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ABSTRACT

Introduction: Patient selection for checkpoint inhibitor
immunotherapy is currently guided by programmed death-
ligand 1 (PD-L1) expression obtained from immunohisto-
chemical staining of tumor tissue samples. This approach is
susceptible to limitations resulting from the dynamic and
heterogeneous nature of cancer cells and the invasiveness
of the tissue sampling procedure. To address these challenges,
we developed a novel computed tomography (CT) radiomic-
based signature for predicting disease response in patients
with NSCLC undergoing programmed cell death protein 1
(PD-1) or PD-L1 checkpoint inhibitor immunotherapy.

Methods: This retrospective study comprises a total of
194 patients with suitable CT scans out of 340. Using the
radiomic features computed from segmented tumors on a
discovery set of 85 contrast-enhanced chest CTs of pa-
tients diagnosed with having NSCLC and their CD274
count, RNA expression of the protein-encoding gene
for PD-L1, as the response vector, we developed a com-
posite radiomic signature, lung cancer immunotherapy—
radiomics prediction vector (LCI-RPV). This was validated
in two independent testing cohorts of 66 and 43 patients
with NSCLC treated with PD-1 or PD-L1 inhibition
immunotherapy, respectively.

Results: LCI-RPV predicted PD-L1 positivity in both NSCLC
testing cohorts (area under the curve [AUC] ¼ 0.70, 95%
confidence interval [CI]: 0.57–0.84 and AUC ¼ 0.70, 95% CI:
0.46–0.94). In one cohort, it also demonstrated good pre-
diction of cases with high PD-L1 expression exceeding key
treatment thresholds (>50%: AUC ¼ 0.72, 95% CI: 0.59–
0.85 and >90%: AUC ¼ 0.66, 95% CI: 0.45–0.88), the tu-
mor’s objective response to treatment at 3 months (AUC ¼
0.68, 95% CI: 0.52–0.85), and pneumonitis occurrence
(AUC ¼ 0.64, 95% CI: 0.48–0.80). LCI-RPV achieved statis-
tically significant stratification of the patients into a high-
and low-risk survival group (hazard ratio ¼ 2.26, 95% CI:
1.21–4.24, p¼ 0.011 and hazard ratio ¼ 2.45, 95% CI: 1.07–
5.65, p ¼ 0.035).

Conclusions: A CT radiomics-based signature developed
from response vector CD274 can aid in evaluating patients’
suitability for PD-1 or PD-L1 checkpoint inhibitor immu-
notherapy in NSCLC.

� 2023 International Association for the Study of Lung
Cancer. Published by Elsevier Inc. This is an open access
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Introduction
Recent advances in checkpoint inhibition immuno-

therapy have redefined the landscape for treating unre-
sectable, advanced NSCLC.1,2 The topic of identifying
cases amenable to treatment is an important one, for
selecting the best treatment option and avoiding
exposing patients to unnecessary treatment complica-
tions and costs. Currently, the mainstay of immuno-
therapy for NSCLC is the inhibition of the programmed
cell death protein 1 (PD-1) or programmed death-ligand
1 (PD-L1).3 The current practice for selecting patients
for PD-1 or PD-L1 blockade is by performing histologic
sampling of the tumor through percutaneous lung biopsy,
endobronchial ultrasound-guided biopsy, or surgical
resection, followed by immunostaining the sample to
measure the percentage of cancer cells expressing PD-L1.4

Tumor-infiltrating immune cell sampling from biopsies,
however, suffers from significant sampling heterogeneity,
so immunohistochemistry of the sampled tissue is not
always predictive of the immune expression in the whole
tumor.5 In addition, repeated biopsies might be required
as immune status can evolve over time due to tumor
mutations.5 Finally, tissue sampling can be hindered by
patient’s level of tolerance to the procedure, and the
quantity and quality of tissue samples obtained.6 Clini-
cally, a PD-L1 positivity threshold of 1% is applied to
determine the use of PD-1 inhibitors such as pem-
brolizumab and nivolumab.7,8 Because PD-L1 expression
is a dynamic and variable quantity, adopting such a pos-
itivity threshold is thought to be overly simplistic.9

Treatment decisions guided by PD-L1 expression can
also be affected by measurement variability resulting
from the specific immunohistochemistry assay used.9

Therefore, a better way of selecting NSCLC patients for
PD-1 or PD-L1 inhibition immunotherapy is warranted.

Radiomic features are first- or higher-order metrics
that capture quantitative information present in the
imaging data. They form an active field of study in
computational medical imaging, given their noninvasive
nature and ability to convey important disease infor-
mation not otherwise visible to human observers.10,11

Previous studies have investigated the use of radiomics
in NSCLC, including for the assessment of immune in-
flammatory status of the tumor, believed to play a
pivotal role in differentiating the likely responders to
immunotherapy from the nonresponders.12–16 In this
study, we develop a novel radiomics-based predictive
model for patients with NSCLC undergoing PD-1 or PD-
L1 blockade immunotherapy, using CD274, the protein-
encoding gene for PD-L1, as the response vector.
Materials and Methods
Study Data

This is a retrospective observational study adhering
to the STROBE guidelines.

The discovery cohort consists of 85 adult patients
(age: 70.0 ± 19.1 y, male:female [M:F] ¼ 54:31) with a
histologically confirmed diagnosis of NSCLC and publicly
available radiological and genomics data, including
contrast-enhanced computed tomography (CT) and RNA
sequencing data. It includes all eligible patients from five
public domain data sets from the United States on The
Cancer Imaging Archive, namely, NSCLC Radiogenomics,
Clinical Proteomic Tumor Analysis Consortium squamous
cell carcinoma, adenocarcinoma, and the Cancer Genome
Atlas Program squamous cell carcinoma, and adenocar-
cinoma data sets.12,17,18 Exclusion criteria include missing
clinical data or contrast-enhanced CT scans of the tumor
with a transverse spatial resolution of less than 3 mm.
These data were drawn from several institutions in the
United States, acquired on a range of scanners. The study
aim was to develop a model on a heterogeneous cohort
that is robust to variations of scanner or institutional
scanning protocol and capable to withstand external
testing with independent data. The discovery cohort was
split into training and internal validation sets in a 2:1 ratio,
balanced for patient’s age, sex, and survival characteristics.

Two external testing cohorts of patients with NSCLC
treated with immunotherapy were used for study
validation.

The first cohort, ICHNT, consists of patients recruited
in a retrospective, observational study at our multicenter
institution, approved by the Regional Research Ethics
Committee (18HH4616). A total of 66 (age: 67.4 ± 9.4 y,
M:F ¼ 43:23) adult patients with a diagnosis of NSCLC
treated with PD-1 or PD-L1 inhibitor immunotherapy
between August 2018 and December 2019 were
enrolled. The scanners used were Siemens Definition
ASþ and Philips Ingenuity.

The second cohort, LCWES, consists of a separate
group of 43 adult patients with NSCLC (age: 66.0 ± 9.5 y,
M:F ¼ 23:20) treated with PD-1 or PD-L1 inhibitor
immunotherapy between February 2014 and August
2018 at the same institution, as part of an Imperial
College Tissue Bank–approved study (institutional re-
view board: 17/WA/0161/R18009). The samples were
obtained from the primary tumor where possible or
from the recurrent neoplasm where there was prior
resection of the primary tumor (seven cases). The scans
were performed on Siemens Definition ASþ.
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Table 1. Characteristics of Patients Included in the Study and p Values Revealing Statistical Differences Between the Study
Cohorts

Characteristics
TCIA
(n ¼ 85)

ICHNT
(n ¼ 66) pa

LCWES
(n ¼ 43) pb

Age at diagnosis (y), mean (SD) 68.2 (9.2) 67.4 (9.4) 0.72 63.9 (9.5) 0.028
Age range 39.1–85.2 35.1–81.4 38.0–80.0
Sex (male) 54 (65.9) 43 (65.1) 0.93 23 (53.4) 0.23
Ethnicity
Asian 1 (1.2) 3 (4.5) 0.0005 N/A —

Hispanic/Latino 3 (3.5) 4 (6.1)
Unknown 68 (80.0) 21 (31.8)
White 13 (15.2) 38 (57.6)
Smoking history
Never smoked 50 (58.8) N/A — N/A —

Ever smoked 30 (35.3)
Unknown 5 (5.9)
Histology
Squamous cell 26 (29.4) 14 (21.2) 0.0004 5 (11.6) 0.089
Adenocarcinoma 55 (64.7) 31 (47.0) 29 (67.5)
Nonspecific NSCLC 4 (4.7) 21 (31.8) 9 (20.9)
Performance scorec

0 N/A 17 (25.8) — 16 (37.2) 0.07
1 49 (74.2) 23 (53.5)
2 0 (0.0) 4 (9.3)
3 0 (0.0) 0 (0.0)
4 0 (0.0) 0 (0.0)
T staged

In situ 2 (2.4) 0 (0.0) 0.0008 0 (0.0) 0.005
1 33 (38.8) 3 (4.9) 1 (2.3)
2 39 (45.9) 7 (11.5) 17 (39.5)
3 9 (10.6) 19 (31.1) 13 (30.2)
4 2 (2.4) 32 (52.5) 12 (28.0)
N stage
0 62 (72.9) 15 (22.7) 0.0004 7 (16.3) 0.15
1 16 (18.8) 4 (6.1) 4 (9.3)
2 7 (8.2) 27 (40.9) 11 (25.6)
3 0 (0.0) 20 (30.3) 21 (48.8)
M stage
0 82 (96.5) 17 (25.8) 0.0005 9 (20.9) 0.61
1 3 (3.5) 49 (74.2) 34 (79.1)
Drug
Atezolizumab — 14 (21.2) — 6 (14.0) 0.20
Durvalumab 1 (1.5) 0 (0.0)
Nivolumab 3 (4.6) 1 (2.3)
Pembrolizumab 48 (72.7) 36 (83.7)
Line of therapy
First — 12 (18.2) — 15 (34.9) 0.10
Second 54 (81.8) 28 (65.1)
Other treatment
Radiotherapy N/A 37 (46.1) — N/A —

Chemotherapy N/A 29 (67.4)
Curative surgery N/A 7 (16.3)
Treatment completion — 22 (33.3) — N/A —

Gene mutation
EGFRe N/A 2 (5.7) — 0 (0.0) —

KRASf 15 (45.4) 21 (50.0)
ALK 0 (0.0) 1 (2.3)
BRAF 3 (9.1) 2 (4.8)
PIK3CA 5 (15.6) 2 (4.8)

(continued)
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Table 1. Continued

Characteristics
TCIA
(n ¼ 85)

ICHNT
(n ¼ 66) pa

LCWES
(n ¼ 43) pb

PD-L1 %
Negative N/A 17 (25.8) — 4 (9.3) 0.039
>1% 49 (74.2) 39 (90.7)
>50% 26 (41.4)
>90% 8 (12.1)
Response at 3 mog — 15 (22.7) — N/A —

Pneumonitis occurrence after
treatment initiation

— 3 (5.0) — N/A —

Overall survival at 3 y 22 (26.8) 20 (31.7) 0.0008 11 (25.6) 0.69
Scan kVp
100 5 (5.9) 37 (56.1) 0.001 28 (65.1) 0.12
20 80 (94.1) 26 (39.4) 14 (32.6)
140 0 (0.0) 3 (4.5) 1 (2.3)

Note: p values calculated using Wilcoxon signed rank for continuous variables and chi-square tests for categorical variables. Percentage figures are given in
brackets, unless otherwise specified.
ap value comparing TCIA with ICHNT.
bp value comparing LCWES with ICHNT (except for ethnicity, where that between TCIA and LCWES is illustrated).
cOn the basis of the ECOG score.
dRadiological staging on the basis of the IASLC staging system, eighth edition.
eEGFR,7–10 percentage figures on the basis of the cases where test result is available.
fKRAS homolog.
gDisease response at 3 months defined as either complete or partial response or when iUPD is confirmed on subsequent follow-up imaging.
ECOG, Eastern Cooperative Oncology Group; IASLC, International Association for the Study of Lung Cancer; iUPD, unconfirmed progressive disease; kVp, peak
kilovoltage; N/A, data not available; PD-L1, programmed death-ligand 1.
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All included scans were contrast enhanced and ac-
quired in the portal venous phase.

The patient characteristics of the included data are
presented in Table 1. The CONSORT flow diagram for
patient selection is present in Supplementary Figure 1.
Immunohistochemistry
PD-L1 expression in the ICHNT cohort was assessed

in-house using Ventana PD-L1 (SP263) rabbit mono-
clonal primary antibody (F. Hoffmann-La Roche AG,
Basel, Switzerland) immunohistochemistry and verified
by a board-certified pathologist (PV).19 PD-L1 expression
was assessed using tumor proportion score (TPS). A
sample was considered negative when TPS is less than
1%, positive if TPS is greater than or equal to 1%,
strongly positive if TPS is greater than or equal to 50%
but less than 90%, and very strongly positive if TPS is
greater than or equal to 90%. The ICHNT cohort was
tested for PD-L1 positivity (�1%) and high expression
(�50% and �90%) predictions.

In addition to Ventana, the PD-L1 expression in 25
cases (58.1%) in the LCWES cohort was obtained using
the Dako PD-L1 (22C3) PharmDx assay (Agilent Tech-
nologies Inc., Santa Clara, CA). The LCWES cohort was
tested for PD-L1 positivity (�1%) prediction.
Clinical Data
Patient overall survival at 3 years was used as a study

end point, in line with prior study.20 Tumor response
prediction was based on the observed partial or com-
plete response based on the immune-based therapeutics
Response Evaluation Criteria in Solid Tumors (iRECIST)
criteria.21

Image Segmentation
Two trained clinical radiologists (MC and YH), blin-

ded to clinical and histologic data, with 7 and 13 years of
chest imaging experience, respectively, double-reviewed
and segmented all scans on both mediastinal (width, 350
Hounsfield Unit [HU]; level, 40 HU) and lung windows
(width, 1500 HU; level, �600 HU). The interobserver
agreement of the tumor segmentations was 91%, as
measured by the Dice similarity coefficient. As found in
Figure 1, this included a volumetric segmentation of the
tumor itself, 2-mm peritumoral annulus, and a spherical
volume of interest of 10 mm in diameter judged to be
representative of the background lung parenchyma in
the lung lobe where the lesion is located (or from an
adjacent lobe where there is no aerated part of the lobe
present), using 3DSlicer 4.13.0 (3D Slicer Image
Computing Platform, https://www.slicer.org/).

Data Preprocessing, Feature Extraction, and
Processing

After tumor segmentation, the imaging data were
preprocessed to ensure uniform voxel size of 1 � 1 � 2
mm and then comprehensively analyzed for a total of
1998 radiomic features from each scan (666 features per

https://www.slicer.org/


Figure 1. Segmentation method. For each case, three segmentation masks were obtained: the tumor, a 2-mm peritumoral
annulus, and a spherical volume of interest of 10 mm in diameter judged to be representative of the background lung pa-
renchyma in the lung lobe where the lesion is located or from an adjacent lobe where there is no aerated part of the lobe
present.
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segmentation mask), using an in-house software (TexLab
2.0), in Matlab 2020b (MathWorks Inc., Natick, MA).22,23

The analyzed features included ones pertaining to tumor
image intensity, shape, and texture, conforming to stan-
dard algorithms defined by the Image Biomarker
Standardisation Initiative, where applicable.24 The
computed radiomic features were standardized to a
mean of zero and SD of one. Interobserver radiomic
feature reproducibility was assessed by calculating the
intraclass correlation coefficient, on the basis of a two-
way random model. There were 1647 features found
to have an intraclass correlation coefficient greater than
or equal to 0.8, thus deemed reproducible and included
in the subsequent model development.

Model Development
The model was trained on the training set (n ¼ 62) of

the discovery cohort. Taking the standardized CD274
count as the response vector, a linear regression step was
applied with a false detection rate threshold of 5% to
retain the most significant features (Fig. 2A), followed by
elastic net regularization of these features plus peak kil-
ovoltage (kVp). A composite radiogenomics signature,
lung cancer immunotherapy—radiomics prediction vec-
tor (LCI-RPV), was established, as a weighted sum of 15
radiomics features deemed most relevant for CD274
prediction (Fig. 2B). The signature is independent of kVp.
During development, the model was validated on the in-
ternal validation set (n ¼ 23) of the discovery cohort.
Model Validation
The model was externally tested for its prediction

of PD-L1 positivity (�1%), PD-L1 high expressions
(�50% and �90%), response to treatment at 3
months, and pneumonitis occurrence using receiver
operating characteristic area under the curve (ROC-
AUC) analysis.

The model was tested in the following two inde-
pendent external testing cohorts acquired in the
United Kingdom: ICHNT (n ¼ 66), where the model
was tested for its prediction of PD-L1 positivity, high
PD-L1 expressions, overall survival at 3 years, tumor
response at 3 months, and pneumonitis occurrence,
and LCWES (n ¼ 43), where the model was tested for
its prediction of PD-L1 positivity and overall survival
at 3 years.

To investigate the suitability of LCI-RPV in specific
clinical situations, subcohort analyses were performed,
where the biomarker was tested on the ICHNT cases
stratified by the specific class of checkpoint inhibitor
treatment (PD-1 or PD-L1) given the completion of the
full treatment course, and whether prior radiotherapy
has been administered.

The utility of the model for patient prognostication
was tested, by stratifying patients into a high- and low-
risk prognostic group using k-means clustering of LCI-
RPV features.

The model development and testing framework is
found in Figure 3.



Figure 2. LCI-RPV and correlation with histologic features. (A) Heatmap revealing the retained features from each seg-
mentation mask after FDR. (B) Phylogenetic tree revealing feature components of LCI-RPV. The feature origin (lesion,
annulus, or parenchyma) and class (first order, texture, wavelet-texture or fractals) indexed by their corresponding colors as
illustrated. FDR, false detection rate; LCI-RPV, lung cancer immunotherapy—radiomics prediction vector.
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Mesoscopic Significance
A key strength of radiomics is its ability to capture

mesoscopic features of the tumor which are present in
the imaging data but not readily observable to the hu-
man eye. This bridges imaging (“macroscopic”) with
histology (“microscopic”) and unfolds a new dimension
for evaluating cancer structure and biology.22

To evaluate whether LCI-RPV is directly correlated
with any observed histologic or imaging features, we
have compared the LCI-RPV of cases in the external
testing cohort ICNHT (n ¼ 31, where histology slides
were available), grouped by the presence or absence of
histologic findings observed on low-magnified view (at
4x magnification) hematoxylin and eosin slides, and
stratified by patients’ response to treatment. The
included histologic findings were histology subtype
(squamous cell carcinoma or adenocarcinoma), kerati-
nization if squamous cell carcinoma, primary growth
pattern if adenocarcinoma, lymphovascular invasion,
tumor necrosis, and inflammatory infiltration. All histo-
logic findings were validated by a board-certified clinical
histopathologist (PV).

Similarly, LCI-RPV was correlated with the presence
of CT features associated with these histologic findings
in ICHNT, namely peripheral ground glass, margin spic-
ulation, central necrosis, and vascular invasion or lym-
phangitis carcinomatosis, stratified by patient’s response
to treatment. All CT features were independently vali-
dated by two board-certified clinical radiologists (MC
and YH).

These histologic and radiological features are graph-
ically illustrated in Supplementary Figure 3.
Gene Set Enrichment Analysis
Despite emerging evidence supporting the clinical

use of PD-1 or PD-L1 inhibition immunotherapy for
NSCLC, we are yet to fully understand its mechanism of
action, particularly on how it interacts with the tumoral
microenvironment to trigger an immune response
against the malignancy. For example, several down-
stream signaling pathways are existent after ligand re-
ceptor binding and PD-L1 is expressed on more than one
immune cell population with varied expression within
each of such cell types.25 An advancement of knowledge
in this domain can be useful for explaining the varied
response and resistance to the treatment despite posi-
tive PD-L1 expression. To investigate this, we performed



Radiomics Features + kVp

TCIA Cohort 
(n = 85) 

Response Vector:
RNASeq CD274

Training

Training 
(n = 62)

Validation 
(n = 23)

FDR Univariate Linear 
Regression – Elastic Net

LCI-RPV

Segmentation and 
Pre-processing

Internal Validation

Testing

LCWES Cohort 
(n = 43)

ICHNT Cohort 
(n = 66)

Testing

Overall Survival at 3 
Years Prediction

PD-L1 Positivity 
Prediction 

Tumour Response at 3-
months (CR or PR = 1)

Pneumonitis Prediction

Model TestingModel Development

High PD-L1 Expression 
Prediction 

Figure 3. Study design schematics showing the key steps in model development, using CD274 as the response vector and its
validation in two independent testing cohorts. CR, complete response; FDR, false detection rate; kVp, peak kilovoltage; PD-
L1, programmed death-ligand 1; PR, partial response; RNASeq, RNA sequencing.
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gene set enrichment and single-cell RNA sequencing
(scRNAseq) analyses to identify the enriched cellular
pathways and cell populations expressing the genes
most strongly correlated with our model features.

In gene set enrichment analysis (GSEA), the model
feature output was correlated with the whole tran-
scriptome from the GSE103584 data set using Spear-
man’s correlation.12 The genes were ranked by their
correlation coefficients and used in a preranked GSEA
4.1.0 (The Broad Institute, San Diego, CA). The Hallmark
database was used for identifying enriched cellular
pathways correlated with LCI-RPV.

scRNAseq Analysis
After GSEA, scRNAseq analysis was performed to

identify the cell populations that express the genes
which are strongly correlated with LCI-RPV. This would
pave way for a better understanding of the cellular
signaling basis of PD-1 pathway inhibition and how anti-
tumor immunity is developed in treatment-responding
cases.

The detailed steps of scRNAseq are described in the
Supplementary Materials section.

Statistical Analysis
All statistical analyses and machine learning were

performed using R version 4.3.0 (R Project for Statistical
Computing, http://www.r-project.org/). The statistical
tests were two sided, with a p value threshold of sig-
nificance at 5% adopted throughout. Differences
between cohorts were tested using the analysis of vari-
ance test for continuous variables and the chi-square test
for categorical variables. Survival analyses were per-
formed using Cox proportional hazard model, Kaplan-
Meier survival estimates, and the log-rank test.
Results
Patient age, tumor histologic subtype, TNM stage, pa-

tient survival, and kVp were statistically significantly
different between the discovery and testing cohorts,
revealing the independence of the testing data to training.

Good predictive value of LCI-RPV for PD-L1 expres-
sion positivity was reported in both NSCLC testing co-
horts (area under the curve [AUC] ¼ 0.70, 95%
confidence interval [CI]: 0.57–0.84 and AUC ¼ 0.70, 95%
CI: 0.46–0.94, for ICHNT and LCWES, found in Fig. 4A
and B, respectively). In the ICHNT cohort, LCI-RPV also
had good prediction of cases with high PD-L1 expression
(>50%: AUC ¼ 0.72, 95% CI: 0.59–0.85 and >90%:
AUC ¼ 0.66, 95% CI: 0.45–0.88).

The model revealed reasonable predictions of the
tumor’s objective response to treatment at 3 months
(AUC ¼ 0.68, 95% CI: 0.52–0.85) and pneumonitis
occurrence (AUC ¼ 0.64, 95% CI: 0.48–0.80) in ICHNT
(Fig. 4C and D). Nevertheless, we note that the lower
95% CI crosses the chance threshold (0.50) in the latter
case. For comparison, the predictions of tumor response
at 3 months and pneumonitis occurrence using PD-L1
expression were AUC ¼ 0.64, 95% CI: 0.47–0.81 and
AUC ¼ 0.53, 95% CI: 0.27–0.79, respectively.

http://www.r-project.org/
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Figure 4. Predictive performance of LCI-RPV. LCI-RPV prediction of PD-L1 positivity in (A) the ICHNT cohort, which also in-
cludes the prediction of high PD-L1 expression (�50% and �90%) cases, and (B) the LCWES cohort. In the ICHNT cohort, (C)
LCI-RPV prediction of treatment response at 3 months and (D) pneumonitis occurrence after treatment initiation. The
stratification of patients in (E) the ICHNT cohort and (F) the LCWES cohort into a high- and low-risk group based their overall
survival within 3 years from the time of treatment, on the basis of their LCI-RPV signature; there were three and two entries
with missing survival data in the ICHNT and LCWES cohorts, respectively, which were therefore not included in these plots.
AUC, area under the curve; CI, confidence interval; FPR, false positive rate; HR, hazard ratio; LCI-RPV, lung cancer immu-
notherapy—radiomics prediction vector; PD-L1, programmed death-ligand 1; TPR, true positive rate.
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Subcohort analysis (Supplementary Table S1) revealed
superior predictive performances of LCI-RPV for tumor’s
response to treatment at 3 months in cases without prior
treatment with radiotherapy (AUC ¼ 0.74, 95% CI: 0.54–
0.94) and of immunotherapy-associated pneumonitis in
tumors treated with PD-L1 inhibitors (AUC ¼ 0.74, 95%
CI: 0.53–0.95). For comparison, worse predictive perfor-
mance was observed in the group with prior radiotherapy
of their cancer, where AUC¼ 0.55, 95% CI: 0.27–0.74 was
observed for 3-month response prediction.

Statistically significant stratification of the patients
into a high- and low-risk group was reported on the
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basis of LCI-RPV in both testing cohorts (hazard ratio ¼
2.26, 95% CI: 1.21–4.24, p ¼ 0.011 and hazard ratio ¼
2.45, 95% CI: 1.07–5.65, p ¼ 0.035), as found in
Figure 4E and F.

No responders had lymphovascular invasion on his-
tology, or vascular invasion or lymphangitis on CT, pre-
cluding a conclusive correlation analysis in these groups.
No statistically significant difference was found between
the cases presenting with or without the observed his-
tologic or radiological features, stratified by their
response to immunotherapy (full results are presented
in Supplementary Figs. 4 and 5).

GSEA revealed that cellular pathways emphasized in
LCI-RPV–high tumors are mostly those pertaining to
tissue hypoxia or inflammation (Fig. 5A and B,
Supplementary Fig. 2 and Supplementary Table S2).
Furthermore, pathways associated with cellular
apoptosis, such as p53 and apoptosis, have been identi-
fied (Supplementary Table S3).

T and myeloid cells represented the largest clusters
in t-distributed stochastic neighbor embedding (t-SNE)
analysis (Fig. 5C). RECOL, MAFB, SPI1, and FCGR3A were
among the genes with the highest correlation with LCI-
RPV (Fig. 5D). Notably, scRNAseq analysis revealed
that these four genes were highly expressed in myeloid
cells, with MAFB and SPI1 almost exclusively expressed
in this population. RECOL and FCGR3A were also found to
be frequently expressed in T cells.
Discussion
PD-1 checkpoint blockade has revolutionized sys-

temic therapy of NSCLC. Pretreatment PD-L1 tissue
expression guides treatment decision in patients with
metastasis.1 Nevertheless, response and long-term sur-
vivorship from PD-1 pathway inhibition are not exclu-
sively linked to PD-L1 expression, highlighting the
inherent limitations in the current method of patient
selection for immunotherapy in NSCLC. To tackle this
challenge, we developed a novel, noninvasive, radio-
genomics composite biomarker for guiding clinical de-
cisions using only CT data. It was found to have good
performances for predicting PD-L1 positivity, disease
response at 3 months, and pneumonitis occurrence.
Notably, LCI-RPV predicted cases with high PD-L1
expression, supporting a potential role in guiding treat-
ment decisions. The biomarker also achieved prognostic
stratification in these patients. The heterogeneity of our
external testing data (acquired on multiple scanners, at
multiple sites, and in different contrast phases)
strengthened our model validation.

Furthermore, LCI-RPV uniquely predicted immunotherapy-
associated pneumonitis, a potentially life-threatening
complication occurring in up to 5% to 20% of patients
treated with checkpoint inhibitors, for which no clear
mechanism nor reliable predictors exist.26 This is a
notable potential utility of LCI-RPV that is supported by
findings from early pilot studies,27,28 which is not other-
wise achievable in current clinical practice. The patho-
genesis of pneumonitis is poorly understood and often
extrapolated from spontaneous autoimmunity or idio-
pathic inflammatory conditions. Whether this is due to the
influence of lesional or perilesional CD274 expression per
se or the inclusion of a lung parenchymal patch in LCI-
RPV remains to be elucidated. Previous work has corre-
lated phenotypic characteristics of the T-cell infiltrate
with immunotoxicity from checkpoint inhibitors.29 In
addition, immune-related adverse events are known to be
enriched in immunotherapy responders, suggesting that
LCI-RPV might identify a subset of patients with preex-
isting T-cell autoreactivity.26 The predictive performance
for pneumonitis is more pronounced in cases treated with
PD-L1 inhibitors, which might be explained by the fact
that the model was developed on the basis of CD274, the
protein-encoding gene for PD-L1, and is therefore more
directly related to PD-L1 than PD-1 inhibition.

Previously, radiomic features have been found to be
predictive of some histologic features. For example, a
composite vector of glcm variance and 75th percentile
histogram features was found to be predictive of
micropapillary and solid growth patterns in resectable
adenocarcinoma.30 In our work, we did not find any
statistically significant differences between cases pre-
senting with and without histologic and characteristic
radiological features, stratified by their response to
immunotherapy. It is important to note, that because
LCI-RPV was developed for CD274 to predict for clinical
outcomes in patients treated with PD-1 or PD-L1 inhi-
bition immunotherapy, different features could have
been selected in our model development than the ones
predictive of histologic features. Furthermore, the small
sample size (n ¼ 31) would have limited the scope and
power of this arm of the analysis.

Our pioneering work on using GSEA and scRNAseq to
establish radiomic-pathology correlates offers new insight
into advancing our understanding of the underlying
immunobiology in PD-1 or PD-L1 pathway inhibition.
Specifically, GSEA revealed that LCI-RPV is strongly
associated with inflammation and hypoxia-associated
gene set pathways, which was expected because a
responding tumor tends to have sustained immune
response through up-regulated inflammation. This finding
is therefore consistent with the understanding that tissue
inflammation and hypoxia play a central role in tumor
response to checkpoint blockade immunotherapy.13,31

From scRNAseq analysis, myeloid cells were found to
be a main cell type expressing genes that are highly
correlated with LCI-RPV, suggesting that their



Figure 5. GSEA and scRNAseq analyses findings. Barplot revealing (A) the most positively correlated cellular pathways with
LCI-RPV as ranked by their NES and (B) the most negatively correlated pathways. Note that many of the most positively
correlated pathways were inflammation (red) or hypoxia related (green), a finding consistent with the immunobiological
understanding that a responding tumor tends to have a sustained immune response through up-regulated inflammation.
Single-cell RNA sequencing analyses findings: (C) t-SNE plot of 89,788 single cells from eight patients with lung cancer. (D)
Distribution of expression of four top correlated genes (RECQL, MAFB, SPI1, and FCGR3A) with radiomic vector. (E) Average
expression of the four genes across cell subtypes. Note the myeloid cells were most highly expressed across all four genes. (F)
Violin plots of the four genes across cell subtypes. Note the myeloid cells were most highly expressed across all four genes.
EC, enterochromaffin cell; GSEA, gene set enrichment analysis; LCI-RPV, lung cancer immunotherapy—radiomics prediction
vector; NES, normalized enrichment score; scRNAseq, single-cell RNA sequencing; t-SNE, t-distributed stochastic neighbor
embedding.
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localization and abundance may contribute to the
radiomics vector. More recently, the major contribution
of PD-1 expression by myeloid cells in determining the
effectiveness of immune checkpoint therapy has come to
the fore.32 Tumor-stimulated myeloid cell production,
emergency myelopoiesis, is the basis of myeloid-derived
suppressor cells in the tumor microenvironment;
reprogramming of emergency myelopoiesis substantially
affects antitumor immunity.32 Our study provides
auxiliary evidence to support this hypothesis and ad-
vances our understanding of the cellular basis of the LCI-
RPV phenotype.
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Evaluating the radiomic features in our developed
model to appreciate the biophysical measures, we note
that the features are derived from all three segmentation
masks. They include fractal dimension (FD) features
from the tumor itself, texture, and wavelet features
from the perilesional annulus and lung parenchyma,
with the most weighted one being a glszm-wavelet
feature from the annulus. Glszm quantifies gray-level
zones or the number of connected voxels that share
the same gray-level intensity within the image; in this
specific case, szonelogl small-zone low gray-level
emphasis will be large when many small zones of
low intensity are present in the image, which would be
the case when there are inflammatory changes in
the perilesional region. We note that the highest
FD change carries a negative weight. In a similar
NSCLC immunotherapy cohort study,31 the most
informative radiomic feature, glcm inverse difference,
was positively associated with hypoxia-related car-
bonic anhydrase 9 using gene-expression profiling and
immunohistochemistry. Separately, in another work,33

FD was reduced in acutely inflamed tissue, indicating a
loss of the overall complexity of the cells in the tissue,
and asserting the characteristics of this biophysical
variable in the context of inflamed tissues. Interest-
ingly, in our work, the contribution of the negatively
weighted FD to LCI-RPV was only found in the tumoral
and not perilesional region, highlighting the
complexity of biophysical measures in different re-
gions of interests.

Limitations of this study include its retrospective
nature that can introduce selection bias, multiple sour-
ces of the training data which can give rise to data
imbalance, and the limited size of external testing data.
Further external validation is warranted.

The model was developed and tested on contrast-
enhanced CT data in the portal venous phase. Given
the known impact of contrast enhancement on radiomic
features,34 we sought model generalizability by training
and testing cases drawn from multiple clinical practice
scenarios whereby satisfactory portal venous contrast
enhancement was deemed to have been achieved. The
rate, volume of contrast injection, and scan delay were
varied, which mirrors clinical practice where the pa-
tients’ individual circumstances, such as body habitus,
available intravenous access, cardiac output, and renal
function, would be considered when determining the
optimal contrast injection regimen ad-hoc. By adopting
this approach, our model is rendered more invariant to
the details of contrast injection, so long as adequate
enhancement in the correct phase is achieved. Radiomic
features can also be influenced by the type of CT scanner
used to acquire the imaging data.35 To improve its
generalizability and robustness, we have developed and
tested our model on data from various centers across the
United States of America and Europe using different
scanner makes and models, to achieve a model that is
scanner invariant.

Future works include evaluating the prediction of
disease response at longer-term follow-ups, such as at
6 months and beyond, and prediction of additional
events of clinical significance including other adverse
events such as colitis and thyroiditis, tumor hyper-
progression,36 or sarcoid-like reaction. These might,
however, require considerably larger data sets, given the
relative rarity of some of these events. The incorporation
of additional patient clinical data in an integrated model31

or metabolic imaging data are additional areas with
promising preliminary results supporting further
investigation.37

On further clinical validation, this novel, noninvasive,
radiogenomics biomarker could be used to guide treat-
ment decisions, particularly in radiotherapy-naive cases
where satisfactory tissue sampling can not be achieved,
such as when it is not tolerated by or deemed unsafe to
the patient, inadequate sample, or equivocal pathologic
result. The biomarker could see additional use in pneu-
monitis prediction and patient prognostic stratification,
both of which can help facilitating personalized cancer
care.
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