1,056 research outputs found

    High Throughput Phenotyping of Sorghum for the Study of Growth Rate, Water Use Efficiency, and Chemical Composition

    Get PDF
    Plant phenotyping using digital images has increased the throughput of the trait measurement process, and it is considered to be a potential solution to the problem of the phenotyping bottleneck. In this study, RGB images were used to study relative growth rate (RGR) and water use efficiency (WUE) of a diverse panel of 300 sorghum plants of 30 genotypes, and hyperspectral images were used for chemical analysis of macronutrients and cell wall composition. Half of the plants from each genotype were subjected to drought stress, while the other half were left unstressed. Quadratic models were used to estimate the shoot fresh and dry weights from plant projected area. RGR values for the drought-stressed plants were found to gradually lag behind the values for the unstressed plants. WUE values were highly variable with time. Significant effects of drought stress and genotype were observed for both RGR and WUE. Hyperspectral image data (546 nm to 1700 nm) were used for chemical analysis of macronutrients (N, P, and K), neutral detergent fiber (NDF), and acid detergent fiber (ADF) for plant samples separated into leaf and three longitudinal sections of the stem. The accuracy of the models built using the spectrometer data (350 nm to 2500 nm) of dried and ground biomass was found to be higher than the accuracy of models built using the image data. For the image data, the models for N(R2 = 0.66, RPD = 1.72), and P(R2=0.52, RPD = 1.46) were found to be satisfactory for quantitative analysis whereas the models for K, NDF, and ADF were not suitable for quantitative prediction. Models built after the separation of leaf and stem samples showed variation in the accuracy between the two groups. This study indicates that image-based non-destructive analysis of plant growth rate and water use efficiency can be used for studying and comparing the effects of drought across multiple genotypes. It also indicates that two dimensional hyperspectral imaging can be a useful tool for non-destructive analysis of chemical content at the tissue level, and potentially at the pixel level. Advisor: Yufeng G

    Generation of 360 Degree Point Cloud for Characterization of Morphological and Chemical Properties of Maize and Sorghum

    Get PDF
    Recently, imaged-based high-throughput phenotyping methods have gained popularity in plant phenotyping. Imaging projects the 3D space into a 2D grid causing the loss of depth information and thus causes the retrieval of plant morphological traits challenging. In this study, LiDAR was used along with a turntable to generate a 360-degree point cloud of single plants. A LABVIEW program was developed to control and synchronize both the devices. A data processing pipeline was built to recover the digital surface models of the plants. The system was tested with maize and sorghum plants to derive the morphological properties including leaf area, leaf angle and leaf angular distribution. The results showed a high correlation between the manual measurement and the LiDAR measurements of the leaf area (R2\u3e0.91). Also, Structure from Motion (SFM) was used to generate 3D spectral point clouds of single plants at different narrow spectral bands using 2D images acquired by moving the camera completely around the plants. Seven narrow band (band width of 10 nm) optical filters, with center wavelengths at 530 nm, 570 nm, 660 nm, 680 nm, 720 nm, 770 nm and 970 nm were used to obtain the images for generating a spectral point cloud. The possibility of deriving the biochemical properties of the plants: nitrogen, phosphorous, potassium and moisture content using the multispectral information from the 3D point cloud was tested through statistical modeling techniques. The results were optimistic and thus indicated the possibility of generating a 3D spectral point cloud for deriving both the morphological and biochemical properties of the plants in the future. Advisor: Yufeng G

    Robotic Technologies for High-Throughput Plant Phenotyping: Contemporary Reviews and Future Perspectives

    Get PDF
    Phenotyping plants is an essential component of any effort to develop new crop varieties. As plant breeders seek to increase crop productivity and produce more food for the future, the amount of phenotype information they require will also increase. Traditional plant phenotyping relying on manual measurement is laborious, time-consuming, error-prone, and costly. Plant phenotyping robots have emerged as a high-throughput technology to measure morphological, chemical and physiological properties of large number of plants. Several robotic systems have been developed to fulfill different phenotyping missions. In particular, robotic phenotyping has the potential to enable efficient monitoring of changes in plant traits over time in both controlled environments and in the field. The operation of these robots can be challenging as a result of the dynamic nature of plants and the agricultural environments. Here we discuss developments in phenotyping robots, and the challenges which have been overcome and others which remain outstanding. In addition, some perspective applications of the phenotyping robots are also presented. We optimistically anticipate that autonomous and robotic systems will make great leaps forward in the next 10 years to advance the plant phenotyping research into a new era

    Generation of 360 Degree Point Cloud for Characterization of Morphological and Chemical Properties of Maize and Sorghum

    Get PDF
    Recently, imaged-based high-throughput phenotyping methods have gained popularity in plant phenotyping. Imaging projects the 3D space into a 2D grid causing the loss of depth information and thus causes the retrieval of plant morphological traits challenging. In this study, LiDAR was used along with a turntable to generate a 360-degree point cloud of single plants. A LABVIEW program was developed to control and synchronize both the devices. A data processing pipeline was built to recover the digital surface models of the plants. The system was tested with maize and sorghum plants to derive the morphological properties including leaf area, leaf angle and leaf angular distribution. The results showed a high correlation between the manual measurement and the LiDAR measurements of the leaf area (R2\u3e0.91). Also, Structure from Motion (SFM) was used to generate 3D spectral point clouds of single plants at different narrow spectral bands using 2D images acquired by moving the camera completely around the plants. Seven narrow band (band width of 10 nm) optical filters, with center wavelengths at 530 nm, 570 nm, 660 nm, 680 nm, 720 nm, 770 nm and 970 nm were used to obtain the images for generating a spectral point cloud. The possibility of deriving the biochemical properties of the plants: nitrogen, phosphorous, potassium and moisture content using the multispectral information from the 3D point cloud was tested through statistical modeling techniques. The results were optimistic and thus indicated the possibility of generating a 3D spectral point cloud for deriving both the morphological and biochemical properties of the plants in the future. Advisor: Yufeng G

    In Vivo Human-Like Robotic Phenotyping of Leaf and Stem Traits in Maize and Sorghum in Greenhouse

    Get PDF
    In plant phenotyping, the measurement of morphological, physiological and chemical traits of leaves and stems is needed to investigate and monitor the condition of plants. The manual measurement of these properties is time consuming, tedious, error prone, and laborious. The use of robots is a new approach to accomplish such endeavors, which enables automatic monitoring with minimal human intervention. In this study, two plant phenotyping robotic systems were developed to realize automated measurement of plant leaf properties and stem diameter which could reduce the tediousness of data collection compare to manual measurements. The robotic systems comprised of a four degree of freedom (DOF) robotic manipulator and a Time-of-Flight (TOF) camera. Robotic grippers were developed to integrate an optical fiber cable (coupled to a portable spectrometer) for leaf spectral reflectance measurement, a thermistor for leaf temperature measurement, and a linear potentiometer for stem diameter measurement. An Image processing technique and deep learning method were used to identify grasping points on leaves and stems, respectively. The systems were tested in a greenhouse using maize and sorghum plants. The results from the leaf phenotyping robot experiment showed that leaf temperature measurements by the phenotyping robot were correlated with those measured manually by a human researcher (R2 = 0.58 for maize and 0.63 for sorghum). The leaf spectral measurements by the phenotyping robot predicted leaf chlorophyll, water content and potassium with moderate success (R2 ranged from 0.52 to 0.61), whereas the prediction for leaf nitrogen and phosphorus were poor. The total execution time to grasp and take measurements from one leaf was 35.5±4.4 s for maize and 38.5±5.7 s for sorghum. Furthermore, the test showed that the grasping success rate was 78% for maize and 48% for sorghum. The experimental results from the stem phenotyping robot demonstrated a high correlation between the manual and automated stem diameter measurements (R2 \u3e 0.98). The execution time for stem diameter measurement was 45.3 s. The system could successfully detect and localize, and also grasp the stem for all plants during the experiment. Both robots could decrease the tediousness of collecting phenotypes compare to manual measurements. The phenotyping robots can be useful to complement the traditional image-based high-throughput plant phenotyping in greenhouses by collecting in vivo morphological, physiological, and biochemical trait measurements for plant leaves and stems. Advisors: Yufeng Ge, Santosh Pitl
    • …
    corecore