454 research outputs found

    SIGNAL: A Ka-band Digital Beam-Forming SAR System Concept to Monitor Topography Variations of Ice Caps and Glaciers

    Get PDF
    This paper discusses the implementation of an endto- end simulator for the BIOMASS mission. An overview of the system architecture is provided along with a functional description of the modules that comprise the simulator

    Development of the TanDEM-X Calibration Concept: Analysis of Systematic Errors

    Get PDF
    The TanDEM-X mission, result of the partnership between the German Aerospace Center (DLR) and Astrium GmbH, opens a new era in spaceborne radar remote sensing. The first bistatic satellite synthetic aperture radar mission is formed by flying the TanDEM-X and TerraSAR-X in a closely controlled helix formation. The primary mission goal is the derivation of a high-precision global digital elevation model (DEM) according to High-Resolution Terrain Information (HRTI) level 3 accuracy. The finite precision of the baseline knowledge and uncompensated radar instrument drifts introduce errors that may compromise the height accuracy requirements. By means of a DEM calibration, which uses absolute height references, and the information provided by adjacent interferogram overlaps, these height errors can be minimized. This paper summarizes the exhaustive studies of the nature of the residual-error sources that have been carried out during the development of the DEM calibration concept. Models for these errors are set up and simulations of the resulting DEM height error for different scenarios provide the basis for the development of a successful DEM calibration strategy for the TanDEM-X mission

    Spaceborne Polarimetric SAR Interferometry: Performance Analysis and Mission Concepts

    Get PDF
    Spaceborne polarimetric SAR interferometry enables quantitative measurements of important bio- and geophysical parameters of the Earth surface on a global scale. We will first give a short review about actual and planned spaceborne SAR missions that can provide the observation space required for the derivation of Pol-InSAR products. This overview includes both repeat pass mission scenarios like ALOS/PalSAR, TerraSAR-L and Radarsat II, as well as single-pass mission scenarios like a fully-polarimetric Interferometric Cartwheel or TanDEM- X. The Pol-InSAR performance of the suggested mission scenarios will then be analysed by introducing the new concept of a phase tube. This concept enables an optimization of the system parameters and a quantitative comparison between different sensor configurations. The performance analysis for the investigated repeat pass mission scenarios reveals that major limitations have to be expected from temporal decorrelation. Some suggestions will be made to alleviate this performance loss by appropriate orbit refinement. Furthermore, important aspects in the design of future Pol-InSAR sensors will be addressed and we demonstrate the potential benefits arising from the use of bi- and multistatic single pass sensor configurations

    Performance-Optimized Quantization for SAR and InSAR Applications

    Get PDF
    For the design of present and next-generation spaceborne SAR missions, constantly increasing data rates are being demanded, which impose stringent requirements in terms of onboard memory and downlink capacity. In this scenario, the efficient quantization of SAR raw data is of primary importance since the utilized compression rate is directly related to the volume of data to be stored and transmitted to the ground, and at the same time, it affects the resulting SAR imaging performance. In this article, we introduce the performance-optimized block-adaptive quantization (PO-BAQ), a novel approach for SAR raw data compression that aims at optimizing the resource allocation and, at the same time, the quality of the resulting SAR and InSAR products. This goal is achieved by exploiting the a priori knowledge of the local SAR backscatter statistics, which allows for the generation of high-resolution bitrate maps that can be employed to fulfill a predefined performance requirement. Analyses of experimental TanDEM-X interferometric data are presented, which demonstrates the potential of the proposed method as a helpful tool for performance budget definition and data rate optimization of present and future SAR missions

    Forest Height Inversion by Combining Single-Baseline TanDEM-X InSAR Data with External DTM Data

    Get PDF
    Forest canopy height estimation is essential for forest management and biomass estimation. In this study, we aimed to evaluate the capacity of TanDEM-X interferometric synthetic aperture radar (InSAR) data to estimate canopy height with the assistance of an external digital terrain model (DTM). A ground-to-volume ratio estimation model was proposed so that the canopy height could be precisely estimated from the random-volume-over-ground (RVoG) model. We also refined the RVoG inversion process with the relationship between the estimated penetration depth (PD) and the phase center height (PCH). The proposed method was tested by TanDEM-X InSAR data acquired over relatively homogenous coniferous forests (Teruel test site) and coniferous as well as broadleaved forests (La Rioja test site) in Spain. Comparing the TanDEM-X-derived height with the LiDAR-derived height at plots of size 50 m × 50 m, the root-mean-square error (RMSE) was 1.71 m (R2 = 0.88) in coniferous forests of Teruel and 1.97 m (R2 = 0.90) in La Rioja. To demonstrate the advantage of the proposed method, existing methods based on ignoring ground scattering contribution, fixing extinction, and assisting with simulated spaceborne LiDAR data were compared. The impacts of penetration and terrain slope on the RVoG inversion were also evaluated. The results show that when a DTM is available, the proposed method has the optimal performance on forest height estimation.This work was supported in part by the National Natural Science Foundation of China under Grant 41820104005, Grant 42030112, and Grant 41904004, Hunan Natural Science Foundation under Grant 2021JJ30808, and in part by the Spanish Ministry of Science and Innovation, Agencia Estatal de Investigacion, under Projects PID2020-117303GB-C22/AEI/10.13039/501100011033 and PROWARM (PID2020-118444GA-I00/AEI/10.13039/501100011033)

    Application of the Trace Coherence to HH-VV PolInSAR TanDEM-X Data for Vegetation Height Estimation

    Get PDF
    This article investigates, for the first time, the inclusion of the operator Trace Coherence (TrCoh) in polarimetric and interferometric synthetic aperture radar (SAR) methodologies for the estimation of biophysical parameters of vegetation. A modified inversion algorithm based on the well-known Random Volume over Ground (RVoG) model, which employs the TrCoh, is described and evaluated. In this regard, a different set of coherence extrema is used as input for the retrieval stage. In addition, the proposed methodology improves the inversion algorithm by employing analytical solutions rather than approximations. Validation is carried out exploiting single-pass HH-VV bistatic TanDEM-X data, together with reference data acquired over a paddy rice area in Spain. The added value of the TrCoh and the convenience of the use of analytical solutions are assessed by comparing with the conventional polarimetric SAR interferometry (PolInSAR) algorithm. Results demonstrate that the modified proposed methodology is computationally more effective than current methods on this dataset. For the same scene, the steps required for inversion are computed in 6 min with the conventional method, while it only takes 6 s with the proposed approach. Moreover, vegetation height estimates exhibit a higher accuracy with the proposed method in all fields under evaluation. The root-mean-squared error reached with the modified method improves by 7 cm with respect to the conventional algorithm.This work was supported in part by the Spanish Ministry of Science and Innovation, in part by the State Agency of Research (AEI), and in part by the European Funds for Regional Development (EFRD) under Project TEC2017-85244-C2-1-P. The work of Noelia Romero-Puig was supported in part by Generalitat Valenciana and in part by the European Social Fund (ESF) under Grant ACIF/2018/204

    XPert: Peripheral Circuit & Neural Architecture Co-search for Area and Energy-efficient Xbar-based Computing

    Full text link
    The hardware-efficiency and accuracy of Deep Neural Networks (DNNs) implemented on In-memory Computing (IMC) architectures primarily depend on the DNN architecture and the peripheral circuit parameters. It is therefore essential to holistically co-search the network and peripheral parameters to achieve optimal performance. To this end, we propose XPert, which co-searches network architecture in tandem with peripheral parameters such as the type and precision of analog-to-digital converters, crossbar column sharing and the layer-specific input precision using an optimization-based design space exploration. Compared to VGG16 baselines, XPert achieves 10.24x (4.7x) lower EDAP, 1.72x (1.62x) higher TOPS/W,1.93x (3x) higher TOPS/mm2 at 92.46% (56.7%) accuracy for CIFAR10 (TinyImagenet) datasets. The code for this paper is available at https://github.com/Intelligent-Computing-Lab-Yale/XPert.Comment: Accepted to Design and Automation Conference (DAC

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    The present work deals with a highly resolved radar with a synthetic aperture (synthetic aperture radar - SAR), which uses a beam steering to improve performance. The first part of this work deals with the influence of various effects occurring in the hardware of the High-Resolution Wide-Swath SAR (HRWS SAR) system. A special focus was set to single bit quantization in multi-channel receiver. The second part of this work describes SAR processors for Sliding Spotlight mode

    Highly Resolved Synthetic Aperture Radar with Beam Steering

    Get PDF
    Diese Arbeit beschĂ€ftigt sich mit einem hochauflösenden Radar mit synthetischer Apertur. Der erste Teil dieser Arbeit beschreibt mögliche Auswirkungen verschiedener Effekte in dem EmpfĂ€nger des High-Resolution Wide-Swath SAR (HRWS SAR) Systems. DarĂŒber hinaus wird ein Konzept zu Reduktion von Quantisierungsbits in Systemen mit mehreren EmpfangskanĂ€len untersucht. Der zweite Teil der Arbeit betrifft die Datenverarbeitung eines hochauflösenden SAR-Systems in Sliding Spotlight Mode

    Statistical tests for a ship detector based on the Polarimetric Notch Filter

    Get PDF
    Ship detection is an important topic in remote sensing and Synthetic Aperture Radar has a valuable contribution, allowing detection at night time and with almost any weather conditions. Additionally, polarimetry can play a significant role considering its capability to discriminate between different targets. Recently, a new ship detector exploiting polarimetric information was developed, namely the Geometrical Perturbation Polarimetric Notch Filter (GP-PNF). This work is focused on devising two statistical tests for the GP-PNF. The latter allow an automatic and adaptive selection of the detector threshold. Initially, the probability density function (pdf) of the detector is analytically derived. Finally, the Neyman-Pearson (NP) lemma is exploited to set the threshold calculating probabilities using the clutter pdf (i.e. a Constant False Alarm Rate, CFAR) and a likelihood ratio (LR). The goodness of fit of the clutter pdf is tested with four real SAR datasets acquired by the RADARSAT-2 and the TanDEM-X satellites. The former images are quad-polarimetric, while the latter are dual-polarimetric HH/VV. The data are accompanied by the Automatic Identification System (AIS) location of vessels, which facilitates the validation of the detection masks. It can be observed that the pdf's fit the data histograms and they pass the two sample Kolmogorov-Smirnov and χ2 tests
    • 

    corecore