93 research outputs found

    MECHANOSENSORY FEEDBACK FOR FLIGHT CONTROL AND PREY CAPTURE IN THE ECHOLOCATING BAT

    Get PDF
    Throughout the animal kingdom, organisms have evolved neural systems that process biologically relevant stimuli to guide a wide range of species-specific behaviors. Bats, comprising 25% of mammalian species, rely on diverse sensory modalities to carry out tasks such as foraging, obstacle avoidance and social communication. While it is well known that many bat species use echolocation to find food and steer around obstacles, they also depend on other senses. For instance, some bats predominantly use vision to navigate, and others use olfaction to find food sources. In addition, bats rely on airflow sensors to stabilize their flight, primarily through signals carried by microscopic hairs embedded in their wings and tail membranes. Studies have shown that bats performing an obstacle avoidance task show changes in their flight behavior when dorsal wing hairs are removed. Additionally, electrophysiological studies have shown that wing hairs are involved in airflow sensing, but little is known about the contribution of sensory hairs on the ventral surfaces of the wing and tail membranes to their flight control and other complex behaviors, such as prey handling. Chapter 1 of my dissertation presents a general introduction to bat echolocation, flight kinematics, and airflow sensing for flight control. In Chapter 2, I review sensory hairs across the animal kingdom, from invertebrates to vertebrates. I discuss the role of sensory hairs for functions ranging from detection to locomotion and propose the use and benefit of mechanosensors in biologically-inspired technology. In Chapter 3, I devised an experiment to evaluate changes in capture success, as well changes in flight kinematics and adaptive sonar behavior, before and after depilation of sensory hairs in order to ascertain if these sensory hairs have a functional role in both airflow sensing for flight control and tactile sensing for prey handling. In Chapter 4, I designed an experiment aimed at determining if firing patterns of S1 neurons change with airflow speed and angle of attack and if wing hair depilation affects S1 responses to whole wing stimulation. To answer these questions, I record neural activity in S1 of sedated big brown bats while the entire contralateral wing is systematically exposed to naturalistic airflow in a wind tunnel. Finally, in Chapter 5, I address open questions that remain, present experiments aimed at filling these gaps, and consider key points important for future work

    Engineering derivatives from biological systems for advanced aerospace applications

    Get PDF
    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs

    Using the Features of Brownian Motion to Characterize the Nuclear Pore Complex, Molecular Robots, and Antimony-Doped Tin Oxide.

    Full text link
    Brownian motion is the apparently random motion of small particles in a solution that results from the bombardment of molecules within the solution. The theoretical understanding of this motion was developed by Einstein in the early 1900s. Since then, features of Brownian motion, such as the fact that Brownian motion can be modeled using a random walk, or the fact that ensemble mean squared displacement (MSD) can be used to determine a diffusion coefficient and type of diffusive behavior, have been utilized to characterize a vast array of systems that are both naturally occurring and synthetic. In this thesis, I characterize three different types of systems using features of Brownian motion: naturally occurring nuclear pore complexes, synthetic molecular robots that are based on naturally occurring bipedal molecular walkers, and synthetic conductive nanoporous antimony-doped tin oxide (ATO). For the nuclear pore complex, the diffusion of particles through each region of the complex was modeled using a random walk in order to help determine the relative diffusion coefficients of the three regions. For the molecular robots, the movement of the robots was modeled using a more advanced random-walk simulation that utilizes the Gillespie algorithm; the movement of the robots was evaluated based on the MSDs, and the results were used to characterize the directional bias in the walking mechanism of the robots. For the ATO, fluorescent particles were monitored as they underwent Brownian motion while diffusing through the nanopores; MSDs were used to determine that these particles are embedded in the nanopores and that the diffusion coefficient depended in an unexpected way on the potential applied across the material.PhDPhysicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/99910/1/michelot_1.pd

    Program and Proceedings: The Nebraska Academy of Sciences 1880-2011

    Get PDF
    PROGRAM FRIDAY, APRIL 15, 2011 REGISTRATION FOR ACADEMY, Lobby of Lecture wing, Olin Hall Aeronautics and Space Science, Session A, Olin 249 Aeronautics and Space Science, Session B, Olin 224 Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Chemistry and Physics, Session A, Olin 324 Chemistry and Physics, Section A, Chemistry, Olin A Biological and Medical Sciences, Session A, Olin 112 Biological and Medical Sciences, Session B, Smith Callen Conference Center Chemistry and Physics, Section B, Physics, Planetarium Junior Academy, Judges Check-In, Olin 219 Junior Academy, Senior High REGISTRATION, Olin Hall Lobby NWU Health and Sciences Graduate School Fair, Olin and Smith Curtiss Halls Junior Academy, Senior High Competition, Olin 124, Olin 131 Teaching of Science and Math, Olin 325 Aeronautics and Space Science, Poster Session, Olin 249 Applied Science and Technology, Olin 325 Aeronautics and Space Science, Poster Session, Olin 249 MAIBEN MEMORIAL LECTURE, OLIN B Dr. Erin Flynn, Nocturnal Manager, Omaha\u27s Henry Doorly Zoo LUNCH, PATIO ROOM, STORY STUDENT CENTER (pay and carry tray through cafeteria line, or pay at NAS registration desk) Aeronautics Group, Conestoga Room Anthropology, Olin 111 Biological and Medical Sciences, Session C, Olin 112 Biological and Medical Sciences, Session D, Smith Callen Conference Center Chemistry and Physics, Section A, Chemistry, Olin A Chemistry and Physics, Section B, Physics, Planetarium Collegiate Academy, Biology Session A, Olin B Collegiate Academy, Biology Session B, Olin 249 Collegiate Academy, Chemistry and Physics, Session B, Olin 324 Collegiate Academy, Chemistry and Physics, Session C, Olin 325 Earth Science, Olin 224 Junior Academy, Judges Check-In, Olin 219 Junior Academy, Junior High REGISTRATION, Olin Hall Lobby Junior Academy, Senior High Competition, (Final), Olin 110 Junior Academy, Junior High Competition, Olin 124, Olin 131 NJAS Board/Teacher Meeting, Olin 219 BUSINESS MEETING, OLIN B AWARDS RECEPTION for NJAS, Scholarships, Members, Spouses, and Guests First United Methodist Church, 2723 N 50th Street, Lincoln, N

    Technology 2000, volume 1

    Get PDF
    The purpose of the conference was to increase awareness of existing NASA developed technologies that are available for immediate use in the development of new products and processes, and to lay the groundwork for the effective utilization of emerging technologies. There were sessions on the following: Computer technology and software engineering; Human factors engineering and life sciences; Information and data management; Material sciences; Manufacturing and fabrication technology; Power, energy, and control systems; Robotics; Sensors and measurement technology; Artificial intelligence; Environmental technology; Optics and communications; and Superconductivity

    DARCOF II. Danish research in Organic Food and Farming systems 2000-2005

    Get PDF
    The aim of this book is to present a comprehensive overview of the 41 research projects undertaken in the period 2000-2005 in the research programme DARCOF II.For each project there is a description of its background and objective in terms of which issues gave rise to the project and what the project aims to achieve. This is followed by a short description of the experiments or investigations that have been undertaken in the project. The general and applicable results derived from the project are finally described. For each project there is a reference to a project home page on www.darcof.dk. Via this page there is direct access to "Organic Eprints", which is the site containing all the project publications – both technical and scientific

    2017 Abstracts Student Research Conference

    Get PDF

    NASA Tech Briefs, October 1991

    Get PDF
    Topics: New Product Ideas; NASA TU Services; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Insects

    Get PDF
    In this thematic series, engineers and scientists come together to address two interesting interdisciplinary questions in functional morphology and biomechanics: How do the structure and material determine the function of insect body parts? How can insects inspire engineering innovations

    Amelioration in nanobiosensors for the control of plant diseases: current status and future challenges

    Get PDF
    The increase in global population has had a tremendous impact on sustainable agri-food practices. With the growth in world population, various modern technologies are being utilized that more often result in the opening of tremendous opportunities in the agriculture and food sectors. Nanotechnology is used in agri-food sectors for a variety of purposes, including enhancing flavor, pest/pathogen diagnosis, production, processing, storage, packaging, and transportation of agricultural products. Plant pathogenic microorganisms including bacteria, viruses, fungi, and nematodes have a significant impact on the global economy. In particular, advances in nanotechnology, including nanobiosensors, have been used in the detection of plant diseases and pathogens, the evaluation and examination of infections caused by microorganisms, the management of diseases and, thus, the promotion of food security. Apart from the management of plant diseases, nanobiosensors offer better opportunities for sustainable agri-food production by controlling physical, chemical, and biological processes, thus improving food safety and the agricultural economy. This review outlines the application of nano-integrated nanobiosensors for better agricultural and food practices
    • …
    corecore