13,693 research outputs found

    HE4 in the differential diagnosis of ovarian masses

    Get PDF
    Ovarian masses, a common finding among pre- and post-menopausal women, can be benign or malignant. Ovarian cancer is the leading cause of death from gynecologic malignancy among women living in industrialized countries. According to the current guidelines, measurement of CA125 tumor marker remains the gold standard in the management of ovarian cancer. Recently, HE4 has been proposed as emerging biomarker in the differential diagnosis of adnexal masses and in the early diagnosis of ovarian cancer. Discrimination of benign and malignant ovarian tumors is very important for correct patient referral to institutions specializing in care and management of ovarian cancer. Tumor markers CA125 and HE4 are currently incorporated into the Risk of Ovarian Malignancy Algorithm” (ROMA) with menopausal status for discerning malignant from benign pelvic masses. The availability of a good biomarker such as HE4, closely associated with the differential and early diagnosis of ovarian cancer, could reduce medical costs related to more expensive diagnostic procedures. Finally, it is important to note that HE4 identifies platinum non-responders thus enabling a switch to second line chemotherapy and improved survival

    Patient-centric trials for therapeutic development in precision oncology

    Get PDF
    An enhanced understanding of the molecular pathology of disease gained from genomic studies is facilitating the development of treatments that target discrete molecular subclasses of tumours. Considerable associated challenges include how to advance and implement targeted drug-development strategies. Precision medicine centres on delivering the most appropriate therapy to a patient on the basis of clinical and molecular features of their disease. The development of therapeutic agents that target molecular mechanisms is driving innovation in clinical-trial strategies. Although progress has been made, modifications to existing core paradigms in oncology drug development will be required to realize fully the promise of precision medicine

    EPMA position paper in cancer:current overview and future perspectives

    Get PDF
    At present, a radical shift in cancer treatment is occurring in terms of predictive, preventive, and personalized medicine (PPPM). Individual patients will participate in more aspects of their healthcare. During the development of PPPM, many rapid, specific, and sensitive new methods for earlier detection of cancer will result in more efficient management of the patient and hence a better quality of life. Coordination of the various activities among different healthcare professionals in primary, secondary, and tertiary care requires well-defined competencies, implementation of training and educational programs, sharing of data, and harmonized guidelines. In this position paper, the current knowledge to understand cancer predisposition and risk factors, the cellular biology of cancer, predictive markers and treatment outcome, the improvement in technologies in screening and diagnosis, and provision of better drug development solutions are discussed in the context of a better implementation of personalized medicine. Recognition of the major risk factors for cancer initiation is the key for preventive strategies (EPMA J. 4(1):6, 2013). Of interest, cancer predisposing syndromes in particular the monogenic subtypes that lead to cancer progression are well defined and one should focus on implementation strategies to identify individuals at risk to allow preventive measures and early screening/diagnosis. Implementation of such measures is disturbed by improper use of the data, with breach of data protection as one of the risks to be heavily controlled. Population screening requires in depth cost-benefit analysis to justify healthcare costs, and the parameters screened should provide information that allow an actionable and deliverable solution, for better healthcare provision

    A novel radiogenomics biomarker for predicting treatment response and pneumotoxicity from programmed cell death protein or ligand-1 inhibition immunotherapy in NSCLC

    Get PDF
    INTRODUCTION: Patient selection for checkpoint inhibitor immunotherapy is currently guided by programmed death-ligand 1 (PD-L1) expression obtained from immunohistochemical staining of tumor tissue samples. This approach is susceptible to limitations resulting from the dynamic and heterogeneous nature of cancer cells and the invasiveness of the tissue sampling procedure. To address these challenges, we developed a novel computed tomography (CT) radiomic-based signature for predicting disease response in patients with NSCLC undergoing programmed cell death protein 1 (PD-1) or PD-L1 checkpoint inhibitor immunotherapy. METHODS: This retrospective study comprises a total of 194 patients with suitable CT scans out of 340. Using the radiomic features computed from segmented tumors on a discovery set of 85 contrast-enhanced chest CTs of patients diagnosed with having NSCLC and their CD274 count, RNA expression of the protein-encoding gene for PD-L1, as the response vector, we developed a composite radiomic signature, lung cancer immunotherapy-radiomics prediction vector (LCI-RPV). This was validated in two independent testing cohorts of 66 and 43 patients with NSCLC treated with PD-1 or PD-L1 inhibition immunotherapy, respectively. RESULTS: LCI-RPV predicted PD-L1 positivity in both NSCLC testing cohorts (area under the curve [AUC] = 0.70, 95% confidence interval [CI]: 0.57-0.84 and AUC = 0.70, 95% CI: 0.46-0.94). In one cohort, it also demonstrated good prediction of cases with high PD-L1 expression exceeding key treatment thresholds (>50%: AUC = 0.72, 95% CI: 0.59-0.85 and >90%: AUC = 0.66, 95% CI: 0.45-0.88), the tumor's objective response to treatment at 3 months (AUC = 0.68, 95% CI: 0.52-0.85), and pneumonitis occurrence (AUC = 0.64, 95% CI: 0.48-0.80). LCI-RPV achieved statistically significant stratification of the patients into a high- and low-risk survival group (hazard ratio = 2.26, 95% CI: 1.21-4.24, p = 0.011 and hazard ratio = 2.45, 95% CI: 1.07-5.65, p = 0.035). CONCLUSIONS: A CT radiomics-based signature developed from response vector CD274 can aid in evaluating patients' suitability for PD-1 or PD-L1 checkpoint inhibitor immunotherapy in NSCLC

    SITC cancer immunotherapy resource document: a compass in the land of biomarker discovery.

    Get PDF
    Since the publication of the Society for Immunotherapy of Cancer\u27s (SITC) original cancer immunotherapy biomarkers resource document, there have been remarkable breakthroughs in cancer immunotherapy, in particular the development and approval of immune checkpoint inhibitors, engineered cellular therapies, and tumor vaccines to unleash antitumor immune activity. The most notable feature of these breakthroughs is the achievement of durable clinical responses in some patients, enabling long-term survival. These durable responses have been noted in tumor types that were not previously considered immunotherapy-sensitive, suggesting that all patients with cancer may have the potential to benefit from immunotherapy. However, a persistent challenge in the field is the fact that only a minority of patients respond to immunotherapy, especially those therapies that rely on endogenous immune activation such as checkpoint inhibitors and vaccination due to the complex and heterogeneous immune escape mechanisms which can develop in each patient. Therefore, the development of robust biomarkers for each immunotherapy strategy, enabling rational patient selection and the design of precise combination therapies, is key for the continued success and improvement of immunotherapy. In this document, we summarize and update established biomarkers, guidelines, and regulatory considerations for clinical immune biomarker development, discuss well-known and novel technologies for biomarker discovery and validation, and provide tools and resources that can be used by the biomarker research community to facilitate the continued development of immuno-oncology and aid in the goal of durable responses in all patients

    Artificial intelligence for imaging in immunotherapy

    Get PDF
    corecore