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ABSTRACT OF THESIS 
 
 
 
 

IMPACT OF MICROPHONE POSITIONAL ERRORS ON SPEECH 
INTELLIGBILITY 

 
 

    The speech of a person speaking in a noisy environment can be enhanced through 
electronic beamforming using spatially distributed microphones. As this approach 
demands precise information about the microphone locations, its application is limited in 
places where microphones must be placed quickly or changed on a regular basis. Highly 
precise calibration or measurement process can be tedious and time consuming. In order 
to understand tolerable limits on the calibration process, the impact of microphone 
position error on the intelligibility is examined. Analytical expressions are derived by 
modeling the microphone position errors as a zero mean uniform distribution. 
Experiments and simulations were performed to show relationships between precision of 
the microphone location measurement and loss in intelligibility. A variety of microphone 
array configurations and distracting sources (other interfering speech and white noise) are 
considered. For speech near the threshold of intelligibility, the results show that 
microphone position errors with standard deviations less than 1.5cm can limit losses in 
intelligibility to within 10% of the maximum (perfect microphone placement) for all the 
microphone distributions examined. Of different array distributions experimented, the 
linear array tends to be more vulnerable whereas the non-uniform 3D array showed a 
robust performance to positional errors. 

  
 
KEYWORDS: Speech intelligibility, Microphone array calibration, Delay-and-sum 
beamformer, Microphone positional errors, Speech intelligibility index 
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                     CHAPTER 1 

 

INTRODUCTION AND LITERATURE REVIEW 

  

1.1 Speech intelligibility 

 

Even in today’s modern multimedia society, speech is probably the most important 

and efficient means of individual communication. It is most often used to share 

information [1]. However, failure to understand the message at certain circumstances can 

be a result of several factors. A message spoken in Spanish to a listener who understands 

only Chinese may not be understood. Hence, a message has to be intelligent to be 

understood properly. An intelligent message in a language known to the listener could 

still be misunderstood if it is not audible or distorted by the environment [2]. 

 

Speech and Music are significantly different in their features. For example, at a 

cocktail party, people are talking with music running in the background. It would be hard 

to understand a particular person’s speech unless the concentration is on his voice. The 

visual and gestural cues could be used to understand it even if only a fraction of speech is 

heard. But, in the mean time the music playing in the background might be recognized 

even in presence of noise with ease. Even if a fair amount of information is missed in the 

music, the brain is able to fill in the information due to the high degree of redundancy in 

music. However, since speech consists of a succession of sounds changing rapidly from 

instant to instant in intensity and frequency, it has less redundancy than music. Therefore 

it is hard to understand the normal speech even if some syllables are intelligible [3, 4]. 

 

Speech intelligibility is the measure of effectiveness of speech. It is defined as the 

degree to which the speech can be understood correctly by the listener [2, 5]. 

Intelligibility and speech quality are not equivalent. Speech quality refers to the quality of 

a reproduced speech signal with respect to amount of distortions and noise. A listener can 

completely understand a synthesized voice message which may be artificial and of low 

quality.  A message may still be intelligible even if it lacks quality due to distortion [2, 6]. 
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1.2 Factors governing Speech intelligibility 

 

Speech intelligibility can be diminished or influenced by a number of acoustic, 

electronic and electromechanical factors [3]. It depends directly on the signal-to-noise 

ratio (SNR). It is quite complicated to deliver an intelligible speech to listeners in a real-

world situation [1]. Many factors influence the speech and noise in a communication 

system, such as basic characteristics of speech and hearing, electrical and acoustic 

characteristics of the enclosure and behavioral conditions under which the 

communication takes place. These factors need to be considered to maintain the 

intelligibility in an enclosure [4]. The following figure shows the types of distortion that 

can be introduced in a communication system that governs intelligibility. 

 

 

 

 

      Talker 

         

 

 

 

 

 There is a certain level of ambient background noise present in every acoustic 

environment. This intrusion of unwanted noise can mask the speech such that not all 

speech is available to the listener, thus reducing the SNR. This masking noise may be 

produced as a result of acoustical sources such as reverberation, ventilation or traffic. It 

may also arise electronically from thermal noises. Increasing the masking noise will 

clearly affect the intelligibility. Low frequency noise is more effective in masking as it 

masks both vowels and consonants unlike the high frequency noise which tends to 

primarily mask the consonant sounds. Competing human speech can also mask the 

desired speech, where the masking effect increases with the number and loudness of 

distracting voices [1, 3, 7].  

Listener 

Mic Mixer Amplifier 

ambient noise, 
articulation, 
distortion, reverb 

thermal noise, 
clipping, band 
width distortion 

Speaker 

amplitude and 
phase distortion, 
echoes 

Figure 1: General speech communication enclosure with various distortions [2, 3] 
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Speech intelligibility is also affected significantly by a room’s impulse response. 

Excessive reverberations and phase distortions contribute to the apparent background 

noise level which distorts the direct speech signal [1, 3]. Limitations in the bandwidth are 

also an important factor which affects intelligibility especially in telephonic 

conversations [8]. Intelligibility may also be affected by the predictability of the message, 

speaker’s enunciation (accent) and also by the listener’s hearing ability [3].  

 

1.3 Measuring Intelligibility 

 

With the development of telephone and other audio systems, speech intelligibility 

received a major attention from speech and audio processing researchers in the early part 

of the century. As a result, a subjective measure for intelligibility was proposed based on 

the use of physical speakers and listeners [1, 3, 6, 9]. This statistical procedure normally 

consists of a trained speaker reading out standardized word lists through the test system 

to a set of trained listeners. The percentage of recognized words or sentences is then 

taken as a measure of Speech intelligibility. But as these methods are time consuming, 

difficult to set up, and demand extensive statistical analysis, researchers opted for an 

automated, machine based test that quickly and easily estimates the intelligibility scores 

in speech systems. These objective measures are based on the physical parameters of the 

communication system to predict the intelligibility of those systems [1, 3, 6]. 

 

 Subjective Measures 

American National Standards Institute (ANSI) has approved a procedure for the 

subjective assessment measures as the standard ANSI S3.2-1989, “Method for Measuring 

the Intelligibility of Speech over Communication Systems”. These subjective measures 

used trained talkers and listeners in their computations  and are by far the most accurate 

and reliable methods for measuring intelligibility [3].  

 

The subjective intelligibility measures generally differ on the usage of meaningful 

words or sentences during the evaluation of intelligibility.  A variety of specialized word 

lists are in use for testing various aspects of speech communication. One of those 
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standardized word lists is the Modified Rhyme Test (MRT). It consists of 50 six-word 

lists of rhyming words constructed from a consonant-vowel-consonant sequence (see 

Table 1). The six words in each list differ only in the initial or final consonant sound. The 

talkers need to have good articulation and are trained to speak at consistent level. The 

listeners must have good discrimination and are familiar with all used test words and 

talker’s voice. The talker and listener were given the whole list containing the words. The 

talker pronounces one of the six words in each list and the listeners identifies and marks 

the word they think the talker has spoken from the list.  For example, suppose the talker 

pronounces the word ‘Dent’ from the first row in the list. The listeners have to 

circle/mark one of the words from that row that they think have been pronounced. This 

indicates their ability to differentiate the initial consonants. After the test is carried out 

the results are collected and analyzed statistically to indicate the errors in discriminating 

the initial and final consonant sounds [3, 6, 10].  

 
Table 1: The first four rows of words in Modified Rhyme Test (MRT) [10] 

Went  Sent Bent Dent Tent Rent 

Hold Cold Told Fold Sold Gold 

Pat Pad Pan Path Pack Pass 

Lane Lay Late Lake Lace Lame 

 

ANSI standard specifies another similar method called the Diagnostic Rhyme Test 

(DRT). It consists of 96 rhyming pairs of words which differ by a single acoustic feature 

in initial consonants (see Table 2). The talker speaks one word at a time from the list and 

the listener has to mark the answering sheet with one of the two words he thinks is 

correct. For example, the talker chooses to test the feature ‘Nasality’ and hence 

pronounces the word ‘Beat’. The listeners have to mark the word that they think was 

pronounced from the given list of words. The percentage of words that are correctly 

identified is then computed after the experiment. It has been suggested that consonants 

are more important for intelligibility than the vowels. These consonants are more 

sensitive to losses and additive impairments like noise, tones etc., as they are shorter in 

duration (10-100ms) and lesser in average power than the vowels. The final result of this 
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method provides valuable diagnostic information about the consonants that are hard to 

recognize and to be altered [3, 10, 11].  

 

Table 2: The first four rows of word pairs in Diagnostic Rhyme Test (DRT) [10] 

Voicing Nasality Sustentation Sibilation Graveness Compactness 
Veal  Feel Meat Beat Vee Bee Zee Thee Weed Reed Yield Wield 
Bean Peen Need Deed Sheet Cheat Cheap Keep Peak Teak Key Tea 
Gin Chin Mitt Bit Vill Bill Jilt Gilt Bid Did Hit Fit 
Dint Tint Nip Dip Thick Tick Sing Thing Fin Thin Gill dill 

 

Another word list called the Phonetically Balanced Word list (PB-50) is also used for 

measuring intelligibility subjectively. They contain monosyllabic test words in order to 

negate any influence of non-phonetic cues on the measured intelligibility. They were 

initially developed in Harvard University and the word lists mostly comprise of 

meaningless or jumble syllables [3, 6].  There are also other word lists available in 

practice such as Diagnostic Alliteration Test, Spelling Alphabet Test and Diagnostic 

Medical Consonant Test [3]. 

 

A set of percentage scores calculated from these measures shows the number of times 

the words were identified correctly by the listener which reflects the intelligibility of the 

system. The results are then adjusted mathematically to account for guessing. However, 

in real-time situations intelligibility is augmented as the speech consists of word flows or 

sentences [3, 10]. 

 

 Objective Measures 

The development of objective measures that predict intelligibility for various 

transmission channels began with the assumption that the intelligibility of speech signal 

is based on the sum of the weighted contributions from individual frequency bands. This 

idea was proposed between 1925 and 1930 by Fletcher and was later modeled by French 

and Steinberg in 1947 [1, 6]. It was described that the information content of a speech 

signal is not equally distributed along the frequency range of a speech signal. A model 
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was created where the response of the speech system is divided into twenty contiguous 

frequency bands each of them contributing to the intelligibility. The contributions of 

individual bands are summed to a total contribution that is defined by the Articulation 

Index. The Articulation Index ranges in value from zero to unity [3, 6]. 

 

The Articulation Index was the earliest attempt which uses the objective measures to 

predict the intelligibility in speech communication channel. Later two more measures 

called Speech Transmission Index (STI) and Speech intelligibility Index (SII) were 

introduced. These measures outmoded the Articulation Index since it did not effectively 

account for reverberation. The Speech Transmission Index was introduced in the early 

1970’s wherein the speech is modeled as an artificial test signal. The result of the analysis 

is an index ranging from 0 to 1. The STI accounts correctly for reverberation, noise, 

band-pass limiting and non-linear distortion. STI is standardized by IEC standard 60268-

16 (1998), and uses an amplitude modulation scheme to generate the test signal with 

speech like characteristics based on the concept that the speech can be described as a 

fundamental waveform that is modulated by low frequency systems and is analyzed for 

the modulation depth over the communication system. Reduction in the modulation depth 

results in the loss of intelligibility. Another method called Rapid Speech Transmission 

Index (RSTI) was developed as an alternative to the more complex STI measure. It used a 

speech as an excitation signal and measures only in two octave bands centered at 500Hz 

and 2 kHz respectively. RSTI has limitations as it does not account for system distortion 

and non-linear phase and amplitude [1, 3, 6]. 

 

Later in 1997 another objective measure called Speech Intelligibility Index was 

introduced, which estimates intelligibility using the physical parameters of the speech 

transmission channel.  This method was proposed in the draft form as ANSI s3.5 -1997, 

“American National Standards methods for Calculation of the Speech Intelligibility 

Index”. The SII also ranges from 0.0 (completely unintelligible) to 1.0 (perfect 

intelligibility). The SII accounts for band-pass limiting and noise but the effects of 

temporal and non-linear distortions are not directly included. SII demands higher 

computation but is the most robust and accurate of machine dependent intelligibility 
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measures. Under right conditions, it shows a good correlation with the subjective 

methods [3, 12, 13]. The SII model has been developed such that it predicts the average 

speech intelligibility for a desired speech-in-noise condition rather than the intelligibility 

of individual utterances/words [14].  

 

1.4 Enhancement of Speech intelligibility 

 

Research work on speech intelligibility has focused on augmenting intelligibility in 

multi-talker conditions and fluctuating noise sources. Various approaches have been 

introduced to enhance the intelligibility of speech under such conditions.  Studies show 

that in a multi-talker environment, the intelligibility increases when the target and 

competing sources are spatially separated. Moreover, speech intelligibility is markedly 

increased as the number of competing sources decrease [15, 16]. Modifying the 

architecture of the enclosure such that it attenuates most of the noise was suggested for 

intelligibility enhancement. For example, intelligibility in a cockpit can be enhanced by 

insulating cockpits, muffling engines, widening broadcast bandwidth and using earplugs 

and headsets as an effort to match the ideal conditions.  

 

Methods involving auditory processing and speech synthesis were also proposed to 

enhance intelligibility. For example, an approach using the Masking-Level Differences 

that measures the change in the masking effect of the noise in binaural hearing, relative to 

the change in the positions of signal and noise sources, was proposed to produce an 

improvement in the apparent SNR, without actually changing either the speech or the 

noise intensity [17]. Speech intelligibility can also be improved by slowing down the 

speech signals selectively and enhancing some important acoustic cues. For example, a 

speech synthesis method called Time Domain Pitch Synchronous Overlap-Add (TD-

PSOLA) can be used to slow down speech by automatic pitch marking and later enhance 

the speech segments using algorithm of burst and fricative detection for improved 

intelligibility [18]. It can also be enhanced by using de-noising methods that typically 

increase the intelligibility of the signal by applying algorithms to suppress the 
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background noise such as Wiener filtering, spectral subtraction and minimum mean-

square error log-spectral amplitude estimator [19-21]. 

 

However, the most common enhancement to speech intelligibility is made possible 

with the help of distributed microphone systems. Arrays are considered more 

advantageous than single distant microphones as it can reduce the room effects and 

additive noises in an enclosure. Arrays have been considered for various applications, 

such as talker localization, speech recognition and beamforming [22-24]. Beamforming 

techniques have been developed to steer the microphone array in order to receive signals 

from a desired direction, eliminating the signals from other directions to achieve 

substantial improvement in SNR of the output signal. This improvement in weighted 

SNR directly relates to a comparable improvement in speech intelligibility. It has been 

reported that at the threshold of intelligibility, every single dB improvement in SNR can 

increase the speech intelligibility by 10-15% [25]. This thesis mainly focuses on 

assessing array performance based on intelligibility and finding tolerances in microphone 

position errors in the beamforming process.  

 

1.5 Motivation 

 

Most array processing algorithms, especially beamforming methods, require the 

knowledge of the exact location of microphones and its geometry prior to data acquisition 

and processing. So in an effort to yield better intelligibility through beamforming, the 

three-dimensional positions of the microphones in the array need to be calibrated with the 

least possible error.  For example, a delay-and-sum beamformer expects precise 

microphone positions (sub-centimeter accuracy) to estimate the source to microphone 

distances and to find required delays to time-align the microphone signals to beamform 

on a target location.  

 

However, for larger arrays and applications involving quick placements of 

microphones, the determination of accurate estimates of the microphone positions is often 

challenging. Various measurement methods such as using hardware wirecloth, laser 
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devices or acoustic measurement are error prone at least on the order of centimeters. 

Even though the positions of microphones are estimated precisely with minimum error, 

small differences in the speed of sound and alteration in the position of microphones due 

to routine maintenance or human activity after calibration contribute to the error [26, 27]. 

These spatial precision errors translate into time delay errors between the microphone 

signals thus degrading the beamformer’s output, in turn influencing the estimates of 

intelligibility.  Hence, in order to understand the limits on the calibration process, the 

impact of these microphone positional errors on beamformer’s response and intelligibility 

estimates should be examined.  

 

1.6 Hypothesis 

 

The non-precise microphone locations result in a loss of coherence (phase consistency) 

for signals arriving at each microphone, thus affecting the signal power at various 

frequencies on the beamformer’s spectra. Analytical expressions are derived to show the 

impact of these location errors on the beamformed signal power. When the location error 

standard deviation increases over a particular value, the beamformer offers no 

enhancement to the target signal as a result of effective incoherent summation. Moreover, 

since the estimation of SII depends on the spectrum level of the signal and noise, power 

loss on the beamformed spectra leads to a decrease in SII estimate.  

 

The main objective of this thesis is to understand the impacts of these location errors 

in the array on SNR and to propose tolerable limits on the amount of error on speech 

intelligibility. These location errors on microphone positions are modeled using random 

variables distributed uniformly in 3 dimensions, and their influence on Speech 

intelligibility are examined and compared to SNR. SII is used as the quantitative metric 

for estimating the intelligibility in the enclosure. Experiments and simulations are 

performed to present the relationships between the precision of microphone positions, 

SNR, and SII loss for a variety of microphone array geometries, target signals and 

distracting sources. The influence of different array distributions on their robustness to 

location error estimate was also examined. 
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1.7 Organization of the thesis 

 

Chapter 2 presents the steps involved in computing SII using the ANSI s3.5 standard. 

It also gives an introduction to concepts of beamforming with respect to the delay-and-

sum beamformer implementation for enhancing Speech intelligibility. The later section 

derives analytical expressions by modeling the microphone positional errors, to show its 

impact on the beamformer spectra and intelligibility.  

 

Chapter 3 focuses on the implementation of the simulator that is used to demonstrate 

the impact of positional errors on SII. This chapter also discusses the details of analysis 

and the issues of variables used while performing the simulations and experiments. 

Moreover, it investigates the influence of array geometries and input SNR over 

intelligibility metrics using the results from the simulator.  

 

Chapter 4 provides the specifications of the experimental setup which is used to collect 

data to assess the validity of the simulation results. It also presents the summative statistic 

results obtained from the analyses and proposes limits on tolerable error in microphone 

positions for speech intelligibility.  

 

Chapter 5 summarizes the conclusions and also provides future directions for further 

research in the area. 
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CHAPTER 2 

 

MODELING AND SENSITIVITY OF POSITIONAL ERRORS 

 
This chapter gives a detailed description of the steps involved in the calculation of SII 

according to the ANSI s3.5 standard for a given speech- in-noise condition. The concepts 

of beamforming in microphone arrays and the mathematical modeling of a weighted 

delay-and-sum beamformer are discussed in Section 2.2. Section 2.3 mathematically 

models the microphone positional errors and derives analytical expressions to show its 

impact on frequency response of the beamformer and speech intelligibility.  

 

2.1 Calculation of Speech Intelligibility Index 

 

The SII is a measure of intelligibility that quantifies the proportion of audible and 

usable speech information for a listener [13]. For a given speech-in-noise condition, the 

SII calculation requires specific information about the speech spectrum, the noise 

spectrum and the auditory threshold. Both the speech and noise are filtered into frequency 

bands. The factor 'audibility' is derived in each of the bands, indicating the proportion of 

speech cues that are audible in a given frequency band [13, 14]. The audibility of each 

band is then multiplied by the respective Band Importance Functions (BIF) value, and the 

SII is estimated by summing up the resulting values across the frequency bands.  The  

speech and noise spectrum can be partitioned using any one of the procedures from the 

ANSI standard, each using a different number and size of frequency bands [12]. They are 

listed in descending order of accuracy as follows: 

 

• Critical band, consisting of 21 bands 

• One-third Octave band, consisting of 18 bands 

• Equally Contributing band, consisting of 17 bands 

• Octave band, consisting of 6 bands 
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The flowchart in Fig. 2 discusses the variables to be estimated during the process of 

SII calculation. The first step is to select a band procedure to divide the speech and noise 

spectrums. Each band differs in some detail to compute SII although they are 

START 

Select the calculation method 
used to partition the spectrums 

Determine the Equivalent speech and noise spectrum 
level, and Equivalent hearing threshold level, T ′  

Compute the Equivalent masking spectrum level, iZ  

Calculate the Equivalent internal noise spectrum level, iX ′  

Determine the Equivalent disturbance spectrum level, iD  

Compute the Speech level distortion factor, iL  

Evaluate the Band Audibility function, iA  

Calculate the Speech Intelligibility Index using the Band 
Audibility function and Band Importance Function 

STOP 

Figure 2: Flowchart describing the procedural steps involved in the estimation of 

SII 
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conceptually the same. The SII standard gives the flexibility to choose any one of the 

bands depending on how specific the frequency measures are intended to be. Generally, 

when the measures are more frequency-specific (more bands), the SII computations are 

more accurate. The choice of any one procedure may also be influenced by the 

availability of the data as the Critical band features wide bandwidth (150 Hz to 8.5 kHz) 

whereas the Equally-contributing band needs lesser bandwidth (350 Hz to 5.8 kHz). The 

One-third octave method (bandwidth of 150 Hz to 8 kHz) is usually used as it 

corresponds with normal electro-acoustic analysis practices. Thus, in this thesis, the One-

third octave band is assumed which divides the speech spectrum into 18 bands. The 

procedural steps involved in calculating the SII using ANSI S3.5 standard are described 

below [12]:  

 

The Equivalent speech spectrum level, E ′ , is the spectrum power levels of the target 

speech at each band center frequency given in Decibels (dB). The Equivalent noise 

spectrum level, N ′ , is the spectrum power levels of the noise at the same band center 

frequency given in dB. Both these spectrum levels are based on the free-field levels. The 

free-field to eardrum transfer functions in Table 3 should be used if the speech is 

presented over the eardrum to project it into the free-field to yield the Equivalent speech 

and noise spectrum levels. The term noise includes both uncorrelated noise such as 

external noise, babble etc., as well as the noise correlated with the speech signal such as 

reverberation. For example, if the total signal received over a microphone in an array of 

M microphones is 
  

 (1) 

 

where )t(sm  is the target signal and )t(nm  is the noise signal at the thm microphone. 

The target and noise signals are sent separately through a band-pass filter bank in order 

partition the spectrum into 18 bands based on the midband frequency given in the Table 

3, and the spectrum power level in dB is estimated in each individual band i  for the 

speech and noise using the power equations as below: 

( ) ( ) ( )tntsty mmm +=
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  (2a) 

 

( )








= ∫∞→
dttn

T
N

T

imTi
0

2
, )(1lim log 10

                                 (2b) 

 

The minimum sound pressure level of the pure tone that is capable of evoking an 

auditory sensation at a specific frequency gives the pure-tone threshold level, which is 

determined by an appropriate psycho-acoustical method. The hearing threshold level is 

given as the difference between the pure-tone threshold level of a given ear at a specified 

frequency and the reference pure-tone threshold level. Then, the Equivalent hearing 

threshold level,T ′ , for monaural listening is defined as the arithmetic average of the 

hearing threshold levels across the group of ears for which the SII calculations are 

performed. In general, for listeners in the 18-30 age groups, with no hearing loss, the 

equivalent hearing threshold is a hearing level of 0 dB across all frequencies. In case of 

the binaural listening, the value of the equivalent hearing threshold level for monaural 

listening should be decreased by 1.7dB.  

 

The next step is to calculate the equivalent masking spectrum level, iZ , which is 

defined as the sound pressure spectrum level in dB that appropriately accounts for the 

masking of speech produced by the equivalent noise. It comprises masking from within-

band, out-of-band (spread of masking) and masking of one speech frequency by another 

(self-speech masking). In case of the one-third octave band method, the following 

parameters need to be calculated in order to determine the equivalent masking spectrum 

level. The self-speech masking spectrum level, iV , calculates masking of higher speech 

frequencies by lower speech frequencies in conditions of severe low-pass or band-pass 

filtering, given in dB. This parameter is determined by subtracting a constant 24 dB 

(based on subjective testing) from the Equivalent speech spectrum level.  The self-speech 

masking spectrum level, iV  is determined for each calculation band i using the equation 

 

( )
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dB24−′= iEiV                   (3) 

 

where iE′  is the Equivalent speech spectrum level. For the one-third octave band 

procedure the index i runs from 1 to 18.  

 

For each calculation band i, the value of variable iB  in dB is determined which gives 

the larger of the equivalent noise spectrum level, ′
iN , or the self-speech masking 

spectrum level, iV  , which can be expressed  as 
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                                                 (4)

 

 

The next step is to determine iC  which is the slope per octave (doubling of frequency) 

of the upward spread of masking in dB/octave for each calculation band. For one-third 

octave frequency bands, the slope iC  is calculated using the relation given below: 

 

]dB353.6 log 10[6.0dB80 −++−= iii FBC                    (5) 

 

where iB  is obtained from Eq. (4) and iF  is the nominal midband frequency of the one-

third octave band in Hz as listed in Table 3. For the lowest frequency calculation band the 

equivalent masking spectrum level iZ is equal to iB . For all but the lower frequency 

calculation band, the equivalent masking spectrum level iZ  is determined using the 

equation  

 

}1010log{10
1

)]/89.0log(32.3[1.01.0 ∑
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               (6) 
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where iN ′  is equivalent noise spectrum level, kB  is the same as iB , iF  is the nominal 

one-third octave midband frequency as in Table 3 and kF  is the nominal midband 

frequency for frequency bank k as in Table 3. 

 

The reference internal noise spectrum level in the ear of the listener is standardized by 

ANSI and is listed in Table 3. The reference internal noise spectrum level increased by 

the equivalent hearing threshold level would give us the equivalent internal noise 

spectrum level, iX ′  in dB. It is given by the equation  

 

iii TXX ′+=′           (7) 

 

where iX  is the reference internal noise spectrum level listed in the Table 3 and iT ′ is the 

estimated equivalent hearing threshold level. 

 

The Equivalent disturbance spectrum level iD  is estimated as the larger of the 

equivalent masking spectrum level iZ  and the equivalent internal noise spectrum level

′
iX . 
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,
                      (8)  

 

The speech level distortion factor accounts for the decrease in the intelligibility of 

speech at high presentation levels. It reaches unity when there is no distortion due to 

presentation level. Its value decreases to a minimum of zero at high presentation levels.  

The speech level distortion factor iL is computed using the equation: 

 

dB160/)dB10(1 −−′−= iii UEL                 (9) 
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where iE′ the Equivalent Speech Spectrum level and iU  is the standard speech spectrum 

level at the normal vocal effort found in Table 3. Eq. 9 is developed from the data given 

in reference and the constant (10) is the difference between 72.35 dB and overall level 

standard speech at normal vocal effort (62.35 dB from Table 3). In the event that a 

different vocal effort such as raised or loud is used, this constant can be modified 

according to the new overall level of the standard speech at the stated vocal effort. A 

value of one should be used if the calculated value of distortion factor exceeds one. A 

temporary variable iK is calculated as follows: 

 

dB30/)dB15( +−′= iii DEK                          (10) 

 

where iE′  and iD are the Equivalent speech spectrum level and equivalent noise spectrum 

level respectively. The value of iK should be limited between the interval [0, 1]. If the 

estimated value iK  is greater than 1 then it should be set to 1. If it is negative then the 

value of iK  is set to 0. 

 

The Band Audibility function is calculated using the below equation: 

 

iii KLA =               (11) 

 

where iL is the speech level distortion factor calculated from Eq. (9) and iK  is the value 

computed in Eq. (10). 

 

The Speech intelligibility Index is then estimated as: 

∑
=

=
n

i
ii AISII

1
                           (12) 

where iI is the Band Importance Functions as listed in Table 3 and iA  is the Band 

Audibility function computed using Eq. (11). 
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Table 3: One-third octave band SII procedure – frequency bands, standard speech 

spectra, internal noise and free field to eardrum transfer function (Adapted from 

ANSI s3.5-1997 [12]) 

 

 

 

Band 

No. 

 

 

 

 

 

Frequency Band 
Standard speech spectrum level 

for stated vocal effort, dB 
Reference 

internal 

noise 

spectrum 

level, dB 

 

Free-

field to 

eardrum 

transfer 

function, 

dB 

Nominal 

midband 

freq(Hz) 

 

 

Bandwidth 

adj, dB 

 

 

 

Band 

Importance 

 

 

 

Normal 

 

 

 

 

Raised 

 

 

 

 

Loud 

 

 

 

Shout 

 

 

 

1 160 15.65 0.0083 32.41 33.81 35.29 30.77 0.60 0.00 

2 200 16.65 0.0095 34.48 33.92 37.76 36.65 -1.70 0.50 

3 250 17.65 0.0150 34.75 38.98 41.55 42.50 -3.90 1.00 

4 315 18.65 0.0289 33.98 38.57 43.78 46.51 -6.10 1.40 

5 400 19.65 0.0440 34.59 39.11 43.30 47.40 -8.20 1.50 

6 500 20.65 0.0578 34.27 40.15 44.85 49.24 -9.70 1.80 

7 630 21.65 0.0653 32.06 38.78 45.55 51.21 -10.80 2.40 

8 800 22.65 0.0711 28.30 36.37 44.05 51.44 -11.90 3.10 

9 1000 23.65 0.0818 25.01 33.86 42.16 51.31 -12.50 2.60 

10 1250 24.65 0.0844 23.00 31.89 40.53 49.63 -13.50 3.00 

11 1600 25.65 0.0882 20.15 28.58 37.70 47.65 -15.40 6.10 

12 2000 26.65 0.0898 17.32 25.32 34.39 44.32 -17.70 12.00 

13 2500 27.65 0.0868 13.18 22.35 30.98 40.80 -21.20 16.80 

14 3150 28.65 0.0844 11.55 20.15 28.21 38.13 -24.20 15.00 

15 4000 29.65 0.0771 9.33 16.78 25.41 34.41 -25.90 14.30 

16 5000 30.65 0.0527 5.31 11.47 18.35 28.24 -23.60 10.70 

17 6300 31.65 0.0364 2.59 7.67 13.87 23.45 -15.80 6.40 

18 8000 32.65 0.0185 1.13 5.07 11.39 20.72 -7.10 1.80 

Overall SPL, dB 62.35 68.34 74.85 82.30  
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2.2 Beamforming using Microphone arrays: 

 

Microphone array processing generally refers to combined processing of the signals 

obtained from spatially separated coherent sensors. These arrays are commonly used to 

enhance the SNR in a noisy environment with the help of spatial filtering. Spatial 

filtering is a technique by which a signal from a desired direction can be received, 

eliminating the signals from all other directions. Beamforming is a versatile approach of 

spatial filtering [29-31]. Beamforming algorithmically steers the microphone array in 

order to receive signals from the desired direction (look direction) and attenuate the 

signals from other directions. Beamforming methods can be broadly classified into two 

types, fixed and adaptive beamforming techniques. Delay-and-sum Beamforming and 

Filtered Delay-and-sum Beamforming belong to the fixed Beamforming category and 

Frost’s Beamformer and the Griffiths-Jim Beamformer belong to adaptive Beamforming. 

Beamforming can be applied to both source-signal capture and localization of sound 

sources [30-33].   

 

 In a delay-and-sum beamformer, the signals received from the microphones are time 

aligned to adjust for the differences in the path length for the signal to reach the 

microphones from the source. These time aligned signals are weighted and summed 

together to get the output signal. All the noise signals that remain misaligned get 

attenuated when the signals are added. Instead of directly summing the time aligned 

signals, filtering the time aligned signals would achieve better attenuation of the 

interfering signals [22, 31, 33]. Adaptive Beamforming techniques aim to adjust the array 

processing parameters dynamically according to an optimization criterion either on 

sample by sample basis or frame by frame basis [30].  

 

The performance of the beamformer can be usually determined using various metrics 

such as Direct to Reverberant ratio (DRR), Directivity index, SNR improvement and 

Intelligibility measures [34, 35]. For an impulse response, DRR can be given as the ratio 

of the direct path energy to the reverberant path energy. It is mainly used to quantify 

reverberant suppression in an enclosure rather than intelligibility related effects. 



20 
 

Directivity index gives the ratio of the array output power due to source in the target 

direction to the output power due to sound arriving from all other directions. But it cannot 

be used to assess the array for use in speech enhancement as it is a narrow band 

performance metric. Improvements in the output SNR with respect to input SNR are also 

used to assess the performance of the array. Another method called intelligibility 

averaged gain which is based on the well known Articulation Index is also used to 

measure the array performance. However, since the AI method was outdated by more 

recent and reliable measures of intelligibility like SII, SII is used to assess the 

performance of the array in this work. The SII is generally a frequency-weighted SNR 

metric which is calculated using the method discussed in the previous section. 

 

2.2.1 Delay and Sum Beamformer 

 

The delay and sum beamformer is based on the idea that the outputs of all the sensors 

are the same except that they are delayed by a different amount.  The size of the delays is 

determined by the direction (far-field) or point (near-field) at which the microphone array 

is steered. Here, the array is focused on a source at a near-field point (spherical 

wavefronts) inside the array. The direction of propagation of the source to each 

microphone varies in case of a near-field source and thus delay is related to the distance 

between the source and the microphones in the array [32, 36].Consider an array of N 

microphones and sound sources at different spatial locations distributed in a 3-D space. 

Let );( ii rtu 
 be the pressure wave resulting from the thi  sound source located at known 

position ir


, where ir


 is the vector denoting the coordinates of ,, yx and z axis. Then, the 

waveform received at the thm microphone located at mr


 is given by [37, 38]: 

 

)();(),;( tnrturrtv mimimimm ++=
 τβ                                            (13) 

 

where );( imi rtu τ+ is the delayed version of the source signal located at ir


, mτ is the 

direct path time delay to the thm  microphone from ir


, mβ is the signal attenuation at the 
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1α  

thm  microphone located at mr


 and )(tnm represents all the uncorrelated additive noise 

sources.  

 
The below figure shows that for an array of N microphones, a delayed version of the 

source signal )(tui exists in each microphone channel. The delayed versions of )r;t(u ii


can be time-aligned using the actual delays ( )mτ  and applying the weights ( )mα  to the 

signals received at each microphone. The resulting signals can be summed together so 

that it reinforces the desired speech signal while the unwanted off-axis noise signals are 

combined in a more unpredictable and non-coherent fashion. Generally, the SNR of the 

total output signal is greater than (or at worst, equal to) that of any individual 

microphone’s signal [33, 39]. 

 

 

  

 

 

 

 

 

 

 

 

By time-aligning the microphone signals, i.e., the delayed versions of )r;t(u ii


, the 

resulting signals can be summed together so that all copies add constructively while the 

uncorrelated noise signals present in )(tnm cancel [31, 32]. Assuming that the positions of 

the source (near-field) and the microphones in the array are known, the actual delays mτ

can be estimated for each of the microphones using the distance between the 

microphones to the source.  The distance of the microphones from the position of the 

source can be computed as: 

 

Figure 3: Delay and Sum Beamformer 
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                  mim rrd 
−=                                                           (14) 

where  ir


and mr


are the vector coordinates of the source and microphone positions in 3-D.  

  

Using the speed of sound c, the time difference of arrivals of signal between the 

microphones can be computed. The closest microphone to the sound source is chosen as 

the reference microphone and receives zero delay. All other microphones receive a delay

mτ  equal to the time difference of arrival as: 

 

                                                           
c

dd mm
m

))(max( −
=τ                                 (15) 

 

where md  is the distance between the thm microphone and the source of interest from Eq. 

(12), c is the speed of sound. If the positions of the signal source and microphones are 

not known, the delays between the microphone signals can be found using the cross 

correlation between the microphone signals. The delays usually correspond to the 

maximum value of the correlation between the microphone signals. 

 

Once the actual delays mτ are known, each received signal at the microphones can be 

appropriately delayed. The individual microphone signals are then weighed by a factor 

mα before summing up. These weights can be chosen to be either uniform or variant 

using several methods based on frequency or delays of the microphone signals [30, 37]. 

The beamformed output of the thi  source is then the sum of N scaled copies of the signal 

)(tui with N uncorrelated additive noise sources [37]: 

 

)t(n)r;t(u)r;t(b mm

N

m
iimii τα −+= ∑

=1


                           (16) 

 

Separating the noise term from Eq. (16), the beamformed output which has the maximum 

possible target SNR can be given by the equation: 
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However, the major disadvantage of delay-and-sum beamforming systems is that a 

large number of sensors are required to improve the SNR. Delay- and-sum beamforming 

results in a 3 dB increase in the output SNR for every doubling number of microphones 

(assuming all microphones have equal SNR values) [30, 37]. This improvement in SNR 

directly relates to a significant improvement in speech intelligibility. Also, the 

beamformer seeks only to enhance the signal in the direction to which the array is 

currently steered. Another limitation of the delay-and-sum beamformer is its inability to 

adapt to changing noise conditions and reverberations [33]. An adaptive beamformer 

such as the Griffiths-Jim Beamformer can be used in such cases for improved 

performance.  However, this thesis considers only the delay-and-sum beamformer for 

analysis as most other array-beamforming methods are variations or extensions of this 

basic beamformer. 

 

2.3 Calibration of Microphone Positions 

 

Microphone array systems have the ability to provide quality acquisition and 

enhancement of speech from individual targets in a multi target environment. Such large 

aperture arrays are now becoming feasible in common environments, as the cost of 

supporting computing technology is diminishing. However, calibration of such arrays is 

an important issue to be considered while modeling these arrays [26, 27]. Many array 

processing methods require knowledge of microphone locations prior to data acquisition 

and processing.  The three-dimensional position coordinates of the microphones in the 

array have to be estimated with the least possible error. For example, a delay-and-sum 

beamformer needs precise microphone positions (sub-centimeter accuracy) to estimate 

the source to microphone distances, and find required delays to time align a signal 

located at a point of interest [27, 40]. So, in order to yield better intelligibility through 

beamforming methods, the microphone positions need to be calibrated precisely.  
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However, the challenging problem is deriving accurate estimates of the microphone 

positions in an array.  In real-time, direct or remote measurements to estimate the 

positions of microphones are prone to errors at least on the order of centimeters [26, 27]. 

The microphone arrays are usually built in different configurations and various methods 

are in practice to calibrate their microphone positions. The conventional methods such as 

using hardware wirecloth or foam mounts are still used to measure the exact positions of 

the microphones in an array. These methods have the tendency to “bow” and are difficult 

to implement with sufficient accuracy for larger arrays. Even the calibration by a laser 

transit is simply too error-prone, time consuming and tedious [26, 27]. The recent 

automatic calibration systems using the acoustic signals also involve some errors in 

calibration while estimating the positions of the microphones.  

 

In addition to the errors caused by the direct, remote or acoustic calibrations, several 

other factors also contribute to the error. Small differences in speed of sound can 

contribute measurable error when the distances to the array are sufficiently large. Another 

source of error might be due to the small shifts in the positions of the microphones after 

the physical measurements were taken. Sometimes the panels on which the microphones 

are mounted could be altered during routine maintenance or by human activity which 

may cause some errors and demand recalibration [26, 27]. These measurement errors 

affect the SNR which in turn degrades Speech intelligibility. Analytical expressions are 

derived in the next section to show the impact of these positional errors on the 

beamformed spectra.  

  

2.3.1 Modeling location errors: 

 

The delay-and-sum beamformer is assumed to beamform the target speaker at a known 

location in the array. The delayed individual microphone signals can be given as in 

Equation (13). To obtain the output of the beamformer, the delays have to be estimated 

and each microphone signal is shifted according to the delay. The microphones are 

weighed based on the reciprocal of their distance to the source and are scaled such that 
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the closest microphone gets a weight of 1. Therefore, for a given set weights, mα , and 

number of microphones N, the output of the delay-and-sum beamformer: 
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1
);ˆ();(  τα                                        (18) 

where, mτ̂ is an estimate of the actual delay computed from time-delay measurements. 

 

Any error in the computed geometric distances due to non-precise microphone 

positions will affect the estimated delays. Also, inaccuracy in the estimation of speed of 

sound may also contribute to the error in these estimated delays.  To investigate the errors 

in calibrating the position of microphone placements and its relationship to output of the 

beamformer, a delay estimation error mê is given as:  

 

mmme ττ −= ˆˆ                         (19) 

where mτ is the true delay and mê is a uniformly distributed random variable with zero 

mean and variance 2
mσ . For a zero error in estimated delay, the individual microphone 

signals are delayed appropriately and the beamformer’s output would have N scaled 

copies of the source signal );( ii rtu 
as in Eq. (17). However, as a result of these estimation 

errors, mê , the delayed version of the microphone signals do not align from the source 

signal, and thus the output of the beamformer with microphone position errors is given by 

 

     ∑
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The impact of this error on the gain of the main lobe of the array beam field is better 

seen in the frequency domain, so the Fourier transform of Eq. (20) becomes:  
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To show the spectral power loss due to the precision errors in microphone placements, 

convert the frequencies to wavelengths )(λ , using the speed of sound ‘c’, to obtain 
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                              (22a) 

 

Equation (22) shows that the exponential term in the beamformer’s response depends on 

the error in the estimated delay relative to the wavelength of the source.  To be more 

consistent with the errors with respect to distance, the delay estimation error mê  which is 

estimated in time is used to introduce a new variable called spatial distance positional 

errors mÊ  in the Eq. 22(a) such that mm ecE ˆˆ = . Then, the Eq. 22(a) can be rewritten as  
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                                (22b) 

 

Note that if this spatial error is larger than, or on the order of the wavelength, the mean 

of the exponential summation is close to zero.  This scaling down is ideally what happens 

to sound sources that are not at the location of interest.  However at the location of 

interest, spatial positional errors result in power loss in the main lobe of the beam field.  

This can be quantified by taking the expected value of Eq. (22b) over the error terms 

from the array to result in 
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If there is no precision error in the microphone placement, the expected value becomes 

one. Once the distributions of the precision errors are known, the expected value of Eq. 

(23) can be obtained.  In the case of a zero mean uniform distribution with standard 

deviationσ , the expected value becomes [24, 41]: 
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Equation (24) predicts the scaling/attenuation of the beamformed target signal based 

on the signal wavelength and the standard deviation of the spatial positional errors.  

Figure 4 plots the relationship between the sinc function and σ over wavelength. The 

expected value (sinc function) reaches a maximum of 1 when there is no error (σ/λ = 0). 

The figure indicates that the expected value goes to 0 when σ approaches the wavelength 

divided by √12 or approximately a quarter of the wavelength (σ/λ = ±0.288). The figure 

also suggests that the expected value never reaches 1, once σ/λ reaches ±0.288 (1/√12) 

i.e., after σ reaches the quarter wavelength. Therefore, for frequencies beyond this quarter 

wavelength limit for the standard deviation of the microphone location precision, the 

beamformer offers no enhancement for the target signal. Eq. (24) mainly predicts the 

signal loss at various frequencies for a given microphone precision error.   

 
Figure 4: sinc function vs. σ/λ 
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2.3.2 Sensitivity of precision error in Microphone position 

 

     To illustrate the frequency sensitivity of the location error on beamformer power gain, 

the power spectra of the beamformed signal for a range of standard deviations on the 

location errors are plotted.  The simulation of the microphone positions and sound 

propagation gives complete control over the location error. The array for the simulation 

was a planar microphone geometry consisting of 16 microphones equally spaced on a 

Cartesian grid at 1.2m, above a 3.6x3.6x2.1m field of view (FOV). A speech signal (a 

male speaker single-microphone recording), positioned centrally and 1.1 m above the 

floor within the FOV, was simulated over the array using [41, 42]. The speed of sound 

was assumed to be 345 m/s with no reverberations and an air attenuation of -3.28e-5 dB 

per meter-Hz. Power spectra of the beamformed signal for several standard deviations of 

microphone position error are shown in Fig. 5. 

(a) 

Figure 5: Normalized power spectrum of Beamformed signals for given Precision 

error standard deviation σ (a) Normal version (b) Zoomed-in version 
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(b) 

Figure 5, continued 

 

 

The delay error and the microphone location errors are well associated to each other. 

Even though the random variables are used to define the delay estimation error in 

Equation (19), it reflects the probable spatial positional errors on the microphone 

placement. These placement errors lead to the error in the delay estimates. Therefore, the 

uniformly distributed random variables can be introduced on the microphone positions to 

result in a random error in the delay estimates. The plots in Fig. 5 compare power spectra 

of the beamformed signal with no error to those with standard deviations of 1.5 cm, 3 cm, 

and 10 cm.  The figure illustrates the impact of the microphone location error on the loss 

of power as a function of frequency, due to the sinc function given in Eq. (24).  For error 

using a 10 cm standard deviation for position error, Eq. (24) predicts (using the quarter 

wavelength approximation at a sound speed of 345 m/s) that wavelengths less than 0.4 
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Introduction of the precision error in microphone positions tends to portray a low pass 

effect on the spectrum. It can be seen that as the standard deviation of the precision error 

increases, it starts to affect the middle frequency components of the beamformer’s signal 

spectra. But once the error reaches a particular value, the power loss decreases as a result 

of coherence and this trend is frequency dependent as shown in Fig. 5(a). The power for 

the 1.5 cm standard deviation drops from the upper limit to the lower limit over the range 

shown in Fig. 5. The error begins to affect the spectrum starting from around 1500 Hz. 

This corresponds to wavelengths approximately 15 times larger than the standard 

deviation and a scale factor of 0.92 from the sinc function of Eq. (24). As the frequency 

approaches 5000 Hz, the 1.5 cm standard deviation beamformer signal merges with the 

10 cm standard deviation beamformer signal.  This corresponds to a wavelength 4.6 times 

larger than the standard deviation of the error and a scale factor of 0.3 from the sinc 

function. 

 

2.3.3 Impact on SNR and Intelligibility 

 

This section examines the effect of microphone location errors on the SNR and speech 

intelligibility. The spectral power losses due to positional errors lead to a decrease in the 

SNR and also the estimate of SII.  As shown in Fig. 6, the middle frequency bands (1500-

5000 Hz) correspond to the most significant weights in BIF while estimating the SII. 

From previous analyses it can be seen that for location errors with 1.5 cm standard 

deviation, the beamformer offers no enhancement for frequencies greater than 5750 Hz. 

Hence, as error standard deviation increases greater than 1.5 cm, it results in significant 

power loss in this middle frequency range. So, precision errors on the order of few 

centimeters are expected to result in a considerable SII loss for beamformed speech in 

meters (frequencies greater than 862 Hz) will not benefit from the coherent summation of 

the beamformer.  Thus for the range shown, the 10 cm error is the lower limit for 

beamformer performance, since the error is so larger relative to the relevant wavelengths 

that coherence is not utilized for a power gain.  Similarly, the 0 error spectrum is the 

upper limit for all frequencies.  
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noise. The power loss in the beamformer’s spectra also degrades the output SNR of the 

beamformer. A loss of 1-3 dB in the output SNR can also be expected due to these few 

centimeter positional errors. These results are incorporated into the SII metric to explore 

the intelligibility loss for different arrays through various simulations and experiments 

with different masker sources. 

 
Figure 6: Band importance functions for an average speech according to One-third 

Octave band method [12] 

 

The experiments and simulations are performed based on the discussions from this 

chapter to propose tolerable limits on positional errors over intelligibility loss, for a 

variety of array configurations. The simulator design, experimental setup used for data 
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simulations are discussed in the following chapters. 
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CHAPTER 3 

 

SIMULATOR DESIGN 

 
The implementation of the simulator and the variables/parameters involved during the 

simulation are discussed in this chapter. The simulator is used to demonstrate the impact 

of positional errors on SII and propose tolerable limits on positional errors over 

intelligibility loss, for a variety of array configurations. It involves Monte Carlo runs 

using the single-channel speaker recordings with a complete control on the positions of 

the sound sources and microphones. The test signal types, array configurations and the 

procedural steps involved during the simulations are described in the initial sections of 

the chapter. The choice of random variable distributions and the effects of speech pauses 

on the performance metric and calculation of SNR are explained in the latter sections. 

Finally, the influence of array geometries and input SNR on intelligibility metrics is 

discussed using the results obtained from the simulations.  

 

3.1 Test signal sources 

 

   The single-microphone low-noise recordings were made to serve as the sources for 

highly flexible simulations of array recordings where the source position can be 

controlled.  These single-speaker single-microphone speech recordings were made using 

a single omnidirectional measurement microphone (EMC8000, BEHRINGER 

International GmbH) in a relatively quiet office environment at the Audio Systems lab 

facility in the Center for Visualization and Virtual Environments (CVVE), University of 

Kentucky. The speaker was approximately 0.23 to 0.46 meters from the microphone and 

acoustic treatments (foam) were placed behind the microphones on two sides to limit 

reverberations. Goldwave [43] was used to reduce the low level noise and room modes 

through post-filtering performance using an spectral envelope noise reduction algorithm. 

The recordings were saved as a 16-bit mono wave file sampled at 44.1 kHz for about 20 

seconds. The speakers were selected from the native English speaking students, staff and 

professors from CVVE. The speakers were asked to read a script dominated by words 
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used in intelligibility studies with children. These wave files were then used to simulate 

speech recording over a microphone array during simulation analyses.  

 

3.2 Microphone array configurations 

 

The simulations in this work consider 4 microphone spatial distributions: linear, 

planar, perimeter and a non-uniform spread over 3 dimensions as shown in Fig. 7. 

Microphones were equally spaced for the linear and perimeter distributions, whereas an 

irregular spacing of microphones formed the planar and non-uniform 3-D array 

distributions. The microphones are simulated to scan a Field of view (FOV) which 

defines the spatial limits for the focal point of the beamformer. For all simulations 

described in this section the dimensions of the FOV were: 3.6m for both length and width 

and 2.2m for the height.  

 

 
Figure 7: Microphone array distributions 
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The linear array consists of 16 microphones along a plane parallel to the edge of the 

FOV and located 1.5m above the floor. Microphones were equally spaced at 0.21m. The 

perimeter array consisted of 16 microphones symmetrically distributed above the FOV 

forming the vertices of a square with an equal spacing of 0.9 m between the microphones. 

The planar array consisted of 16 microphones arranged in a plane parallel to the floor. 

The microphones are placed along the vertices of two concentric rectangles in a plane 

1.99 m above the floor. The non-uniform 3-D array irregularly places the 16 microphones 

within the FOV in a random manner. The target and noise sources always exist within the 

FOV for all the arrays. The exact microphone positions were predefined during the 

simulations and thus the simulator provides the advantage of controlling the positions of 

the microphones in the array.  Table 4 gives the statistics of the microphone distribution 

geometry such as maximum distance between any 2 microphones, centroid of the array, 

average spacing between closest pairs and dispersion of the microphone array.  

 

Table 4: Distributive Statistics of the Microphone arrays 

 Linear Array Planar Array Perimeter 
Array 

Non-uniform 
3D Array 

Maximum 
distance 

between any 2 
mics 

3.17 m 4.88 m 5.09 m 4.71 m 

 
Centroid of 

the mic array 
 

(1.75,3.48,1.50) (1.79,1.80,1.99) (1.80,1.80,1.99) (1.66,1.86,1.40) 

Average 
spacing 
between 

closest pairs 

0.21 m 0.89 m 0.9 m 0.78 m 

 
Dispersion of 
the mic array 

 

(1.01,0.01,0) (1.27,1.19,0) (1.54,1.54,0) (1.39,1.44,0.59) 

 

3.3 Simulation flowchart  

 

The simulation is described in the flowchart as shown below in Figure 8. 
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START 

Get c, processing window, 
microphone weights, SII 

window size, desired SNR 

Read microphone 
and source positions 
and required sound 

files 

Stored 
experimental 

data files 

High pass filter the signals at 100 Hz 

Remove the silence periods within the 
speech sample 

Introduce uniform random errors with 
given standard deviation (starting with 

zero) into the true microphone positions 

1 

3 

2 

Scale down the target signal to get desired 
SNR as discussed in section 3.4.2 

 

Place the target and masker signal sources 
randomly inside the FOV and simulate them 

over the microphone array 
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Yes 

1 

Beamform the target and noise signals over the 
array using a delay-and-sum beamformer as in 

 

Estimate the instantaneous SII within the specified 
time window as discussed in section 2.1  

Compute the mean SII and its 95% confidence 
limits over time from the instantaneous values 

SII computation 
completed for all 

error standard 
 

Move to 
next 

standard 
deviation 

3 

Plot the mean SII vs. position error standard 
deviation along with confidence limits 

Find the mean position error std which 
corresponds to 10% drop from maximum SII 

   
 

No 

4 
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The simulations in this work consider 4 different microphone spatial distributions and 

make use of single-microphone speaker recordings as the test signals as discussed earlier. 

In order to calculate the SII for a given speech-in-noise condition, separate target and 

masker signals are needed [12]. Thus the simulator uses two source signals; one which is 

the focus of the beamformer and is the target signal and another one outside the focal 

point is the masker. The target signal is simulated under two masker conditions: 

interfering speech and white noise. The target signal is scaled and linearly added with the 

masker signal at desired SNR levels to get the total test data for the beamformer and SII 

estimation as discussed in the latter sections. Excess masking occurs when target and 

interferer are voices of same sex resulting in quite poor intelligibility. Thus, for the 

interfering speech signal, a voice from the opposite sex is always chosen. For example, a 

male speech signal is considered with a female interfering speech signal and vice versa. 

White Gaussian background noise was used as the masker for the second condition.  

 

The simulation is performed with random placement of spatially separated source and 

masker signals inside the FOV. These signals are then simulated over the array of interest 

using the functions (simarraysig.m, delayt.m, roomimpres.m) from the Array Toolbox 

No 

Yes Any more SNR/array 
geometry/source type 

to be analyzed? 

STOP 

Analyze 
the next 

SNR/array 
geometry 
/source 

 

2 

4 

Figure 8: Flowchart implementation of the simulator 
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[42]. The simulator details are given in [41] and the actual simulator is part of the Array 

toolbox [42].   The speed of sound was assumed to be 345 m/s with no reverberations and 

an air attenuation of 3.28e-5 dB per meter-Hz. A Monte Carlo simulation was performed 

with increasing random position errors. The position error was increased in the beamform 

algorithm by adding uniformly distributed random numbers to the x, y, and z coordinates 

of the measured positions. For each standard deviation, 25 independent position errors 

were simulated and beamforming computations were made. The target and masker 

signals were separately beamformed over the position of the target source, and are used 

to compute the SII for the given speech-in-noise condition. 95% confidence limits of the 

SII estimates were also estimated to represent the error bars in the results. The 

parameters/constraints involved during the simulation are explained below, which are 

also used during the experiments that are discussed in the next chapter.  

 

3.4 Design parameters  

 

(a) SII window 

 

During the estimation of SII, the signals were partitioned into smaller time frames to 

account for the temporal variations in the target signal and background noise. The 

separate spectrum power levels (using Fast Fourier Transform, FFT) of the input speech 

and noise signals are computed within those time frames. This overlapping time window 

was slid over the signals and the instantaneous SII was estimated within each window. 

Therefore, the mean of these instantaneous SII values over time (with pauses and near 

silent periods of speech censored out) gives the estimate of SII for that particular speech-

in-noise condition. The window length should be chosen small enough, on the order of 

several milliseconds (ms), to track the relevant variations of the signal over time. A 

longer time window results in a poorer grasp of temporal variations of the signal [14]. In 

the experiments and simulations given in this work, a 100 ms window with a 50% 

overlap was used during the estimation of SII.  
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(b) High pass filtering 
 

The speech signals recorded using the microphones may include additive noise due to 

ambient conditions and low frequency room modes. So, the acquired signal is high-pass 

filtered at 100 Hz to eliminate the low frequency noises. The effect of this filtering is 

evident in Figure 9 which shows the filtered version of the raw signal along with the 

original recorded signal indicating the significant reduction in levels of background 

(room) noise. The room noise is specified as a steady state room noise, based on the 

statistics computed from the signal segment from the first few seconds of the signal as 

indicated in the Figure 9.   

 
Figure 9: High pass filtered speech signal 

 
 

(c) Microphone weights 
 

A set of weights is determined for the microphones in the array based on their 
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simulation. A weighting parameter γ  is used to determine the set of weights, ia , in order 

to deemphasize or emphasize the distant microphones as shown in Equation 26. The 

weights are given by: 
γ









=

i

min
i d

da                                                        (26) 

 

where id  is the distance between the microphone and the source and mind  is the minimum 

of the distances (which corresponds to the closest microphone). All the microphones 

receive a uniform weight when γ  is equal to zero. When γ  is equal to 1, it results in an 

inverse distance weighting where the closest microphone is gets a weight of one. A larger 

positive γ  gives more weight to the closer microphones whereas a negative γ  gives 

more weight to the distant microphones. The weighting parameter γ  is always 

considered to be 1 during the analyses in this work. 

 

3.4.1 Random variable distributions 

 

To investigate the errors in calibrating the microphone positions and its impact on 

beamformer’s response and intelligibility, these positional errors are modeled using 

random variables. These random variables are generated such that they are uniformly 

distributed with zero mean and variance 2σ  and are centered on the true value. The 

probability density function (pdf) of the continuous uniform distribution is given as [44]    

 

( )  
,xor x xfor x            0

,xxfor x     1

10

10
01








><

≤≤
−= xxxf                             (27) 

 

 

Suppose, if the random error with a limit a deviates on both sides of the true value 

uniformly in the range 



−

22
a,a , then the standard deviation σ  can be derived from pdf: 
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12
a

=σ                                                                  (28) 

 

Uniform distribution is chosen over normal distribution for the random variables, as it 

generates a set of random errors for which all have an equal probability over the 

maximum deviations from the true position. Also, it has a constant probability density in 

the given limits of the error and zero probability density elsewhere. In a normal 

distribution, only 68% of the generated random errors are within one standard deviation 

away from the given mean (between mean minus 1 times standard deviation and the 

mean plus 1 times standard deviation) and a significant portion of the other errors are 

within two or three standard deviations of the mean. This may lead to discrepancies with 

actual positioning error, which is limited to the precision of the measurement technology 

used to place or locate the microphones. However, a Gaussian distribution can account 

for occasional large errors due to mis-measurement or typo. Since the focus of this work 

in on practical errors in the calibration or placement processing, a uniform distribution is 

used to model the positional errors.  

 

A uniform distribution is more consistent with errors from lack of precision in the 

measurement process. For the sake of comparison, however, a normal distribution was 

considered to model the positional errors in microphone placements and the results were 

plotted along with uniformly distributed positional errors as shown in Fig. 10. A Monte 

Carlo simulation of 25 runs with random placement of signal and noise sources is carried 

out.  The error bars correspond to 95% confidence limits of the SII estimates. The results 

using obtained from both the distributions are found to be close as shown in Fig. 10. 

There were minor differences between the graphs at certain errors but the difference is no 

larger than 2% drop in SII, and the uniform distribution falls above the normal 

distribution for most of the errors as expected. 
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Figure 10: Microphone positional errors with Uniform distribution and Normal 

distribution 
 
 
3.4.2 SNR calculations 

 

Based on the Speech Reception Threshold (SRT) data [14] and various listening tests 

with the recorded data sets, an intelligibility rating of 0.3 or greater is required for a 

normal-hearing listener to recognize most words. Values below this result in a significant 

increase in the number of words rendered unintelligible. A critical feature for a  

beamforming application is to improve the SII for the barely intelligible speech, rather 

than improving the index for speech that is already quite intelligible. To examine the 

effect of precision errors under these conditions, signals from speaker of interest and 

masker signals were combined at an SNR to result in an unintelligible signal over all the 

microphone channels (SII < 0.3) and beamformed over the array to yield a better 

intelligible signal.  

 

-0.01 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
0.24

0.26

0.28

0.3

0.32

0.34

0.36

0.38

0.4

Precision error Standard deviation (meters)

S
II

 

 
Uniform Distribution
Normal Distribution



43 
 

In order to achieve desired input SNR, the target signal is scaled up or down using a 

scaling factor ( )α . The scaling factor is derived using the desired SNR and RMS value of 

the target signal and noise. The RMS value is computed for the received signal at each 

microphone and is averaged over all channels, assuming that the DC component is 

removed. Consider [ ]nx i,m  to be the target signal from a source located at ir


, received by 

a microphone ‘ m ’ located at mr


. Then, the RMS value of the signal computed over N 

samples is determined using the equation: 

 

[ ]( )2
1

0

2
,

1 ∑
−

=

=
N

n
imrms nx

N
x                                            (29) 

 

Similarly, for an interfering noise signal [ ]ny j,m  located at jr , the RMS value of the 

noise over N samples can be computed:                           

 

[ ]( )2
1

0
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−

=
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N
y                                           (30) 

 

Now, the scaling factor is derived using the equation 

 

( )( )dB20/10
 snr

rms

rms

x
y









=α                                                              (31)   

 

where α is the scaling factor, snr  is the desired SNR (dB) and rmsx and rmsy are the mean 

RMS value of the target and noise signals averaged over all the microphones in the array. 

The initial test signal is a linear sum of the target signal (speaker of interest) and the noise 

signal. In order to achieve the desired SNR, the target signal in the total test signal is 

scaled using the scaling factor α  as given in this equation: 

 

                                                [ ] [ ] [ ]nynxns j,mi,m +⋅=α                                         (32) 
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3.4.3 Periods of silence 

 

The SII was designed so that it predicts the mean intelligibility of speech in noise 

rather than the intelligibility of individual words or phonemes. In any case, SII is badly 

defined in case of silent periods occurring within the normal speech. During these 

inherent pauses or near silent periods in the speech signal, the SII will always be zero 

regardless of the masking noise. As a result of this, the SII will never reach unity even 

when the target speech signal is presented at clear masking level. Moreover, the 

estimation of SII can be badly affected if one considers the silent periods occurring 

within normal speech signal. There might be large differences in the SII estimate from 

the actual intelligibility due to these silent periods between sentences which can vary 

between people [14]. Thus, for the results presented in this work, the periods of (near) 

silence occurring in the speech were removed for the SII computation for a more reliable 

and enhanced SII using the functions developed in Matlab.  

 

The function removes the intervals of silence or pauses from a speech signal and filters 

it so that distortion (clicking from the concatenation of active speech segments) is 

reduced. Once these pauses are removed, the time length of the speech signal is reduced 

as shown in Fig. 11. The near silence periods are detected and removed using the 

envelope of the speech signal.  The pauses are removed such that the speech and the 

noise signal remain synchronized in time. The envelope of the signal of interest is 

determined from the analytic signal computed using the Hilbert Transform. The discrete 

Hilbert Transform of an input signal [ ]nx i,m is given as [45, 46]   

 

[ ]{ } [ ]
∑
∞

≠−∞= −
=

nmm

im
imd mn

mx
nxH

,

,
,

1
π

                                           (33) 

 

An analytic signal (complex time) can be constructed from a real-valued input signal 

[ ]nx i,m  as its real part and it’s Hilbert Transform [ ]nH d  as its imaginary part: 
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[ ] [ ] [ ]njHnxnx dima += ,                                               (34) 

 

The complex analytic signal can be expressed alternatively in terms of magnitude and 

phase as  
][][][ nj

a enAnx φ=                                                        (35) 

 

where is the [ ]nA envelope of the signal and [ ]nφ  is the phase of the signal.  

Then, the envelope of the signal [ ]nA can be computed using the equation: 

 

[ ] [ ] [ ]nHnxnA di,m
22 +=                                                     (36) 

 

 
Figure 11: Original speech signal and speech signal (shortened in time) with periods 

of silence removed 
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The silence intervals from the speech are removed using an envelope threshold T which 

is a scaled function of the median of the envelope (usually one-fourth of a median). After 

computing the envelope, the speech samples of whose envelope magnitude values fall 

below the threshold are detected to be pauses and are removed. The resulting speech 

signal would be shortened in time due to the absence of silence intervals. Removing these 

pauses or near silence periods have improved the SII estimates and reduced its variations 

over time as shown in Fig. 12. The figure indicates that for the speech with pauses, the 

SII nears zero whenever a pause occurs in between the speech. In case of the speech with 

pauses removed, the SII reaches only a minimum of 0.25, and this makes the SII more 

consistent when averaged over time. From Fig. 12, the mean and standard deviation of 

SII for the original speech (with pauses) is 0.45 and 0.23. In case of the speech with 

pauses removed, the mean of SII is 0.57 and its standard deviation is 0.14. Therefore, 

removing the silence periods within the speech leads to a more reliable and enhanced SII 

estimate.  

 
Figure 12: SII estimates for speech signal with pauses and speech signal with pauses 

or near silence periods removed 
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3.5 SII loss from positional errors 

 

Equation 24 derives a sinc function relationship in the expected power loss from the 

standard deviation of the positional error as a function of wavelength. It predicts that the 

beamformer offers no enhancement to the target signal, for error standard deviations 

greater than one quarter wavelength due to the effective incoherent summation of the 

frequencies, beyond this quarter wavelength limit. The simulation analysis in Chapter 2 

shows that the positional errors with standard deviations greater than 1.5 cm results in 

significant power losses, in the frequency range of 1500-5000Hz.  These power losses are 

expected to result in SII degradation for the beamformed speech in noise. Hence, the 

impact of the positional errors on SII is examined for all the four different arrays using 

the simulator in this section.  

 

 The simulations are performed for different array configurations with a constant 

source and noise positions. A target speech signal (a male speaker single-microphone 

recording) is located centrally and 1.5m above the floor within the FOV. A female 

speaker single-microphone recording is used as the interfering noise and is placed at a 

height of 1.1m from the floor level and 1m diagonal to the left of target signal. These 

signals are simulated over the given array using the functions from the Array Toolbox. 

An input SNR of -12dB is maintained for all the four arrays such that a quite-intelligible 

speech (approx. SII = 0.35) is obtained. The speed of sound and air attenuation was 

assumed as discussed previously. Figure 13 plots the SII with increasing precision errors 

for all the four arrays. The error bars correspond to 95% confidence limits of the SII 

estimates. 

 

From Fig. 13, the SII at zero error precision standard deviation for the different arrays 

can be compared. The maximum SII for the given arrays seem to be fairly close, with a 

maximum of roughly 5% difference in SII between the planar and perimeter arrays.  The 

linear array also looks to be in par with the other complex arrays in terms of maximum 

SII. The different array configurations do not seem influence the maximum intelligibility 

at zero precision error in a great manner. 
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Figure 13: Impact of microphone positional errors on SII for different array 

distributions 
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array is the more robust to precision errors than all the other arrays. From Fig. 13, it can 
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also be noted that for all the array designs, a similar trend can be seen where the SII drops 

steeply for initial errors and tend to settle down flat for error standard deviations greater 

than 4 cm, which corresponds to losing frequencies of 2000 Hz and above as predicted by 

Equation 24. 

 

 This work mainly focuses the improvements in SII for a barely intelligible speech 

(roughly one-third of the speech information is available for the listener) as discussed in 

section 3.4.2. An input SNR (with a help of a scaling factor) is used to scale the target 

signal such that the beamformed speech is quite intelligible. Figure 14 plots the SII as a 

function of input SNR, using different simulated arrays with a target male speaker and a 

female masker as discussed earlier in this section. No precision error is introduced to the 

microphone positions and it can be seen that SII approaches zero when the masking noise 

gets stronger and reaches close to unity as the target signal becomes stronger. Making the 

target signal stronger than the masker noise will increase its intelligibility and is well-

predicted by the SII as shown in this figure.  Various listening tests are also performed to 

see whether the actual intelligibility follows this behavior. 

 
Figure 14: Input SNR vs. SII for different array distributions (interfering speech 

background) 
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For an interfering speech background, even at very low SNRs, there is still some 

speech information available to the listener and the SII exceeds zero. Increasing the SNR 

causes the SII to increase almost linearly until a 10 dB SNR is reached.  The distortion 

and masking factors in SII restrict the SII from unity at higher speech levels. From Fig. 

14, it can be noted that all the arrays demonstrate a similar behavior with respect to the 

changes in input SNR.   

 

Figure 15 displays the SII as a function of input SNR for a male target speaker with a 

white noise background.  With white noise background, no speech information is 

available at very low SNRs and the SII starts to deviate from zero as the SNR reaches a 

value of -30 dB. It increases almost linearly with SNR up to a value of 20 dB. Again at 

higher speech levels, the distortion factor causes the SII to level off, preventing it from 

reaching unity.  

 
Figure 15: Input SNR vs. SII for different array distributions (white noise 

background) 
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From the figures 14 and 15, it can be observed that a quite intelligible speech 

(approximate SII value of 0.35) can be obtained at an input SNR of around -15 dB for an 

interfering speech background and -5 dB for a white noise background, for a variety of 

array distributions. These values seem to waver a little with the change in test sources and 

their positions inside the array. So, it would be more useful if a SNR range is specified to 

obtain a quite intelligible speech after beamforming. In order to achieve a quite 

intelligible speech with an interfering speech background, the input SNR has to be in the 

critical range of -20 dB to -10 dB. For white noise background, the critical range of SNR 

can be given as -10dB to -3dB. 

 

In order to validate the simulation results, various experimental analyses were 

performed. The details of the experimental setup and data collection are described in the 

next chapter. It also discusses the simulation validation by comparing the results obtained 

from the simulator and experiments and presents tolerable limits on the positional errors.  
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CHAPTER 4 

 

EXPERIMENT AND RESULTS 

 
This chapter discusses the experimental setup, parameters involved during data 

acquisition and presents tolerable limits on the amount of positional errors for a variety of 

array configurations. The primary purpose of the experiments was to create conditions 

similar to the simulations and compare results to assess the validity of the simulation 

results. Sections 4.1 and 4.2 include the details about the test signals, test environment, 

hardware setup, and measurement of environmental parameters. Section 4.3 validates the 

simulator by comparing the experimental and simulation results. The latter section 

introduces tolerable limits on the positional errors using the results from the simulator. 

 

In addition to the single-channel recordings made for the simulations, different multi-

channel recordings using a single speaker were also made for the purpose of validating 

the simulator. More than one recording was made using the male and female speakers for 

the same array designs used during the simulations. The microphone configurations 

remained the same while recording the data for different speakers and the speaker was 

talking either standing or sitting at known position. Since a set of multi-channel single 

speech recordings were made separately with the same microphone geometries and 

different speakers, these recordings were linearly added with different power ratios to 

achieve desired SNR levels for the performance analyses as discussed in section 3.4.2. 

Note that both the simulator and the experiment use real speech data. The only difference 

is that multi-channel speech recordings were used during the experiments whereas single-

channel speech recordings were simulated over multiple channels in the array in the 

simulator. 

 

4.1 Test environment 

 

The experimental room for collecting data sets was setup at the Audio Systems lab 

facility in CVVE.  A 3.96 by 3.96 by 2.6 meters structure was constructed of aluminum 
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struts (80/20 Inc.-The Industrial Erector Set, Columbia City, Indiana) to mount the 

microphones in various geometries around the space of interest [42, 47]. This cage 

encloses the assumed FOV in which the speakers of interest were present as shown in 

Fig. 16. For all experiments described in this section the dimensions of the FOV were 

same as for the simulations: 3.6m for both length and width and 2.2m for the height.   

 

 
 

 

The data collection and processing was driven by two AMD dual-core computers 

running Ubuntu Linux. A low latency audio server called Jack was installed in these 

machines and was used to record the data over multiple audio channels. A total of 16 

omni-directional microphones (EMC8000, BEHRINGER International GmbH) were used 

FO
 

Foam pads 

Actual room 
 

Source 

Microphone 

Sound path 

Figure 16: Test environment setup 
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during the data collection.  Each microphone was connected to an M-Audio Audio Buddy 

preamp, and digitized using two Delta 1010 cards by M-Audio which together support 16 

analog input channels as shown in Fig. 17. Also acoustic treatments were placed behind 

the microphones to reduce noise, room modes and reverberation as shown in Fig. 18. In 

this case, three acoustic 0.03 meter foam pads (Auralex MAX-WALL 420) were set up to 

reduce room modes and ambient noises due to the computers, vents and traffic through 

the window. All the data recordings were done at a sampling rate of 22.05 kHz and were 

down sampled offline to 16 kHz in some cases for analysis.   

 

 

 

 

 

 

 

 

4.2 Measurement of Environmental and Speaker parameters 

 

(a) Microphone positions 

 

The microphones were arranged in fixed geometries such as linear, planar etc., around 

the audio cage for each data capture experiment. The positions and configurations of the 

microphones remain the same for both the simulations and experiment. The microphone 

positions in the array were measured and verified using a laser measuring device (Leica 

DISTO A6). The microphone locations in 3D space were estimated by the triangulation 

method. Three reference points R1, R2 and R3 whose coordinates are fixed, at the 

corners of the audio cage. Then, the distance of the microphone from these reference 

points were measured using a measuring tape and laser beam. The actual positions of 

each microphone (x, y and z coordinates) were computed from these data.  Care was 

taken to calibrate the microphones and pre-amplifiers for a constant gain over the array 

channels. 
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Figure 17: Data collection setup 
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(b) Speed of sound 

 

The speed of sound was estimated every time prior to the each data capture using the 

measured delay of arrival between 2 microphones for the sound from a predetermined 

source location with a source located co-linearly. A white Gaussian noise burst was used 

as the source for 25 seconds to enhance the correlation statistics between the 2 

microphone signals. Once the cross-correlation peak corresponding to the time delay 

between the 2 microphones was estimated, it was used in the following equation to 

compute the velocity kc  for k = 1, 2, …, 25 time windows of 1 second duration:  

 

k

k
k d

c τ
=                                                 (37) 

 

where kd  is the microphone pair distance in meters and kτ   is the time delay between the 

microphones estimated through the cross correlation of the signals received at the 

microphones in seconds. The kc values corresponding to a correlation magnitude of less 

than 0.4 were not used in the estimation. Of the remaining, the most repeated value of kc  

is selected as the velocity of sound.   

 

(c) Reverberation time 

 

The reverberation time is defined as the time it takes for the acoustic pressure level to 

decay to one-thousandth of its former value, a 60 dB drop, also commonly referred to as 

the RT60 of the space. A white Gaussian noise burst was used to measure the RT60 time 

for the experimental environments. To get accurate RT60 value, the room was excited 

with the white noise and is played long enough so that the diffused sound reaches a 

steady state in the room. The source (loud speaker) is placed greater than 2 meters away 

from the microphones so that the direct path does not dominate the recording. Then the 

white noise source was abruptly stopped and the recording was continued for few more 

seconds capture the reverberating sounds as they fell below the noise floor. The signal 
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power plotted on the log scale falls linearly and the slope of this roll off was estimated 

with a censored least-squares line fit from the time right after the source was stopped to 

the time that it fell below the noise floor. The roll-off of sound from the room 

reverberation is found based on these two estimates. The slope of the roll-off is estimate 

in dB per second and used to extrapolate the amount of time it would take for the sound 

to fall 60dB from its maximum. This time was used as the RT60 time.  

 

(d) Sound source location 

 

During the experiments, the position of the target speaker inside the array was 

estimated using the SRP PHAT-β algorithm [24, 41]. An approximate position of the 

speaker’s mouth was initially measured using the laser device just as the microphone 

positions. A Steered Response Coherent Power (SRCP) algorithm [24] was then applied 

in a 0.4 m neighborhood around that measured point to estimate the sequence of positions 

of the speaker for every 20 milliseconds. The SRCP was then computed over a 3-D 

spatial grid of spatial points every 0.04 meters. A whitening parameter β  which 

determines the level of spectral whitening of the signal in the phase transformation 

(PHAT- β ) was set to 0.6 for preprocessing before the position estimates. For every 20 

ms window in time, the maximum SRCP value in space was chosen to be the location of 

the speaker. Let ijkP  be the detected peaks with i, j, k being the x, y and z co-ordinates 

that corresponds to the source location. A secondary threshold was applied to reduce the 

effect of noise during the periods of silence. Any detection with coherent power less than 

5% of the maximum value of the peaks was considered as absence of the sound source 

and is represented by ‘NaN’ (Not A Number). The magnitude of the peaks ijkP  might still 

be large due to the presence of background noise or error in source location. Hence, to 

smooth out the SRCP peaks, they are passed through a sliding median filter over time 

with a window length of 21 samples to improve the estimate of the sound source location. 
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4.3 Simulator validation 

 

 For the sake of validating the simulator, experiments were performed in which two or 

three individual speech recordings were made using actual 16 channel microphone 

distributions (same as simulations), with talkers (opposite sex) at different positions but 

recorded separately.  The test data for the beamformer and SII estimation was created at 

the desired SNR by scaling and adding these recordings as discussed earlier. One of the 

speakers was the focus of the beamformer and another outside the focal point was the 

interfering noise. The locations of the speaker in the experiment were then estimated 

using SRP PHAT-β algorithm for every 20ms as discussed in section 4.2. The 

microphone positions were measured using a laser meter and tape measure as described 

in 4.2. 

 

While this measurement had an inherent precision limit (error), the position error was 

further increased in the beamform algorithm by adding uniformly distributed random 

numbers to the x, y, and z coordinates of the measured positions.  This was done to see 

the impact of increasing position error and compare to a simulated array recording.  

Similar to the simulations, for each standard deviation, 25 independent position errors 

were simulated and beamforming computations were made (position of the speakers 

could not be varied in the experiment) from which SII was computed. To compare the 

experimental recording to the simulations, the closest microphone signals from the 

experiment were used in a simulator (where position error of both speaker and 

microphones was completely controlled). The array design and the positions of the target 

and noise sources remain the same for both the simulations and experiment. An 

approximate position was used for the target and noise sources during the simulations as 

the experiment estimates the positions for every 20 ms. The speed of sound and RT60 

time were measured for each experiment and the values were unchanged during the 

corresponding simulations. Table 5 lists the various parameters that were maintained 

during the simulations and experiments for linear and non-uniform 3D arrays.  
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Table 5: Simulation and Experimental Parameters 

Parameters Simulations Experiments 

FOV 3.6x3.6x2.2 m 3.6x3.6x2.2 m 

Speed of sound 347.5 m/s 347.5 m/s 

RT 60 0.232 0.232 

High-pass Filter Cutoff 100Hz 100Hz 

Time window to estimate SII 100 ms 100 ms 

Number of Microphones 16 16 

Monte Carlo runs 25 25 

 

 

The Monte Carlo runs were performed with increasing random precision errors and the 

results obtained from the simulator are compared to that of the experiments using a linear 

array in Fig. 18. Figure 18 indicates a similar SII drop as the precision error standard 

deviation increases for both the experiment and simulation. For the zero standard 

deviation error, the maximum SII from the experimental is 0.35, which is almost 10% 

less than that of simulation. A comparison of the SII value where the experimental data 

starts to the corresponding point on the simulation, suggests that an inherent precision 

error with standard deviation of around 2 cm was likely involved in the experiment, 

which was reasonable for the measurement system used.   

 

The differences between the graphs are due to the accumulation of errors from the 

measurement, speed of sound estimate, and ambient room noise and reverberation present 

in the real data. Thus, for an interfering speech background, the 10% drop from 

maximum SII occurred at an error standard deviation of 0.6 cm for the experimental data, 

whereas for simulation it drops at 1.8 cm. However, both the graphs in Fig. 18 seem to 

follow a similar trend with a dramatic decrease during initial errors and settling to an 

almost flat SII variation for error standard deviations greater than 4cm, which 

corresponds to losing frequencies of 2000 Hz and above.  
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Similarly, the simulation and experimental results were compared for a non-uniform 

3D grid array as shown in Fig. 19. The maximum SII for a zero standard deviation error 

is 0.25 during the experiment which is almost 30% less than that of simulations. The 

percentage drop in SII is much more compared to that of linear array which implies that 

the errors accumulated in simulation are larger than real data for the 3D array. 

Comparison of the graphs in Fig. 21 shows an inherent precision error standard deviation 

of around 5 cm is involved during the experiment. Similar to linear arrays, the trend 

followed by the two graphs in Fig. 19 are alike. This trend supports the case that as the 

error increases, the drop in SII settles down as the higher frequencies tend to merge as a 

result of coherence, making them insignificant as discussed in chapter 2. For a 3D grid 

array, a 10% drop from maximum SII in the experiments and simulations occurs at an 

error standard deviation of 2.4 cm and 1.83 cm respectively. 
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Figure 18: Comparison of experimental and simulation results for SII measures on 

beamformed signals with an interfering speech background as a function of 

precision error in microphone placement (linear array). 
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In addition, Figure 20 compares the simulation and experimental results for SII as a 

function of positional errors for a planar array. The trends of the graphs look similar to 

that of other arrays. By comparing the graphs in Fig. 20, an inherent precision error 

standard deviation of around 6 cm is expected to be involved during the experiment. The 

various errors accumulated during the experiment decrease the maximum experimental 

SII to 0.25 from a maximum SII of 0.38 that occurred during the simulations. 
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Figure 19: Comparison of experimental and simulation results for SII measures on 

beamformed signals with an interfering speech background as a function of 

precision error in microphone placement for a non-uniform 3D array 
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It can be observed from the above graphs that the experimental curves look very close 

in their performance to that of simulation curves, once the experimental precision is 

accounted, for various arrays. Figure 21(a) shifts the experimental data of the linear array 

horizontally to accommodate the inherent precision error of 2 cm and plots it along with 

the simulation data. It can be seen that the experimental and simulation curves tend to 

follow each other closely which supports the case of validating the simulator. The 

difference in the simulation and experimental graphs look much narrower in their 

performance, once the inherent precision error is accounted in the experimental data for a 

non-uniform 3D array as shown in Fig. 21(b).  
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Figure 20: Comparison of experimental and simulation results for SII on 

beamformed signals with an interfering speech background as a function of 

precision error in microphone placement for a planar array 
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(a) 

 
(b)  

Figure 21: Comparison of simulation results with the shifted experimental results. 

For (a) Linear array (b) Non-uniform 3D array 
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4.4 Tolerable limits on precision errors 

 

To propose the tolerable limits on the errors, a Monte Carlo simulation of 50 runs was 

performed with random placement of target and masker within the FOV. Each run, in 

turn, included 25 independent position errors for each standard deviation as discussed 

previously. The precision error standard deviation which corresponds to a 10% drop from 

maximum SII was computed for each Monte Carlo run and is averaged over the total 

runs. The mean position error standard deviation at which a 10% drop in SII occurs was 

computed for all the four different arrays and shown in Fig. 22. The error bars correspond 

to 95% confidence limits. From Fig. 22a, for a male speaker, it can be seen that for an 

interfering speech background, a 10% drop in SII occurs somewhere between a standard 

deviation of 1.5 - 2.5cm, for different array distributions. For a white noise background, it 

occurs within a standard deviation of 2 – 3cm as shown in Fig. 22b. Figure 22 also 

suggests that the linear array seems to be more vulnerable to the precision errors than that 

of other more distributed and complex arrays.  

 

(a) 

Figure 22: Precision error standard deviation for which a 10% drop from maximum 

SII occurs under given masking conditions for a male speaker. For (a) Interfering 

speech (female) background (b) White noise background 
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(b) 

Figure 22, continued 
 

 
It also looks like that more distributed the microphones around the field of view, the 

better robustness to precision errors. The linear array which is simple in design tends to 

be more vulnerable to precision errors than other complex arrays. In case of an interfering 

speech background from Fig. 22(a), 10% drop from maximum SII occurs at a mean 

precision error standard deviation of 1.82cm for a linear array whereas it occurs at 

2.17cm and 2.08cm for perimeter and planar arrays. The perimeter and planar arrays 

spread the microphones only over the ceiling or along a wall whereas the non-uniform 3D 

array places the microphones randomly around all the three dimensions of the FOV. 

Thus, the non-uniform 3D array is more distributed than the planar and perimeter arrays 

and hence more robust to precision errors. For a non-uniform 3D array, the mean 

precision error standard deviation for which a 10% drop in maximum SII occurs at 

2.37cm, larger than that of planar and perimeter arrays. 
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Different target signals (man and woman) were used to illustrate the case when the 

spectral content of the target signal and masker had less overlap but yet were well within 

the range of the significant BIF values. Thus, a female target speaker was considered 

along with a male interfering speech and white noise background. Figure 23(a) indicates 

that, for a female speaker with interfering speech background, a 10% drop in SII occurs 

for an error standard deviation of 1.5cm to 2.5 cm similar to Fig. 22(a). However, for a 

white noise background, it occurs within an error standard deviation of 1.5 – 2.5 cm as 

shown in Fig. 23(b), a difference of 0.5cm with that of a male target speaker.  

 

 

(a) 

Figure 23: Precision error standard deviation for which a 10% drop from maximum 

SII occurs under given masking conditions for a female speaker. For (a) Interfering 

speech (male) background (b) White noise background 
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(b) 

Figure 23, continued 
 

 
As a summative statistic for performance, the mean percentage degradation in SII is 

examined for single location error standard deviation of 2 cm for all the microphone 

geometries considered in this work.  The percentages were averaged across the male and 

female target speakers. The results are presented in Fig. 24.  For the perimeter, planar, 

and distributed 3-D array, a location error standard deviation of 2 cm results in around 

10% drop in SII as shown in Fig. 24. But, in the case of a linear array, the SII degrades by 

about 10-12%. So, this indicates that precision errors with a standard deviation of 1.5 cm 

can limit the losses in SII to less than 10% of the maximum beamformer performance for 

different array distributions. 
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Figure 24: Mean Percentage drop in SII for an error standard deviation of 2 cm 

averaged across male and female speakers under given masking conditions 

 
There might also be other factors involved that cause the difference in the array 

performance. A barely intelligible speech-in-noise condition was maintained before 

beamforming while studying the performance for different arrays. The initial 

intelligibility measures for each case might have been different, which differs with the 

source locations and test signals used. Suppose if the non-uniform array had a lower 

initial SII (at zero error), then the sensitivity may also be a function of it on the SII curve. 

Placing the sources at different positions changes the initial SII and thus a Monte Carlo 

simulation was performed with various random target and noise placements and the 

numbers were averaged out. The signals are scaled such that the mean maximum SII 

differ narrowly for various arrays. For example, the mean initial SII for linear, perimeter, 

planar and non-uniform arrays were maintained around 0.31, 0.32, 0.28 and 0.30 

respectively in case of a male interfering speech condition.  
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CHAPTER 5 

 

CONCLUSIONS AND FUTURE WORK 

 

This chapter summarizes the impact of microphone positional errors on speech 

intelligibility based on the inferences derived from the simulations and experiments. The 

initial section describes the conclusions made on the acceptable limits in precision errors 

during the calibration process. Section 5.1 discusses the possible future directions that 

could be followed to extend the research on the enhancement of speech intelligibility. 

 

This thesis examines the influence of spatial errors in microphone positions during the 

calibration process on speech intelligibility. These spatial errors get translated into time-

delay errors between the microphone signals thus degrading the beamformer’s output. 

These errors have a frequency-dependent impact on the enhancement from beamforming 

algorithms. Uniformly distributed random numbers were used to model the microphone 

positional errors. Analytical expressions were derived to show a sinc functional 

relationship in the expected power loss from the standard deviation of the positional error 

as a function of wavelength. 

 

It is indicated from the derivations that a standard deviation of one-quarter wavelength 

would result in an effective incoherent summation and no enhancement from the 

beamformer. These results were then incorporated into the SII intelligibility metric and 

simulations and experiments were used to investigate the intelligibility loss for a variety 

of array geometries with different distracting sources. As this work mainly focused on 

improving the intelligibility for a barely-intelligible signal, the target signal was scaled to 

achieve a SII of about 0.3 after beamforming. Based on the recordings used during the 

simulations with 16 microphones, it is suggested that the input SNR has to be in the 

critical range of -20 dB to -10 dB to make the speech barely intelligible and to achieve a 

quite intelligible speech after beamforming, in case of an interfering speech background. 

For white noise background, this critical range of SNR is given to be -10 dB to -3 dB.  
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Moreover, results show that a microphone positional error with a standard deviation of 

less than 1.5cm, limits the losses in intelligibility metric to less than 10% of the 

maximum beamformer performance for different array configurations. It has also been 

shown that the more distributed the microphones are around the field of view, the better 

the robustness to precision errors. Of different array distributions experimented, the linear 

array tends to be more vulnerable whereas the non-uniform 3D array showed a robust 

performance to positional errors. 

 

5.1 Future work 

 

For a more comprehensive evaluation of the impact of microphone positional errors on 

speech intelligibility, following cases can be taken into consideration and analyses can be 

performed. 

• Multi-talker cocktail party recordings can be included as another case of 

distracting source for the target speaker and intelligibility analyses can be 

performed. 

• Experimental setups with different number of microphones and array 

configurations can be examined. Also, SNR analysis of each microphone can be 

carried out to analyze the impact on beamforming and relationships can be found 

which can guide the design of an array. 

• Different partition bands procedures (critical band, equally-contributing critical 

band) and speech levels (shout, loud, raised) can be included in the SII estimation 

to inspect the intelligibility changes. 

• SII computations can be modified to incorporate the adaptive beamforming 

techniques to improve the intelligibility in adverse speech-in-noise conditions. 

• Extensive analysis can be performed with more test data that investigates different 

speech-in-noise conditions like changes in reverberation levels and speaker 

orientations, effects of monaural/binaural hearing and visual cues. 
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