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Plant phenotyping using digital images has increased the throughput of the trait 

measurement process, and it is considered to be a potential solution to the problem of the 

phenotyping bottleneck. In this study, RGB images were used to study relative growth 

rate (RGR) and water use efficiency (WUE) of a diverse panel of 300 sorghum plants of 

30 genotypes, and hyperspectral images were used for chemical analysis of 

macronutrients and cell wall composition. Half of the plants from each genotype were 

subjected to drought stress, while the other half were left unstressed. Quadratic models 

were used to estimate the shoot fresh and dry weights from plant projected area. RGR 

values for the drought-stressed plants were found to gradually lag behind the values for 

the unstressed plants. WUE values were highly variable with time. Significant effects of 

drought stress and genotype were observed for both RGR and WUE. Hyperspectral 

image data (546 nm to 1700 nm) were used for chemical analysis of macronutrients (N, 

P, and K), neutral detergent fiber (NDF), and acid detergent fiber (ADF) for plant 

samples separated into leaf and three longitudinal sections of the stem. The accuracy of 

the models built using the spectrometer data (350 nm to 2500 nm) of dried and ground 

biomass was found to be higher than the accuracy of models built using the image data. 

For the image data, the models for N(R2 = 0.66, RPD = 1.72), and P(R2=0.52, RPD = 



 

 

1.46) were found to be satisfactory for quantitative analysis whereas the models for K, 

NDF, and ADF were not suitable for quantitative prediction. Models built after the 

separation of leaf and stem samples showed variation in the accuracy between the two 

groups. This study indicates that image-based non-destructive analysis of plant growth 

rate and water use efficiency can be used for studying and comparing the effects of 

drought across multiple genotypes. It also indicates that two dimensional hyperspectral 

imaging can be a useful tool for non-destructive analysis of chemical content at the tissue 

level, and potentially at the pixel level. 

Keywords: high throughput phenotyping, hyperspectral images, RGB images, growth 

rate, chemical analysis 
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CHAPTER 1 

INTRODUCTION 

 

 

1.1 PHENOTYPING FOR PLANT BREEDING  

Since the first domestication of plants in around 8500 BC (Diamond & Bellwood, 2003), 

human beings have continuously selected crops for superior traits. These selections can 

be aimed at increasing the utility of the species or at ensuring better survival of crops in a 

modified environment. The process of selection does not always have to be a conscious 

endeavor (Meyer, DuVal, & Jensen, 2012). When conscious, the acts of selection involve 

factors such as visible improvement in quality, alteration of chemical composition, and 

better adaptation to new growth environments or farming practices (Bradshaw, 2016).  

Modern plant breeding based on genetics originated with the rediscovery of 

Gregor Mendel’s work in 1900 AD. Mendel had worked on the garden pea and had 

described his observations on the transmission of traits from parents to offspring. Further 

work based on his theories enabled discoveries that led to the establishment of the field of 

genetics. Genetics refers to the study of “genes”, which are small sections of 

Deoxyribonucleic acid (DNA) present in the nucleus of a cell.  

The gene gives rise to some specific trait in an organism, and this is termed as the 

“expression” of the gene. The expression of a gene depends not only on the gene itself, 

but also on the environment that the organism is subjected to. This interaction between 

the gene and the environment, termed as the GxE interaction, leads to the expression of 

the traits which collectively comprise the “phenotype”. The quantitative assessment of 
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these morphological and physiological characteristics of the organism is termed as 

phenotyping. Phenotyping is thus essential in understanding how a gene is expressed 

under a certain environment (Pieruschka & Poorter, 2012). 

The successful use of Mendelian and quantitative genetics in plant breeding is one 

of the forces behind the increase in crop yield that was observed in the twentieth century. 

This success in increasing food production was crucial for the survival of the quickly 

growing world population (Prohens, 2011). However, the world population continues to 

increase and it is projected to reach 9.8 billion in 2050 and 11.2 billion in 2100 (United 

Nations, 2017). Rapid increase in yield is required to fulfill the demands of this 

increasing population for food, fiber, and fuel. There is also the need to select varieties 

that are efficient in resource use and stress tolerant (Tester & Langridge, 2010). Although 

the genetic aspects of the breeding process have become increasingly rapid and 

inexpensive (Shendure & Ji, 2008), plant phenotyping has been recognized as the 

bottleneck in the selection process (Furbank & Tester, 2011). 

Traditional phenotyping is slow, laborious, and expensive, and it involves careful 

cultivation of multiple crops over time and space. The measurement and storage of data is 

manual, which can lead to errors lowering the quality of data. The amount of variability 

in phenotypes and the sheer amount of information that can be obtained while 

phenotyping a single organism suggests that the complete phenotype of an organism may 

be impossible to characterize with the technological capabilities of the present (Houle, 

Govindaraju, & Omholt, 2010). Because of this technological limitation, a great deal of 

attention has been focused on the exploration of phenotyping technologies in recent 
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years, and high throughput phenotyping has been proposed to be the solution in dealing 

with this complexity in phenotyping.   

1.2 HIGH THROUGHPUT PLANT PHENOTYPING 

High throughput phenotyping of plants refers to phenotyping performed through the 

acquisition and analysis of digital images. This non-destructive approach to phenotyping 

has the capability of rapidly acquiring data on the morphological as well as the 

physiological and chemical properties of a plant. The collection of plant images provides 

us with the ability to access data at a high spatial resolution, which means that the traits 

can be analyzed at the plant tissue level (Ge, Bai, Stoerger, & Schnable, 2016). The 

platforms for the collection of high throughput image data have sophisticated imaging 

and watering systems, which are often automated. As a result, data on a plant’s 

phenotype can be acquired many times throughout the plant’s life cycle. In fact, many 

phenotyping systems, or “phenotyping machines”, acquire plant images at a daily 

frequency. The rapid imaging technology, along with efficient data storage and image 

analysis techniques has led to increased speed and precision in plant phenotyping 

(Pieruschka & Poorter, 2012). 

1.3  DIGITAL IMAGING MODULES 

A digital image of an object is a two dimensional, numeric record of the electromagnetic 

radiation that is reflected or emitted by the object. The variety in imaging modules is the 

result of selectively acquiring this data at different wavelength bands of the 

electromagnetic spectrum. The different imaging modules are used for the 

characterization of different traits. Figure 1.1(a) shows the range of the electromagnetic  
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(a) 

 

(b) 

Figure 1.1 (a) The electromagnetic spectrum and imaging modules (Source: 

Fahlgren, Gehan, & Baxter, 2015) (b) Hyperspectral images shown as a cube of 

images that are individually processed to extract the spectrum of pixel intensities 

 

radiation and the corresponding imaging module that is obtained at a given range. Figure 

1.1(b) illustrates the concept of hyperspectral images represented as an “image cube” and 

shows how spectral data is derived from this cube.  
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Conventional color images (also called RGB images) have their use in the study of 

morphology and color-based traits such as chlorophyll concentration. Images that record 

chlorophyll fluorescence are useful in characterization of chlorophyll content and in the 

study of photosynthetic activity. Near-infrared images that integrate the reflectance in 

wavelengths sensitive to the presence of water are useful for the characterization of plant 

water content. Hyperspectral images have been used for the analysis of water content as 

well as chemical content. As this study is based on the use of RGB images for the 

analysis of plant growth rate and water use efficiency and on the use of hyperspectral 

images for chemical analysis, the application of these imaging modules is discussed in 

detail. 

1.3.1 Phenotyping using RGB images 

RGB images are the most widely studied among all the imaging modules. These images 

are acquired at the range of the electromagnetic spectrum between 400 and 700 nm, 

which is the range visible to the human eye. Since the visible image is a representation of 

the actual perception of the human eye, it can be used to infer the morphology and color 

of a plant. Morphology includes traits such as height, number of leaves, number of tillers 

(shoots that grow after the initial parent shoot), leaf area, and the total size of the plant 

represented by the number of plant pixels in the image. The number of plant pixels can be 

used to create models for the estimation of shoot biomass.  This has been widely and 

successfully applied for a number of crops, sometimes with treatments such as drought 

and salinity (Golzarian et al., 2011; Humplík, Lazár, Husičková, & Spíchal, 2015; 

Neilson et al., 2015). The time series data obtained through the estimation of shoot fresh 

weights and dry weights along with the watering data available from phenotyping 
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systems have been used to analyze complex traits such as differential growth rate and 

water use efficiency (Ge, Bai, Stoerger, & Schnable, 2016). The non-destructive 

estimation of these complex parameters is a useful result for comparing resource use 

efficiency and stress tolerance of multiple plant genotypes. 

The accuracy of the estimation of biomass and morphological parameters can be 

affected by occlusion, plant movement, and variable pixel size. These problems can be 

largely removed by acquiring images from multiple views, and by keeping the distance 

between the plant and the camera constant. The color information contained in RGB 

images is also indicative of the plant chlorophyll content. This has been used for the 

estimation of nutrients that affect the color of the plant, for example through chlorosis in 

case of deficiency (Wang, Wang, Shi, & Omasa, 2014). 

1.3.2 Phenotyping using hyperspectral images 

Hyperspectral imaging captures the interaction of a plant with the electromagnetic 

spectrum over a wide range of wavelengths. The images are acquired at an interval of a 

few nanometers, with the overall spectral range between 300 nm and 2500 nm, as seen in 

Figure 1.1.  

The amount of light reflected, absorbed, or transmitted by an object at a certain 

wavelength is the function of the interaction between light and the molecules that form 

the object. Thus, it can be concluded that the reflected light contains information about 

the chemical composition of the object.  

The non-uniform pattern of reflectance values can be used to calculate “spectral 

indices”, which are the ratios, or differences, or the results of more complicated 
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operations on reflectance values at two different wavelengths. These indices are found to 

be indicative of different physiological traits of the plant. For example, the Normalized 

Difference Vegetation Index (NDVI) is calculated by taking the normalized ratio of 

reflectance values at a red and a near infrared band. This ratio has been widely used in 

phenotyping, and among several applications, it has been found useful in predicting 

biomass, nitrogen content, growth rate, and yield of wheat (Cabrera-Bosquet et al., 2011; 

Marti, Bort, Slafer, & Araus, 2007) as well as yield and composition of grapes 

(González-Flor, Serrano, Gorchs, & Pons, 2014). In addition to NDVI, other vegetation 

indices have been developed and used to predict a wide range of characteristics such as 

leaf chlorophyll concentration (Daughtry, 2000), leaf nitrogen content (Cammarano et al., 

2011), and leaf water content (Seelig et al., 2008). 

When the reflectance values over a wide range of wavelengths are obtained, the 

chemical composition of the object gives rise to a spectra containing certain patterns or 

“signatures” associated with the specific chemical composition. This is the basis for the 

use of spectroscopy in chemical analysis. In case of plants, the strong absorption of 

radiation in the mid infrared region and the resulting overtones in the short wave infrared 

(SWIR) region form the basis for quantification of chemical composition using spectral 

data (Batten, 1998). According to this principle, non-imaging spectroscopy of fresh 

leaves has been successfully used with multivariate modeling techniques such as Partial 

Least Squares Regression (PLSR) for rapid, non-destructive analysis of leaf chemical 

properties including nitrogen, chlorophyll, and sucrose content as well as specific leaf 

area and CO2 saturated rate of photosynthesis (Blackburn, 2007; Yendrek et al., 2017).  
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Compared to non-imaging spectroscopy, hyperspectral imaging has the advantage of 

containing information about the spatial distribution in addition to the spectral reflectance 

data. A spectrum is obtained for every pixel in the image, which allows for a more 

sophisticated approach in which pixel-level information can be derived. The pixel-level 

information can be useful in studying the variation in chemical composition within the 

plant, and also in studying the translocation of nutrients.  

Hyperspectral imaging has previously been used for the detection of drought 

stress in plants at the canopy level in the field (Römer et al., 2012), and at the single plant 

level in the greenhouse (Behmann, Steinrücken, & Plümer, 2014). It has also been used 

for biotic stress detection in several species (Bauriegel & Herppich, 2014; Mahlein, 

Oerke, Steiner, & Dehne, 2012). Its use in the assessment of chemical traits at the single 

plant level has been limited, even though it has been shown that hyperspectral image data 

can be used for the successful prediction of leaf water content in maize (Ge et al., 2016), 

and for the prediction of water content, micro-nutrients, and macro-nutrients in maize and 

soybean (Pandey, Ge, Stoerger, & Schnable, 2017).  

In this study, hyperspectral images of sorghum plants are used for the analysis of 

cell wall composition as well as three macronutrients: nitrogen (N), phosphorus (P), and 

potassium (K).  

1.4 HIGH THROUGHPUT CHEMICAL PHENOTYPING OF SORGHUM 

Sorghum is the fifth most important cereal crop in the world, and the third most important 

cereal crop in the United States in terms of production amount. It is a dietary staple of 

millions of people, and is also used as feed grain (Kumar et al., 2011). Biomass sorghum 
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is also an increasingly important feedstock for the biofuel industry in the United States. It 

is considered to be a drought tolerant crop that has the advantage of being able to grow in 

marginal lands and has a high biomass potential (Rooney, Blumenthal, Bean, & Mullet, 

2007). 

1.4.1 Cell wall characterization 

High throughput phenotyping of sorghum as a feedstock for the biomass industry leads to 

an interest in the biomass accumulation, water use efficiency, and cell wall composition. 

Previous work with high throughput imaging has been focused on stem thickness and 

plant height as measures of biomass production (Batz, Méndez-Dorado, & Thomasson, 

2016; Watanabe et al., 2017), and on nodal root angle as a measure of drought adaptation 

(Manschadi et al., 2006).  

Cell wall characterization is an important research objective in case of sorghum 

because the composition of the cell wall affects the amount of biomass converted to fuel, 

and has an important effect on the digestibility of the biomass. The sorghum cell wall is 

mainly composed of cellulose, hemicellulose, and lignin. Lignin present in the cell wall is 

the most recalcitrant part during the conversion of cellulose to glucose, and several 

studies have focused on lignin modification in order to increase digestibility (Yuan, 

Tiller, Al-Ahmad, Stewart, & Stewart, 2008). Lignin modification also has to take into 

consideration the problem of lodging that occurs with extreme reduction in lignin 

content. Thus, the breeding efforts for energy sorghum are aimed at obtaining predictable 

cell wall compositions.  
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Traditional chemical methods for compositional analysis are destructive, expensive and 

slow, and they cannot meet the requirements of high throughput measurements (Park, 

Liu, Philip Ye, Jeong, & Jeong, 2012). Near infrared spectroscopy using dried and 

ground biomass has been previously used successfully to predict cell wall composition of 

several plants including bamboo (Li, Sun, Zhou, & He, 2015), rice straw (Jin, Chen, Jin, 

& Chen, 2007), cornstover (Philip Ye et al., 2008), and sorghum material (Wolfrum et 

al., 2013). However, reports on the in-vivo analysis of sorghum cell wall composition 

cannot be found in the literature.  

1.4.2 Nutrient analysis 

Plant nutrients are the chemical elements that plants require for their growth and survival. 

The elements that plants need to assimilate from the soil are termed as “mineral 

nutrients”, and they are further grouped into “macronutrients” (N, P, K, Ca, S, Mg, Na) 

and “micronutrients” (B, Cl, Mn, Fe, Zn, Cu, Mo, Ni, Co) (Barker & Pilbeam, 2015; 

Mengel and Kirkby, 2004). These mineral nutrients are active in vital metabolic 

processes in the organism and determine the health and yield of crops.  

Quantitative assessment of nutrients in plant tissues is a common procedure that is 

used for the diagnosis of nutrient deficiency. This process can also help to increase the 

efficiency of fertilizer application; increasing this efficiency can reduce the costs of 

production and protect the environment. For example, fertilizers are commonly used as 

nitrogen supplements. However, these fertilizers are expensive, and their over-application 

has led to problems of pollution in water and soil. In case of over-application, we have 

the economic loss associated with buying excess fertilizer which also diminishes the 

marginal returns. 
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It has been known that the nutrient use efficiency of plants is determined not only by the 

growth environment but also by genetic factors (Baligar & Fageria, 2015). This implies 

that the selection of plants with better nutrient use efficiency will provide us with crops 

that will grow well and have better yields without requiring additional fertilizers. Nutrient 

analysis is also useful to identify plants that produce adequate nutrients useful for human 

beings at the top of the food chain. This would help to alleviate the problem of 

malnutrition prevalent in many parts of the world (Bouis, 2000). 

Conventional methods of nutrient assessment are destructive, and they require 

tissue sample preparation and processing followed by laboratory analysis, which includes 

acid digestion for residue analysis (Kalra, 1998). Non imaging spectroscopy has been 

successful in the field of chemical assessment of plant tissues (van Maarschalkerweerd & 

Husted, 2015). Reflectance values in the visible and near infrared range are collected for 

dried and ground biomass (Card, Peterson, Matson, & Aber, 1988; González-Martín, 

Hernández-Hierro, & González-Cabrera, 2007), or for fresh plant material (Menesatti et 

al., 2010; Yendrek et al., 2017), and chemometric methods are then used to calibrate 

prediction models for the plant minerals after acquiring reference values from wet 

chemistry in the laboratory.  

As an extension of the idea of non-imaging spectroscopy, hyperspectral imaging 

has previously been used at the leaf level to predict chemical content, followed by the 

creation of a distribution map for the chemical content within the leaf. The prediction 

models have been formed by using multivariate modeling techniques (Zhang, Liu, He, & 

Gong, 2013) as well as by using spectral indices for each pixel (Xiaobo et al., 2011). In 

vivo characterization of leaf chemical properties at the plant level has also been reported 
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for maize and soybean (Pandey, Ge, Stoerger, & Schnable, 2017). The use of the imaging 

techniques in a diverse sorghum population would provide information about the 

usefulness of the technology in non-destructive phenotyping, ranking, and selection of 

plants. 

1.5 OBJECTIVES OF THE STUDY 

This study was conducted with two distinct objectives in mind. The first objective was to 

study the possibility of using RGB images for the estimation of plant biomass which 

could then be used for the calculation of relative growth rate and water use efficiency. 

The ranking of the different genotypes with respect to their growth rate and water use 

efficiency would be the outcome of this analysis. 

The second objective was to study the use of hyperspectral images to build 

prediction models for chemical analysis at the plant tissue level. Included in this aspect of 

the study was the study of prediction models built by using spectral data acquired with a 

visible-near infrared spectrometer.  
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 CHAPTER 2 

MATERIALS AND METHODS 

 

 

2.1 EXPERIMENT DESIGN 

Three hundred sorghum (Sorghum bicolor L.) plants were grown in the Greenhouse 

Innovation Center at the University of Nebraska-Lincoln. Seeds belonging to 30 different 

sorghum lines were selected to obtain a genetically diverse population. Two seeds were 

planted per pot in order to ensure successful germination. Ten of these sorghum lines 

were sweet sorghum, 18 were energy sorghum, and two were grain sorghum. Table 2.1 

shows the line names as well as the aliases for the lines used in the experiment and the 

analysis.  

The seeds were sown on 3rd January, 2017 in 9-L pots having a diameter of 24.13 

cm and a height of 25.91 cm. The base media used was Sunshine Germination mix (Sun 

Gro Horticulture, MA), and fertilization was done by using 4.7 gram per cubic meter of 

Osmocote plus fertilizers (with micronutrients), of which half was the 3-4 month release 

15-9-12 fertilizer and the other half was the 5-6 month release 15-9-12 fertilizer. 

These plants were grown in a greenhouse room maintained at temperatures 

between 23°C and 26°C during daytime and between 22.5 and 24.5°C during nighttime. 

Relative humidity was maintained at around 30%. The total photosynthetically active 

radiation (PAR) including the supplemental LED lighting was maintained below 230 

µmol m-2s-1. All plants were watered to field capacity. 
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Table 2.1. Line names, types, and aliases of the sorghum lines used in the study. 

 Line name Type Experiment designation 

PI_329311 Energy E1 

PI_213900 Energy E2 

PI_505735 Energy E3 

PI_329632 Energy E4 

PI_35038 Energy E5 

PI_585954 Energy E6 

NTJ2 Energy E7 

M81e Energy E8 

PI_229841 Energy E9 

PI_297155 Energy E10 

PI_506069 Energy E11 

PI_508366 Energy E12 

PI_297130 Energy E13 

Grassl Energy E14 

PI_152730 Energy E15 

PI_195754 Energy E16 

PI_655972 Energy E17 

PI_510757 Energy E18 

BTx623 Grain G1 

CK60B Grain G2 

B.Az9504 Sweet S1 

San Chi San Semi-sweet S2 

ICSV700 Sweet S3 

Atlas Sweet S4 

Leoti   Sweet S5 

Chinese Amber  Sweet S6 

Della Sweet S7 

Rio Sweet S8 

PI_642998 Energy S9 

China 17 Sweet S10 
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On 21st February, 2017, the plants were transferred to the Lemnatec Scanalyzer3D system 

and placed on the conveyer belt. The allocation of plants in two greenhouse rooms was 

randomized to minimize the spatial variation that could be a result of the microclimatic 

variation in the greenhouse. 

Once the plants were moved to the Scanalyzer3D system, they were divided into two 

treatment groups: drought and control. Plants in each genetic line were divided equally 

between the control and the drought groups. The number of plants that failed to 

germinate or died during the experiment was taken into account while assigning 

treatments. 

The plants were watered daily using the automated watering system. The control 

plants were watered to 80% of field capacity whereas the drought plants were watered to 

40% of field capacity. Although the watering was done daily for all the plants, imaging 

was limited to every other day owing to logistical reasons. Imaging of all the plants in the 

greenhouse on a single day was not possible because of time constraints, especially 

because the images were taken only during daylight hours. This was done to capture the 

physiological activity of the plants during the day, and to avoid disruption to the 

circadian rhythm of the plants by subjecting them to bright lights of the imaging system 

after sunset.  

2.2 DATA COLLECTION 

Destructive sampling was conducted between 97 and 105 days after planting (DAP). This 

was done immediately after the plants were imaged in all of the chambers. As an 

additional measurement, a visible and near infrared spectrometer (Labspec, formerly 
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Analytical Spectral Devices, Boulder, Colorado, USA, now part of PANalytical) was 

used to collect the reflectance spectrum of the youngest mature leaf. The plant material 

above soil was cut and fractionated into stem and leaves. The fresh biomass weights of 

grain head (panicle at the tip of the plant which has a cluster of seeds), leaf and stem were 

then recorded, as well as total fresh weight. The stem was further fractionated into the top 

1/3, middle 1/3, and bottom 1/3 sections. The harvested plant tissue was dried at 50°C for 

72 hours in a walk-in oven, followed by the measurement of dry weight. The dry material 

was ground and passed through a 1-mm sieve, followed by the collection of another set of 

spectral data using the ASD Labspec spectrometer.  

2.3 CHEMICAL DATA 

Samples were selected for chemical analysis, and the dry tissue was ground and passed 

through a 1 mm sieve. The samples were sent to a commercial lab (Midwest 

Laboratories, Omaha, NE) for nutrient analysis. N was analyzed by Dumas method with a 

LECO FP428 nitrogen analyzer (AOAC method 968.06). Microwave nitric acid digestion 

followed by inductively coupled plasma spectroscopy was used for the other nutrients 

(AOAC method 985.01). 

In order to obtain the cell wall composition, van Soest method was followed to 

determine Neutral Detergent Fiber (NDF) and Acid Detergent Fiber (ADF) values (Van 

Soest & Wine, 1967). This is a traditional wet chemistry method that involves the 

digestion of plant tissue in neutral and acid reagents, followed by combustion for the 

determination of ash content. NDF is the residue after digestion in a neutral detergent 

solution, and it is composed of hemicellulose, cellulose, and lignin. ADF, which is 
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obtained after digestion in an acid solution gives the amount of cellulose and lignin 

present in the biomass. 

2.4 RGB IMAGE PROCESSING 

2.4.1 Image segmentation 

Image processing of both the RGB and the hyperspectral images was done by using 

Matlab R2017a (MATLAB and Image Processing and Computer Vision Toolbox Release 

2017a, The MathWorks, Inc., Natick, Massachusetts, United States). 

The RGB images were 8-bit images with a spatial resolution of 2454 rows and 

2056 columns. Side view images were taken from five different angles. Segmentation of 

these images was done by calculating a color index for each pixel and then using a 

threshold to derive a segmented image. The color index 2*G/(R+B) (where R, G, and B 

denote the intensity values in the red, green, and blue bands) was found to be effective in 

segmenting plant pixels from the background. A universal threshold of 1.1 was used. The 

resulting binary image was found to contain noise in the form of isolated noise as well as 

vertical stripes near the edge of the image. 

In order to remove the isolated noise, all connected components composed of less 

than 200 pixels were removed by using the function “bwareaopen.” The default 

connectivity used for the operation was 8, which means that two pixels are considered to 

be connected if they share an edge or if they share a corner. Thus, one pixel can be 

connected to at most 8 other pixels. 

 Next, in order to remove the vertical stripes, an algorithm was developed to 

identify connected components with pixels that comprised less than 40% of the total pixel 
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count of the image. This step was put in place such that large chunks of connected pixels 

would be removed, but the plant pixels would remain intact. The proportion (40%) was 

obtained by repeated trials which showed that the number of plant pixels was consistently 

greater than 40% of the total number of pixels. In spite of these precautions, connected 

components that are parts of a plant may also get classified as error. To solve this 

problem, the eccentricity and orientation of these connected components were obtained. 

Any component with an eccentricity greater than 0.98 and orientation of the main axis 

below 10° or above 85° were removed. This effectively removed the vertical stripes, as 

well as horizontal stripes that were also present in a small portion of the plant images. In 

order to avoid removing plant pixels during this process, the algorithm deleted the 

connected component only if the centroid of the component was in the outermost 20% of 

the rows or columns in any direction. Figure 2.1 shows the steps in segmentation of an 

RGB image with this process. 

The camera zoom setting for the RGB images was changed after 6th March 2017 

in order to avoid loss of data caused by leaves extending beyond the field of view. 

Because of this, one pixel represented an area of 2.41 mm2 after 6th March whereas it had 

represented 0.42 mm2 before the change in settings. Since the plant images acquired with 

the new settings occupied a smaller central area in the image, using a rectangular region 

of interest excluding the noise at the edges was not found to cause significant loss of data. 

Thus, a region of interest was used for these images instead of the algorithm described 

above. 

The pixel count of the segmented plant is simply the number of pixels that have 

been identified as plant pixels. This leads to a problem if we want to compare two images 
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that do not have the same levels of zoom. To avoid this problem, pixel count was 

converted into units of surface area by using the mm per pixel value available for each 

image from the imaging system. The mm per pixel values are available for the distance of 

the pot from the camera. These values were then used to calculate mm2  per pixel for each 

image.  

  

  

Figure 2.1 The sequential steps in segmentation of plant pixels from the 

background; the upper left panel shows the initial RGB image; the upper right 

panel shows the result after thresholding with the color index; the lower left image 

results after the morphological opening, and the lower right image is the final mask 

after removing the vertical stripe using algorithm based on eccentricity and 

orientation 
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The natural movement of the leaves as well as the rotation of the plant caused by the 

vibration of the pots was a possible cause of errors while comparing pixel counts or 

surface areas between two images of the same plant taken on different days. In order to 

alleviate this problem, the areas were calculated for images taken from all five side views 

for each plant and the areas were summed to get a grand total for each plant.  

This average area was used to create regression models for the prediction of fresh 

weight and dry weight. Linear and polynomial models were evaluated and the quadratic 

model was used because it was found to have the lowest RMSE value and the highest 

coefficient of determination value. The selected model was then used to predict the shoot 

fresh weight and dry weight for the series of image data available between 23rd February 

and 16th March. The prediction could not be done for images collected after 16th March 

because the tillers of the plants were removed to prevent disturbance to the movement of 

the conveyer belts. 

2.4.2 Relative growth rate and water use efficiency 

Relative growth rate (RGR) was calculated based on the shoot fresh weights estimated 

from the projected area of plants in the RGB images. The relative growth rate values 

were calculated by using the formula RGR =  
ln(W2)−ln (W1)

t2−t1
 where W1 and W2 are the 

estimated shoot fresh weight for the two days and t1 and t2 are the number of DAP for 

the respective days (Hoffmann & Poorter, 2002). In order to be able to compare the data 

for all the samples, the DAP values for the two greenhouse rooms were consolidated into 

one value. For example, DAP = 48 (from one greenhouse) and DAP = 49  (from the other 

greenhouse) would both be represented by one value. 
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For the determination of water use efficiency, a prediction model was created for the 

shoot dry weights, and the model was then used to predict the dry weights using the 

images before 16th March. The calculation of WUE was done as described by Ge et al 

(2016). The daily water consumption, or evapotranspiration (ET), was estimated as the 

total amount of water supplied and lost from the pot. This was calculated as the 

difference in pot weight by excluding the shoot fresh weight, i.e. 

ET = (W1after − FW1 + Wi) − (W2before − FW2) 

Here, W1after is the total weight of the pot after watering has been done on day 1, and 

W2before is the weight of the pot before watering has been done for day 2. FW1 and FW2 

are the shoot fresh weights estimated for day 1 and day 2. Wi is the weight of water 

supplied during the intermediate days, i.e. days on which imaging was not done but 

watering was done. The physiological water use efficiency was calculated on the basis of 

the amount of biomass accumulated per unit water supplied. The dry weight accumulated 

between days 1 and 2 was used as the measure of biomass accumulation. If DW1 and 

DW2 are the estimated shoot dry weights for days 1 and 2, WUE can be defined as 

WUE =  
DW2 −  DW1

ET
 

Analysis of variance was conducted to see the effect of drought stress and sorghum 

variety on relative growth rate and water use efficiency of the plants. A factorial design 

was used with the drought level and sorghum variety as the two factors. In order to rank 

the genotypes by RGR values, a ratio of average RGR for drought plants to the average 

RGR for control plants was calculated for each genotype. The same process was followed 

for WUE values. The genotypes were also ranked by the fresh weights recorded during 
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the time of harvest. A ratio of fresh weights for plants subjected to droughts to fresh 

weights for control plants was also calculated.  

All statistical analyses were done using the R statistical computing environment. 

2.5 HYPERSPECTRAL IMAGES 

2.5.1 Image acquisition 

Hyperspectral images collected immediately before the terminal sampling of the 

plants were used for the chemical analysis.  

 

Figure 2.2 Setup of the hyperspectral imaging chamber 

The imaging system consists of a push-broom type VNIR (visible and near infrared) 

scanner that collects images at wavelength bands between 546 nm and 1700 nm 

(Headwall Photonics, Fitchburg, MA, USA). One hyperspectral image cube consists 

of a total of 243 image bands, with a spectral sampling resolution of 4.7 nm per 

band. The scanning is done by a rotating mirror which sequentially exposes the 
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horizontal lines in an image from the top to the bottom. The resulting images have a 

spatial resolution of 420 rows by 320 columns. The images are taken against a 

white background, with lighting on the ceiling and on the wall behind the camera. 

Figure 2.2 shows the setup of the hyperspectral imaging chamber. As shown in 

the figure, the chamber is illuminated by two banks of halogen lamps (35W, color 

temperature 2600 K), located on the ceiling above the plant and on the wall behind the 

imaging system.  

2.5.2 Segmentation 

The segmentation of plant pixels in the hyperspectral images was achieved by 

making use of the rapid increase in reflectance of vegetation at the “red edge” of the 

electromagnetic spectrum. Red edge NDVI values are calculated by taking a 

normalized difference between the reflectance at a near infrared band and a red 

band. Here, the NDVI values calculated for 680 nm (red band) and 800 nm (near 

infrared band) were found to separate the plant pixels well from the non-plant pixels 

in the hyperspectral images. A global threshold of 0.25 was used to get a binary 

mask from this image, where the higher values belonged to the plant pixels. This 

binary mask was then used for segmentation of each image bands in the 

hyperspectral cube. 

Stem and leaves were fractionated in the image by using the reflectance 

values at 1056 nm and 1146 nm. The ratio of pixel intensities at 1056 nm to the 

intensities at 1146 nm produced an image with the leaves and stem well separated. 

Using a global threshold value of 1.1, a binary mask to segment the stem was 
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obtained. This binary image was used with the mask for the whole plant to get the 

mask for the leaves. The stem section was manually divided into the top 1/3, the 

middle 1/3, and the bottom 1/3 of the length in order to have spectral data 

corresponding to the samples collected from different plant sections. For images of 

plants that had a grain head on the day of sampling, the pixel intensities for the 

grain head were not included in the top section of the stem. The complete 

segmentation process is shown in Figure 2.3. 

Since the spectral information extracted from the images was in the form of 8-bit 

pixel intensity values, noise present in the images was directly observable in the extracted 

spectra. Moreover, the spectra did not represent true reflectance values. In order to 

convert to reflectance, the intensity values were divided by reference values extracted 

from the images. This was done by selecting a rectangular region in the image 

background that did not contain the plant, and extracting “reference” spectra from the 

selected pixels. Once the reflectance spectra were obtained in the form of ratios, noise 

reduction was done by a moving average. This resulted in a dataset that contained a 

unique spectrum for each section of a plant. 

2.5.3 Chemometric models 

Partial least squares regression (PLSR) was the statistical technique used for 

developing models for the estimation of plant chemical properties from spectral 

data. PLSR is a generalized technique of multiple regression which is suited for 

spectral data because of its ability to perform well with data that contains highly 

correlated variables, and its robustness in the presence of noise. It is regarded as a 

standard in the field of chemometrics, and in case of vegetation, PLSR models built 
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with hyperspectral data outperform regression models based on traditional spectral 

indices (Atzberger, Guérif, Baret, & Werner, 2010; Wold, Sjöström, & Eriksson, 

2001). 

 

Figure 2.3. Flowchart showing the steps in hyperspectral image segmentation 
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PLSR models were built using the spectral data collected from two methods: the 

spectral data collected from dried and ground biomass, and the spectral data 

extracted from the images. The spectral data from both sources were used to build 

models for all of the chemical properties: macronutrients (N, P, and K), NDF, and 

ADF. Since the data extracted from hyperspectral images had a smaller range of 

wavelengths and a lower spectral resolution, the spectral data of the dried biomass 

(obtained using a spectrometer) were resampled so that the model performance 

could be compared. 

The scheme of leave one out cross validation was used for the determination 

of the optimum number of variables used in the PLSR models. The smallest RMSE 

value was taken as the criterion for the selection of this number. As measures of the 

performance for the different models, RMSE values of cross validation, R2 values, 

and ratio of performance to deviation (RPD) values were calculated. Leave-one-out 

scheme of cross validation was used since the number of samples was not large 

enough for separation into calibration and validation sets. 

Pairwise score plots for the first three principal components were created for 

the spectral data to identify outliers and to observe underlying patterns in the data. 

No spectral outliers were observed. 
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 CHAPTER 3 

   RESULTS AND DISCUSSION 

 

3.1 SHOOT FRESH WEIGHT 

The values of the shoot fresh weight in gram are presented in the boxplots in Figure 3.1 

(a). The separation is shown between the group subjected to drought stress (M = 106.91, 

SD = 62.11), and the control group (M = 220.36, SD = 126.60). The difference in the 

mean fresh weights, displayed in figure 3.1 (a), was found to be significant according to 

Welch’s two sample t-test (t(187.27) = 9.45, p < 2.2 x 10-6).  Figure 3.1(b) shows the 

boxplots for the area of plant pixels in the RGB images, averaged for the five side views. 

An analysis of variance indicates significant main effects of both the water treatment 

(F(1, 206) = 274.94, p < 0.0001), and the genotype (F(30,206) = 17.86, p < 0.0001). It 

also shows significant interaction effects, (F(29,206) =  5.36, p < 0.0001).  

 

 

    

 

 

Figure 3.1. (a) Boxplots demonstrating the distribution of fresh shoot weights in the 

drought stressed group D and control group C (b) Distribution of the average area 

in square millimeters covered by plant pixels on the RGB images; the areas from 

five side view images have been averaged 
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Figure 3.2. Boxplots demonstrating the distribution of fresh shoot weights in the 

drought stressed and control groups for each genotype in the experiment 
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In order to investigate the simple effects of the drought stress and genotype, boxplots 

showing distribution of data for different genotypes in both the control and drought 

groups are shown in Figure 3.2. The weights for plants from all of the sorghum lines are 

lower for the drought stressed plants, but variations can be observed in the effect of this 

treatment. 

3.2 ESTIMATION OF FRESH SHOOT WEIGHT FROM RGB IMAGES 

Figure 3.3 shows the correlation between aggregated area from plant images and the 

shoot fresh weight, r(276) = 0.91, p<0.0001. The plants that had a head at the time of 

imaging and sampling and the plants that did not have a head are represented by different 

symbols. 

 

 

Figure 3.3. Correlation between total shoot fresh weight and the sum of area 

occupied by plant pixels in the five side view images. 
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The linear regression model has an R2 value of 0.83, and an RMSE value of 45.55. The 

distribution of points in the graph clearly indicates that the plants with a head and those 

without a head have different distributions. This can be attributed to the higher density of 

the grain heads, which means that the heads occupy a relatively smaller area in the image 

but constitute a disproportionately large fraction of the total shoot weight. The two 

groups can be seen separating to a greater extent as the weights increase, because the 

weights for the heavier plants with the grain head tend to be concentrated in the grain 

heads. As the heads increase in size, the weight per pixel ratio keeps increasing. For a 

sample of 65 plants, the gram per pixel values for head pixels had a mean and standard 

deviation of 0.0072 and 0.0031, respectively; whereas the gram per pixel values for non-

head pixels had a mean and standard deviation of 0.0034 and 0.0008 respectively. 

 

Figure 3.4. Correlation between total shoot fresh weight and the sum of area 

occupied by plant pixels for plants before head emergence 
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Figure 3.4 shows the correlation between shoot fresh weight and total area for the plants 

harvested before emergence of a head. The R2 value increases to 0.902, and the RMSE 

value decreases to 37.36 g. The four isolated points on the upper right were investigated 

to detect the cause of their extreme values. All four points were found to be from the line 

E1, and all four plants were control plants. The correlation diagram was drawn only for 

E1 plants to see if there were anomalies to be detected. Figure 3.5 shows the points for 

the plants from the line E1. The images for these specific plants were also reviewed, and 

no special difference was observed except for the fact that these were relatively bigger 

plants. Figure 3.6 also shows the correlation for plants with a grain head present at the 

time of harvest. 

 

Figure 3.5. Correlation diagram for plants belonging to the line "E1" The plants in 

the control group are denoted by "C" whereas the plants in the drought group are 

denoted by "D" 
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Figure 3.6. Correlation between total shoot fresh weight and the sum of area 

occupied by plant pixels for plants with emerged head during sampling 

In Figure 3.4, the points appear to follow a polynomial trend rather than a linear one. A 

quadratic model was built to observe if it would fit better with the data. The resulting 

quadratic model is displayed in Figure 3.7. As expected, the quadratic model appears to 

fit the data better. It also has a higher R2 value, and RMSE is reduced. This also removes 

the concern of the negative intercept present in the linear model. This model was selected 

for the estimation of shoot fresh weight in analyzing the time series data. The total 

number of data points used for building the model was 113.   
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Figure 3.7. Shoot fresh weight and aggregated area used to fit a quadratic model 

3.3 ESTIMATION OF SHOOT DRY WEIGHT 

A quadratic model was similarly found to fit satisfactorily with the dry shoot weights. 

Figure 3.8 shows the quadratic model for the estimation of dry weights. Again, the 

images of plants before the emergence of grain head were used. 

3.4 RELATIVE GROWTH RATE ANALYSIS 

For the available relative growth rates between DAP 49 and 70, analysis of variance was 

done for each day with the treatment and variety as the independent variables. The DAPs 

used for the analysis were 53, 55, 58, 60, 62, 64, 66, and 68. The data for day 51 was 

available, but the factorial ANOVA could not be carried out because the drought 

treatment was started on 53 DAP. On DAP 51, one-way ANOVA was conducted and 

RGR was found to be significantly different among varieties, F(29,186) = 1.63, p = 0.03. 
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Figure 3.8. Shoot dry weight and aggregated area used to fit a quadratic model 

On 53 DAP, the treatment effect is still insignificant, F(1,166) = 0.02, p = 0.88. This was 

to be expected because the effect of the drought stress was not yet apparent. A study of 

the watering data confirms the fact that pot weights for plants under drought treatment 

was not noticeably lowered until at least two watering cycles. Variety was found to have 

a significant effect for DAP 53, F(29,166) = 4.24, p = 1.4x10-9). 

Significant effect of treatment is seen on RGR starting on 55 DAP, F(1,178) = 

7.02, p = 0.008. This is the point at which the pots with plants subjected to drought would 

have lost enough water through evapotranspiration such that the plants were under stress. 

This is further supported by the fact that the treatment effect becomes highly significant 

with time. The F statistics and the p values yielded for DAP 58 to 68 are shown in Table 

3.1. 
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Table 3.1 Results of the factorial ANOVA for RGR values for control and drought-

stressed groups, from DAP 58 to 68 

DAP               Treatment                  Variety 

58 F(1,177) = 18.16, p =3.3x10-5 F(29,177) = 1.56, p = 0.04 

60 F(1,180) = 79.71, p = 4.9x10-16 F(29,180) = 4.23, p = 9.1x10-10 

62 F(1,169) = 135.32, p < 2.2x10-16 F(29,169) = 5.16, p = 3.1x10-12 

64 F(1,164) = 191.12, p < 2.2x10-16 F(29,164) = 4.09, p = 3.7x10-9 

66 F(1,172) = 175.92, p < 2.2x10-16 F(29,172) = 3.75, p = 3.1x10-8 

68 F(1,163) = 110.92, p < 2.2x10-16 F(29,163) = 2.09, p = 0.002 

 

Figure 3.9 shows the plots for relative growth rates of plants subjected to drought 

treatment and the control between DAP 51 to DAP 68. The plot marked “C” represents 

the average of values in the control group whereas the plot marked “D” represents the 

average in the drought group. 

The plots show a gradual change in the relationship between the growth rates for 

the two groups. The difference between the two groups increases as the effect of drought 

becomes more pronounced with time. This information can also be derived from table 3.1 

where the p-value rapidly decreases implying an increasing difference between the mean 

of two groups.  

The fluctuating values of RGR can also be observed in Figure 3.9, for plants 

under drought stress as well as for the control group. For instance, the RGR values for 62 

DAP noticeably increase to higher values before they decrease again on subsequent days. 

Since the fluctuation occurs for all of the plants on a particular day, it can be concluded 

that this change in RGR values is driven by environmental conditions.  
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The effect of genotype is found to be significant on all of the days included in the 

analysis. This trend was also verified by the growth rate of the different genotypes 

observed in the greenhouse as well as in the collected images. The biomass accumulation 

rate, as well as the final weight of the plants during harvest varied greatly across different 

genotypes.   

3.5 CLIMATE DATA 

The data on temperature, relative humidity, and radiation intensity recorded in the 

greenhouse during the days of growth were plotted to see if extreme changes in 

environmental conditions had occurred. Figure 3.10 shows the change in these values 

with time. The values for daytime temperature and relative humidity approach a peak 

between DAP 58 and DAP 64. During this period, the growth rates for plants under 

drought stress as well as for the plants in the control group are noticeably in an increasing 

trend as seen in Figure 3.9. 
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Figure 3.9 Relative growth rates for the control and drought groups from DAP 58 to 

DAP 68. "C" stands for the control group and "D" stands for the drought group; 

error bars show a 95% confidence interval for the mean 
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Figure 3.10. Changes in greenhouse environmental factors during the analysis 

period. 
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3.6 WATER USE EFFICIENCY 

Water use efficiency (WUE) was calculated for the days between DAP 51 and 68. The 

WUE values were found to be greatly fluctuating not only with changes in genotype or 

presence of drought, but also with time, possibly due to the environmental effects. 

In order to investigate whether a pattern in WUE values could be detected with respect to 

genotype, 58 DAP was chosen. The plant genotype had a significant effect on WUE 

value on this day, ((F(29,178) = 2.1044, p = 0.0017), whereas the effect of drought stress 

was not found to be significant, (F(1,178) = 1.1554, p = 0.2838). Figure 3.11 shows the 

boxplots of WUE values for the plants under drought stress and control groups for 58 

DAP. 

Figure 3.11.  Boxplots showing the distribution of WUE values in the control and 

drought groups for day 58. 
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Figure 3.12 shows the boxplots of the WUE values separated by drought and control, and 

also by the genotype. A few preliminary observations are possible if we look at the 

differences existing in the distributions of WUE values for the plants from the same line. 

For example, the line E3 appears to have higher values of WUE for plants subjected to 

drought compared to the values for plants in the control group. The results of a Welch’s 

two sample t-test shows marginally significant effect of the drought stress (t(3.91) = 2.62, 

p = 0.060). The line E8 has distributions tending towards higher values for plants in the 

control group compared to the plants under drought stress. The results of the t-test show 

an insignificant difference between the two groups, (t(3.68) = 1.36, p = 0.251). The 

variation in WUE values is clearly affected by both the genotype and the presence of 

drought stress. 
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Figure 3.12. Boxplots showing the difference in WUE values by treatment and 

variety for DAP 58 
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3.7 RANKING OF GENOTYPES 

Figure 3.13 shows barplots of RGR and WUE ratios for the different genotypes. The 

RGR ratio is calculated by dividing the RGR values for drought stressed plants by the 

RGR values for plants in the control group. The same procedure is followed for 

calculating the WUE ratio. 

  

Figure 3.13. Barplots showing the ratio of RGR and WUE values for different 

genotypes; the values for drought plants are divided by the values for control plants 

to derive the ratios 
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Since the principal trait of interest is the biomass yield of the sorghum plants, similar 

ranking was done for the total fresh weight of the plants at the time of harvest. Figure 

3.14 shows the barplots for the average fresh weights by genotype.  

 

Figure 3.14 Barplot showing the average biomass yield by genotype 

We do not see a direct correlation in the values of RGR and WUE ratios and the total 

biomass yield. This is to be expected since the ratios can be high for genotypes that are 

better at adapting to drought, but may still be unproductive in terms of biomass.  
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3.8 CHEMICAL ANALYSIS 

The concentrations of macronutrients (N, P, and K), and the NDF and ADF values 

obtained from different plant sections are shown in Figure 3.15. N, P, and K are in 

percentage units, whereas NDF and ADF values are the ratios of the NDF and ADF 

weight to the total dried biomass weight. The difference in the nutrient concentration 

among different plant tissues as well as the difference in cell wall composition can be 

clearly observed in the boxplots. Groups labeled with different alphabets are significantly 

different according to the Tukey Honest Significant Difference test (at significance level 

0.05).  

The plots for all the chemical properties show the leaf samples are different from 

the stem samples. Variation among the different stem sections can also be seen in some 

chemical properties such as potassium. This variation in chemical concentration among 

plant sections is one of the rationales for the use of two dimensional plant images in 

chemical phenotyping. 

3.9 PLSR MODELING WITH SPECTROMETER DATA 

The pairwise score plots of the first three principal components of the spectra obtained by 

scanning the dried and ground samples with the ASD spectrometer are shown in Figure 

3.16. The plots show that the leaf spectra are well separated from the stem spectra in plots 

of PC1 vs. PC2 and PC1 vs. PC3. 

The stem sections, however, do not seem to have obvious separation in these PC 

spaces. This is largely in agreement with the observation of chemical data, where the 
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difference between the leaves and the stem sections was found to be more prominent than 

that among different stem sections.  

  

 
 

 

 

Figure 3.15. Boxplots showing the distribution of chemical properties in different 

plant sections. Plots marked with different alphabet labels are significantly different 

according to Tukey Honest Significant Difference test at significance level 0.05. 
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The results of the PLSR modeling using the spectrometer data are shown in Figure 3.17 

and Table 3.2. The modeling was done after removing the spectral bands corresponding 

to the first 100 wavelength bands, where the signal was found to be noisy. Thus, the 

effective spectral range for these models was from 450 to 2500 nm. Figure 3.17 shows 

the coefficients of the regression models built for each chemical properties. 

The four plots (corresponding to N, P, K, and NDF) show a distribution of heavily 

weighed variables throughout the wavelength range, whereas the plot of the coefficients 

for the ADF model peaks near the lower end and tends to zero for most of the wavelength 

range. Since this implies that most of the variables in the ADF model are weighed 

extremely low, we can assume that the model built for ADF will possibly be less robust. 

This is verified later by the results presented in Table 3.2.  

  

 

Figure 3.16. Score plots of the first three principal components. The samples 

from different sections (leaf, bottom, mid, and top) of the plants are shown with 

different legends. 
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Table 3.2. Cross validation results for N, P, K, NDF, and ADF with PLSR modeling 

using spectra from the ASD spectrometer. 

Chemical 

properties 

No. of 

samples 

Model 

size R2 RMSEP RPD 

Nitrogen 116 116 0.89 0.28 2.98 

Phosphorus 115 13 0.49 0.09 1.53 

Potassium 116 13 0.61 0.70 1.60 

NDF 126 11 0.62 0.05 1.62 

ADF 52 1 0.13 0.09 1.08 

 

From Table 3.2, we can see that the model for nitrogen performed the best with the R2 

value of 0.89. Potassium, NDF, and phosphorus models were found to be fairly accurate. 

The RPD value is commonly used as a criterion for model performance. RPD values 

between 1.5 and 2 are considered to be of fair quality for quantitative prediction. The 

model with the RPD value below 1.4 (or a corresponding R2 value less than 0.5) is not 

suitable for quantitative prediction. Here, the model for ADF is found to be inadequate 

according to this criterion. However, models unsuitable for quantitative prediction can 

still be useful for qualitative screening, and their performance can be improved if 

potential areas of improvement are identified.  
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Figure 3.17. Regression coefficients of the PLSR models built for prediction of 

chemical concentrations using the spectral data from the ASD spectrometer. 
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A review of recent development in NIR spectroscopy for plant mineral characterization 

was presented by van Maarschalkerweerd & Husted ( 2015). They presented a summary 

of the results from various studies involving Vis-NIR spectroscopy of plant material. 

Table 3.3 is a condensed form of this table where the studies involved have all used dried, 

ground material. The wavelength range used in the study, the plant material, and the RPD 

values of the models formed by using RMSEP (or RMSECV) are shown in the table. 

Across the studies, the models for nitrogen are found to be the most accurate, 

although the accuracy greatly varies among the different studies. This is in agreement 

with our results. The variation of the model accuracy among different species is to be 

expected because the response of the plant material to the electromagnetic spectrum 

depends on a large number of factors that may not be directly related to the concentration 

of a particular nutrient. An element may be present in a compound that does not respond 

vibrationally to the incoming radiation; but since the element will still be detected in the 

laboratory analysis, this can decrease the accuracy of the model. The presence of biotic or 

abiotic stress can also affect the interaction of molecules with the incoming light. The 

presence of a large number of sorghum genotypes in this study led to a great variation in 

the concentration of the nutrients, but the underlying changes in the plant physiology and 

structure could act against the effectiveness of the models. The prediction plots of the 

models are shown in Figure 3.18. 
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Table 3.3 Summary of studies on Vis-NIR calibration for the estimation of nutrient 

concentrations using dried and ground biomass. 

Author Wavelength 

range 

Plant material RPD 

N P K 

Agnew, Park, Mayne, 

& Laidlaw, 2004 

400–2500 Dry, ground 

ryegrass 

6.5   

Chen et al., 2002 400-2500 Dry, ground 

sugarcane leaves 

 1.7  

Cozzolino & Moron, 

2004 

400-2500 Dry, ground 

Lucerne, and clover 

   

de Aldana, Criado, 

Ciudad, & Corona, 

1995 

1100-2500 Dry, ground grasses 3.9 1.5 1.8 

Huang, Han, Yang, & 

Liu, 2009 

400-2500 Dry, ground or cut 

wheat and rice straw 

  1.7 (cut) 

 

2.6 

(milled) 

Liao, Wu, Chen, Guo, 

& Shi, 2012 

1100-2500 Dry, ground tree 

leaves 

2.5 1.4 1.2 

Petisco et al., 2005 1100-2500 Dry, ground tree 

leaves 

4.3 2.3  

Petisco et al., 2008  1100-2500 Dry, ground tree 

leaves 

  2.4 

Ward, Nielsen, & 

Møller, 2011 

830-2500 Dry, ground grasses 1.8 1.4 1.8 
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Figure 3.18. Plots showing the predicted chemical concentration against lab 

measured values for N, P, K, NDF, and ADF. 
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The prediction models for NDF, ADF, and their constituent sugars and lignin presented 

in the literature have been found to perform well (Li, Sun, Zhou, & He, 2015; Wiedower 

et al., 2009). Although differences in the model accuracy are expected, performance of 

the ADF model in the current study was found to be particularly low. A number of 

possible causes were identified. First, the ADF model has the smallest number of 

samples. As seen in Figure 3.15, the leaf chemical characteristics were found to greatly 

differ from the stem characteristics, and the models that pool them together may suffer 

from the inherent difference in the properties of these tissues.  

Table 3.4 shows the results of modeling the leaf samples and the stem samples 

separately for the nutrients and NDF values. The sample size for ADF data was too small 

to be divided into two groups for modeling. Most of the models built using these data sets 

perform poorer than the models formed with the overall data, potassium being the only 

exception.  

Table 3.4 Cross validation results for N, P, K, and NDF models built separately for 

leaf and stem samples. 

Chemical Stem samples Leaf samples 

No. of 

samples 

Model 

size 

R2 RMSEP RPD No. of 

samples 

Model 

size 

R2 RMSEP RPD 

Nitrogen 76 13 0.84 0.31 2.53 40 7 0.66 0.26 1.75 

Phosphorus 75 7 0.36 0.093 1.26 40 9 0.42 0.09 1.34 

Potassium 76 14 0.66 0.71 1.74 40 13 0.72 0.28 1.95 

NDF 79 8 0.59 0.05 1.58 47 7 0.15 0.06 1.08 

           

The models for the NDF values show the biggest contrast between the stem and leaf 

samples. The performance measures for the stem model change slightly indicating a 
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lower accuracy, whereas the change in the leaf model is much more dramatic. It has the 

coefficient of determination value of 0.15 compared to 0.62 for the combined model and 

0.59 for the stem model. This indicates that the signals in the leaf spectrum corresponding 

to the sugars and lignin in the NDF content are masked by other compounds present in 

the leaves, but not in the stem.  

3.10 PLSR MODELING WITH IMAGE DATA 

The spectral data extracted from the hyperspectral images can be expected to vary from 

the data obtained using the spectrometer since the images are taken in vivo whereas the 

spectrometer scans are taken with the dried and ground biomass. In order to visualize the 

difference between the two datasets, the spectrometer data was first truncated and then 

resampled to bring it to the same range and spectral resolution as the image data. The 

principal component scores of the combined dataset are shown in Figure 3.19. Here, the 

data points from the spectrometer and the image data are represented by different 

symbols in the plot. Different symbols are also used for the leaves and the various stem 

parts. Convex hulls show the distribution of the variables according to plant parts.  

As expected, distinct clusters for the leaves and the stems are observed, whereas 

the different parts of the stem are not easily separable. Also the spectrometer spectra are 

well separated from the image spectra. Although the stem sections overlap to a great 

extent, they also show some separation, possibly caused by the difference in chemical 

properties among the stem parts.  

The difference in the spectral properties of the stem and the leaves seen in the 

hyperspectral images is also the basis for the separation of leaf pixels and stem pixels in 
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this study. However, the ratio used for this process involved two distinct wavelength 

bands, whereas the principal component scores shown in Figure 3.19 summarize the 

overall variation of the entire spectra. 

 

Figure 3.19. Score plots of the first two principal components of the combined 

spectral data from the spectrometer scans and hyperspectral image processing. 

The results of the PLSR models built using the image data are shown on Table 3.5. The 

results of the ADF modeling were not shown because of the poor results. Here, nitrogen 

is modeled the best, followed by phosphorus. The accuracy of all of the models is 

reduced in comparison to the models built using the spectrometer data except for the 

phosphorus model.  
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Table 3.5 Cross validation results for N, P, K, and NDF models built using the image 

data. 

Chemical No. of 

samples 

Model 

size 

R2 RMSEP RPD 

Nitrogen 120 10 0.66 0.49 1.72 

Phosphorus 119 15 0.52 0.09 1.46 

Potassium 120 3 0.33 0.90 1.23 

NDF 130 6 0.36 0.06 1.25 

 

It is natural for the spectrometer data to produce a better prediction model because the 

spectra were obtained from the dried and ground biomass which was subsequently used 

for chemical analysis. The image data and the results of the chemical analysis did not 

have this advantage because the images were taken when the plants were still alive. Also, 

the wavelength range and the spectral resolution of the spectrometer data are superior to 

those of the image data, and this is reflected in the accuracy of the prediction models.  

In order to study the underlying differences in the prediction models built for 

different plant parts, the prediction models for leaf and stem samples were acquired 

separately as shown in Table 3.6.  

The scatterplots of the predicted chemical concentrations against the measured 

concentrations are shown in Figure 3.20. The analysis consistently showed better 

performance of the stem models, which was particularly obvious in the models for 

phosphorus and NDF which could not give practical results in case of leaf, but performed 

near the same level of accuracy as the combined models in case of stem. One exception 

was the potassium model which had better accuracy with the leaf data whereas the stem 

model had a slightly lower accuracy.  
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Figure 3.20. Plots showing the predicted chemical concentration against lab 

measured values for N, P, K, and NDF using the PLSR models built from image 

data 

In case of nitrogen, the stem model was found to perform even better than the model built 

using the combined dataset. This is in agreement with the results obtained by modeling 

with the spectrometer data. However, since the majority of the plant pixels in the image 

are leaf pixels, and since the thickness of the stem prevents us from collecting the 

reflectance signal thoroughly, leaf spectra would be expected to produce a better 
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prediction model. The weakness of the model for leaf data could result from the fact that 

the large number of leaf pixels belong to leaves of all growth stages, and since nitrogen 

distribution in a plant is not uniform, the average spectrum obtained from overall leaf 

pixels might not represent the average chemical composition well. 

Table 3.6 Cross validation results for N, P, K, and NDF models built separately for 

leaf and stem samples using image data. 

Chemical Stem samples Leaf samples 

 No. of 

samples 

Model 

size 

R2 RMSEP RPD No. of 

samples 

Model 

size 

R2 RMSEP RPD 

Nitrogen 77 15 0.70 0.43 1.81 43 15 0.58 0.28 1.58 

Phosphorus 76 14 0.50 0.08 1.43      

Potassium 77 4 0.27 1.05 1.18 43 4 0.38 0.41 1.29 

NDF 80 8 0.27 0.06 1.11      

           

While the NDF models for both the stem and the leaves suffered from the separate 

modeling of the leaf and stem data, the reduction in accuracy of the model with leaf data 

was extreme, and there was a lack of even a basic fit. Again, this result is similar to the 

one obtained from the models built using the spectrometer data. 

3.11 PLSR WITH RESAMPLED SPECTROMETER DATA 

Table 3.7 shows the results of the models built using the spectrometer data after it was 

reduced to the spectral range and wavelength of the image data. The reduction in the 

accuracy of each model is visible when compared to the models built using the complete 

spectra. However, the models still perform better when compared to the ones built using 

the image data.  
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Table 3.7 Cross validation results for N, P, K, and NDF models built using the 

resampled spectrometer data. 

Chemical No. of samples Model 

size 

R2 RMSEP RPD 

Nitrogen 116 13 0.81 0.37 2.29 

Phosphorus 115 15 0.46 0.09 1.49 

Potassium 116 15 0.56 0.74 1.51 

NDF 126 14 0.57 0.05 1.54 

 

All of the models except for phosphorus have a higher accuracy compared to the models 

built using the image data. This proves that the reduction in accuracy when moving from 

the spectrometer data to the image data is not only caused by the reduction in spectral 

range and wavelength, although it is certainly one of the important reasons. 

The stem and leaf models were also created separately using the resampled data. 

As shown in table 3.8, the results for the NDF model were similar to the ones obtained 

for the image data, i.e. the leaf model was found to be ineffective. The NDF model for 

stem samples did not suffer this reduction in accuracy to the same extent.  

Table 3.8 Cross validation results for N, P, K, and NDF models built separately for 

leaf and stem samples, using the resampled spectrometer data. 

Chemical Stem samples Leaf samples 

 No. of 

samples 

Model 

size 

R2 RMSEP RPD No. of 

samples 

Model 

size 

R2 RMSEP RPD 

Nitrogen 76 15 0.80 0.35 2.24 40 2 0.52 0.31 1.47 

Phosphorus 75 10 0.34 0.09 1.25 40 4 0.36 0.10 1.27 

Potassium 76 11 0.63 0.75 1.65 40 10 0.61 0.34 1.62 

NDF 79 13 0.59 0.05 1.58 47 2 0.08 0.06 1.03 
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Figure 3.21. Plots of chemical concentrations predicted by PLSR models built with 

resampled spectrometer data against lab-measured values for N, P, K, and NDF. 
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 CHAPTER 4 

CONCLUSIONS AND FUTURE WORK 

 

The objectives of the discussed study can be divided into two major components. The 

first component involves the use of RGB images for the study of growth and water use 

efficiency, and the second component involves the use of hyperspectral images for in vivo 

chemical analysis. Spectral data collected by using a visible-near infrared spectrometer 

was also used as a “reference” for the chemometric models built for in-vivo chemical 

analysis. 

In using RGB images for the analysis of growth, the conventional method of 

correlating the projected plant area to the plant shoot weight was found to be satisfactory. 

The study of relative growth rate showed that non-destructive analysis of the rate of 

biomass accumulation is possible with the use of plant images taken periodically through 

the growing season. The trend observed in the difference in relative growth rate between 

the unstressed and drought-stressed groups showed that this method of analysis can 

potentially be implemented for the study and selection of stress-tolerant varieties, or at 

least for the non-destructive quantification of the rate of biomass accumulation. 

The results from the analysis of water use efficiency, calculated here as the rate of 

biomass accumulation per unit evapotranspiration, resulted in highly fluctuating values. 

This was generally expected because the rate of biomass accumulation depends not only 

on the total amount of water supplied, but also on a number of other environmental 

effects such as temperature, humidity, and the amount of incoming radiation.  



61 

 

An attempt was made to study the environmental effects of the temperature, humidity, 

and photosynthetically active radiation on the relative growth rates of the plants. The 

available data showed some indication of the relative growth rate values shifting upwards 

with an increase in the temperature, humidity, and photosynthetically active radiation. 

The shift in values occurred for plants across the treatment groups (drought and control) 

and across all the genotypes, suggesting that environmental effects were at play. 

However, the effect of greenhouse climatic conditions could not be quantified in this 

study, and a more elaborate experiment could potentially pinpoint the sources of 

variation. 

A potential problem in using the RGB images for growth rate analysis is the 

higher rate of error in projected area estimation when the plants are extremely small. This 

is a serious issue when dealing with a large database of images and automatic algorithms 

because such errors may go unnoticed. One other problem that we face in dealing with 

growing plants is the change in distance of plant tissue from the camera, which was one 

of the reasons for the exclusion of top view images from this study. Since the projected 

area is calculated from the millimeter per pixel values, when the plant pixels are collected 

from different distances, the rate of error increases. This is however a fundamental 

problem with two dimensional imaging which cannot be solved unless we also 

incorporate depth values into the model. Moreover, in correlating the dry weight with 

projected plant area, the relationship between the image and the dry weight is indirect 

since the image is taken when the plant is fresh. This leads to a problem in some cases 

where plants are subjected to extreme drought where the projected area can slightly 
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decrease due to the shrinking of leaves, but the total dry biomass cannot be expected to 

decrease.  

The analysis of the time series data had to be limited to about three weeks because 

of the need for removal of tillers which caused interference in the movement of pot 

carriers on the conveyer belts. If tiller removal could be avoided, a longer and more 

informative series of data could be obtained for analysis. 

The analysis of chemical concentration using hyperspectral images also showed 

some promising results. The results of the chemical analysis as well as the extracted 

spectra showed the contrast in properties between the leaf and the stem. As expected, the 

accuracy of the prediction models built from image data was lower than the accuracy of 

models built using the data from spectrometer scans. The prediction model for nitrogen 

built from the image data, for example, was found to be fairly suitable for quantitative 

prediction according to the RPD criterion. The separate modeling of leaf and stem 

samples resulted in contrasting results between the two groups. In case of nitrogen, the 

model for stem outperformed the model for leaf, whereas the potassium model for leaf 

was more accurate than the one for stem. These results validate the separation of plant 

tissues for modelling purposes as opposed to grouping all of the plant pixels together. 

Based on previous experience using the same imaging system with maize and 

soybean, the prediction models for macronutrients were expected to approach the 

accuracy shown by the models built using spectrometer data (Pandey, Ge, Stoerger, & 

Schnable, 2017). However, a large part of the error in the models could result from issues 

with reference image acquisition. While the study with maize and soybean was done 

using blank images taken immediately before the plant image as reference, the spectrum 
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derived from a rectangular portion of the same plant image was used to derive the 

reference spectrum in this study. This does not account for the spatial variation in lighting 

that is seen in the imaging chamber, which can only be accounted for by taking a pixel by 

pixel reference. Also, the previous study made use of 16 bit images whereas 8 bit images 

were used in this study. This can cause a significant difference in the amount of available 

information and thus reduce the accuracy of the models. A study with different 

referencing methods as well as different bit depths could conclude the exact effects of 

these variables on model accuracy. 

For the characterization of cell wall composition, NDF model built using the 

image data was again found to be much weaker than the one built using the spectrometer 

data. The separation of stem and leaf samples for modeling resulted in extremely poor 

results for the leaf model whereas the result for the stem model was slightly worse than 

for the combined model. This is not an intuitive result since the stem section has very few 

pixels in the image, and the errors associated with processing fewer pixels can be 

expected to be larger. One explanation for the inability of the model to work for leaf 

samples could be the presence of compounds that mask the effect of these particular 

chemicals on the incoming spectra. Since all of the leaf pixels, which belong to young as 

well as mature leaves, are grouped together to generate a single spectrum, the difference 

in chemical properties among the many leaves can be a possible cause of the weakness of 

the models.  

The model for the prediction of ADF was found to be the poorest performing 

model, and was found to be ineffective. The majority of the samples used in the ADF 
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analysis came from the leaves, and observing the poor results of the NDF model for 

leaves, this could be one reason for the poor performance of the ADF model.  

Overall, the prediction models built using the hyperspectral images were found to 

be effective for quantitative prediction, or were found to be promising considering the 

limitations of the current study. The study showed that the independent analysis of 

different plant tissues was possible using hyperspectral images. This result has an 

important implication in the study of plant chemical phenotyping since concentration can 

potentially be studied at the pixel level. This would enable us to have useful insights into 

the distribution and translocation of nutrients and other chemicals within the plant tissues. 

Rapid non-destructive acquisition of such information would further help in the efforts 

for gene discovery and crop improvement. 
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