92 research outputs found

    Evaluation study of IEEE 1609.4 performance for safety and non-safety messages dissemination

    Get PDF
    The IEEE 1609.4 was developed to support multi-channel operation and channel switching procedure in order to provide both safety and non-safety vehicular applications. However, this protocol has some drawback because it does not make efficient usage of channel bandwidth resources for single radio WAVE devices and suffer from high bounded delay and lost packet especially for large-scale networks in terms of the number of active nodes. This paper evaluates IEEE 1609.4 multi-channel protocol performance for safety and non-safety application and compare it with the IEEE 802.11p single channel protocol. Multi-channel and single channel protocols are analyzed in different environments to investigate their performance. By relying on a realistic dataset and using OMNeT++ simulation tool as network simulator, SUMO as traffic simulator and coupling them by employing Veins framework. Performance evaluation results show that the delay of single channel protocol IEEE 802.11p has been degraded 36% compared with multi-channel protocol

    Analysis of VANET Standard IEEE 1609.4 Mac Layer Multi-Channel Operations Using OMNeT++ and Veins

    Get PDF
    VANETS is an ad hoc network in vehicles with wireless communication capability. The network utilizes a system to relay data from one vehicle to another vehicle or to a Road Side Unit (RSU). This communication is also known as Vehicle to Vehicle (V2V) [31] and Vehicle to Infrastructure (V2I) [31]. The communication protocol for Wireless Access in Vehicular Environment (WAVE) [10], is the industry standard IEEE 802.11p to communicate between vehicles. This thesis examines the Medium Access Control (MAC) layer of this IEEE 1609.4 multi-channel communication protocol. In Dedicated Short Range Communications, the core of the WAVE protocol, there is an allocated spectrum in the frequency area of 5.9-GHz [20]. In the U.S, the allocated spectrum of 75 MHz was split into seven channels. A channel is defined as a frequency range of 10 MHz for a radio to tune into [28]. There is a control channel to relay safety messages and six service channels to relay non-safety messages, giving us two types of channels to choose from when in message transmission. Both the type and priority of the message are the factors considered. Many existing studies illustrate the impact of multi- channel and single-channel switching for non-safety and safety message transmissions. Most studies focus on optimizing the usability of the service channels. This thesis aims to determine the best use of the single radio in a vehicle i.e. to best utilize the Control Channel (CCH) and Service Channels (SCHs) in a Single Radio Multi-Channel (SR-MC) system [20]. We analyze the channel utilization, beacon transmission, and packet transmission of IEEE 1609.4 multi-channel operations in CCH and SCH. Some of the parameters used for comparison are the number of collisions, channel utilization, packet transmissions, and beacon transmissions. We investigate the scenario with density of n vehicles in a real world map, using safety (beacons) and non-safety (data) messages. The technologies used are Instant Veins 4.6, OMNET++ 5.2.1, SUMO 0.30, Debian GNU/Linux 9 (stretch) 64-bit, VMware Fusion (Professional Version 10.1.4) and an open street map from Northampton. The advantage of using OMNeT++ and Simulation Urban Mobility (SUMO) framework is the thorough implementation of IEEE 1609.4 DSRC/ WAVE and IEEE 802.11p in the framework [29]. Additionally, important feature of realistic traffic along with factual map can be generated with SUMO [21]. The contributions provided in this thesis include the integration of the testing framework Catch, randomizing the SCH, adding beacon transmission to the MAC layer, tracking of vehicle neighbors, tracking of collisions, and channel utilization. Plus an analysis on multi-channel switching. In our results we found that the CCH is highly overloaded both with beacon and channel switching management, which has a strong impact on the switching operation with a high number of collisions. Furthermore we also found that as the number of beacons generated increased, there was an increase in lost frames independent of the channel . Lastly there was little fluctuation in the number of collisions with a higher “n” of vehicles

    Wireless Networking for Vehicle to Infrastructure Communication and Automatic Incident Detection

    Get PDF
    Vehicular wireless communication has recently generated wide interest in the area of wireless network research. Automatic Incident Detection (AID), which is the recent focus of research direction in Intelligent Transportation System (ITS), aims to increase road safety. These advances in technology enable traffic systems to use data collected from vehicles on the road to detect incidents. We develop an automatic incident detection method that has a significant active road safety application for alerting drivers about incidents and congestion. Our method for detecting traffic incidents in a highway scenario is based on the use of distance and time for changing lanes along with the vehicle speed change over time. Numerical results obtained from simulating our automatic incident detection technique suggest that our incident detection rate is higher than that of other techniques such as integrated technique. probabilistic technique and California Algorithm. We also propose a technique to maximize the number of vehicles aware of Road Side Units (RSUs) in order to enhance the accuracy of our AID technique. In our proposed Method. IEEE 802.11 standard is used at RSUs with multiple antennas to assign each lane a specific channel. To validate our proposed approach. we present both analytical and simulation scenarios. The empirical values which are obtained from both analytical and simulation results have been compared to show their consistency. Results indicate that the IEEE 802.11 standard with its beaconing mechanism can be successfully used for Vehicle to Infrastructure (V2I) communications

    Investigating seamless handover in VANET systems

    Get PDF
    Wireless communications have been extensively studied for several decades, which has led to various new advancements, including new technologies in the field of Intelligent Transport Systems. Vehicular Ad hoc Networks or VANETs are considered to be a long-term solution, contributing significantly towards Intelligent Transport Systems in providing access to critical life-safety applications and infotainment services. These services will require ubiquitous connectivity and hence there is a need to explore seamless handover mechanisms. Although VANETs are attracting greater commercial interest, current research has not adequately captured the realworld constraints in Vehicular Ad hoc Network handover techniques. Due to the high velocity of the vehicles and smaller coverage distances, there are serious challenges in providing seamless handover from one Road Side Unit (RSU) to another and this comes at the cost of overlapping signals of adjacent RSUs. Therefore, a framework is needed to be able to calculate the regions of overlap in adjacent RSU coverage ranges to guarantee ubiquitous connectivity. This thesis is about providing such a framework by analysing in detail the communication mechanisms in a VANET network, firstly by means of simulations using the VEINs framework via OMNeT++ and then using analytical analysis of the probability of successful packet reception. Some of the concepts of the Y-Comm architecture such as Network Dwell Time, Time Before Handover and Exit Times have been used to provide a framework to investigate handover issues and these parameters are also used in this thesis to explore handover in highly mobile environments such as VANETs. Initial investigation showed that seamless communication was dependant on the beacon frequency, length of the beacon and the velocity of the vehicle. The effects of each of these parameters are explored in detail and results are presented which show the need for a more probabilistic approach to handover based on cumulative probability of successful packet reception. In addition, this work shows how the length of the beacon affects the rate of change of the Signal-to-Noise ratio or SNR as the vehicle approaches the Road-Side Unit. However, the velocity of the vehicle affects both the cumulative probability as well as the Signal-to-Noise ratio as the vehicle approaches the Road-Side Unit. The results of this work will enable systems that can provide ubiquitous connectivity via seamless handover using proactive techniques because traditional models of handover are unable to cope with the high velocity of the vehicles and relatively small area of coverage in these environments. Finally, a testbed has been set-up at the Middlesex University, Hendon campus for the purpose of achieving a better understanding of VANET systems operating in an urban environment. Using the testbed, it was observed that environmental effects have to be taken into considerations in real-time deployment studies to see how these parameters can affect the performance of VANET systems under different scenarios. This work also highlights the fact that in order to build a practical system better propagation models are required in the urban context for highly mobile environments such as VANETs

    An enhanced synchronized multi-channel MAC scheme to improve throughput in VANET

    Get PDF
    The development of autonomous driving and intelligent transportation demands, fast, reliable and efficient data transmission for various applications in vehicular ad hoc network (VANET). This poses great challenges to the design of a media access control (MAC) protocol that can adapt to the frequent topological shifts. IEEE 1609.4 defines the multi-channel MAC layer implementation in VANET. The multi-channel operation works on a fixed synchronization interval that alternates between a control channel and service channels. The fixed interval leads to poor utilization of limited spectrum resources. In this paper, a multi-channel reliable MAC protocol (MCRMAC), that uses both the control channel and service channel irrespective of the interval to ensure proper and efficient throughput utilization in VANET is proposed. The simulations reveal the performance of the proposed scheme and it outperforms IEEE 1609.4 in terms of throughput

    Hybrid LTE-Vanets Based Optimal Radio Access Selection

    Get PDF
    The access technology selection,that a user can associate with any radio access technology (RAT) with the availability of multiple RATs available,has been intensively investigated by vehicular Ad hoc Network (VANET).In particular it carries and distributes information,inter-communicates and is capable of communicating with other stationary units deployed along roadways.The current study proposed hybrid optimal radio access selection algorithm (ORAS) for LTE/VANETs network. The periodically broadcasted network information supports mobile users to make their selection decisions;mobiles consider their own individual preferences,cost and partial QoS information signaled by the network while making their decision.The switches algorithm between VANET and LTE based on the load value of network and quality of service requirements were proposed.The simulation results have shown that the proposed algorithm has better performance compared with LTE and VANETs separately in terms of packet delivery ratio,latency and application-level throughput

    Empirical Performance Models of MAC Protocols for Cooperative Platooning Applications

    Get PDF
    Vehicular ad-hoc networks (VANET) enable vehicles to exchange information on traffic conditions, dynamic status and localization, to enhance road safety and transportation efficiency. A typical VANET application is platooning, which can take advantage of exchanging information on speed, heading and position to allow shorter inter-vehicle distances without compromising safety. However, the platooning performance depends drastically on the quality of the communication channel, which in turn is highly influenced by the medium access control protocol (MAC). Currently, VANETs use the IEEE 802.11p MAC, which follows a carrier sense multiple access with collision avoidance (CSMA/CA) policy that is prone to collisions and degrades significantly with network load. This has led to recent proposals for a time-division multiple access (TDMA)-based MAC that synchronize vehicles’ beacons to prevent or reduce collisions. In this paper, we take CSMA/CA and two TDMA-based overlay protocols, i.e., deployed over CSMA/CA, namely PLEXE-slotted and RA-TDMAp, and carry out extensive simulations with varying platoon sizes, number of occupied lanes and transmit power to deduce empirical models that provide estimates of average number of collisions per second and average busy time ratio. In particular, we show that these estimates can be obtained from observing the number of radio-frequency (RF) neighbours, i.e., number of distinct sources of the packets received by each vehicle per time unit. These estimates can enhance the online adaptation of distributed applications, particularly platooning control, to varying conditions of the communication channel.info:eu-repo/semantics/publishedVersio

    A Hybrid (Active-Passive) VANET Clustering Technique

    Get PDF
    Clustering serves a vital role in the operation of Vehicular Ad hoc Networks (VANETs) by continually grouping highly mobile vehicles into logical hierarchical structures. These moving clusters support Intelligent Transport Systems (ITS) applications and message routing by establishing a more stable global topology. Clustering increases scalability of the VANET by eliminating broadcast storms caused by packet flooding and facilitate multi-channel operation. Clustering techniques are partitioned in research into two categories: active and passive. Active techniques rely on periodic beacon messages from all vehicles containing location, velocity, and direction information. However, in areas of high vehicle density, congestion may occur on the long-range channel used for beacon messages limiting the scale of the VANET. Passive techniques use embedded information in the packet headers of existing traffic to perform clustering. In this method, vehicles not transmitting traffic may cause cluster heads to contain stale and malformed clusters. This dissertation presents a hybrid active/passive clustering technique, where the passive technique is used as a congestion control strategy for areas where congestion is detected in the network. In this case, cluster members halt their periodic beacon messages and utilize embedded position information in the header to update the cluster head of their position. This work demonstrated through simulation that the hybrid technique reduced/eliminated the delays caused by congestion in the modified Distributed Coordination Function (DCF) process, thus increasing the scalability of VANETs in urban environments. Packet loss and delays caused by the hidden terminal problem was limited to distant, non-clustered vehicles. This dissertation report presents a literature review, methodology, results, analysis, and conclusion
    • …
    corecore