

significantly between languages, but the general conclusion, again, was the inability

of the algorithms to improve substantially the intelligibility. We can conclude that

the current speech enhancement techniques are appropriate for positive SNRs where

the main task is to improve the speech quality, but they are inappropriate for negative

SNRs, where making speech intelligible is more important than improving its quality.

1.6 Research motivations and aims

The goal of this research project is to improve the intelligibility of very low-quality

speech. Each kind of speech degradation has different characteristics and it is com-

plicated to develop an approach that can cater at the same time with all of them.

The work in this thesis is concerned with additive background noise due to its major

contribution to speech intelligibility degradation.

We have seen in Section 1.5 that no current speech enhancement approach has been

able to improve speech intelligibility. However, several studies [18, 86] have shown the

potential of time-frequency binary masks to enhance speech intelligibility. A binary

gain is a special case of a continuous gain and so the performance of an ideal binary
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gain system cannot exceed that of an ideal continuous gain system, and, as pointed

out in [75, 104], if the a priori SNR is known, the performance of binary masks is

lower than that of algorithms applying a continuous gain. However, the advantage of

binary masks is that they permit entirely new approaches to the speech intelligibility

enhancement problem, which may now be seen as a classification problem rather than

as an estimation problem. In this thesis, we aim to study and develop this potential

to estimate a binary mask which is able to enhance the intelligibility of the corrupted

speech.

Based on the idea that a binary mask based only on the speech can provide

good intelligibility performance, as shown by the target binary mask performance

in [86], our approach to the binary mask estimation problem aims to preserve the

important speech cues independently of any noise that is present. As we have seen,

the time-frequency regions that contain significant speech energy depend heavily on

the kind of speech sound produced, and, to locate the speech energy in the time-

frequency domain we need to identify voiced speech and its fundamental frequency

and to estimate the location and energy distribution of the unvoiced sounds. All the

extracted information can be combined for the binary mask estimation. In order to

make our algorithm independent of the input speech level, we also need to estimate

the speech active level and normalise the input appropriately.

1.7 Thesis overview

A detailed explanation of the different binary mask targets is provided in Chapter 2.

We define a new time-frequency binary mask target that is both noise and speaker

independent and we explore the ways in which the binary mask estimation problem

has been approached in the literature.

In Chapter 3 we present PEFAC, a fundamental frequency estimation algorithm

that is able to identify voiced frames and estimate pitch reliably even at negative

SNRs. The algorithm combines a normalisation stage (to remove channel dependency

and to attenuate narrow-band noise components) with a harmonic summing filter
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applied in the log-frequency power spectral domain. A voiced speech probability is

computed from the likelihood ratio of two classifiers, one for voiced speech and one

for unvoiced speech/silence. We compare the performance of our algorithm with that

of other widely used algorithms and demonstrate that it performs exceptionally well

in both high and low levels of additive noise.

A new method for speech active level estimation which combines a novel algorithm

based on voiced speech energy extraction with the standardised ITU-T Recommend-

ation P.56 is described in Chapter 4. At poor SNRs, the algorithm estimates the

active level by identifying intervals of voiced speech and summing the energy of the

pitch harmonics in the time-frequency domain while rejecting that of the noise. We

compare the performance of our method with that of ITU-T P.56 on the TIMIT data-

base and demonstrate that it performs well in both high and low levels of additive

noise

We focus on unvoiced speech in Chapter 5, where we introduce an algorithm for

identifying the location of sibilant phones in noisy speech. Our algorithm does not

attempt to identify sibilant onsets and offsets directly but instead detects a sustained

increase in power over the entire duration of a sibilant phone. The normalised estimate

of the sibilant power forms the input to two Gaussian mixture models that are trained

on sibilant and non-sibilant frames respectively. The likelihood ratio of the two models

is then used to classify each frame. We evaluate the performance of our algorithm on

the TIMIT database and demonstrate that the classification accuracy is over 80% at

0 dB signal to noise ratio for additive white noise.

All the information extracted by the algorithms explained in Chapters 3, 4 and

5 are combined in Chapter 6 with a noise estimate to form the feature vector to the

mask estimator. We use the Classification and Regression Tree (CART) approach

to estimate the mask and we show that, for noise types included in the training,

the proposed method is able to achieve substantial improvements in the predicted

intelligibility using the STOI algorithm for SNRs as low as �5 dB.

Finally, Chapter 7 concludes the thesis and proposes future work.
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1.8 Thesis contributions

To the best of the author’s knowledge, the original contributions of this thesis are:

1. The proposal and evalulation of the Universal Target Binary Mask (UTBM).

2. The PEFAC algorithm, a pitch estimation algorithm robust to high levels of

noise.

3. A speech activel level estimation algorithm in noisy conditions.

4. A method for detecting sibilant speech in noise.

5. A mask-based speech enhancer able to improve the predicted intelligibility of

low quality speech.
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Chapter 2

Time-frequency binary masks

Time-frequency binary masks aim to identify regions of the time-frequency plane that

contain information from the target sound. They were first introduced in the field of

speech recognition to identify noise-dominated regions of the time-frequency domain.

Either these regions can then be ignored completely in subsequent processing or else

the “missing data” that they should contain can be estimated prior to performing

recognition [23]. They have also been used in the field of Computational Auditory

Scene Analysis (CASA) as a way of segregating a single source from a complex aud-

itory scene by selecting only those time-frequency cells in which the wanted source is

dominant [144]. More recently, they have been used as a time-frequency gain function

in speech enhancement [83].

The most popular binary mask is the Ideal Binary Mask (IBM), where the decision

whether to retain a time-frequency bin depends on its SNR. The IBM was proposed

as the goal of CASA in [144], supported by its consistency with the auditory masking

effect, in which if two sounds are within the same critical frequency band [155] the

weaker signal is masked and eliminated from our perception. Within the field of

speech enhancement, binary masks have generated a lot of interest in the last few

years as they provide the possibility of approaching the problem as a classification

rather than as an estimation problem. As a classification problem, it can benefit from

the modelling power of machine learning techniques.

In this chapter, we describe the IBM together with alternative goals for the binary
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mask estimation problem. A literature review of the algorithms for binary mask

estimation is also presented.

2.1 Goals of mask estimation

The parameters which determine the rejection/acceptance of a time-frequency bin

vary according to different binary mask definitions. The original goal of the binary

mask estimation was to identify the regions where the SNR was higher than 0 dB

[144, 98]. Later research [146, 86] has shown that the optimum SNR threshold to

maximise intelligibility depends on the global SNR of the noisy input speech.

In recent years, an alternative goal has been proposed [86], which aims at retaining

time-frequency regions with significant speech energy for speech intelligibility. The

definition of “significant speech energy” for speech intelligibility is complex, as it

should depend on both time and frequency information, and the problem is simplified

by identifying the time-frequency bins in which power is above a specific threshold.

In this section, we define two existing time-frequency masks: the IBM which is a

function of the local SNR and the Target Binary Mask (TBM) which depends on the

LTASS of the speaker. We propose a variation of the TBM, the UTBM, and we show

it has a similar performance to that of the TBM while removing dependency on the

speaker.

2.1.1 Ideal binary mask (IBM)

The IBM is defined in terms of the SNR at each time-frequency bin. If SdB(t, f) is

the power of the desired stream measured in decibels at frame t and frequency f and

NdB(t, f) is the corresponding power of the interference, the mask is defined by

IBM(t, f) =

8
<

:
1 if SdB(t, f) > NdB(t, f) + LC,

0 otherwise.
(2.1)
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Figure 2.1: (a) Spectrogram of the clean speech, (b) spectrogram of the speech cor-
rupted with white noise at 0 dB SNR, (c) ideal binary mask with 0 dB LC, and (d)
segregated speech spectrogram.

where the Local Criterion (LC) is the SNR threshold above which the time-frequency

bin is assumed to be dominated by the target signal. In [144] this definition was

justified based on its flexibility, unambiguity and its consistency with the auditory

masking effect. It has been found in many studies [18, 97] that applying an IBM to

noisy speech can provide perfect intelligibility for a range of LC values. An example

to illustrate the IBM is shown in Fig. 2.1. Figure 2.1(a) shows the spectrogram of a

female speaker saying “She had your dark suit in greasy wash water all year” and Fig.

2.1(b) illustrates the speech spectrogram corrupted with additive white noise at 0 dB

SNR. Using 0 dB LC, the obtained ideal binary mask is shown in Fig. 2.1(c) and the

segregated speech spectrogram in Fig. 2.1(d).

The optimal performance of the IBM with 0 dB LC is shown in [98] in terms of SNR

gain at three different levels: time-frequency unit level, time frame level and global

level. According to [98], the task for a sound separation system is to estimate the

IBM with 0 dB LC from the noisy speech signal. In terms of intelligibility, however,

several studies [146, 86] have shown that the best results are achieved when the LC

is chosen to be similar to the input SNR. A model for intelligibility as a function

of SNR and LC is presented in [87] based on measurements described in [86]. The
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Figure 2.2: Model of intelligibility versus SNR and LC from [87]. The dark areas
correspond to high intelligibility.

hypothesis underlying the model is that the auditory system combines two sources

of information. The first source is the noisy speech whose intelligibility depends on

the SNR while the second source, the noise vocoded signal, consists of noise that has

been modulated by the speech information in the mask pattern. The intelligibility

of this second source depends on the difference between the mask threshold and the

level of the speech. If the LC is set too high relative to the speech level, the mask

pattern will become very sparse and the intelligibility of both information sources will

degrade. The model is plotted in Fig. 2.2 using the model parameters determined for

speech-shaped noise; the dark areas show regions of intelligibility. As we can observe

in the figure, above an SNR threshold (approximately �5 dB), the noisy speech is

already understandable and will remain intelligible unless the LC value is so high

that the processed signal is too sparse. For any SNR below this threshold there is a

range of LC values for which perfect intelligibility is possible, centred approximately

on the value of the input SNR.

Research performed by [147] evaluated the intelligibility performance of IBM vo-

coded noise for different numbers of frequency channels. It was shown that a relatively

coarse time-frequency resolution, with as few as 16 frequency bands equally spaced
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Figure 2.3: Word intelligibility scores versus number of frequency bands from [147].

on the Equivalent Rectangular Bandwidth (ERB) rate scale [115], was sufficient for

a high recognition rate, as shown in Fig. 2.3.

A study in [14] evaluated the effects of a tempered version of the IBM where the

attenuation function is gradual instead of binary and limited to 0.1. Although the

tempered version improves the processed speech naturalness and provides less noise

annoyance, its performance is not as good as the performance of the IBM in terms of

intelligibility.

2.1.2 Target binary mask (TBM)

The finding in [147] that vocoded noise using the IBM is understandable implies that

the binary mask carries by itself all the information needed for intelligibility. This

indicates that the binary mask should not depend on the noise, but rather focus on

preserving the speech information necessary for intelligibility.

A binary mask based only on the speech was first proposed in [5]. With the aim

of preserving 99% of the speech energy, a threshold was set for all frequency bands

above which the binary mask was equal to 1. In [86], inspired by the results obtained

in [147], the authors proposed the TBM. The TBM, whose threshold varies across

frequencies, is defined as
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TBM(t, f) =

8
<

:
1 if SdB(t, f) > rdB(f) + LC,

0 otherwise.
(2.2)

where rdB(f) is the LTASS of the speaker. In this way, the TBM is calculated by

comparing the energy of the target speech with the long-term average energy of speech

from the same speaker. The intelligibility performance of the TBM was evaluated in

[86], where the authors show that this mask is capable of providing the same or better

intelligibility results as the IBM.

2.1.2.1 Universal target binary mask (UTBM)

Although the TBM removes dependency from the noise, its definition still relies on

the LTASS of the speaker. In this section, we propose an alternative to the TBM,

the UTBM, which removes dependency on both the noise and the speaker by using

a universal LTASS. As mentioned in Section 1.1.1, the LTASS of speech signals is

largely independent of language and can be represented by a universal LTASS [19].

Consequently, instead of the LTASS of the speaker, the LTASS of the artificial voice

[71] defined in (1.1) is used to define the mask such that:

UTBM(t, f) =

8
<

:
1 if SdB(t, f) > LdB(f) + ↵ + LC,

0 otherwise.
(2.3)

where ↵ = l � PL is a variable to adjust the power in dB of the threshold function,

PL, to that of the speech active level, l, [68].

We evaluate the intelligibility of the UTBM by using STOI measure [134] which

can accurately predict the intelligibility achieved using the TBM and the IBM. Figure

2.4 shows the average predicted intelligibility for the noisy speech and for the enhanced

speech using the TBM and the UTBM (the LC value is equal to 0 in both cases)

when the speech is corrupted with all noise types from the RSG-10 database [131]

at different SNRs. As we can observe, the predicted intelligibility is close to 100%

for all the evaluated SNRs for both masks. A comparison between the predicted

intelligibility versus LC for TBM and UTBM is provided in Fig. 2.5. The TBM
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Figure 2.4: Average predicted intelligibility using STOI over 98 speech segments of
5 s duration from 4 speakers from the SAM database, where the utterances have been
corrupted with different noise types from the RSG-10 database [131] at different SNR
levels.

−30 −25 −20 −15 −10 −5 0 5 10 15
0

20

40

60

80

100

LC (dB)

P
re

d
ic

te
d
 in

te
lli

g
ib

ili
ty

 (
%

)

 

 

TBM
UTBM

Figure 2.5: Average predicted intelligibility using STOI over 98 speech segments of
5 s duration from 4 speaker from the SAM database [20]. The calculated TBM and
UTBM for different LC values have been gated through speech shape noise.

and UTBM were calculated for different LC values and gated through speech shape

noise. We can observe that both masks follow a similar intelligibility pattern with

a horizontal shift of 5 dB; best predicted intelligibility is achieved at �5 dB LC for

TBM and at 0 dB LC for UTBM. We can summarise the crucial property of a mask

by noting that speech will be intelligible as long as its most important features are

preserved, independently of the background noise.
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2.2 Evaluation of mask estimation

A critical part of the binary mask estimation problem is the evaluation: there is no

universally accepted measure to evaluate the performance of a binary mask estimator.

The different objectives of the system in which the binary mask is to be used makes

it difficult to define a measure that is universally appropriate. While sometimes the

aim is to improve the performance of Automatic Speech Recognition (ASR), other

systems aim to improve the intelligibility of the speech.

A subjective evaluation of the speech intelligibility is both expensive and time

consuming, and objective measures are often used for the binary mask evaluation.

Up to now, many binary mask estimation techniques are evaluated in terms of SNR

improvement. Unfortunately, this measurement does not correlate directly with the

speech intelligibility or quality at poor SNRs.

Another measure which has been more recently introduced is the Hit minus False

Alarms (HIT-FA) rates. A study in [97] showed that not all the errors introduced

in the binary mask have the same effects on intelligibility: false alarms (originally

0 labelled as 1) degrade intelligibility more than misses (originally 1 labelled as 0).

Later, a correlation between HIT-FA and speech intelligibility was discovered in [83].

Based on these results, HIT-FA error percentages in unit labelling are usually provided

to evaluate the estimated binary mask. The disadvantage of HIT-FA rates is that they

provide no comparison between the intelligibility of the noisy speech and the masked

speech, therefore they give no information about whether the technique has improved

the original intelligibility. Another disadvantage is that direct comparison between

algorithms is not possible if they pursue different binary mask definitions. The use

of recent objective measures for speech intelligibility such as STOI [134], which has

shown good intelligibility correlation for binary masks, solves both problems as they

operate on the segregated speech and they provide a good comparison between the

original and the processed speech.
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2.3 Mask estimation techniques

Most binary mask estimation approaches have aimed to pursue the IBM with 0 dB

LC, which means that the target dominated regions need to be estimated. There

are different perspectives from which the estimation can be approached. While some

techniques try to estimate the noise and from it the SNR, others have sought to

identify the speech energy.

2.3.1 SNR-based masking

An estimation of the binary mask from the ratio of the noisy speech spectrum to the

estimated noise was presented in Cooke et al. [23]. Working in the time-frequency

domain, the estimated noise was computed with a simple averaging over the initial

frames of the files when only noise was present. With a threshold of 0 dB, they called

this the “negative energy criterion”. Other thresholds were studied too, based on the

local SNR criterion. However, the results were similar to spectral subtraction and

musical noise, individual narrow-band spectral spikes which generate tonal noise, was

present in the final segregation.

Several binary mask estimation techniques, which were adapted from other speech

enhancement techniques centred around SNR estimation, were evaluated in [63]. The

a-priori SNR was calculated using the gain functions of spectral subtraction and sev-

eral MMSE-based techniques. The hit and false alarm rates were calculated for posit-

ive SNRs and the best performance was achieved for the statistical-based algorithms

[31, 32, 100].

2.3.2 Identification of speech energy

Speech characteristics were exploited in Seltzer et al. [127] for binary mask estima-

tion. The algorithm first classified voiced and unvoiced speech frames using a pitch

estimator based on RAPT [137]. Seven different features were used to identify reliable

voiced speech:
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(a) the ratio of energy at the harmonics of the voiced speech to the energy outside

the harmonics, which decreases with the presence of noise;

(b) the ratio of the second largest to the largest peak in the autocorrelation, also

decreasing with poor SNR;

(c) the subband to fullband energy ratio, measuring the effect of noise on a partic-

ular subband and on the overall contour;

(d) the kurtosis of the subband signal that will decrease at poor SNRs as the signal

becomes more Gaussian;

(e) the spectral flatness in the region of the subband, this being given by the vari-

ance of the subband energy in a neighbourhood;

(f) the subband energy to subband noise floor ratio; and

(g) the estimated SNR based on spectral subtraction.

For unvoiced frames a reduced set of features was used that excluded those dependent

on the pitch, i.e. (a) and (b). The mask was calculated using a two-class (reliable

and corrupt) Bayesian classifier for each type of speech: unvoiced and voiced. Each

subband of the spectrogram was processed individually and a classifier was trained

for each one. A binary and/or continuous mask was estimated using this technique

with the purpose of increasing the speech recognition scheme performance. In this

application, the speech quality and/or intelligibility measurements were not relevant

and the lowest tested SNR was 0 dB.

Following the work in [127], cepstral coefficients were used in [84] inside each

subband along with its derivatives as features for the classifier. Additional features

included a spectral flatness measure and the ratio of the energy in the harmonics

voiced speech to the energy outside the harmonics. The training was done using col-

oured noise and a restoration method for voiced and unvoiced frames misclassification

is introduced. The results were evaluated in terms of ASR recognition accuracy for

positive SNRs and showed an improvement equivalent to about 5 dB in SNR.
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An algorithm based on the modulation domain was proposed in Kim et al. [83],

where no speech/noise detection or noise statistics were required. The algorithm

consisted of a two-class Bayesian classifier that divided time-frequency units into

target-dominated and masker-dominated groups. Amplitude Modulation Specto-

grams (AMSs) [90], which are neurophysiologically and psychoacustically motivated

and capture information about amplitude and frequency modulations, were used along

with their time and frequency derivatives to train two GMMs that represented the

distribution of the feature vector of each class. SNR levels of �5 and 0 dB were used

for the experiments in which the same noise signals were used for training and testing.

Using subjective tests, an improvement in intelligibility was claimed equivalent to up

to 5 dB of SNR. This work was further extended in [82], where a fast adaptation

to new noise environments was introduced by implementing an incremental training

approach.

A classification approach using SVMs was used in Han and Wang [45]. Pitch-based

features and AMSs were used to train a radial basis function SVM. A re-thresholding

was done to the output of the SVM to maximize the HIT-FA rates in each channel. Fi-

nally, an auditory segmentation stage taked advantage of information in neighbouring

time-frequency bins to estimate the final mask. The results showed that this method

achieved higher HIT-FA rates on seen noise types than the previous approach pro-

posed by Kim et al. in [83], which used GMMs for classification. The authors further

improved this algorithm in [46], where the binary mask estimation was accommodated

to unseen conditions. The feature set was extended by including Relative Spectral

Transform and Perceptual Linear Prediction (RASTA-PLP) features. In order to ad-

apt to different SNRs or noises, the SVM decision was mapped to a number between

0 and 1 and the threshold above which the time-frequency bin is considered to belong

to the speech was accordingly changed. Contextual information was also used and

the results, shown in terms of SNR improvement and HIT-FA percentages, showed

an improvement for most tested SNRs with respect to previous approaches.

A detailed analysis of different features for the ideal binary mask estimation

was performed in Wang et al. [148]. Pitch-based features, AMSs, Gammatone Fre-
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quency Cepstral Coefficients (GFCCs), Mel-frequency Cepstral Coefficients (MFCCs),

RASTA-PLP were explored as inputs to a Gaussian kernel SVM for classification. The

results were evaluated in terms of HIT-FA for matched and unmatched noise condi-

tions. Individually, GFCCs and RASTA-PLP obtained the best results for matched-

noise conditions and for unmatched conditions respectively.

With the aim of modelling temporal dynamics, Wang and Wang [149] employed

linear-chain structured perceptrons. Their algorithm first extracted a set of features

containing AMSs, RASTA-PLP, MFCCs, pitch-based features and delta functions.

As the performance of structured perceptrons is largely dependent on the linearly

separability of the features, Deep Neural Networks (DNNs) were used to learn linearly

separable features functions from the input set of features. The HIT-FA rates for both

seen and unseen noises outperformed previous approaches which used either GMMs or

SVMs as classifiers. The same authors, aiming to improve the binary mask estimation

on unseen conditions, proposed an algorithm in [150] which also used DNNs. The

technique extracted the same set of features studied in [148] and DNNs were again

employed to learn linearly separable features. In this case, a linear SVM was used

for classification and the experiments showed, in terms of HIT-FA results, a better

generalisation than that achieved with a Gaussian-kernel SVM. No comparison was

made between the approach presented in [149] and in [148].

A new method for binary mask estimation was introduced [91], where sparse

coding techniques were used. The authors chose a dictionary which consisted of

gammatone functions [129] and used the Matching Pursuit (MP) greedy algorithm

to minimize the number of non-zero coefficients. The Filter and Threshold (FT) al-

gorithm, less computationally expensive, was also evaluated. The performance of both

algorithms was shown in terms of predicted intelligibility using the STOI algorithm.

However, neither of the algorithms was able to increase the predicted intelligibility.

2.3.2.1 Voiced speech segregation

One of the earliest approaches for voiced speech segregation was proposed by [119],

based on the fundamental frequency estimation algorithm described by [126]. The
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idea underpinning [126] was to create a subharmonic histogram knowing that the

fundamental frequency can be calculated with high precision by dividing the frequency

of a harmonic by its harmonic number. In [119], using this subharmonic histogram

and a pitch tracker, the authors developed a method for separating voiced speech from

interfering voiced speech. No background noise other than an interfering speaker was

considered.

A system to separate harmonic sounds based on association cues in human audit-

ory organisation was presented in [142]. The system first extracted sinusoidal spectral

components and then calculated perceptual distances between sinusoidal trajectories

focusing on the synchronous changes of the components and their harmonic concord-

ance. Finally, these trajectories were classified into different sound sources minimising

the distances between trajectories inside a class. As in [119], the authors only con-

sidered harmonic interfering sounds.

Following the steps of CASA-based models to segregate voiced speech [24, 145],

the algorithm in [56, 57] used temporal continuity and measures of the correlation

between adjacent frequency channels to identify regions dominated by a periodic

signal. The pitch of the target speech was estimated and then used to label each

region dominated by a periodic signal either as target or interference. The algorithm

was tested for different noise types with SNRs equal or higher than 0 dB, but no direct

measure of speech intelligibility or quality was conducted.

A tandem algorithm for pitch estimation and voiced speech segregation was pro-

posed in [60]. After an approximate estimate of pitch contours, voiced speech time-

frequency bins were identified and then used to improve the pitch estimate. This

process is iterated until it converges or a maximum number of iterations is reached.

The results show an SNR improvement over previous work by the same authors [56].

2.3.2.2 Unvoiced speech segregation

Although there are many approaches for the segregation of voiced speech, methods for

unvoiced speech segregation are less well developed. An algorithm for stop consonants

separation was proposed in [55, 54], where the authors focused on identifying stop
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bursts by detecting their onsets. Information on their auditory spectrum, relative

intensity and intensity decay time is also integrated to differentiate stops from other

signals. The final classification was performed using a Bayesian decision rule.

A method for unvoiced speech segregation which targeted both stops and fricatives

was proposed in [59]. In this approach, the noisy speech was divided into different

segments based on the onsets and offsets of auditory events [58]. After removing the

segments dominated by voiced speech or by periodic or quasiperiodic signals, two

multilayer perceptrons were used as classifiers to identify the segments dominated by

unvoiced speech.

Another way of segregating unvoiced speech was proposed in [61]. After the voiced

speech and periodic noise were segregated, the non-periodic noise was estimated dur-

ing the neighbouring voiced intervals. Spectral subtraction was then used to estimate

unvoiced segments, which were then classified between unvoiced speech segments and

interference segments based on the lower and upper frequency bound of the segment

using thresholding or Bayesian classification.

2.4 Summary

In this chapter, we have discussed alternative binary mask targets and methods of

estimating them. The time-frequency bin selection of binary mask targets can be

based on the SNR of the time-frequency bin (IBM), or based only on the speech

power (TBM and UTBM). We have seen that binary masks based only on the speech

power have similar intelligibility performance to the IBM, showing a new way of

understanding the action of a binary mask. The binary mask estimation problem can

thus be approached as a speech power identification problem, independently of the

noise present.

Many approaches to estimate a binary mask have been attempted, mainly aiming

to estimate the IBM with 0 dB LC. While some methods focus on the noise estim-

ation, others concentrate efforts on extracting information from the speech. Several

approaches have recently investigated the potential of different machine learning tech-
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niques to perform the time-frequency bin classification. However, the different evalu-

ation techniques and conditions used for performance evaluation make the comparison

of the algorithms very difficult. In general, binary mask estimation is a problem that

has attracted considerable interest in the last years, and new techniques aimed at

lower SNRs, adaptation to unseen conditions and intelligibility improvement are in

constant development.
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Chapter 3

Pitch estimation algorithm robust to

high levels of noise (PEFAC)

The estimation of fundamental frequency, or pitch1, is a key component of voiced

speech segregation and therefore an essential element for a binary mask estimator

based on identifying time-frequency regions containing speech energy. The estima-

tion of the fundamental frequency also plays an important role in many other speech

processing applications and numerous approaches have been described in the literat-

ure.

In situations where there is a high level of acoustic noise or where the distance

between the microphone and speaker is large, the SNR of an acquired speech signal can

be very poor. In such circumstances the performance of pitch estimation algorithms

degrades [128], and may become unusable below 0 dB SNR. In recent years a number

of noise-robust algorithms have been proposed but reliable fundamental frequency

estimation at low SNRs remains a challenging problem.

This chapter presents a fundamental frequency estimation algorithm, PEFAC,

that is able to identify voiced frames and estimate pitch reliably even at negative

SNRs. The algorithm combines a normalization stage, to remove channel dependency

and to attenuate narrow-band noise components, with a harmonic summing filter

applied in the log-frequency power spectral domain, the impulse response of which is
1
In this thesis we treat “pitch” and “fundamental frequency” as synonyms.
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chosen to sum the energy of the fundamental frequency harmonics while attenuating

smoothly-varying noise components. Temporal continuity constraints are applied

to the selected pitch candidates and a voiced speech probability is computed from

the likelihood ratio of two classifiers, one for voiced speech and one for unvoiced

speech/silence. We compare the performance of our algorithm with that of other

widely used algorithms and demonstrate that it performs well in both high and low

levels of additive noise.

3.1 Introduction

Many pitch estimation algorithms have been proposed in the literature; these may be

divided into parametric and non-parametric algorithms. While parametric algorithms

assume an explicit model for the noisy speech, non-parametric methods do not make

such assumptions. In this section, we first review the literature of existing pitch

estimation algorithms, we explain the intrinsic difficulties in estimating pitch and

finally we provide an overview of the proposed PEFAC algorithm. In this chapter, we

are concerned with the specific problem of tracking the pitch of voiced speech from a

single speaker.

3.1.1 Parametric pitch estimators

The parametric algorithms define a parametric stochastic model for a noisy speech

signal with the pitch, or its equivalent, as one of the parameters. The pitch is then

estimated by calculating the MMSE or Maximum Likelihood (ML) estimate of the

model parameters from the observed signal. By incorporating prior distributions

for the parameters, Bayes’ theorem can be used to obtain a Maximum A-Posteriori

(MAP) estimate. A good description of several parametric methods is contained

in [21]. A widely used time-domain parametric model for voiced speech consists

of a harmonic series comprising sinusoidal components at integer multiples of the

pitch; in the HMUSIC algorithm [22] this is combined with a white noise model and

the algorithm simultaneously estimates both the pitch and the number of harmonics
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present in the signal. Instead of operating in the time domain, several authors define a

parametric model of the power spectrum obtained by applying either the STFT (see

Sec. 1.3.2), or an alternative time-frequency transform, to the noisy speech signal.

In [152], the pitch is quantized into discrete values (including an unvoiced state)

and a separate GMM is trained to represent the log power spectrum for each pitch

possibility. This is then used in a factorial Hidden Markov Model (HMM) to track

the pitch of one or more sources. It was found that the use of speaker-dependent

or gender-dependent models improved the tracking performance of multiple speakers

significantly. In [44], the instantaneous frequency of each STFT bin is extracted

and a statistical model for each harmonic of a source is defined. The Estimation-

Maximization (EM) algorithm [27] is used to find the ML estimate of the pitches

present in each frame and a multiple agent approach is then used to track the pitch

of multiple sources. In [95] the power spectrum of each harmonic is modelled as

a Gaussian distribution while the noise spectrum is similarly modelled as a sum

of overlapping Gaussians on a uniform grid. The time-evolution of each harmonic

amplitude is represented as a sum of overlapping Gaussians while that of the pitch as a

cubic spline. The EM algorithm is again used to determine the ML model parameters

and the method yields parametric models not only of the voiced speech but also of

the smoothed noise spectrum. The advantages of the parametric approach to pitch

estimation are that the assumptions about the signal are explicit, the limitations of an

algorithm are often predictable, the performance can be optimal in a well defined sense

and in some cases a Cramér-Rao Lower Bound (CRLB) can be calculated or estimated

[21]. The disadvantage of the approach is that the performance may degrade when

the, often quite strong, modelling assumptions are not satisfied.

3.1.2 Non-parametric pitch estimators

Non-parametric algorithms avoid using explicit signal models and identify the pitch

of a signal either from its harmonic structure in the frequency domain, its periodicity

in the time domain or from the periodicity of individual frequency bins in the time-

frequency domain. Two widely used pitch estimation algorithms that operate in
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the time domain are RAPT [137] and YIN [26]. RAPT calculates the normalized

Autocorrelation Function (ACF) and selects its peaks as pitch period candidates.

Dynamic Programming (DP) is then used to identify the voiced frames and to select

the best sequence of pitch candidates. The YIN algorithm uses the squared difference

function, closely related to the ACF, to identify pitch candidates. Neighbouring

candidates within a short time interval are taken into account to select the best local

estimate. YIN does not perform voiced/unvoiced classification and provides a pitch

estimate for each frame using quadratic interpolation to obtain subsample resolution.

Instead of the ACF, the cross correlation of two adjacent single-period waveform

segments is used by [111] and [30]; this gives better time resolution at high pitch

frequencies. Autocorrelation-based pitch detectors perform well in moderate noise

levels since the ACF of an aperiodic noise source typically falls off rapidly with lag.

At negative SNRs, however, a voiced speech signal whose energy is dominated by

low-order harmonics will not generate a distinct peak in the ACF and, as will be seen

in Sec. 3.4.2, reliable pitch estimation becomes impossible.

Instead of taking the ACF of the full-band signal, [123] uses an auditory filterbank

to divide the signal into subbands. In each low frequency band the ACF is calcu-

lated directly while in the high frequency bands, which normally include multiple

harmonics, the ACF is taken of the signal envelope. The advantage of this multiband

approach is that subbands that are dominated by noise or that lack a reliable ACF

peak can be deleted before the subband ACFs are combined to give an overall pitch

estimate. This idea has been extended in [153] and later in [76] where multiple pitch

candidates are obtained from each frame and a tracking algorithm based on an HMM

is used to find the optimal sequence of zero, one or two sources thereby implicitly

performing voiced/voiceless discrimination.

Non-parametric algorithms operating in the frequency domain typically identify

harmonic peaks in the short-time amplitude, log-amplitude or power spectrum. The

width of each peak depends on the window used in the spectral analysis, the har-

monic number and the rate of change of pitch. The idea of creating a subharmonic

histogram by assuming each peak in the spectrum to be a potential pitch harmonic
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was introduced in [126] and later extended in [119]. Because the harmonic num-

ber is unknown, multiple possibilities are considered for each peak. The “harmonic

sum” and “harmonic product” spectra generalize this idea by summing versions of

the power or log power spectrum that have been compressed in frequency by a se-

quence of integer factors [126, 118]. In both cases, the peak of the resulting sum

defines the pitch estimate. It was found in [118] that the harmonic sum and product

spectra had similar performance for pitch detection and that both outperformed a

parametric ML method, which was prone to octave errors in the presence of noise.

In [106], instead of identifying isolated peaks, comb-filters corresponding to different

fundamental frequencies are applied to the power spectrum of the speech to calcu-

late a weighted sum of the harmonic powers. The highest peak at the output is

achieved when the fundamental frequency of the comb-filter matches the pitch. If

the spectrum is transformed into the log-frequency domain, the spacing of the comb

filter tines becomes non-uniform but does not now depend on the pitch; this allows a

more efficient implementation. A harmonic-summation method in the log-frequency

domain is proposed in [49], in which the spectrum is shifted along the log-frequency

axis, weighted and summed. Following the pitch estimation, frames are classified as

voiced or unvoiced based on the correlation coefficient between adjacent pitch periods.

In a similar approach, [17] convolves the spectrum in the log-frequency domain with a

train of harmonically spaced delta functions and selects the highest peak. Three har-

monic summing algorithms for multipitch estimation were described in [88] for music

signals; these were later extended in [89] to use an auditory front end which gave a

small improvement in some cases. An advantage of harmonic summation methods is

that since most of the energy of a voiced speech signal is normally concentrated into

a small number of harmonic peaks, these remain detectable even at poor SNRs.

3.1.3 Temporal continuity constraints

It is worth noting that the task of estimating pitch is inherently ill-conditioned; the

pitch, f0, of a periodic signal will, for example, be halved by the addition of an

arbitrarily small component at 1.5f0. Because of this, all pitch estimation algorithms
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are inevitably prone to errors in which the true pitch is multiplied or divided by two

(octave errors) or, more generally, by any simple rational number. Therefore, a large

number of pitch tracking algorithms apply temporal continuity constraints to the pitch

estimate which can be effective at suppressing octave errors. Many algorithms divide

the input signal into frames and identify multiple pitch candidates in each frame, often

associating a measure of confidence or likelihood with each candidate. By defining

the probabilities of inter-frame pitch transitions and of voicing onsets and offsets,

it is possible to use DP to determine one or more maximum likelihood pitch tracks

within the framework of an HMM. The use of DP for pitch tracking was introduced

in [7] and extended in [116] and [117], which incorporated a pitch transition cost

(equivalent to negative log likelihood) proportional to the absolute time derivative of

pitch. Instead, [137] used a cost proportional to the derivative of log pitch and also

applied a reduced cost to octave jumps. A complication is that, particularly at the

end of voiced segments, the true pitch of speech may become irregular, make abrupt

octave jumps or show bicyclic behaviour in which odd and even larynx cycles have

different periods [29]. Although DP can compensate for pitch estimation errors at

the frame level, the use of a strong continuity constraint may itself introduce errors

and is no substitute for high accuracy in the raw pitch estimation.

3.1.4 Overview of PEFAC

In this chapter, we present PEFAC (Pitch Estimation Filter with Amplitude Com-

pression2), a non-parametric frequency domain algorithm for single pitch estimation

that is robust to high levels of noise. Our algorithm estimates the fundamental fre-

quency of each frame by convolving its power spectrum in the log-frequency domain

with a filter that sums the energy of the pitch harmonics. Unlike previous har-

monic summing algorithms, the filter impulse response is designed to integrate the

broadened harmonic peaks while rejecting additive noise that has a smoothly varying

power spectrum. This improves the SNR of the filter output and contributes signi-

ficantly to the noise-robustness of the algorithm. Prior to this filtering operation, a
2
The MATLAB code of the proposed algorithm is available in [15].
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Figure 3.1: Power spectral density of a periodic source with pitch f0 in the log-
frequency domain.

novel spectral normalization is applied to reduce channel dependency and attenuate

narrow-band. This normalization removes dependency on the input signal power and

improves noise-robustness. The PEFAC algorithm provides a pitch estimate for each

frame and, in addition, provides an estimate of voicing probability.

3.2 The PEFAC algorithm

For a periodic source with pitch f0 in stationary noise, the power spectral density in

the log-frequency domain is given by

Y (q) =
KX

k=1

bk�(q � log k � log f0) +N(q) (3.1)

where q = log f . In (3.1), bk represents the power of the k

th harmonic, N(q) the

power spectral density of the unwanted noise, � the Dirac delta function and K the

number of harmonics. As shown in Fig. 3.1, the spacing of the harmonics in the log-

frequency domain does not depend on f0 and their energy can therefore be summed

by convolving Y (q) with a matched filter [139] whose reversed impulse response is

hi(q) =
KX

k=1

�(q � log k). (3.2)

The convolution Y (q) ⇤ hi(�q) will result in a peak at q0 = log f0 together with

additional peaks corresponding to simple rational multiples and sub-multiples of f0.

In principle therefore, the pitch, f0, can be found by taking the highest peak in the

output of the filter.
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Figure 3.2: Alternative methods of computing the average power spectrum of a 120 s
speech file. (a) Mean and standard deviation of the averaged speech spectrum over
intervals of 3 s, (b) mean and standard deviation of the averaged speech spectrum
over intervals of 3 s smoothed over 0.15 octaves in the log-frequency domain.

In practice, both speech and noise are non-stationary and we process the noisy

signal in overlapping frames. The idealized filter defined by (3.2) is now unsuitable

for pitch estimation because the spectral peaks are broadened and the filter output

is adversely affected by additive noise and the channel response. In the PEFAC

algorithm, described below, the approach outlined above is developed into a robust

pitch estimation algorithm.

3.2.1 Normalization

The first stage of the algorithm performs spectral normalization. The motivation for

this is that if the shape of the average power spectrum of clean speech is known a

priori, deviations from this shape indicate either a non-uniform channel response or

the presence of noise.

As discussed in Section 1.1.1, it was found in [19] that the LTASS of speech
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signals is largely independent of both language and talker and can be represented

by a universal LTASS, relative to which the frequency-averaged standard deviation

of an individual speaker’s LTASS was found to be about 3 dB. Accordingly, we use

the universal gender-independent LTASS recommended in Table II of [19] as the

expected spectral shape of the clean speech power spectrum, and we denote it by

L(q). The LTASS of an individual speaker was determined in [19] by averaging over

64 s of speech. However, for pitch estimation applications, it is desirable to average

the noisy periodogram over a shorter interval to adapt, for instance, to different

speaker levels contained within the same recording. In Sec. 3.3, our experiments

use an interval of about 3 s. To compensate for using a short time interval, the

smoothed periodogram, Y̌t(q), is calculated by averaging in both the time and the

log-frequency domains. Figure 3.2 illustrates how smoothing both in time and in log-

frequency can compensate for using a shorter speech interval. Figure 3.2(a) shows the

mean and standard deviation of the average speech spectrum of a speaker calculated

over intervals of 3 s and Fig. 3.2(b) shows the speech spectrum of the same speaker

averaged both over intervals of 3 s and over 0.15 octaves in the log-frequency domain.

We observe that the standard deviation is much lower in Fig. 3.2(b) than that in

Fig. 3.2(a), showing that the individual estimates are closer to the average speech

spectrum.

In the spectral normalization stage, the periodogram of the observed signal at

time frame t, Yt(q), is first smoothed in both time and frequency to give

Y̌t(q) = g(t, q) ⇤ Yt(q) (3.3)

where g(t, q) is the two-dimensional impulse response of the moving average filter.

The normalized periodogram, Y 0
t (q), is then obtained as

Y

0
t (q) = Yt(q)

L(q)

Y̌t(q)
(3.4)

where L(q) represents the universal LTASS spectrum from Table II of [19]. We can
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write

g(t, q) ⇤ Y 0
t (q) = g(t, q) ⇤

✓
Yt(q)

L(q)

Y̌t(q)

◆

⇡ (g(t, q) ⇤ Yt(q))
L(q)

Y̌t(q)
= L(q) (3.5)

where the approximation assumes that both L(q) and Y̌t(q) are sufficiently smooth

that they do not change significantly within the support of g(t, q).

From (3.5) we see that, following normalization, the smoothed periodogram of the

observed signal will match the universal LTASS; this provides three benefits. First,

in the case of a flat channel with no added noise, the procedure will normalize the

power of the input signal to that of the L(q) target but will otherwise have little

effect since the spectral shape of the L(q) target matches the average spectral shape

of clean speech. Second, any time-invariant channel response applied to the noisy

speech will affect Yt(q) and Y̌t(q) equally providing it is sufficiently smooth that it
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Figure 3.3: Periodogram of speech corrupted by narrow-band noise at 5 dB SNR
before (a) and after (b) normalization.
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does not change significantly within the support of g(t, q). The normalization will

therefore cancel out the effects of such a channel; this action is similar to that of the

widely used technique of cepstral mean subtraction [35]. Third, the normalization

will attenuate any additive noise components that are strong enough to distort the

average spectrum. To show this, suppose that the noisy signal speech periodogram

is Yt(q) = St(q) + Nt(q) where the speech and noise periodograms, St(q) and Nt(q)

respectively, are assumed to add in the power domain. Following the smoothing

operation, we have

Y̌t(q) = g(t, q) ⇤ St(q) + g(t, q) ⇤Nt(q)

⇡ ↵L(q) + Ňt(q) (3.6)

where we have approximated the smoothed periodogram of the speech by ↵L(q) with

↵ representing the power of the input speech relative to LTASS. The normalization

gain factor in (3.4) can now be determined as

L(q)

Y̌t(q)
=

↵

�1

1 + Ňt(q)
↵L(q)

(3.7)

From (3.7) we see that the gain factor is a function of the SNR, ↵L(q)/Ňt(q), of the

smoothed noisy speech periodogram, Y̌t(q). At frequencies for which this SNR� 1,

the gain factor approximates to ↵

�1 thereby normalizing the input speech power. At

frequencies having a low SNR, however, the gain will be less than ↵

�1 and any regions

of the periodogram for which the SNR⌧ 1 will be heavily attenuated. To illustrate

this effect, Fig. 3.3(a) shows the periodogram of a speech signal corrupted with noise

that has a strong tonal component at 250Hz while Fig. 3.3(b) shows the periodogram

of the same speech segment after normalization. We see that the narrow-band noise is

highly attenuated while the speech spectrum is slightly amplified at other frequencies.

To assess the effect of the normalization on the overall SNR of the signal, we

assume that the average noisy speech spectrum is Y̌ (q) = L(q) +N(q) where speech

is assumed to follow the universal LTASS spectrum, and N(q) is the noise spectrum,
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which is supposed not to change significantly within the support of g(t, q). Writing Lq

for L(q) and Nq for N(q), the original SNR is therefore
R
q Lqdq/

R
q. We now scale the

noisy speech spectrum by Lq/(Lq +Nq) which forces noisy spectrum to be standard

LTASS so that the new SNR is R
q

L2
q

Lq+Nq
dq

R
q

LqNq

Lq+Nq
dq

The SNR has been improved by the normalization if

R
q

L2
q

Lq+Nq
dq

R
q

LqNq

Lq+Nq
dq

�
R
p LpdpR
p Npdp

,
Z

q

L

2
q

Lq +Nq
dq

Z

p

Npdp �
Z

q

LqNq

Lq +Nq
dq

Z

p

Lpdp

,
ZZ

q,p

Lq (LqNp � LpNq)

Lq +Nq
dpdq � 0 (3.8)

where, for clarity, the frequency has been represented as a subscript. We can decom-

pose the left side of the inequality

ZZ

q,p

Lq (LqNp � LpNq)

Lq +Nq
dpdq =

=
1

2

ZZ

q,p

Lq (LqNp � LpNq)

Lq +Nq
dpdq +

1

2

ZZ

p,q

Lp (LpNq � LqNp)

Lp +Np
dqdp

=
1

2

ZZ

q,p

(LqNp � LpNq)
2

(Lq +Nq) (Lp +Np)
dpdq � 0

since the integrand is always non-negative. For an LTASS speech signal, the normal-

ization, therefore, will always improve the overall SNR unless L(q)N(p)�L(q)N(p) =

08p, q that is if L(q)/N(q) has the same value for all q.

3.2.2 Filter definition

Although the idealized matched filter defined in (3.2) comprises a sequence of delta

functions, the width of each harmonic peak will, in practice, be broadened due to the

analysis window and to the rate of change of f0. Accordingly we use a filter with

broadened peaks defined by
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hp(q) =
1

� � cos (2⇡eq)
� � (3.9)

for log(0.5) < q < log(K + 0.5) and hp(q) = 0 otherwise. The algorithm parameter

� controls the peak width while � is chosen so that
R
hp(q)dq = 0. The number

of peaks, K, is discussed in Section 3.3; it needs to be large enough to include all

harmonics with significant energy while avoiding a high response of Yt(q) ⇤ hp(�q) at

values of q corresponding to subharmonics of f0. Figure 3.4(a) shows hp(q) for � = 1.8

and K = 10. The Fourier transform of the filter is shown in Fig. 3.4(b), where we

observe that, since hp(q) is chosen to have zero mean, the filter has a zero gain at DC.

Moreover, the normalized gain equals �6 dB at 0.39 cycles per octave, meaning that
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Figure 3.4: (a) The function hp(q) defined in (3.9), (b) its Fourier transform for
� = 1.8 and K = 10, and (c) the Fourier transform of the noise periodogram, N(q)
averaged over all noises in the RSG-10 database [131].
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any noise whose power spectrum varies with log-frequency at a slower rate than this

will be highly attenuated. Figure. 3.4(c) illustrates the distribution of energy versus

cycles per octave averaged over all noises in the RSG-10 database [131], where it can

be seen that the noise power is concentrated in the region below the 0.39 cycles per

octave cutoff of the filter.

Fig. 3.5 shows an example that illustrates the properties of the filters defined by

(3.2) and (3.9) when used for pitch estimation. Figure 3.5(a) shows the periodogram

of a noisy voiced speech frame with a pitch of f0 = 195Hz. The output of the

idealized filter, defined by (3.2), is shown in Fig. 3.5(b) and it can be seen that

although the highest peak is at the correct pitch, there are many additional peaks at

both harmonically related and unrelated frequencies. The output from the proposed

filter, defined by (3.9), is shown in Fig. 3.5(c), where we see that it almost entirely

suppresses both the peaks due to noise and the peaks at integer multiples of f0.

The suppression of noise peaks is due to the high attenuation by the filter of noise

components whose power spectrum varies more slowly than 0.39 cycles per octave,

as seen in Fig. 3.4(b). The suppression of peaks at integer multiples of f0 occurs

because, at these frequencies, some of the pitch harmonics will be aligned with the

negative regions of the filter impulse response, hp(�q), and will therefore contribute

negatively to the output. As an example, when generating the output of the filter

at 2f0, the odd harmonics of f0 will be aligned with negative regions of the impulse

response and so will partially cancel the contribution of the even harmonics which will

be aligned with positive regions of the impulse response. Peaks at sub-harmonics of

f0 remain in Fig. 3.5(c) but have been attenuated; thus the relative amplitude of the

peak at 98Hz, the first subharmonic, has been reduced from 0.84 in Fig. 3.5(b) to 0.63

in Fig. 3.5(c). At any given subharmonic, f0/n, both filters will include the energy

from only the first K/n harmonics of f0. The resultant peak will be lower than that

at f0 partly because fewer harmonics are included but also, in the case of the filter

from (3.9), because the positive area associated with each harmonic in Fig. 3.4(a) is

inversely proportional to the harmonic number. The comparative performance of the

two filters on a large number of speech utterances is discussed in Section 3.4.2.
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(a) Noisy voiced frame spectrum, Yt(q)
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(b) Output of filter (3.2)
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(c) Output of filter (3.9)
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Figure 3.5: (a) The periodogram of a voiced frame corrupted with white noise at
�8 dB SNR. The voiced frame, taken from the TIMIT database, contains the first
vowel of ‘unstuck’ and has a fundamental frequency of 195Hz. The output of the
idealized filter (3.2) and the proposed filter (3.9) are shown in (b) and (c) respectively.

The PEFAC algorithm convolves the normalized periodogram, Y 0
t (q), with hp(�q)

to give

Zt(q) = Y

0
t (q) ⇤ hp(�q) (3.10)

As noted above, Zt(q) will contain peaks corresponding to f0 and to simple rational

multiples and submultiples of f0. We define ft,n and at,n respectively as the frequency
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and amplitude of the n

th highest peak of Zt(q). The frequencies, ft,n, and peak

amplitudes, at,n, are used below in Section 3.2.3 to estimate the voicing probability

and in Section 3.2.4 to estimate pitch. If no temporal constraints are applied, the

pitch estimation at each time frame t is taken as ft,1.

3.2.3 Voiced speech probability

Estimation of the pitch is only meaningful in voiced speech segments, but identifying

these reliably in the presence of high levels of noise is a challenging problem. There-

fore, we have chosen to give separately an estimate of the fundamental frequency at

every time-frame together with an estimated probability that the time-frame contains

voiced speech.

This voicing probability is based on a 2-element feature vector calculated at each

frame and comprising:

(a) the log-mean power of the normalized time-frame spectrum, Lt = logEt such

that Et =
⇣

1
Q

PQ
i=1 Y

0
t (qi)

⌘
, where Q represents the number of frequency bins in

the log-frequency domain. Because voiced speech contains most speech energy,

the mean power of a voiced frame is typically higher than the power of an

unvoiced frame;

(b) the ratio of the sum of the highest three peaks in Zt(q) to Et

rt =

P3
n=1 at,n

Et + ✏

(3.11)

where ✏ is a small regularization constant. This ratio depends on the fraction of

the frame’s total power that is harmonically related. The highest three peaks,

rather than only the highest one, are used in the numerator of (3.11) to give

greater robustness to noise; a voiced frame will include several high peaks at f0

and its sub-harmonics (see Fig. 3.5(c)).

Fig. 3.6 shows the histograms of the joint distribution of Lt and rt for both un-

voiced and voiced frames. We can observe that unvoiced speech frames typically have
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Figure 3.6: Histogram of the joint distribution of Lt and rt for (a) unvoiced and (b)
voiced frames. The frames, a total of 16832, are extracted from a subset of utterances
of the TIMIT database training set mixed with white noise at +20 dB SNR.

lower Lt values than voiced speech frames and that rt values are consistently low for

unvoiced frames and higher and more variable for voiced frames.

Two GMMs are trained; one for voiced frames and the other for unvoiced frames.

The input to both GMMs is the 2-element feature vector, [Lt, rt] and the voiced

speech probability for each frame is calculated from their likelihood ratio, Pt(voiced) =

1/(1 + pt,u/pt,v), where pt,u and pt,v are the output probabilities at time-frame t from

the unvoiced and voiced GMM respectively.
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3.2.4 Temporal continuity constraints

In PEFAC up to three pitch candidates are identified in each frame and dynamic

programming is used to select the sequence of pitch candidates that minimizes a cost

function expressed as a weighted sum of three parameters:

(a) the relative amplitude of the peaks. The amplitude of the peaks, at,n, indicates

the amount of harmonically related energy associated with the frequency of the

spectral peak at ft,n. We penalize the selection of lower amplitude peaks by

including in the dynamic programming a cost term equal to c

(a)
t,n = �at,n

at,1
.

(b) the rate of change of the fundamental frequency. To penalize rapid changes of

fundamental frequency, we calculate the normalized rate of pitch change as

�ft,nm =
2(ft,n � ft�1,m)

�t(ft,n + ft�1,m)

where ft,n and ft�1,m are pitch candidates in frames t and t � 1 respectively

and �t is the frame time increment. We introduce a cost term proportional to

the squared deviation of �ft,nm from its mean value determined from training

data: c(f)t,nm = (�ft,nm � µ�f )
2.

(c) the deviation from the median pitch. Although this value is unknown, the

median pitch at time t, f̃t,0, can be estimated as the median frequency of the

highest peak, ft,1, in nearby frames that have a high voiced speech probability.

The cost related to this measure, which provides robustness to outlier errors, is

c

(m)
t,n =

|ft,n�f̃t,0|
f̃t,0

.

The overall cost from candidate m in time-frame t�1 to candidate n in time-frame

t can therefore be expressed as

ct,nm = w1 · c(a)t,n + w2 · min(c(f)t,nm, w3) + w4 · c(m)
t,n (3.12)

where wi are the weights associated with each parameter, with the exception of w3,

which acts as an upper limit for c(f)t,nm to permit pitch changes between voicing spurts.
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3.2.5 Fundamental frequency estimation

The complete PEFAC algorithm therefore comprises the following steps:

(i) transform the input signal to the time-frequency power spectrum domain, Yt(f),

using the short-time Fourier transform (STFT);

(ii) interpolate the periodogram of each frame onto a log-spaced frequency grid,

Yt(q);

(iii) calculate the normalized periodogram, Y

0
t (q) so that the smoothed spectrum

Y̌t(q) equals L(q),

Y

0
t (q) = Yt(q)

L(q)

Y̌t(q)
;

(iv) calculate Zt(q) = Y

0
t (q) ⇤ h(�q) and select as pitch candidates the three highest

peaks in the feasible range;

(v) estimate the voiced probability for each frame;

(vi) use dynamic programming to select the sequence of candidates with lowest cost.

Fig. 3.7 shows the output of the various algorithm steps for a frame of voiced

speech with a pitch of 168Hz corrupted by car noise. In Fig. 3.7(a) we see that the

noise masks the first two pitch harmonics although harmonics 3 to 7 are visible as

peaks. Figure 3.7(b) shows the same periodogram interpolated onto a logarithmic

scale and restricted to the range 40Hz to 4 kHz. The low frequency noise that masks

the pitch in Fig. 3.7(a,b) has been greatly attenuated by the normalization stage in

Fig. 3.7(c), which shows the normalized periodogram Y

0
t (q), while the peaks at har-

monics 3 to 7 have been preserved. The dashed line shows the LTASS normalization

target spectrum. Figure 3.7(d), which illustrates the output of the filter, shows a clear

peak at 168Hz despite its absence in Fig. 3.7(a), the original spectrum. Figure 3.7(d)

highlights the three highest peaks of Zt(q), which in this case are harmonically re-

lated. They correspond to the pitch, the first subharmonic and the second harmonic

respectively.
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50 100 200 300 600 1000 2000 4000

−80

−60

−40

−20

Frequency (Hz)

P
w

r/
O

ct
 (

d
B

)

(c) Y

0
t (q), output of step (iii)

50 100 200 300 600 1000 2000 4000
−60

−40

−20

0

20

Frequency (Hz)

P
w

r/
O

ct
 (

d
B

)

 

 

LTASS

(d) Zt(q), output of step (iv)
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Figure 3.7: PEFAC processing steps for a single voiced frame of speech corrupted
with car noise at �19 dB SNR. (a) Periodogram in dB, (b) periodogram in dB on a
log-frequency grid, (c) normalized periodogram in dB on a log-frequency grid, and
(d) output of the pitch extraction filter. The voiced frame, taken from the TIMIT
database, contains the second vowel of ‘himself’ and has a fundamental frequency of
168Hz.
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3.3 Experiments

A subset of the training set from the TIMIT database [38] was used for training

PEFAC. The training subset contains 16 male and 8 female speakers each reading 3

distinct sentences. The sampling frequency of the speech material is 16 kHz.

To determine the ground truth for the fundamental frequency and voicing, the

autocorrelation method, the cross-correlation method and the sub-harmonic summa-

tion from Praat [10] together with the YIN [26] and RAPT [137, 15] algorithms were

applied to the clean speech signals. A frame was identified as voiced if the majority

of the algorithms gave the same pitch estimate and, in this case, the ground truth

was taken as the mean of the estimates. The ground truth pitch track was superim-

posed on a spectrogram and for the small number of frames where there was visual

disagreement (less than 4% of the total), the pitch was manually resolved.

For training, car, babble and white noise from the RSG-10 database [131] was

added to the speech files to generate the noisy signals. The calculation of SNR used

ITU-T P.56 [68, 15] for the speech level and unweighted power for the noise.

PEFAC includes a number of algorithm parameters whose values were determined

empirically from the training data. The STFT uses a Hamming analysis window of

90ms duration; this is long enough to resolve the pitch harmonics even for low values

of f0 but short enough to limit the pitch variation within a frame. The inter-frame

time increment is 10ms and each windowed input frame is zero-padded to 360ms to

aid the interpolation stage at low frequencies.

The spectrum of each frame is interpolated onto a dense logarithmic grid ranging

from 10Hz to 4 kHz with a frequency resolution of 0.58% corresponding to 120 samples

per octave. Conceptually the sampled spectrum is first converted to a continuous

spectrum using linear interpolation and this is then resampled using a variable width

triangular sampling kernel as is used when forming mel-frequency cepstrum coeffi-

cients [25]. In practice the two stages are combined and the continuous spectrum is

never calculated explicitly [15].

The smoothing filter used in (3.3) in the normalization step has a uniform impulse
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response within its support, i.e. g(t, q) = 1 for |t| < T0, |q| < Q0. The support in the

log-frequency, 2Q0, was chosen empirically as 0.15 octaves by maximizing the training

set performance on a range of noise types. The support of the smoothing filter in

frequency is a compromise between reducing the standard deviation of the smoothed

spectrum and resolving narrow-band noise sources. Due to the short duration of the

TIMIT and CSLU-VOICES utterances (typically of 3-5s duration), the averaging in

the time axis is done over the entire utterance duration. The LTASS response used

for L(q) is derived from the tabulated values in Table II of reference [19] and are the

average over 12 languages of many speakers. To obtain a continuous response, a 7th

order IIR filter was fitted to the tabulated values [15].

Following normalization, a discrete convolution is performed between the sampled

spectrum of each frame and the filter impulse response defined by (3.9). The filter

impulse response is sampled onto the same dense grid as the spectrum and � is chosen

to make its samples sum to zero. The optimum value of the parameter � depends

on the nature of the noise and the value 1.8 was chosen as the best compromise to

maximize performance on the training set. The number of harmonics captured by the

filter, K, was set to 10. Figure 3.8 shows the results of our algorithm on the training

set for different values of K at different SNRs for white noise, where we observe that

the number of harmonics captured by the filter is not critical above a threshold and

that the algorithm performance has reached convergence at K = 10. When K is fixed
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Figure 3.8: Variation of pitch estimation accuracy with the number of harmonics,
K, for white noise at �10, 0 and +10 dB SNR on a subset of the training set of the
TIMIT database.
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at 10, the pitch is estimated within ±5% for 67.0% of voiced frames at �10 dB SNR.

If, instead, K is chosen optimally for each frame, this figure would rise only to 69.7%

indicating that even if K were chosen adaptively for each frame, the potential benefit

is very small. At �10 dB SNR, for 94.7% of all voiced frames, the choice of K (in the

range 10 to 15) has no effect on whether or not the estimated pitch of the frame is

correct (< 5% error).

Two multivariate GMM models are trained on voiced and unvoiced frames re-

spectively. Both GMMs use 6 mixtures with full-covariance matrices. The GMMs

were trained with the subset of the TIMIT training set using the union of training

data at various noisy conditions: adding white, car and babble noise at SNRs from

�5 dB to +20 dB.

Table 3.1: Dynamic programming weights for equation (3.12)

w1 w2 w3 w4

1 0.019 0.007 0.825

Dynamic programming parameters are weighted to obtain the final cost, (3.12).

These weights are calculated using discriminative training [78, 6]. For the training,

three types of noises were used at an SNR range from �20 to +20 dB: white noise,

car noise and babble noise. Table 3.1 shows the final weights used for the dynamic

programming, where the dominant terms are the relative amplitude, w1, and the

deviation from the median pitch, w4. The estimated median pitch at time t, f̃t,0

in Section 3.2.4(c), was calculated as the median of ft��t,1 of the frames for which

Pt��t(voiced) > 0.7 where 0 < �t < 2 s.

3.4 Results

In this section, the performance of the proposed fundamental frequency estimator

is evaluated on the core test set from the TIMIT database [38] and on the CSLU-

VOICES corpus [79]. The TIMIT core test set contains 16 male and 8 female speakers

each reading 8 sentences for a total of 192 sentences all with distinct texts. The CSLU-
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VOICES corpus contains 7 male and 5 female speakers each reading 50 phonetically

rich sentences, of which the 223 with manually verified and adjusted pitch marks were

used for evaluation. Noise from the RSG-10 database [131] and from the ITU-T P.501

standard [69] was added to the speech utterances. Spectrograms of all the noise types

used in training and testing are included in Appendix A.

3.4.1 Voiced speech activity detector

The performance of the voiced speech activity detector is illustrated in Fig. 3.9, where

the Detection Error Trade-off (DET) curve [105] shows the miss probability versus

the false alarm probability, from which a threshold for the classifier can be chosen

according to different requirements. Figure 3.9 covers a likelihood ratio threshold

ranging from 0.11 to 9. The circles in Fig. 3.9 indicate the results for a likelihood ratio

threshold of unity. We note that at +20 dB SNR the performance of the algorithm is

similar for all three noises. However, its performance degrades in a different way for

each noise as the SNR is reduced. In the white noise case, shown in Fig. 3.9(a), for

a likelihood ratio threshold of unity, the false alarm probability remains low even for

negative SNRs, while the miss probability increases. Similar behaviour is obtained

for car noise, Fig. 3.9(b), although the performance degradation when decreasing the

SNR is less severe than for white noise. This is because the power spectrum of car

noise is concentrated at low frequencies and speech harmonics at higher frequencies

remain unmasked. However, the opposite behaviour is observed for babble noise,

Fig. 3.9(c), where false alarm probability degrades rapidly with SNR. This behaviour

is due to the background speech present in babble noise, which the algorithm identifies

as voiced at low SNRs.

The voiced speech activity detector of PEFAC was compared to RAPT [137, 15]

and Jin & Wang (J&W) [76]. Table 3.2 shows a performance comparison of PEFAC

(using a likelihood ratio threshold of unity) with RAPT and J&W for white, car and

babble noise. For each algorithm and noise type, the table shows the miss probability

(Pmiss) and the false alarm probability (Pfa) for SNRs in the range �20 dB to +20 dB.

In each case, the algorithm with the lowest total error rate (Pmiss + Pfa) has been
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highlighted. The final row of the table shows the overall performance on all three

noise types. The voiced speech activity detector of RAPT is very accurate at high

SNRs, having the lowest total error rate at +20 dB SNR for white and car noise.

However, its performance degrades rapidly and becomes poor at low SNRs. The

accuracy of J&W at high SNRs depends heavily on the type of noise. J&W performs

particularly well with car noise achieving the best performance at most SNRs. The

PEFAC voiced speech activity detector is less dependent on noise type than the other

algorithms and its overall error rate is consistently lower.

3.4.2 Pitch estimation

In this section, the performance of the proposed pitch estimator is evaluated. For

performance comparison, RAPT [137, 15], YIN [26] and Jin & Wang (J&W) [76]

were used. The first two of these are non-parametric time-domain algorithms while

the third is a non-parametric algorithm operating in the time-frequency domain.

Evaluation of pitch estimation was restricted to voiced frames and a pitch estimate

was classified as correct if it was within ±5% of the true value. The graphs in Fig. 3.10

show the performance of the algorithms for white (a), car (b) and babble (c) noise

respectively on the core test set of the TIMIT database. The noises were taken from

the RSG-10 database. It can be seen that at +20 dB SNR, all of the algorithms

reach a performance plateau which varies slightly between algorithms. Although the

two time-domain algorithms, YIN and RAPT, were not specifically designed for noise

robustness, YIN in particular maintains its high performance in white noise down to

0 dB SNR. Below this level however, the performance of both algorithms degrades

rapidly for all noise types. The J&W algorithm also degrades rapidly for white and

babble noise, while having a robust performance to car noise. The proposed algorithm,

PEFAC, has excellent performance at +20 dB SNR and retains this high performance

at significantly lower SNR levels than the other algorithms. In addition to the TIMIT

database, the algorithm was also evaluated on the CSLU-VOICES corpus [79]. Noises

from the ITU-T P.501 standard [69] were added. The obtained performances are

shown in Fig. 3.11 for cafeteria (a), metro (b) and street (c) noises. We observe that
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(a) White noise

−20 −15 −10 −5 0 5 10 15 20
0

20

40

60

80

100

SNR (dB)

F
ra

m
e
s 

w
ith

in
 5

%
 (

%
)

 

 

PEFAC
J&W
YIN
RAPT

(b) Car noise
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(c) Babble noise
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Figure 3.10: Variation of pitch estimation accuracy on the core test set of the TIMIT
database with SNR for (a) white noise, (b) car noise, and (c) babble noise from the
RSG-10 database [131]. The graphs show the percentage of correct frames (error
below 5%) for each of the algorithms: PEFAC, J&W [76], YIN [26] and RAPT [137].
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(a) Cafeteria noise
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(b) Metro noise
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(c) Street noise
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Figure 3.11: Variation of pitch estimation accuracy on the CSLU-VOICES corpus
with SNR for (a) cafeteria noise, (b) metro noise, and (c) street noise from the ITU-T
P.501 standard [69]. The graphs show the percentage of correct frames (error below
5%) for each of the algorithms: PEFAC, J&W [76], YIN [26] and RAPT [137].
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PEFAC outperforms the other algorithms also on speech and noise databases not

used in the training. As Fig. 3.10 and Fig. 3.11 illustrate, the robustness of PEFAC

varies for different noise types. The PEFAC algorithm is robust to relatively narrow-

band noises, such as car noise, as the normalization stage is able to attenuate them.

However it is less robust to noises such as babble or cafeteria noise, whose power

spectrum matches that of speech as the harmonic power is masked by the noise at

low SNRs. Overall, the performance of PEFAC consistently exceeds that of the other

algorithms.

In Fig. 3.12 we show a breakdown of the algorithm performance. In each plot

the performance of PEFAC is represented by the solid line, the dashed line shows

the performance of PEFAC without the dynamic programming stage (“PEFAC - no

dp”) similar to the earlier version of the algorithm presented in [43], the dotted line

shows the performance without the normalization stage using only the filter defined

in (3.9) (“PEF”) and the dash-dot line the performance using the filter defined in (3.2)

(“HS”). It is shown in [135, 21] that, for a sufficiently long analysis window, HS is a

close approximation to the maximum likelihood pitch estimate for a periodic signal in

white Gaussian noise. It can be seen from Fig. 3.12(a) that HS and PEF have similar

performance when the noise is indeed white Gaussian. For babble and car noise,

however, the PEF algorithm is substantially better than HS. The normalization stage

gives no benefit for babble noise, which already follows an LTASS spectrum, and gives

only a small improvement at low SNRs for white noise. However for car noise, which

includes a strong low frequency component, the benefit is very substantial. Finally

the dynamic programming stage results in a small but worthwhile gain in all cases.

The distribution of the ratio of the estimated to the ground truth pitch, f̂0/f0, is

shown on a log-probability scale in Fig. 3.13 for white noise at �20, 0 and +20 dB

SNR. As expected, peaks at half and double the fundamental frequency are present

in the distribution although they are much lower than the main peak. We can also

observe how the dash-dot vertical lines at ±5% encompass the main peak of the

distribution. For low SNRs, the error distribution is relatively uniform apart from

the main peak. The mean and standard deviation of the fine pitch errors (errors
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(a) White noise
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(b) Car noise
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(c) Babble noise
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Figure 3.12: Variation of pitch estimation accuracy (error below 5%) with SNR for
(a) white noise, (b) car noise, and (c) babble noise. The solid line shows the per-
centage of correct frames for PEFAC. The dashed line shows the performance of the
algorithm without dynamic programming (PEFAC - no dp), the dotted line shows the
performance of the algorithm without dynamic programming or normalization (PEF)
and the dash-dot line the performance using only the filter defined in (3.2) (HS).
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Figure 3.13: Log probability density distribution of the ratio of the estimated to the
ground truth pitch, f̂0/f0, at different SNRs for white noise on the core test set of
the TIMIT database. The dash-dot vertical lines are at ±5%.

below ±5%) of our algorithm are shown in Table 3.3 for white noise. We see that

on the TIMIT database there is a small bias of +0.24% at high SNRs which is not

present on the CSLU-VOICES database. We believe that this bias may arise from

small errors in the ground truth. The standard deviation of the fine pitch error is

very similar on both databases and increases at lower SNRs as the error distribution

becomes more uniform. We show the mean results averaged over white, babble and

car noise for male and female speakers separately in Fig. 3.14 and we observe that,

although the results are similar in both cases, the performance is consistently lower

for male speakers at negative SNRs. The use of the universal LTASS as the target of

the normalization stage attenuates low frequency components, which, in the case of

male speakers, may include the fundamental frequency.

Table 3.3: Mean and standard deviation of the fine pitch error for white noise
SNR (dB) �20 �10 0 10 +20

TIMIT Mean (%) 0.08 0.19 0.23 0.24 0.24

Std (%) 1.93 1.37 1.21 1.17 1.18

CSLU Mean (%) -0.09 -0.06 -0.06 -0.03 -0.02

Std (%) 2.05 1.54 1.37 1.29 1.28
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Figure 3.14: Variation of the mean pitch estimation accuracy on the core test set of
the TIMIT database over white, babble and car noise with SNR for male and female
speakers.
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Figure 3.15: Variation of pitch estimation accuracy with SNR for different noise types
from the RSG-10 database without (solid line) and with reverberation (dashed line)
on the core test set of the TIMIT database.

We have evaluated the performance of PEFAC on all 15 noise types included in

the RSG-10 database. The best and worst performances are respectively the car and

babble noises already shown in Fig. 3.10. In Fig. 3.15 we show the performance for

some other noise types, not used for the training, both with and without reverberation.

The MARDY database [151] contains measured Room Impulse Responses (RIRs) for

a number of source-to-microphone configurations. To create the reverberant speech

we use a RIR corresponding to a direct line of sight configuration with a source-to-

microphone distance of 3m and a 60 dB decay time of 660ms. Figure 3.15 shows
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Table 3.4: Processing time (in seconds) per second of speech
PEFAC RAPT YIN J&W

MATLAB 0.200 0.462 0.194

JAVA 22.304

that the performance accuracy of PEFAC is over 75% at positive SNRs for the four

different noises. The dashed lines in Fig. 3.15 represent the pitch estimation accuracy

in reverberant conditions, where the ground truth was the same as for anechoic speech.

The results are very similar to non-reverberant conditions and, for machine gun and

leopard tank noise, are almost indistinguishable.

Finally, as an indication of the comparative computational complexity of each

algorithm, we have calculated the average processing time (in seconds) per second of

speech on a PC having an Intel Xeon CPU with 2.27GHz clock speed. As we can

observe in Table 3.4, RAPT, YIN and PEFAC were all implemented in MATLAB

and the processing time was less than half a second in each case, with YIN and

PEFAC having a processing time close to 0.2 s for a second of speech. J&W, which

is a multipitch algorithm, was implemented in JAVA and has the highest processing

time, taking an average of 22.3 s to process a second of speech.

3.5 Summary

In this chapter we have presented the PEFAC pitch estimation algorithm and shown

that it is able to give both a reliable pitch estimation and accurate voiced speech

detection even at poor SNRs. The algorithm comprises a normalization stage that

attenuates narrow-band noise components with a pitch estimation filter that rejects

broadband noise that has a smooth power spectrum. Dynamic programming is used

to impose soft temporal continuity constraints by selecting between pitch candidates

in each frame. For voiced speech detection, two GMMs are trained on voiced and

unvoiced frames respectively and the likelihood ratio of the two models is used to

classify each frame.

72



The proposed pitch estimation algorithm has been evaluated on the TIMIT core

test set and on the CSLU-VOICES corpus with a variety of noise types and con-

sistently outperformed other widely used algorithms. It has also been evaluated on

reverberant speech without a degradation in performance. The voiced activity de-

tector has been shown to discriminate between voiced and unvoiced with a lower

overall error rate than the detectors implemented by other competing algorithms.
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Chapter 4

Speech active level estimation in

noisy conditions

The active level of a speech signal is defined to be its average power during intervals

when speech is present. The measurement of a signal’s active level is an essential

component in any application where the input speech power needs to be normalized,

such as in non-intrusive metrics for quality assessment [81]. It is also important

whenever a pre-trained speech model is combined with an estimated noise model as

in the parallel model combination technique [140, 36] or to determine the SNR of an

input signal. For binary mask estimation, the speech active level can be used to make

the process independent of the initial speech level, as we shall explain in Chapter 6.

In this chapter, we present a new method for speech active level estimation which

combines a novel algorithm based on voiced speech energy extraction with the stand-

ardized ITU-T Recommendation P.56 [68]. At poor signal-to-noise ratios, the al-

gorithm estimates the active level by identifying intervals of voiced speech and sum-

ming the energy of the pitch harmonics in the time-frequency domain while rejecting

that of the noise. We compare the performance of our method with that of ITU-T

P.56 on the TIMIT database and demonstrate that it performs exceptionally well in

both high and low levels of additive noise.
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Figure 4.1: Variation of P.56 mean error (solid line) plus and minus the standard de-
viation (dash-dot line) with SNR for white noise on 1000 utterances from the training
set of the TIMIT sentence database [37].

4.1 Standardized ITU-T recommendation

The ITU-T Recommendation P.56 [68] defines a standardized method for objectively

measuring the speech active level. The procedure first low-pass filters the rectified

signal to obtain its envelope. The speech is then defined to be active whenever the

envelope has exceeded a specified threshold within the past 200ms [9]. This threshold

is circularly defined to be 15.9 dB below the active level (which equals the mean power

during times when the speech is active). This algorithm performs extremely well at

high SNRs since the speech pauses are easily detectable in the signal envelope from

their low amplitude. However, at low SNRs, the speech pauses are difficult to identify

and the algorithm falsely takes some or all of the noise energy to be speech. Figure 4.1

shows the mean error of the ITU-T P.56 algorithm as a function of SNR for white

noise. We can observe how the performance increasingly deteriorates below 5 dB SNR,

showing the need to develop a new speech level estimation approach based on speech

characteristics that are robust to noise.

4.2 Harmonic summation algorithm

The majority of the energy in a speech signal is concentrated in the voiced intervals

(see Fig. 1.3). In the time-frequency domain, most of the voiced speech energy is
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located in a small number of harmonic peaks that remain detectable even at poor

SNRs. In this section, we propose a method to estimate the speech active level at

low SNRs from the energy of the harmonic peaks during voiced intervals.

We have shown in the previous chapter that we are able both to identify voiced

speech intervals and to estimate the pitch, f0, reliably even at negative SNRs. We

assume that during voiced intervals, the speech can be represented as a periodic source

at frequency f0 so that our signal model in the Power Spectral Density (PSD) domain

is given by (3.1), reproduced here for convenience,

Y (f) =
KX

k=1

ak�(f � kf0) +N(f) (4.1)

where N(f) represents the power spectral density of the unwanted noise, ak the

power of the k

th harmonic and K is the number of harmonics. From equation (4.1)

we note that, for this idealized signal model, all the speech energy is located at the

harmonics of the fundamental frequency f0. In practice, we process the noisy signal

in overlapping frames and the energy of the harmonics is spread over a range of

frequencies by the effects of the analysis window and the rate of change of f0. To

extract the energy of these harmonics, we need to identify the voiced speech intervals

and, within these, estimate the value of f0. In this chapter, we use PEFAC, the

pitch estimation algorithm robust to high levels of noise which was presented in

Chapter 3. We note that our proposed speech level estimation algorithm can equally

be implemented using any other pitch estimator and that its robustness to noise

depends heavily on the pitch estimator performance.

Once the voiced speech segments are identified and the fundamental frequency

estimated, we need to measure the energy of the harmonics. For the energy of the k

th

harmonic, we calculate a weighted integral of the frame power spectrum as
R
ha(f �

kf0)Y (f)df . The weighting function, ha(f), should be chosen such that:

(i) it gathers most of the harmonic energy while avoiding any interaction with

adjacent harmonics,
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(ii) it avoids including the energy of the noise in the harmonic energy estimate.

A weighting function that accomplish these requirements is the weighted Mexican

hat wavelet, the negative normalized second derivative of a Gaussian function, which

can be expressed as

ha(f) =

✓
1� f

2

�

2

◆
e

�f2

2�2 (4.2)

To accomplish the first property, the positive part of the weighting function needs

to cover the width of the harmonic and its total length needs to be restricted not

to interact with adjacent harmonics. To ensure this, the support of the weighting

function should lie within ±min f0. The width of the harmonic is mainly dependent

on the window used to calculate the periodogram of the frame, as the signal frequency

components, Yt(f), are convolved with the PSD of the window function, W (f), to give

Rt(f) = Yt(f) ⇤W (f). Figure 4.2 compares the PSD of a Hamming window having

the parameters defined in Section 4.4 (dash-dot line) with the weighting function

defined in (4.2) (solid line) with � = 15. We can observe the fulfilment of the two

requirements, as the total length is only about 100Hz and the positive part covers

the width of the harmonic.

The second requirement, the minimization of the noise contribution to the estim-

ated harmonic energy, is accomplished since the weighting function has the property

that
R
ha(f)df = 0. This means that any smoothly varying noise spectrum will be

−60 −40 −20 0 20 40 60
−0.5

0

0.5

1

Frequency (Hz)

A
m

p
lit

u
d
e

Figure 4.2: Mexican hat wavelet for � = 15 (solid line) and PSD of a Hamming
window of length equal to 90 ms (dash-dot line).
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Figure 4.3: Variation of the harmonic summation (red) and P.56 (blue) mean error
(solid line) plus and minus the standard deviation (dash-dot line) with SNR for white
noise on 1000 utterances from the training set of the TIMIT database [37].

greatly attenuated.

The energy, Et, of the first K harmonics in a voiced time frame t, is estimated as

Et =
KX

k=1

max
✓
0,

Z
Rt(f)ha(f � kf0)df

◆
(4.3)

The maximum function is included in (4.3) since the integral can be negative when

the SNR is poor. The active speech level can now be estimated as

l̂h =
1

|V |
X

t2V

Et (4.4)

where V represents the subset of frames which are classified as voiced by the pitch

detector.

Figure 4.3 shows the mean and standard deviation of the estimation error as a

function of SNR both for ITU-T P.56 and for the harmonic summation algorithm

described above. While ITU-T P.56 obtains very good results at high SNRs, its

performance degrades rapidly for negative SNRs. On the other hand, the reliability

of the harmonic summation method is more constant across all SNRs but its standard

deviation is higher and it underestimates the speech level at high SNRs.

To compensate for the unvoiced speech energy and the underestimation of the
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harmonic energy we introduced an offset, �, such that

lh = 10 log10

⇣
l̂h

⌘
+ � (4.5)

The value of � is determined from a training set by minimizing the cost function

J =
PU

u=1

⇣
l

u � 10 log10

⇣
l̂

u
h

⌘⌘2
with respect to �. This gives

� =

PU
u=1

⇣
l

u � 10 log10

⇣
l̂

u
h

⌘⌘

U

(4.6)

where l

u is the speech active level ground truth in dB for the u

th utterance and U is

the number of utterances used for the training.

4.3 Composite algorithm

As Fig. 4.3 illustrates, the P.56 active level estimate is more accurate at high SNRs

but the harmonic summation method provides better results at negative SNRs. Ac-

cordingly, we combine the results from both algorithms into a new estimate that will

provide reliable estimation over a larger SNR range.

In order to be able to combine the methods, we need to find a measure which

identifies the transition point at which the performance of the harmonic summation

method starts to be more reliable than that of ITU-T P.56. This is achieved by

� = 10 log10
l̂h

PN
(4.7)

where l̂h is defined in (4.4) and PN represents the noise power estimated using the

algorithm described in [39]. Although it could be considered an SNR estimation, we

are not aiming to estimate the SNR and consequently we are not directly concerned

with the accuracy of the SNR estimate. Figure 4.4 shows the root mean squared

error of ITU-T P.56 and the harmonic summation method for different values of �.

Three different noises were used at SNRs from �10 dB to 20 dB: white noise, car

noise and babble noise. As we can observe in Fig. 4.4, � provides a good way of

79



identifying the point at which ITU-T P.56 performance starts to degrade and the

harmonic summation method becomes the most reliable.

The final speech active level estimate, lc, is calculated as a linear combination of

the ITU-T P.56 estimate, lp, and the harmonic summation method estimate, lh,

lc = ⇢lp + (1� ⇢) lh (4.8)

where ⇢ defines the contribution of each algorithm.

To determine the optimum mapping function ⇢(�), we minimize the cost function

J =
PU

u=1 (l � lc)
2 with respect to ⇢ and we obtain

⇢(�) =

P
u2G(�) (l

u � l

u
h)
�
l

u
p � l

u
h

�

PU
u=1

�
l

u
h � l

u
p

�2 (4.9)

where G(�) is the set of utterances having a particular value of �.

From training data, we determined the optimal ⇢ for selected values of � as shown

in Table 4.1. We perform linear interpolation on this table for intermediate values of

�.
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Figure 4.4: Variation of the root mean squared error of P.56 and harmonic summation
method with � on 1000 utterances from the training set of the TIMIT database for
white noise, car noise and babble noise.
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4.4 Experiments

The test set and a subset of the training set from the TIMIT database [37] were

respectively used for testing and training the algorithm. The sampling frequency of

the speech material is 16 kHz. To determine the ground truth for the speech active

level, ITU-T P.56 was applied on the clean speech signal.

For training and testing, noise from the RSG-10 database [131] was added to the

speech files to generate the noisy signals. The calculation of SNR used ITU-T P.56

[68, 15] for the speech level and unweighted power for the noise.

The STFT used a Hamming analysis window of 90ms duration and the inter-

frame time increment was 10ms. This frame duration is long enough to resolve the

pitch harmonics even for low values of f0 but short enough to limit the pitch variation

within a frame.

The speech active level estimation described in this chapter includes a number of

algorithm parameters whose values were determined empirically using the training set

from the TIMIT database. The � parameter was calculated from equation (4.6) using

1000 utterances from the training set. Three types of noise were used at different SNRs

ranging from �5 to +5 dB: white noise, car noise and babble noise. These three noises

have different spectral characteristics and were chosen to make the results relatively

independent of the noise type. The final value was set to � = 0.85.

The linear combination of ITU-T P.56 and the harmonic summation method was

determined by the optimization of ⇢ for different values of �. For the calculation

of the noise power, PN , use to calculate � in (4.7) we use the implementation of

the algorithm in [39] provided in [15]. The range of � used for the estimation was

from �2 dB to 4 dB every 0.5 dB. Below � = �2 dB, the error from the harmonic

Table 4.1: Optimized ⇢ values for different � values

� (dB) -2 -1 0 1 2 3 4

⇢(�) 0 0.16 0.28 0.44 0.68 0.89 1
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(a) White noise
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(d) Pink noise
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(b) Car noise
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(e) Destroyer engine noise
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(c) Babble noise

−10 −5 0 5 10 15 20
−2

0

2

4

6

8

10

SNR (dB)

M
e

a
n

 e
rr

o
r 

+
/−

 s
td

 (
d

B
)

 

 

ITU−T P.56
Harmonic summation
Composite

(f) Leopard noise
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Figure 4.5: Variation of speech active level estimation accuracy on the test set of the
TIMIT database with SNR for (a) white noise, (b) car noise, (c) babble noise, (d)
pink noise, (e) destroyer engine noise and (f) leopard tank noise. The solid lines show
the mean error of the estimation and the dashed lines the mean error plus/minus the
standard deviation for each of the algorithms.
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summation algorithm is much lower than that of ITU-T P.56 and ⇢ = 0 and above

� = 4 dB, the superiority of the ITU-T P.56 algorithm is clear, ⇢ = 1. Table 4.1

shows how, as expected, the optimum calculated value of ⇢ smoothly increases with

�.

4.5 Results

In this section, the performance of the proposed speech active level estimator is eval-

uated on the test set of the TIMIT database [37]. Six types of noise from the RSG-10

database [131] were evaluated at different SNRs from �10 to +20 dB: white, car,

babble, pink, destroyer engine and leopard tank noise. While the first three kinds

of noises were used in the training, the last three were new kinds of noises to the

algorithm. This allows the performance evaluation of the proposed method on un-

trained conditions.

For each of the six noise types, Fig. 4.5 shows the mean and standard deviation

of the estimation error for three algorithms: ITU-T P.56, the harmonic summation

algorithm from Sec. 4.2 and the composite algorithm from Sec. 4.3. We observe how

the combined method is able to select the best estimate at different SNRs, both on

noises used for the training and on new noises. Babble and destroyer engine noise

have the worst performances, with a mean error of approximately 4.5 dB at �10 dB

SNR, and car noise have best performance, with a mean error close to 0 dB even at

�10 dB SNR. Overall, the proposed method is able to provide a good estimation at

both high and low SNRs for all the tested noise types. Spectrograms of all the noise

types used in training and testing are included in Appendix A.

4.6 Summary

In this chapter we have presented a new method for estimating the speech active level

which combines the ITU-T Recommendation P.56 with novel harmonic summation

approach. The harmonic summation method extracts the energy of the speech har-
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monics and provides a reliable estimation of the speech active level even at low SNRs.

A fixed offset determined from training data compensates for any unvoiced speech

power and for the underestimation of voiced speech power. The final speech active

level estimate is calculated as a linear combination of the ITU-T P.56 estimate and

the harmonic summation method estimate. The algorithm has been evaluated on the

TIMIT test set with a range of noise types and extends by more than 7 dB the range

of SNRs for which reliable estimation is possible.
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Chapter 5

Sibilant speech detection in noise

Our goal for binary mask estimation is to identify the time-frequency regions that

contain significant speech energy. In voiced speech regions, this energy is concentrated

in the pitch harmonics and in Chapter 3 we showed that it was possible, even at poor

SNRs, to identify these regions and to estimate the pitch. In this chapter, we address

the problem of detecting unvoiced speech energy.

Recent work has illustrated the significance of unvoiced speech detection for several

applications. In [127], for instance, it was shown that enhancing noisy unvoiced

speech plays a greater role in achieving accurate speech recognition than enhancing

voiced speech. Detecting unvoiced speech in noise is especially important for hearing-

impaired listeners, who typically have severe high frequency hearing loss, as well as

for speech enhancement algorithms, which can benefit from adaptivity to different

phoneme classes. An increasing interest in unvoiced speech detection has specifically

emerged for binary mask estimation [59, 61], where most previous approaches have

focused on voiced speech segregation [56, 60], as seen in Section 2.3.2.

Aperiodic speech energy at high frequencies is mainly contained in stops, fricatives

and affricatives (a sequence of a stop followed by a fricative [94]). Sibilant phones, a

subset of fricatives and affricative sounds, have more energy than their non-sibilant

counterparts and most of their energy is concentrated at higher frequencies. There-

fore, sibilant speech sounds accounts for a large fraction of aperiodic high frequency

speech energy. In English, they comprises the fricatives /s/, /S/, /z/ and /Z/ and the
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affricatives /tS/ and /dZ/.

In this chapter, we present a sibilant detection algorithm robust to high levels

of noise for wide-band speech that operates in the frequency domain and that does

not rely on voicing detection. Rather than identifying explicit sibilant onsets and

offsets, a sustained increase in energy during the sibilant is instead detected. Under

the hypothesis of a sibilant presence within a time-frame, its mean power in each

frequency band is estimated using a maximum likelihood approach. This information

is sent to a classifier which discriminates sibilant from non-sibilant time frames. As

far as we are aware, there is no other sibilant detector in the literature for noisy

conditions.

5.1 Proposed method

Following [31], we assume that the short-time Fourier transform (STFT) coefficients

of speech and noise can be modelled as statistically independent complex Gaussian

random variables. Given a noisy speech signal, the power, Yt,f , in a time-frequency

STFT bin is therefore distributed as

p(yt,f ) =
1

µt,f
exp

✓
� yt,f

µt,f

◆
(5.1)

where t and f are the time-frame and frequency indices and µt,f is the mean power.

Fig. 5.1 shows the time-variation of power at 5 kHz for a noisy speech example

corrupted with white noise at 5 dB SNR containing the phone /S/. We can divide the

time interval into three segments as indicated above the waveform: a central segment

S that encompasses the sibilant and two surrounding intervals, N1 and N2, that

contain no sibilant energy. We assume the mean power of the speech to be constant

over S and that of the noise to be constant over the entire interval N1 + S + N2,

giving µN1,f = µN2,f = af and µS,f = af + bf . From (5.1), the log-likelihood of the
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Figure 5.1: Power spectral density (PSD) at 5 kHz versus time of a speech segment
containing the sibilant phone /S/ using a Hamming analysis window of 3.6ms duration
with 75% overlap. The speech has been corrupted with white noise at 5 dB SNR. The
time origin represents the centre of the sibilant phone.

observed signal can then be expressed as

Lf =
X

t2S

✓
�ln(af + bf )�

yt,f

af + bf

◆

+
X

t2N1,N2

✓
�ln(af )�

yt,f

af

◆
. (5.2)

5.1.1 Sibilant speech energy estimation

By maximizing the log-likelihood in (5.2), the sibilant mean, bf , and the noise mean,

af , can be estimated if the exact time and duration of the sibilant phone are known.

However, the duration of an actual sibilant is unknown and varies in each case. Fig. 5.2

shows the sibilant duration distribution in the TIMIT training set [37]. We observe

that 74% of sibilant durations lie within 60 and 130ms. Therefore, if ts = 0 represents

the centre of a sibilant |ts| < 30ms has a high probability of lying within the sibilant

while the region |t|s > 65ms has a high probability of lying outside the sibilant.

To account for this, we apply a weighting function, wt, to the time frames when

calculating the log-likelihood that reduces the contribution of the transition region

30ms < |ts| < 65ms as shown in Fig. 5.4. The weighted log-likelihood can now be
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Figure 5.2: Sibilant duration distribution in the TIMIT training set.

expressed as

L̃f =
X

t2S

wt

✓
�ln(af + bf )�

yt,f

af + bf

◆

+
X

t2N1,N2

wt

✓
�ln(af )�

yt,f

af

◆
. (5.3)

We maximise the value of the log-probability with respect to af and bf by setting

the partial derivatives to zero

0 =
@L̃f

@af
=

X

t2S

wt

✓
� 1

af + bf
� yt,f

(af + bf )2

◆

+
X

t2N1,N2

wt

 
� 1

af
+

yt,f

a

2
f

!
(5.4)

0 =
@L̃f

@bf
=

X

t2S

wt

✓
� 1

af + bf
� yt,f

(af + bf )2

◆
(5.5)

from which we can estimate the mean noise energy, af , and the mean sibilant energy,

bf , as

âf =

P
t2N1,N2 wtyt,fP

t2N1,N2 wt
(5.6)

b̂f =

P
t2S wtyt,fP

t2S wt
� âf (5.7)

Under the hypothesis that time-frame t lies at the centre of a fixed-length sibilant

phone, we can estimate the mean sibilant power in frequency bin f using (5.7). We
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denote this estimate as b̂t,f , where the index t represents the time-frame considered

to be the centre of segment S. Fig. 5.3(a) shows the PSD waveform of b̂t,f for the

/S/ sibilant example shown in Fig. 5.1. We see that it reaches a maximum when t

lies near the centre of the phone and becomes negative either side of the phone when

region N1 or N2 overlaps significantly with the true sibilant.

5.1.2 Maximum filter and normalization

The quantity b̂t,f from (5.7) will give a reliable estimate of sibilant power near the

centre of a sibilant phone and also in signal regions where no sibilant is present.

However, as can be seen in Fig. 5.3(a), the estimate of sibilant power is less accurate

in frames near the sibilant boundary. To counter this effect, we apply a maximum

filter to the sibilant power estimate

b̃t,f = max
|m�t|<W/2

b̂m,f (5.8)

where W , the filter support, represents the minimum sibilant duration. Fig. 5.3(b)

shows the filter output, b̃t,f , using W = 30ms and we observe that the estimated b̃t,f

remains at a high level for most of the sibilant duration.

To make the estimate independent of the overall speech level, the estimated sib-

ilant mean power within each frame is normalized to give

b̄t,f =
b̃t,f

1
Nf

PNf

f=1

���b̃t,f
���

(5.9)

The absolute value is used because as seen in Fig. 5.3(b), b̃t,f can be negative when

the sibilant occupies a region that was assumed to be noise.

5.1.3 Gaussian mixture model

For each frame, the normalized sibilant power spectrum, b̄t,f for f 2 [1, Nf ], forms

the input to two GMMs: one trained on non-sibilant speech and the other on sibilant
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(a) Estimated sibilant mean power, b̂t,f
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(b) Estimated sibilant mean power after maximum filter, b̃t,f
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Figure 5.3: Estimated sibilant PSD for the segment of speech shown in Fig. 5.1. Plot
(a) shows the raw estimate, b̂t,f , from (5.7) and plot (b) shows the output of the
maximum filter (5.8), b̃t,f .

speech. The probability that a time frame contains a sibilant phone is calculated

from the likelihood ratio of the two GMMs.

5.2 Experiments

The sibilant detector described in this chapter includes a number of algorithm para-

meters whose values were determined using the training set of the TIMIT database

[37], which includes phonetic transcription. The STFT used a Hamming analysis

window of 3.6ms duration with 75% overlap. The relatively short analysis window

provides a high time resolution and a frequency resolution that is able to characterize

the sibilant power spectrum without resolving pitch harmonics. The power spectrum
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Figure 5.4: Weighting function, wi, used in (3) to accommodate variations in sibilant
duration.

of each frame was interpolated using triangular filters to give 14 frequency bins whose

centres are uniformly spaced from 1.5 kHz to 8 kHz.

The sibilant duration, S, as well as the duration of N1 and N2 need to be fixed

in order to estimate the mean sibilant energy, bf , from equation (5.7). We evaluated

a range of fixed widths for S as well as a variable width approach in which (5.3) was

maximized with respect to the phone boundaries in addition to the powers af and bf .

We found that a fixed S, N1 and N2 duration of 100ms gave the highest performance

on a training set. The weighting function used in (5.3) was the concatenation of three

Hamming windows shown in Fig. 5.4 and the length of the maximum filter in (5.8)

was set to W = 30ms.

The input for the GMMs was a 14-component vector containing the estimated

sibilant power spectrum from 1.5 kHz to 8 kHz every 500Hz. The GMMs for sibilant

and non-sibilant speech respectively used 14 and 28 full-covariance mixtures and were

trained on the training subset of TIMIT. Sibilant phones and phones that sometimes

include sibilant-like characteristics, such as stop consonants and non-sibilant fricat-

ives, were excluded when training the non-sibilant GMM. To avoid problems caused

by transcription alignment errors, phone transitions were omitted from the train-

ing. The SNR used for training was 0 dB in order to make the algorithm robust to

noise, as it represents the lowest SNR at which sibilants/non-sibilants discrimination

is practicable.
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5.3 Results

In this section, the performance of the proposed sibilant speech detector is evalu-

ated. The results were calculated using the test set from the TIMIT database, which

contains a total of 168 speakers and 1344 utterances. For evaluation purposes all

non-sibilant phones were taken into account including stops and non-sibilant fricat-

ives previously excluded for the training. Every time-frame was evaluated, without

the removal of phone transitions.

White Gaussian noise, babble noise and car noise from the RSG-10 database [131]

were added to the speech files to generate the noisy test signals. The measurement

of SNR used ITU-T P.56 [68, 15] for the speech level and unweighted power for the

noise. Spectrograms of all the noise types used in training and testing are included

in Appendix A.

The results obtained for �5 dB, 0 dB, 5 dB and 10 dB SNR as well as for clean

speech are shown in Fig. 5.5 for the three types of noise: white noise, babble noise and

car noise. The DET curves [105] in Fig. 5.5 shows the miss probability, Pmiss, versus

the false alarm probability, Pfa, as the likelihood ratio threshold is varied between

0.05 and 19.0. Because of the noise-like nature of sibilant phones at high frequencies,

we observe that it is more difficult to detect sibilants in white noise, Fig. 5.5(a), than

in other typical stationary noise sources where lower frequencies often dominate, such

as babble noise, Fig. 5.5(b), or car noise, Fig. 5.5(c). The results for car noise,

Fig. 5.5(c), show that the algorithm performance is very similar for all noise levels,

as car noise does not mask the sibilant power. The performance on babble noise is

illustrated in Fig. 5.5(b), where we observe that, although the performance degrades

as the SNR decreases, the results for positive SNR are better than for white noise.

The equal error rates, where Pmiss = Pfa, are listed in Table 5.1. and we see that

at 0 dB SNR the highest equal error rate, 16.5%, occurs with white noise; this means

that even in the worst tested case 83.5% of frames are correctly classified.

The circle on each line in Fig. 5.5 corresponds to a likelihood ratio threshold of

unity corresponding to an estimated sibilant probability of 0.5. The values of Pmiss
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Table 5.1: Classifier equal error rates as a function of SNR.

Equal error rate, Per(%)

SNR (dB) 1 +10 5 0 -5

White noise 11.4 13.2 14.2 16.5 21.8

Babble noise 11.4 11.3 12.0 13.5 22.4

Car noise 11.4 11.5 11.4 11.4 11.4

Table 5.2: Unity-threshold classification performance as a function of SNR.

Likelihood ratio of unity

SNR (dB) 1 +10 5 0 -5

White noise
Pmiss(%) 11.0 11.1 12.4 18.4 33.7

Pfa(%) 11.7 16.5 16.7 14.4 10.9

Babble noise
Pmiss(%) 11.0 12.0 14.1 20.6 33.8

Pfa(%) 11.7 10.6 10.0 9.9 9.8

Car noise
Pmiss(%) 11.0 11.2 11.1 11.2 11.2

Pfa(%) 11.7 11.8 11.5 11.6 11.6

and Pfa when using this threshold are listed in Table 5.2. For clean speech both

Pmiss and Pfa is approximately 11%. Manual inspection of the missed sibilant frames

indicates that most of them correspond either to sibilant boundaries or to phones with

very low energy, whereas false alarms usually correspond to non-sibilant fricatives or

stops. Moderate levels of white noise cause an increase in Pfa, while, in contrast,

moderate levels of babble noise cause an increase in Pmiss. The reason behind this

is that while white noise adds energy at high frequencies which the algorithm may

identify as sibilant energy, babble noise distorts the normalized sibilant power of the

frame, therefore increasing Pmiss.
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5.4 Conclusions

In this chapter we have presented a sibilant detection algorithm robust to high levels

of white Gaussian noise. The algorithm comprises a sibilant mean power estimation

stage, which is based on a maximum likelihood approach, followed by a classification

stage in which the likelihood ratio of two GMMs, one for sibilant speech and one

for non-sibilant speech, is used. The algorithm has been evaluated on the TIMIT

test set over a range of noise types and SNRs and consistently achieved over 80%

classification accuracy for positive SNRs.
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Chapter 6

Mask estimation

In the binary mask approach to speech enhancement, a binary-valued gain mask is

applied to the speech in the time-frequency domain and the signal is then transformed

back into the time-domain. This procedure is similar to that used in conventional

approaches such as spectral subtraction or MMSE estimators except that, in the latter

cases, a continuously variable gain function is applied. The principal advantage of the

binary mask approach over other state-of-the-art algorithms operating in the time-

frequency domain is that the problem of enhancement is changed from one of gain

estimation to one of classification.

A detailed review of the goals of binary masks enhancement systems was given

in Chapter 2. The most common binary mask is the Ideal Binary Mask (IBM),

based on the SNR at each time-frequency bin. The Target Binary Mask (TBM),

more recently proposed and with the same intelligibility performance as the IBM

[87], removes dependency on the noise by comparing the clean speech to the LTASS

of the speaker. In Chapter 2 we proposed a variation of the TBM, the Universal

Target Binary Mask (UTBM), and we showed it has a similar performance to that of

the TBM while also removing dependency on the speaker by using a universal LTASS.

Our aim in this chapter is to estimate the UTBM, which selects time-frequency

regions whose speech energy is above a frequency-dependent threshold. Accordingly,

in the previous chapters, we have been exploring approaches that aim to identify time-

frequency regions that contain high speech energy. We have proposed algorithms for
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detecting voiced speech and identifying its pitch, estimating the speech active level

and localizing sibilant phones. In this chapter, we focus on the estimation of the

binary mask by exploiting the information extracted with the algorithms developed

in previous chapters.

6.1 System overview

A block diagram of the binary mask estimation system is shown in Fig. 6.1, which

illustrates the steps of training and binary mask estimation. The purpose of the

estimation system is to determine binary-valued mask gain, M̂(t, fe), for each time

frame, t, and each frequency bin, fe. In the training step (shown in the upper portion

of Fig. 6.1), the inputs to the classifier training block for each time frame consists of

a set of 145 features derived from the noisy training signal, y(⌧), together with the

corresponding binary-valued mask target, M(t, fe), derived from the clean speech,

s(⌧). In the mask estimation phase (shown in the lower portion of Fig. 6.1), the

input consists only of the 145 features and the mask, M̂(t, fe), is estimated by the

classifier.

6.1.1 Feature estimation

The UTBM, whose definition was given in (2.3), preserves time-frequency regions

whose energy is above a set threshold such that

UTBM(t, f) =

8
>>><

>>>:

1 if SdB(t, f) > LdB(f) + ↵ + LC,

0 otherwise.
(6.1)

where ↵ is a variable to adjust the power of the threshold function to the speech

active level.

The selected feature set aims to provide information about the energy distribution

of the speech. The feature set, as explained below in detail, contains information
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about the presence of voiced speech and its fundamental frequency and also about

the presence of sibilant speech. Moreover, the feature set also includes the normalized

noisy speech and a noise estimate, which provides information about the SNR energy

at each time-frequency bin.

In the next subsections, we explain the various processing blocks in Fig. 6.1 which

are used to extract the system parameters.

6.1.1.1 Level normalization

To ensure that classification is independent of the signal input level, the first step of

the system is the power normalization of the speech component of the noisy speech

signal, y(⌧). The speech active level is estimated using the algorithm described in

Chapter 4 and the normalization is performed such that:

y(⌧) = 10�lc/20
y(⌧) (6.2)

where lc is the estimated active speech level in dB and y(⌧) the normalized signal.

In our experiments, the power normalization is performed over the entire duration of

the utterance. If the input signal was long enough to include changes in the speech

active level, the signal could be divided up into segments to perform this stage.

6.1.1.2 Pitch and voiced speech estimator

Most voiced speech energy is concentrated within the fundamental frequency and

its harmonics. Therefore, identifying voiced speech segments and estimating their

fundamental frequency makes it possible to locate high speech energy regions. In

Chapter 3, we have described a robust method to identify voiced frames and estimate

pitch in high levels of noise, the PEFAC algorithm. The PEFAC algorithm provides

a fundamental frequency estimate at every time-frame, together with a probability

of each time-frame containing voiced speech. Both features are used as inputs to the

classifier:

pv(t) voiced speech probability for frame t.
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f̂0(t) estimated fundamental frequency for frame t.

6.1.1.3 Sibilant speech detector

Identifying time-frames which contain sibilant phones is important for the preserva-

tion of aperiodic speech energy at high frequencies. Furthermore, an estimation of

the power spectrum of the sibilant phone would also help identifying the frequency

bands containing most of the sibilant speech energy. In Chapter 5, we have proposed

an algorithm for locating sibilant phones, which is used to extract:

ps(t) sibilant speech probability for frame t.

b̄(t, fl) a 14-component vector for each time-frame, t, containing the normalized

sibilant power spectrum estimate in 500Hz bands from 1.5 kHz to 8 kHz.

6.1.1.4 Time-frequency decomposition

The inclusion of the normalized noisy speech periodogram and the noise estimation

as parameters aids the mask estimation algorithm by providing information about

the energy distribution across frequency of both speech and noise. The normalized

input signal, ȳ(⌧), is transformed into the time-frequency domain using the STFT.

The spectrum of each frame is interpolated onto 64 ERB spaced frequency bands

ranging from 40Hz to 8 kHz. By using the ERB frequency scale, which is based on

the equivalent rectangular bandwidths of the human ear, the frequency bands have a

closer correspondence with the spectral resolution of the ear. The output of the time-

frequency transformation, Y (t, fe), is used as a parameter for the classifier together

with a noise estimation, N̂(t, fe):

Y (t, fe) normalized periodogram of the noisy speech at time-frame t.

N̂(t, fe) noise periodogram estimated at time-frame t using the algorithm de-

scribed in [39] and the implementation provided in [15].
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Figure 6.2: Binary tree example.

6.2 Classifier

The non-parametric CART approach [13] has been used to generate the mask. The

CART approach is convenient to handle the heterogeneous nature of the mask es-

timation algorithm parameters and the complex relationship between them and the

target mask. CART is a procedure that constructs a binary decision tree for pre-

dicting the output response or class from a set of input parameters taking discrete

or continuous values. Each internal node compares one of the input parameters to a

threshold and continues to a sub-branch of the tree according to the binary output.

This process continues until a terminal node is reached, where prediction is performed

by aggregating or averaging all the training data points which reach that node. A

visual example of how a binary tree operates is shown in Fig. 6.2.

The CART approach can either be used for classification or regression. Classific-

ation trees provide a categorical value at each terminal node while regression trees

provide a continuous output. For each internal node of the tree, the training process

selects a feature to test and a threshold against which it is compared. These choices

are made in order to minimize the average value of a misclassification function, R(d).

In the case of classification trees, the misclassification rate is estimated as
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R(d) =
1

Nt

NtX

n=1

�(d(pn) 6= cn) (6.3)

where Nt is the number of samples in the training set, d(·) is the binary-valued

prediction function, pn contains the input parameters for sample n, cn is the sample

class and �(·) is the indicator function, defined to be 1 if the statement is true and 0

otherwise. For regression trees, however, the goal of the training is to minimize the

mean square error of the prediction, estimated using the training set as

R(d) =
1

Nt

NtX

n=1

(xn � d(pn))
2 (6.4)

where xn is the ground truth value. The predicted value at each terminal node u,

x(u), that minimizes R(d) is the average of xn for all cases within u

x̄(u) =
1

Nu

X

pn2u
xn (6.5)

Although in our case the ground truth provides binary values, M(t, fe), it is not

necessary for the CART output to be binary. We train, therefore, a regression tree,

whose output can later be converted to binary values. As we have seen in (6.5), the

continuous output of the regression tree is the average of the ground truth values

within each terminal node. The binary ground truth values in our application are 0

and 1, which means that the output of the regression tree can be interpreted as the

probability that the corresponding time-frequency bin energy lies above the UTBM

energy threshold. The estimated probability can than be converted to a binary value

by setting a threshold.

6.3 Experiments

The training set and the test set from the TIMIT database [37] were respectively used

for training and testing the algorithm. The training and testing sets of the TIMIT

database contains different speakers. Most of the sentence texts are also different
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between the two sets, with only 20% overlap. The sampling frequency of the speech

material is 16 kHz. To determine the ground truth for the binary mask, the UTBM

was calculated for each utterance on the clean speech signal. The LC parameter was

set to �5 dB, which, as was shown in Fig. 2.5, provides the best intelligibility results.

The STFT used a Hamming analysis window of 90ms duration and an inter-frame

time increment of 22.5ms. The length of the window was chosen so that speech

harmonics could be resolved for all f0 values. The inter-frame time increment was

set to achieve perfect signal reconstruction when the Hamming window was used for

both analysis and synthesis. The spectrum of each frame was interpolated onto 64

ERB spaced frequency bands ranging from 40Hz to 8 kHz. We expect this frequency

resolution to provide good intelligibility performance since, as was shown in Fig. 2.3,

high intelligibility is obtained above 16 frequency bands.

To train the regression tree we used 300 TIMIT utterances from the training set

mixed with 12 noises from the RSG-10 database [131]. The noise types included:

factory, babble, buccaneer and F16 fighter jets, engine room, operation room, HF

radio channel, leopard and M109 tank, pink, car and white. The power spectrogram

of these noise types is provided in Appendix A. The calculation of the SNR used

ITU-T P.56 [68, 15] for the speech level and unweighed power for the noise. SNRs

from –5 to +9 dB in 2 dB steps were used. A separate regression tree was trained

for each of the 64 frequency bands. The input to each regression tree contained the

entire feature vector, rather than just its local frequency components.

6.4 Results

The performance of the mask estimation was evaluated using 100 utterances from the

test set of the TIMIT database mixed with noises from both the RSG-10 database

[131] and the ITU-T P.501 standard [69]. SNRs from �5 to +10 dB were used for

evaluation. This range was chosen because at SNRs above +10 dB, speech is fully

intelligible whereas below �5 dB SNR the speech signal is so degraded that reliable

feature extraction is not possible.
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A visual example of the performance of the algorithm can be found in Fig. 6.3.

A speech utterance containing the sentence “She had your dark suit in greasy wash

water all year” corrupted with white noise at �5 dB SNR is shown in Fig. 6.3(a). By

applying the proposed method, we estimated the mask shown in Fig. 6.3(b). The

ground truth of the algorithm, the UTBM, is illustrated in Fig. 6.3(c). Figure 6.3(d),

(e) and (f) correspond to the clean speech, segregated speech with the estimated mask

and segregated speech with the UTBM respectively. We can observe how in Fig. 6.3(e)

we are able to extract most speech power, Fig. 6.3(d), while greatly reducing the

background noise. The classifier has accurately identified the major features of the

UTBM with the exception of the relatively weak sibilant at t = 2.7 s. However, some

noise has been introduced in the segregated speech, which is especially visible at

high frequencies. The energy in the low frequencies, concentrated in the fundamental

frequency and its harmonics, is well-preserved with little distortion.

Intelligibility evaluation of the results was achieved using the intrusive measure

STOI [134], which has shown good intelligibility correlation for binary masks. This

objective algorithm provides a value between 0 and 1 which has been shown to have

a monotonic relation with the subjective speech-intelligibility as discussed in Section

1.4.2 [134].

6.4.1 Continuous versus binary-valued masks

First of all, we evaluated the performance of the continuous versus the binary gain

mask. For that, we set a probability threshold, pb, above which the mask is set to 1

M̂B(t, f) =

8
>>><

>>>:

1 if M̂C(t, f) > pb,

0 otherwise.
(6.6)

where M̂B(t, f) and M̂C(t, f) represent the binary and continuous gain mask respect-

ively. We evaluated the results for different pb on 100 utterances from the test set on

the same noise types used for training. It was found that the highest STOI values

104



(a
)

N
oi

sy
sp

ee
ch

T
im

e
 (

s)

Frequency (Hz)

 

 

0
.5

1
1

.5
2

2
.5

3
3

.5

2
0

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

Power (dB)

3
0

4
0

5
0

6
0

(b
)

E
st

im
at

ed
U

T
B

M

T
im

e
 (

s)

Frequency (Hz)

 

 

0
.5

1
1

.5
2

2
.5

3
3

.5

2
0

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

Gain

00
.2

0
.4

0
.6

0
.8

1

(c
)

U
T

B
M

T
im

e
 (

s)

Frequency (Hz)

 

 

0
.5

1
1

.5
2

2
.5

3
3

.5

2
0

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

Gain

00
.2

0
.4

0
.6

0
.8

1

(d
)

C
le

an
sp

ee
ch

T
im

e
 (

s)

Frequency (Hz)

 

 

0
.5

1
1

.5
2

2
.5

3
3

.5

2
0

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

Power (dB)

3
0

4
0

5
0

6
0

(e
)

Sp
ee

ch
se

gr
eg

at
ed

us
in

g
(b

)

T
im

e
 (

s)

Frequency (Hz)

 

 

0
.5

1
1

.5
2

2
.5

3
3

.5

2
0

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

Power (dB)

4
0

5
0

6
0

7
0

(f
)

Sp
ee

ch
se

gr
eg

at
ed

us
in

g
(c

)

T
im

e
 (

s)

Frequency (Hz)

 

 

0
.5

1
1

.5
2

2
.5

3
3

.5

2
0

0

5
0

0

1
0

0
0

2
0

0
0

4
0

0
0

8
0

0
0

Power (dB)

4
0

5
0

6
0

7
0

Fi
gu

re
6.

3:
(a

)
Sp

ee
ch

ut
te

ra
nc

e
fr

om
th

e
te

st
se

t
of

th
e

T
IM

IT
da

ta
ba

se
co

nt
ai

ni
ng

th
e

se
nt

en
ce

“S
he

ha
d

yo
ur

da
rk

su
it

in
gr

ea
sy

w
as

h
w

at
er

al
ly

ea
r”

co
rr

up
te

d
w

ith
w

hi
te

no
ise

at
�
5

dB
SN

R
;(

b)
es

tim
at

ed
m

as
k

us
in

g
th

e
pr

op
os

ed
al

go
rit

hm
s

fr
om

th
e

no
isy

sp
ee

ch
in

(a
);

(c
)

gr
ou

nd
tr

ut
h

m
as

k
–

th
e

U
T

B
M

;(
d)

cl
ea

n
sp

ee
ch

ut
te

ra
nc

e,
(e

)
se

gr
eg

at
ed

sp
ee

ch
fr

om
th

e
no

isy
sp

ee
ch

in
(a

)
by

us
in

g
th

e
es

tim
at

ed
U

T
B

M
sh

ow
n

in
(b

);
an

d
(f

)
se

gr
eg

at
ed

sp
ee

ch
us

in
g

th
e

gr
ou

nd
tr

ut
h

m
as

k
fr

om
(c

).

105



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.6

0.61

0.62

0.63

0.64

0.65

0.66

Threshold

S
T

O
I

Binary gain mask

Continuous gain mask

Figure 6.4: STOI values for the continuous gain mask and the different binary masks
for factory noise at �5 dB SNR. The STOI values are the average over 100 utterances.

were achieved when using the continuous gain mask. An example for factory noise

at �5 dB SNR is shown in Fig. (6.4), where the STOI value for the continuous gain

mask outperforms the binary mask estimated for any tested threshold.

6.4.2 Evaluation on seen noise types

For performance comparison, the log-MMSE algorithm [32], and the spectral sub-

traction [11] speech enhancement algorithm were used. In both cases, the noise was

estimated using the algorithm described in [39], the same one used for the proposed

binary mask estimation. The results for the noise types used in training are shown

in Table 6.1 averaged over 100 utterances from the test set. Note that although the

noise types were the same as in training, the actual noise samples used were differ-

ent in every test. The STOI performance of the oracle binary mask, the UTBM,

is also shown. In the table we observe how the STOI values for both the MMSE

and the spectral subtraction methods are very similar to that of the noisy speech.

This is consistent with the results shown in previous studies [5, 66, 96] where it was

found that none of the evaluated algorithms was able to increase speech intelligibility

significantly.

The proposed mask-based algorithm, as seen in Table 6.1, is able to increase the

STOI values at low SNR while preserving the high STOI values at high SNRs, where
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Table 6.1: STOI results for different speech enhancement algorithms on the noise
types used for training the proposed algorithm. MMSE corresponds to the log-spectral
amplitude MMSE approach [32], SS corresponds to spectral subtraction [11]. Each
entry gives the average STOI over 100 utterances from the TIMIT test set.

STOI values
SNR (dB) -5 0 5 10

Babble noise Noisy 0.50 0.62 0.74 0.83
MMSE 0.47 0.60 0.73 0.83

SS 0.46 0.60 0.73 0.84
Proposed 0.62 0.71 0.79 0.85

Oracle mask 0.77 0.81 0.85 0.87
Factory noise Noisy 0.51 0.63 0.75 0.85

MMSE 0.50 0.63 0.75 0.84
SS 0.49 0.63 0.75 0.85

Proposed 0.64 0.74 0.82 0.87
Oracle mask 0.78 0.82 0.86 0.88

Pink noise Noisy 0.54 0.66 0.77 0.87
MMSE 0.56 0.67 0.78 0.87

SS 0.54 0.67 0.78 0.87
Proposed 0.67 0.76 0.84 0.88

Oracle mask 0.79 0.83 0.86 0.89
Engine room noise Noisy 0.55 0.67 0.78 0.88

MMSE 0.60 0.72 0.82 0.90
SS 0.60 0.72 0.83 0.90

Proposed 0.69 0.78 0.85 0.88
Oracle mask 0.79 0.83 0.87 0.89

HF radio channel noise Noisy 0.55 0.67 0.79 0.88
MMSE 0.57 0.69 0.80 0.89

SS 0.55 0.69 0.81 0.90
Proposed 0.70 0.78 0.84 0.88

Oracle mask 0.80 0.85 0.88 0.90
White noise Noisy 0.59 0.71 0.82 0.90

MMSE 0.60 0.72 0.82 0.90
SS 0.58 0.71 0.83 0.91

Proposed 0.70 0.79 0.85 0.89
Oracle mask 0.82 0.86 0.88 0.90

Leopard tank noise Noisy 0.76 0.80 0.84 0.87
MMSE 0.75 0.80 0.84 0.88

SS 0.75 0.80 0.84 0.88
Proposed 0.78 0.82 0.84 0.87

Oracle mask 0.82 0.83 0.85 0.87
Volvo noise Noisy 0.88 0.92 0.94 0.97

MMSE 0.87 0.91 0.95 0.97
SS 0.87 0.91 0.94 0.97

Proposed 0.86 0.88 0.89 0.90
Oracle mask 0.87 0.88 0.89 0.90

Overall Noisy 0.61 0.71 0.80 0.88
MMSE 0.61 0.72 0.81 0.88

SS 0.60 0.72 0.81 0.89
Proposed 0.71 0.78 0.84 0.88

Oracle mask 0.80 0.85 0.87 0.89

107



0.5 0.6 0.7 0.8 0.9 1

−0.05

0

0.05

0.1

0.15

0.2

0.25

STOI of noisy speech

S
T

O
I 
im

p
ro

ve
m

e
n
t

 

 

UTBM
Proposed
MMSE
SS

Figure 6.5: STOI improvement using the proposed algorithm versus the STOI of the
noisy signal for seen noise types. The STOI values are the average over 100 utterances.
The straight lines in the figure are least-squares linear fits to the data points.

the speech is already intelligible. In terms of intelligibility, the most damaging noise

types are those whose energy is distributed across the same frequencies as the speech

signal, such as babble noise (see Appendix A). In this situation, the estimated binary

mask is able to improve the noisy STOI value substantially, and, for example, for

HF radio channel noise, the proposed algorithm can increase STOI by as much as

0.15 at �5 dB SNR. On the other hand, noise types whose energy is concentrated

within a relatively narrow band of frequencies, such as volvo noise or leopard noise,

have less effect on intelligibility and the STOI value remain high even at low SNRs;

the proposed algorithm, therefore, does not change substantially the STOI value. On

average, for seen noises, the STOI value is increased by 0.10 at �5 dB SNR with the

proposed algorithm while the increment using the oracle mask is 0.19. At +10 dB

SNR, when the speech intelligibility is high, both the estimated and the oracle mask

have almost no impact on the STOI value.

It can be observed in Table 6.1 that the higher improvements come when the STOI

value is low. Therefore, it is instructive to plot the STOI improvement versus the

STOI of the noisy speech. The results obtained for the three evaluated algorithms and

the oracle mask are shown in Fig. 6.5 for all 12 seen noise types used for the training.

The different markers on the figure correspond to the average STOI improvement over

100 test utterances and the straight lines represent the least-squares linear fit to the
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data points for each speech enhancement method. On average, both the MMSE (blue

triangles, solid blue line) and spectral subtraction (pink circles, pink dashed line)

algorithms do not change substantially the input STOI value. However, in Fig. 6.5

we can observe how the proposed mask is consistently able to improve the STOI of

noisy speech for values below 0.8. It is worth noting that when the STOI value is

above 0.7, the speech intelligibility is very high [134] (see Fig. 1.9) and the the impact

on intelligibility of small changes to the STOI score will be insignificant. In particular,

for noisy speech STOI values above 0.9, the small decreases in STOI introduced by

our proposed algorithm will not significantly affect intelligibility. The oracle mask

has similar performance to the estimated mask for high STOI values while providing

a STOI improvement of approximately 0.25 for an initial STOI of 0.5 versus the 0.15

improvement of the estimated mask. When the noisy speech STOI value is below 0.5,

the original speech is too corrupted to extract reliable information and the proposed

algorithm will not improve the predicted intelligibility.

6.4.3 Evaluation on unseen noise types

The performance of the proposed algorithm on six unseen noise types is shown in

Table 6.2 together with the results obtained for the log-MMSE algorithm [32], and

the spectral subtraction [11] algorithm. In Table 6.2 we can observe how the estimated

mask does not increase the STOI values as much as in Table 6.1, with an average

STOI increment of 0.04 at �5 dB SNR. For higher SNRs, the proposed algorithm can

slightly degrade the STOI, which changes from an average STOI value of 0.89 for noisy

speech to an average STOI value of 0.87 for the processed speech using the proposed

algorithm at 10 dB SNR. Overall, the STOI value for unseen noise types at �5 dB

SNR is higher than for seen noise types. The reason behind this is that the majority

of the unseen noise types belong to the database from the ITU-T P.501 standard [69],

and, as we can observe in the spectrograms provided in Appendix A, most of their

energy is concentrated at low frequencies and speech information is preserved. As

expected, the MMSE and spectral subtraction algorithms so not significantly change

the STOI value at any input SNR.
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Table 6.2: STOI results for different speech enhancement algorithms on unseen noise
types. MMSE corresponds to the log-spectral amplitude MMSE approach [32], SS
corresponds to spectral subtraction [11]. Each entry gives the average STOI over 100
utterances from the TIMIT test set.

STOI values
SNR (dB) -5 0 5 10

Cafeteria noise Noisy 0.53 0.64 0.75 0.84
MMSE 0.49 0.61 0.73 0.83

SS 0.49 0.62 0.74 0.83
Proposed 0.53 0.66 0.77 0.83

Oracle mask 0.77 0.81 0.85 0.87
Car production hall noise Noisy 0.67 0.77 0.85 0.91

MMSE 0.68 0.77 0.85 0.91
SS 0.67 0.77 0.85 0.91

Proposed 0.75 0.81 0.86 0.89
Oracle mask 0.82 0.85 0.87 0.89

Restaurant noise Noisy 0.70 0.78 0.84 0.89
MMSE 0.68 0.76 0.83 0.88

SS 0.68 0.77 0.83 0.89
Proposed 0.73 0.80 0.84 0.87

Oracle mask 0.81 0.84 0.86 0.89
Office noise Noisy 0.70 0.78 0.84 0.90

MMSE 0.70 0.78 0.84 0.90
SS 0.70 0.78 0.84 0.90

Proposed 0.74 0.80 0.84 0.88
Oracle mask 0.81 0.84 0.86 0.88

Street noise Noisy 0.70 0.79 0.85 0.90
MMSE 0.71 0.79 0.85 0.91

SS 0.71 0.79 0.85 0.91
Proposed 0.75 0.81 0.85 0.88

Oracle mask 0.82 0.85 0.87 0.88
Railway station noise Noisy 0.72 0.78 0.84 0.88

MMSE 0.71 0.78 0.83 0.88
SS 0.71 0.78 0.83 0.88

Proposed 0.75 0.80 0.84 0.87
Oracle mask 0.81 0.83 0.86 0.88

Overall Noisy 0.67 0.76 0.83 0.89
MMSE 0.66 0.75 0.82 0.88

SS 0.66 0.75 0.82 0.89
Proposed 0.71 0.78 0.83 0.87

Oracle mask 0.81 0.83 0.86 0.88
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Figure 6.6: STOI improvement using the proposed algorithm versus the STOI of
the noisy signal for unseen noise types. The STOI values are the average over 100
utterances. The straight lines in the figure are least-squares linear fits to the data
points.

The STOI improvement versus its input value is shown in Fig. 6.6 calculated

over the 10 noise types of the ITU-T P.501 standard [69] and 3 noise types from

RSG-10 database [131] which were not used for training. We see that the oracle

mask results (indicated by green +) are very similar to those shown in Fig. 6.5 for

the noise types used in training. Due to the limited number of noises used for the

training, our algorithm does not generalise well on all types of unseen noise and the

results (indicated by red x) are not as consistent as for the seen noises. However, the

proposed algorithm trend, indicated by the linear fit to the data (red dash-dot line), is

to increase the STOI value when the input STOI is low, although the average increase

is about half that obtained on seen noise types. The MMSE and SS algorithms do

not substantially modify the input STOI value at any SNR, which is consistent with

the results found in [65].

6.5 Summary

In this chapter we have presented a mask-based algorithm that is able to increase the

predicted intelligibility calculated using the objective STOI measure. We extracted

145 features per frame from the noisy speech using previously developed algorithms

and trained a regression tree for each frequency band using the Universal Target Bin-

111



ary Mask (UTBM) as a target. Utterances from the TIMIT training set and noise

types from the RSG-10 database [131] were used to train the regression trees. The

proposed mask estimation algorithm was evaluated on the TIMIT test set with a

variety of noise types, some of which had been previously used in the training stage.

We conclude that the proposed algorithm is able to increase the predicted intelli-

gibility for noises seen in the training while maintaining or increasing the predicted

intelligibility on unseen noise types.
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Chapter 7

Conclusions

7.1 Thesis summary

Speech signals can be degraded in many ways during their acquisition in noisy environ-

ments and they can also be further degraded in the electronic domain. Serious signal

degradation, however, is most commonly caused by noise from unwanted acoustic

sources in the environment, which may affect the speech quality and/or intelligibility

of the wanted signal. In this thesis, we have focused on the enhancement of single-

channel speech signals that have been corrupted by levels of additive noise that are

high enough to affect the intelligibility of the speech.

Numerous approaches for single-channel speech enhancement, mainly driven by

telecommunications companies and hearing aid manufacturers, have been developed

over many years. The majority of algorithms perform the enhancement in a transform

domain in which both speech and noise signals are sparse. The time-frequency do-

main is the dominant domain for speech enhancement procedures. There are several

approaches which enhance the signal using time-frequency gain modification, such as

spectral subtraction or MMSE-based algorithms. Although most approaches aim to

estimate the clean speech by applying a continuous gain, the more recently proposed

time-frequency binary mask approach aims to retain important speech information

by using binary gain values.

Several studies [5, 66, 96] have evaluated the impact on quality and intelligibility
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of state-of-the-art speech enhancement algorithms. The results show that in most

cases intelligibility gets worse although perceived quality may improve. Although

no current approach has been able to improve speech intelligibility, several studies

[18, 146] have shown the potential of time-frequency binary masks in this task.

7.1.1 Time-frequency binary masks

Time-frequency binary masks aim to identify regions of the time-frequency plane

that contain information from the target sound. The original goal of binary mask

estimation was to identify the regions where the SNR was higher than 0 dB [144, 98].

Later research [146, 86], however, shows that the optimum SNR threshold in terms

of intelligibility depends on the input SNR. In recent years, an alternative goal has

been proposed [86], which aims at preserving time-frequency regions with high speech

energy.

In Chapter 2, we provided a detailed explanation of the different binary mask

targets, the Ideal Binary Mask (IBM) and the Target Binary Mask (TBM). The

IBM bases its decision on the SNR while the TBM bases its decision on the LTASS

of the speaker. We proposed a variation of the TBM, the Universal Target Binary

Mask (UTBM) and we have shown a similar predicted intelligibility performance to

that of the TBM while removing dependency on the speaker.

Based on the idea that a binary mask based only on the speech is possible, our

approach to the binary mask estimation problem aims to preserve high speech energy

independently of the noise present. Accordingly, we have in this thesis developed

methods for detecting the presence of voiced and sibilant speech components in a

noisy speech signal and for characterizing them in the time frequency domain. In

addition we have developed an algorithm for estimating the active level of a speech

signal even when high levels of noise are present.
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7.1.2 Voicing and pitch detection

The PEFAC algorithm, described in Chapter 3, is both a fundamental frequency

estimator and a voiced speech detector which has robust performance at low SNRs.

The first stage of the algorithm is a spectral normalization designed (i) to remove the

dependency on the overall speech level, (ii) to compensate for the channel response and

(iii) to attenuate narrowband noise components. The second stage is the convolution

in the frequency domain with a pitch estimation filter that rejects broadband noise

that has a smooth power spectrum. Dynamic programming is then used to impose

soft temporal continuity constraints by selecting between pitch candidates in each

frame. For voiced speech detection, two GMMs are trained on voiced and unvoiced

frames respectively and the likelihood ratio of the two models is used to classify each

frame.

The PEFAC algorithm was evaluated on different speech corpuses with a variety of

noise types and consistently outperformed other widely used algorithms. It was also

evaluated on reverberant speech without a degradation in performance. The voiced

activity detector is able to discriminate between voiced and unvoiced with a lower

overall error rate than the detectors implemented by other competing algorithms.

7.1.3 Speech active level estimation

In Chapter 4, we proposed a new method for estimating the speech active level in

high levels of noise. The method combines the ITU-T Recommendation P.56 [68] with

novel harmonic summation approach. The harmonic summation approach extracts

the energy contained at the fundamental frequency and its harmonics in order to

estimate the speech energy. The final speech active level estimate is calculated as a

linear combination of the ITU-T P.56 estimate, which is more accurate at high SNRs,

and the harmonic summation method estimate, which provides a reliable estimation

of the speech active level even at poor SNRs. The algorithm has been evaluated on

the TIMIT test set with a range of noise types and extends by more than 7 dB the

range of SNRs for which reliable estimation is possible.
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7.1.4 Sibilant speech detection

In order to locate the presence of aperiodic speech energy at high frequencies we

presented in Chapter 5 a sibilant speech detection algorithm robust to high levels

noise. Rather than identifying explicit onsets and offsets, a sustained increase in

energy during the sibilant is instead detected. The algorithm, which does not rely

on voicing detection, comprises a sibilant mean power estimation stage based on a

maximum likelihood approach followed by a classification stage in which the likelihood

ratio of two GMMs, one for sibilant speech and one for non-sibilant speech, is used.

The algorithm has been evaluated on the TIMIT test set over a range of noise types

and SNRs and consistently achieved over 80% classification accuracy for positive

SNRs.

7.1.5 Mask estimation

In Chapter 6, we used a machine learning approach to estimate the UTBM. The

parameters used for the estimation are extracted from the noisy speech using the

previously developed algorithms together with a noise estimate. A regression tree

is trained for each frequency band on a range of noise types. The proposed mask

estimation algorithm was evaluated on the TIMIT test set with a variety of noise

types, some of which had been previously used in the training stage and the pre-

dicted intelligibility was calculated using the objective algorithm STOI. While no

other evaluated speech enhancement technique was able to considerably improve the

predicted intelligibility; our algorithm, for seen noise types, can improve substantially

the STOI values for low SNRs while maintaining them at high SNRs. On average, for

unseen noise types, the estimated binary mask still gave an improvement, although

it was smaller than for noise types included in the training data.
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7.2 Future work

There are several directions in which further work can be approached. We can either

focus on the improvement of each of the proposed algorithms, on the development

of new ones to extract more speech information or on the enhancement of the mask

estimate.

7.2.1 Voicing and pitch detection

There are different ways in which the PEFAC algorithm performance could be further

improved. As the active level estimation algorithm performance depends on the

accuracy on both voicing detection and pitch estimation, any improvement to the

PEFAC algorithm would also benefit its performance. Future work to improve the

PEFAC algorithm could include the application of temporal continuity constraints to

the voicing probability estimate. The voiced/unvoiced classifier provides a probability

estimate for each time-frame independently of neighbouring information. We could

take advantage of the knowledge about the average duration of voiced speech segments

and the separation between them to improve the final probability estimate.

Recent research [40] has shown the valuable information the speech phase con-

tains. Within the PEFAC algorithm, it would be possible to use phase consistency

to distinguish between true harmonic peaks and spurious peaks.

7.2.2 Speech active level estimation

The speech active level method identifies the voiced speech segments of a speech

signal and calculates the speech active level from the energy in the fundamental

frequency harmonics. However, for a practical speech active level estimation operating

on continuous speech the algorithm would need to be modified. There is a need to

determine a window length to calculate the speech active level over and also to ensure

that the system works properly when no speech is present.
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7.2.3 Unvoiced speech detection

The identification of aperiodic noise components could also benefit from further re-

search. The sibilant detector described in this thesis classifies each frame individually;

it is possible that its classification accuracy could be further improved by applying

temporal constraints to the classification decisions.

An important class of speech sound that we do not currently detect explicitly is

stop consonants and, in particular, plosive stops. The sibilant detection algorithm

could be adapted to estimate the presence of stops by accommodating the duration

of the sustained increase in energy to that of stop consonants and by retraining the

classifier. It is worth noting that some of the false alarms of the sibilant detection

algorithm were caused by this type of consonants.

7.2.4 Mask estimation

The classification features for mask estimation include information about voiced

speech, sibilant speech and the energy distribution in frequency of the noisy speech

and the estimated noise. The inclusion of new classification features containing in-

formation about types of phonemes such as stops or non-sibilant fricatives could

further improve the performance of the mask estimation algorithm.

Although the CART approach has shown to provide a good performance, other

appropriate machine learning techniques could be investigated, such as SVMs. Fur-

thermore, in order to improve the mask generalization to unseen noise conditions,

more noise types may be used in the training stage.

The output of the machine learning could be further improved by taking advantage

of neighbouring time-frequency information. It can be seen from Fig. 6.3 that the

estimated mask includes isolated false positive cells. The occurrence of these could be

reduced by applying continuity constraints in the time and/or frequency directions or

by including in the parameter vector the classifier outputs from nearby time-frequency

bins.

Despite the possible improvements in the mask estimation stage, we believe that
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one of the major limitations of the proposed mask estimation method is not the

machine learning technique or the input parameters, but rather the UTBM that we

have used as the ground truth when training the classifier. There is a need to better

understand what are the key elements of the speech signal which makes it intelligible.

Only by understanding this process can we set an appropriate target for the mask

estimation problem.
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Appendix A

Noise databases

Two different noise databases have been used in this thesis: the RSG-10 database

[131] and the noise database from the ITU-T P.501 standard [69]. In this appendix,

we present further details about the noise types present in each database together

with their power spectrogram.

A.1 RSG-10 database

All the descriptions provided in this section have been extracted from [131].

Babble noise: The source of this babble noise is 100 people speaking in a canteen.

The room radius is over two meters; therefore, individual voices are slightly

audible.
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Figure A.1: Babble noise power spectrogram.
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Buccaneer noise 1: The Buccaneer jet was moving at a speed of 190 knots, and an

altitude of 1000 feet, with airbrakes out.
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Figure A.2: Buccaneer noise 1 power spectrogram.

Buccaneer noise 2: The Buccaneer was moving at a speed of 450 knots, and an

altitude of 300 feet.
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Figure A.3: Buccaneer noise 2 power spectrogram.

Destroyer engine noise: Engine Room noise.
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Figure A.4: Destroyer engine noise power spectrogram.
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Destroyer operations noise: Operations Room noise.
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Figure A.5: Destroyer operations room noise power spectrogram.

F16 noise: The noise was recorded at the co-pilot’s seat in a two-seat F-16, travelling

at a speed of 500 knots, and an altitude of 300 � 600 feet. It was found that

the flight condition had only a minor effect on the noise. The reproduced noise

can therefore be considered to be representative.
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Figure A.6: F16 noise power spectrogram.
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Factory noise 1: This noise was recorded near plate-cutting and electrical welding

equipment.
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Figure A.7: Factory noise 1 power spectrogram.

Factory noise 2: This noise was recorded in a car production hall.
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Figure A.8: Factory noise 2 power spectrogram.

HF radio noise: Recording of noise in an HF radio channel after demodulation.
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Figure A.9: HF radio noise power spectrogram.
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Leopard tank noise: The Leopard vehicle was moving at a speed of 70 km/h.

Time (s)

F
re

q
u

e
n

cy
 (

kH
z)

 

 

1 2 3 4 5 6 7
0

1

2

3

4

5

6

7

8

P
o

w
e

r/
H

z 
(d

B
)

−50

−40

−30

−20

Figure A.10: Leopard tank noise power spectrogram.

M109 tank noise: The M109 tank was moving at a speed of 30 km/h.
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Figure A.11: M109 tank noise power spectrogram.

Machine gun noise: The weapon used was a .50 calibre gun fired repeatedly.
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Figure A.12: Machine gun noise power spectrogram.
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Pink noise: Noise acquired by sampling high-quality analog noise generator. Ex-

hibits equal energy per 1/3 octave.
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Figure A.13: Pink noise power spectrogram.

Volvo noise Volvo 340 noise acquired at 120 km/h, in 4th gear, on an asphalt road,

in rainy conditions.
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Figure A.14: Volvo car noise power spectrogram.
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White noise: White noise acquired by sampling high-quality analog noise generator.

Exhibits equal energy per Hz bandwidth.
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Figure A.15: White noise power spectrogram.

A.2 Noise database from the ITU-T P.501 standard

All the descriptions provided in this section have been extracted from [69].

Cafeteria noise Typical cafeteria noise
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Figure A.16: Cafeteria noise power spectrogram.
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In car noise Noise inside a typical medium size car.
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Figure A.17: In car noise power spectrogram.

Street noise Typical street noise
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Figure A.18: Street power spectrogram.

Car noise Car interior noise, car driving, radio on (speech programme).
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Figure A.19: Car noise power spectrogram.
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Construction noise: Construction noise, impulse type noise (hammering), sawing

noise.
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Figure A.20: Construction noise power spectrogram.

Metro noise: Metro train arriving to the station.
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Figure A.21: Metro noise power spectrogram.

Office noise: Office noise, fans, typing, phone ringing, noise from chair.
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Figure A.22: Office noise power spectrogram.
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Railway station noise: Railway station, echoing surroundings, speech, shoes clack-

ing.
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Figure A.23: Railway station noise power spectrogram.

Restaurant noise: Restaurant, babble, water, dishes.
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Figure A.24: Restaurant noise power spectrogram.
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