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Introduction






Immune checkpoint inhibitors have provided improved response rates
and prolonged overall survival in advanced metastatic cancer patients.
Several clinical trials have demonstrated more favourable outcomes
compared to standard therapy, with the largest body of evidence being
in melanoma [Lar+18; Web+15], non-small cell lung cancer [Vok+18;
Bra+15; Car+17], renal cell carcinoma [Alb+20; Mot+20], and head and
neck carcinoma [Sab+19; Coc+19; Pai+19; Fer+18]. Additionally, the
FDA has authorized the use of pembrolizumab in microsatellite insta-
bility high tumours (MSI-H) [Zha+19b; Luc+19] — i.e. tumours that
had a genetic predisposition to mutation resulting from impaired DNA
repair mechanisms [lon+93; TBS93].

Despite the success of these immunotherapies, there is still a
substantial number of patients who do not benefit from the treatment
[Lar+18; Web+15; Vok+18; Bra+15; Alb+20; Mot+20; Fer+18].
Biomarkers able to identify these responders would ultimately
improve treatment outcomes — both in terms of prolonged overall
survival, as well as reduced therapy-induced toxicity — while
simultaneously helping to contain the costs of these expensive
anti-cancer therapies [GWA16; HCC19a; Voo+17; Tar+16].

Immunotherapy biomarker research has been focusing so far on bi-
ological markers, often extracted from invasive tumour-tissue biop-
sies. These include levels of infiltration of lymphocytes (i.e. white
blood cells) in the tumour [Zit+17; He+17], or more general markers
of inflammation [Aye+17], genetic mutations [McG+16], among others
[Ma+16; Men+15; Ker+15]. Their values, however, depend on the biop-
sied lesion, and on how generalizable they can be to the total tumour
burden [Ram+20]. In advanced stage metastatic patients (the most
likely target population for immunotherapy), multiple lesions across
the body are likely to have developed distinctively [Cun+15; TS16]
biological profiles, potentially as a result of their intrinsic microenvi-
ronment or the milieu of the organ where they are situated [Cun+15;
TS16]. Due to the invasiveness of the biopsy procedure [Ove+13] in an
already fragile patient cohort of advanced-stage cancer, it is not always
feasible to biopsy multiple locations to average out inter-lesional het-
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erogeneity, nor is it possible to perform multiple biopsies of the same
location over time to evaluate response to treatment.

Different alternatives are being explored to overcome these limitations,
including whole-body imaging. Routine radiological imaging has al-
ready emerged as a fundamental tool in the clinics for detection, char-
acterisation, and monitoring of disease [Hrill]. It is non-invasive, and
it is broad — i.e. able to capture whole-body information in one sin-
gle measurement. These characteristics led imaging to become the de-
fault tool for the diagnosis [Mek+18] and follow-up of advanced-stage
cancer patients receiving immunotherapy [Sey+17a; The+00], playing
an irreplaceable role in treatment planning [Ner+20]. Currently, the
read-out and interpretation of radiological imaging is done by a med-
ical professional via visual assessment [Sey+17a; The+00]. They re-
port the presence and location of cancer lesions, their extent or size,
their evolution in time [Sey+17a; The+00; Sch+16; Eis+09; Org+79;
Hay+77], and the presence of other clinically-relevant non-cancer con-
ditions [Mek+18]. The most common tool used in the clinics is the Re-
sponse Evaluation Criteria in Solid Tumour (RECIST) [Sey+17a; Sch+16].
This prescribes the follow-up of the cumulative in-plane diameter of
maximum 5 target lesions. Depending mainly on the changes in the
cumulative diameter, the response is classified as complete or partial,
stable, or progressive disease; with minor changes made to accomo-
date for patients receiving immunotherapy. While this method is time-
efficient (required aspect in the busy radiological practice), it lacks to
address any prognostic factor that is not related to total tumor growth
or shrinkage — among other limitations [VS13].

There is a growing body of evidence that more clinically-valuable
information can be extracted from radiological imaging [Aer+14;
Hos+18; Bi+19a; AH16]. It is hypothesized that underlying biological
processes (some of which regulate response to therapy or survival)
are reflected in imaging patterns on radiological scans [Aer+14;
Aerl6; Par+15; OCo+17]. Computational methods, able to analyze
and identify patterns in high dimensional imaging data, can serve this
purpose. Two main techniques are relevant to this end: radiomics



[Aer+14] and artificial intelligence [Hos+18]. Radiomics entails
all the computer algorithms for data characterisation in medical
imaging that aim to extract imaging features, each feature describing
anatomical or functional characteristics of, e.g. a cancer lesion
[Aer+14; Par+15; GKH16; Gri+17a]. The main advantage relies on the
usage of computer algorithms, which allow for the disentanglement
and identification of imaging (pixel) patterns that would not be able
to be assessed by the naked eye. Once imaging patterns have been
extracted, these need to be linked to a clinically-relevant variable, e.g.
the outcome of the treatment. Artificial intelligence (Al) is used to this
end [Hos+18; Bi+19a]. Al is the collection of all the computational
methods which, through a learning process on plain or processed
data, are able to decipher patterns and link variables together,
ultimately extrapolating knowledge for “reasoning”, or inference
[RNO3].

This thesis aims to develop and assess the value of Al-based radiomics
methods on imaging data as clinical support systems for response eval-
uation, prediction and prognostication of advanced-stage cancer pa-
tients receiving immune checkpoint inhibitors.

This was formulated in two main research questions:

¢ Can Al-radiomics methods on radiological imaging detect and
extract quantitative imaging patterns of single lesions that are
related to lesion biology and lesion response to checkpoint in-
hibitors?

¢ Can Al-radiomics methods be developed to decipher prognostic
morphological patterns at whole-body level in advanced stage
metastatic patients receiving checkpoint inhibitors?

The outline of this thesis follows the research questions. It begins with
the question of imaging features of single lesions for lesion assess-
ment and response prediction. Chapter 2 evaluates predictive lesion-
level radiomic features for the prediction of individual lesion response.
Chapter 3 evaluates the diagnostic performance of radiomic features
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for the diagnostic profiling of lung lesions, and gives an overview
on how single lesion profiling can be correlated with long term out-
come. The research question is then amplified to encompass the de-
velopment of whole-body Al-based methods for the prognostication
of metastatic patients receiving immunotherapy, overcoming in this
manner the limitations of single lesion analysis. Chapter 4 introduces
the concept of prognostication through Al-based image monitoring
of chest imaging in NSCLC. Chapter 5 expands to thoracoabdominal
imaging in urothelial cancer patients and formalizes it as the Prognos-
tic AI-Monitor (PAM). Chapter 6 investigates PAM in brain metastasis,
extending our findings to the whole body. This thesis concludes with
Chapters 7 and 8, stating the future developments of artificial intelli-
gence research in the clinics, and in cancer immunotherapy trials.
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Lesion response prediction to
immunotherapy

Stefano Trebeschi et al. “Predicting response to cancer immunother-
apy using noninvasive radiomic biomarkers”. In: Ann. Oncol. 30.6
(2019), pp. 998-1004.
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Abstract

Introduction Immunotherapy is regarded one of the major
breakthroughs in cancer treatment. Despite its success, only a subset
of patients responds — urging the quest for predictive biomarkers.
We hypothesize that Artificial Intelligence (AI) algorithms can
automatically quantify radiographic characteristics that are related
to and may therefore act as non-invasive radiomic biomarkers for
immunotherapy response.

Patients and Methods In this study, we analyzed 1055 primary
and metastatic lesions from 203 patients with advanced melanoma
and non-small cell lung cancer (NSCLC) undergoing anti-PD1
therapy. We performed a Al-based characterization of each
lesion on the pretreatment contrast-enhanced CT imaging data to
develop and validate a non-invasive machine learning biomarker
capable of distinguishing between immunotherapy responding and
non-responding. To define the biological basis of the radiographic
biomarker, we performed gene-set enrichment analysis in an
independent dataset of 262 NSCLC patients.

Results The biomarker reached significant performance on NSCLC
lesions (up to 0.83 AUC, p<0.001) and borderline significant for
melanoma lymph nodes (0.64 AUC, p=0.05). Combining these
lesion-wide predictions on a patient level, immunotherapy response
could be predicted with an AUC of up to 0.76 for both cancer types
(p<0.001), resulting in a one year survival difference of 24% (p=0.02).
We found highly significant associations with pathways involved
in mitosis, indicating a relationship between increased proliferative
potential and preferential response to immunotherapy.

Conclusions These results indicate that radiographic characteristics
of lesions on standard-of-care imaging may function as non-invasive
biomarkers for response to immunotherapy, and may show utility for
improved patient stratification in both neoadjuvant and palliative set-
tings.



2.1 Introduction

Cancer immunotherapy has made promising strides as a result of im-
proved understanding of biological interactions between tumor cells
and the immune system. Both the EMA and the FDA have approved
anti-PD1 antibodies to treat melanoma or non-small cell lung cancer
(NSCLC) patients with unresectable or metastatic disease, which pro-
gressed under platinum-based chemotherapy or display high expres-
sion of PD-L1 [U Sb; U Sa; Eurb; Eura] — with overall response rates of
44% and 32% in first and second line in melanoma [Wol+15; Web+15]
and 19% in second line in lung cancer [Bor+15; Bra+15; Her+16]. Un-
like traditional cancer treatment, anti-PD1 antibodies potentiate the
anti-tumor immune response.

Despite their remarkable success, clinical benefit remains limited to
only a subset of patients [Hod+10]. As immunotherapy is expensive
and could bring toxicity, there is a need to stratify patients according to
likely benefit prior to therapy. Different biomarkers have been investi-
gated with variable success, such as levels of PD-L1 [Ma+16; Men+15;
Ker+15], presence of tumor infiltrating lymphocytes [Zit+17; He+17],
genetic mutations [McG+16; Riz+15; Hel+18a], and inflammatory cy-
tokines [Aye+17].

Recent emergence of quantitative imaging biomarkers provide promis-
ing opportunities. Unlike traditional biopsy-based assays that repre-
sent only a sample of the tumor, images reflect the entire tumor bur-
den, providing information on each cancer lesion with a single non-
invasive examination. This is of particular importance in immunother-
apy, where different lesions can have different microenvironments po-
tentially leading to heterogeneous response patterns [Whi08]. Previ-
ously, radiolabeled anti-PD1 antibodies were used to visualize specific
immunological expressions [Wu09].

Computational imaging approaches originating from Artificial
Intelligence (AI) have achieved impressive successes in automatically
quantifying radiographic characteristics of tumors [Hos+18].
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Al-based characterization on radiology is referred to as “radiomics”
and can provide more detailed characterization than possible by eye
[Hos+18; Aer+14; AH16]. Radiomics-based biomarkers have shown
success in different tumor types [Cor+16; Kir+17; Fav+17; Par+15;
Kic+16; Pra+16; Li+16]; but to the best of our knowledge, there is no
evidence yet in immunotherapy. Tumor morphology, visualized on
imaging, is likely influenced by several aspects of tumor biology. We
hypothesize that a set of morphological characteristics, quantified
by radiomics, are related to and may therefore act as predictive
markers.

In this study, we analyzed all visible cancer lesions to evaluate the
potential predictive value of CT-derived radiomic biomarkers in
metastatic NSCLC and melanoma patients receiving immunotherapy.
A biologic evaluation was performed in an independent validation set
of surgical NSCLC patients with imaging and gene-expression data.

2.2 Material and methods
2.2.1 Immunotherapy dataset

Patients with metastatic melanoma or NSCLC receiving
3mg/kg/2weeks of anti-PD1 at the Netherlands Cancer Institute
(NKI) between 2014 and 2016 were retrospectively analyzed.
Contrast-enhanced computed tomography (CE-CT) scans were
acquired before (baseline) and around 12 weeks after start of
treatment (follow-up). The study protocol was approved by the
Medical Ethics Committee and Board of Directors of the NKI and
informed consent was waived.

Image acquisition protocol. The CT scans were performed by either
covering the chest (n=86) or covering the chest and abdomen (n=117)
using multi-slice CT equipment (Toshiba Aquilion CX, Minato, Tokyo,
Japan; Siemens Somatom Sensation Open, Erlangen, Germany) with
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a tube voltage of 120 kVp, slice thickness of 1 mm, and in-plane res-
olution of 0.75 x 0.75 mm. The bolus injection was performed at 3
ml/s (Omnipaque 300, GE Healthcare, Chicago, Illinois, US) not pre-
warmed, with a total amount based on the patient weight + 40 cc (min-
imum of 90 cc and maximum of 130 cc) followed by a saline flush of
30 cc. The chest CT examinations were performed 40 seconds after
contrast injection, whereas the chest and abdomen examinations were
performed at 70 seconds.

2.2.2 Genomics dataset

To provide biological validation, we evaluated an independent,
dataset of surgical NSCLC patients between 2006 and 2009 treated at
the H. Lee Moffitt Cancer Center. Pre-surgical CE-CT (within 60 days
of diagnosis) and gene expression data was available for 262 patients.
The University of South Florida IRB approved and waived informed
consent (IRB#16069); in accordance with HIPAA (more information in
the original publication [Gro+17]).

Image acquisition protocol. Contrast-enhanced CT scans were
acquired 60 days within diagnosis, as part of the Thoracic Oncology
Program protocol, of the L. Lee Moffitt Cancer Center (Tampa,
Florida, USA). Gene expression of 60,607 probes was measured
on a custom Rosetta/Merk Affymetrix 2.0 microarray chipset
(HuRSTA2a520709.CDF, GEO accession number GPL15048) by the
Moffitt. The University of South Florida IRB institutional review
board approved and waived the informed consent requirement
(IRB#16069); data were collected and handled in accordance with
the Health Insurance Portability and Accountability Act. Informed
consent for gene expression collection was written and oral. For
acquisition of imaging and clinical data USF IRB approved protocol
(IRB#108426) provided a waiver of informed consent.

11



Chapter 2. Lesion response prediction to immunotherapy

2.2.3 Chemotherapy dataset

To study the specificity of the radiomic biomarker for immunothera-
peutic response prediction, we retrospectively collected a cohort of 39
patients with stage IV NSCLC treated with neoadjuvant chemoradio-
therapy at NKI between 2012 and 2016 (IRBd18079).

Image acquisition protocol. The CT scans were performed cover-
ing the chest and abdomen (n=39) using multi-slice CT equipment
(Toshiba Aquilion CX, Minato, Tokyo, Japan; Siemens Somatom Sen-
sation Open, Erlangen, Germany) with a tube voltage of 120 kVp, slice
thickness of 1 mm, and in-plane resolution of 0.75 x 0.75 mm. Spe-
cific of the scanning protocols were identical to the immunotherapy
dataset.

2.2.4 Imaging data and lesion segmentations

Experienced readers manually delineated lesions on baseline and
follow-up scans. Target lesions were defined as any tumor that was
well-demarcated on both baseline and follow-up with diameter >5
mm. The inclusion criteria were: availability of CE-CT BL and FU
and, presence of measurable target lesions at baseline. Measurable
lesions were defined as any tumor lesions (primary or metastatic
lesions) whose entire border could be identified on both BL and FU
scans, as our radiomic feature extraction pipeline requires segmented
region of interest to extract features Lesions that disappeared in the
FU were flagged as complete response. Lesions that could not be
accurately discriminated from surrounding tissues (e.g. lung nodule
within atelectasis), with ill-defined borders (e.g. lung lesions adjacent
to atelectasis) and lesions which could not be tracked down from
other adjacent tumour lesions at baseline or follow-up CTs (e.g.
confluent metastases) were not delineated and excluded. Lesions
poorly visualized because of the presence of imaging artefacts (e.g.
scattering, motion or breathing artefacts) were excluded as well.
Examples are shown in Figures 2.1a-b.
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2.2.5 Response kinetics

To assess the effects of mixed response, we performed a lesion-per-
lesion assessment of relative change in diameter between baseline and
follow-up, using RECIST criteria. Furthermore, in patients with >1 le-
sion, we classified response patterns on a patient basis as mixed for
patients presenting both responding and progressive lesions and uni-
form for patients presenting only responding or progressive lesions (ir-
respective of stable lesions). This setup allows for the characterization
of overall tumor burden.

2.2.6 Radiographic differences between responding and
progressive lesions

To generate radiomic sequences for each lesion at baseline, a set of ra-
diomic features was defined [G217] (see Figure 2.1e). Radiomic fea-
tures of responding responding and progressive lesions were directly
compared to identify differences. To reduce redundancy, ten comple-
mentary features were selected using unsupervised feature selection
[Yin08]. Statistical significance was assessed using generalized mixed-
effect models — controlling for patient, tumor type and organ. False
discovery rate (FDR) was at 10% to correct for multiple comparisons.

2.2.7 Radiomic biomarkers to predict immunotherapy response
of cancer lesions

To assess the performance of the radiomic biomarker, we developed a
machine learning model [Cox58; B201; Ols+16]. We trained the model
on all lesions (i.e. progressive, stable and responding) to discern pro-
gressive disease. The dataset was divided into training, tuning, and
testing sets based on patient identifiers. The training set was used to
model data distributions. The tuning set was used during training to
control for overfitting. The test set was used for independent evalu-
ation (see Figure 2.1f). Mann-Whitney-U test was used for statistical

13
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testing of AUC curves, one-sided McNeils test was used to test if the
radiomic biomarker was outperforming volume and maximum diam-
eter, and log-rank test was used for statistical testing of survival per-
formance.

To test for radiomic association with molecular pathways, Spearman’s
rank correlation coefficient was used. Pathways were then ranked
by —logl0(p), where p is the correlation p-value, and put into a pre-
ranked gene set enrichment analysis (GSEA) algorithm [Sub+05] ver-
sion 2.0.14 on the C2 collection version Molecular Signature Database
(MSigDB)[Lib+11].

Feature extraction. To reduce the influence of outlier intensity values
in the image, the volume was clipped between -1000 HU and 3000 HU.
Radiomic features were extracted from original images as well as from
different image transformations including five Laplacian of Gaussian
filters (o = 1.0, 2.5, 5.0, 7.5, 10.0 mm), eight wavelets decompositions,
and four non-linearities (exponential, square, square root and loga-
rithm). We also repeated the extraction over three different scales,
each defined by a set of radiomic parameters: (1) a fine scale with 1
mm isotropic resolution and 1HU bin width, (2) a medium scale with
3 mm isotropic resolution and bin width of 5HU and (3) coarse scale
with 5 mm isotropic resolution and bin width of 25 HU. In this way, the
algorithm can choose the best radiomic extraction parameters and/or
their combination. Features which resulted in invalid values for more
than one lesion were dropped.

Dataset preparation. The entire dataset was divided into train, valida-
tion and test set based on patient identification numbers (pid). Patients
whose pid was divisible by three were assigned to the train set, those
whose (pid - 1) was divisible by three were assigned to the validation
set, and those whose (pid - 2) was divisible by three were assigned to
the test set.

Classifier pool. The first group is composed by three linear classi-
fiers based on logistic regression (LR) models [Cox58], each differen-
tiated by a different feature selection method: (1) unsupervised result-

14



ing from PCA, (2) supervised resulting from wrapper feature selection
(WEFS), or (3) no feature selection. Similarly, we defined a second group
of non-linear classifiers based on random forests (RF) [B201]. Finally,
we generated two additional classifiers via genetic evolution (GEN-1
and GEN-2). Each classifier was trained using 2-fold cross validation
and optimized via sequential model based optimization.

Training strategy. Each classifier is trained on the training set using a
2-fold cross validation procedure. To prevent the model from learning
to recognize patients rather than the actual lesion-wise classification
task, we enforced cross validation at a patient level, avoiding the dis-
tribution of lesions of the same patient across different folds. Once
trained, the model is evaluated in on the test set to check for under- or
overfitting, and model selection.

Classifier optimization. Each classifier comes with a set of tunable
parameters, i.e. hyperparameters. We made use of a machine learn-
ing procedure, a.k.a. sequential model based optimization (SMBO),
to tune the hyperparameters of each classifier. SMBO procedure is an
iterative procedure, where at each iteration the performance is mod-
elled as a function f of the hyperparameters. The search of the optimal
hyperparameters is achieved via optimization of a criterion on f. We
chose the commonly used Expected Improvement (EI). Parzen estima-
tors were used to approximate the function f.

Hyperparameter space. Logistic regressions had only one tunable hy-
perparameter representing the weight of the L, regularization coeffi-
cient. Random forests had four hyperparameters: the max depth of
the trees (d), the minimum number of samples in each leaf (mL), the
minimum number of samples (mS) and minimum Gini impurity in
each split (G). The hyperparameters of the genetic classifiers depend
on the specific search result. Finally, wrapper feature selectors had one
hyperparameter k, indicating the number of top-performant features
selected. For each classifier, we selected the set of hyperparameters
resulting in the highest AUC.

15
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Model selection. Once completed, the optimization procedure results
in a set of eight trained classifiers. We selected the final classifier by
comparing their performance on the validation set. The classifier that
achieved the highest AUC score was selected as candidate solution.
All algorithms, except for wrapper random forests and the second ge-
netic evolution classifier, reported a certain degree of overfitting quan-
tified by a lower accuracy on the validation set w.r.t the one reported
on the training set. During training, all algorithms perform similarly
between the two folds of cross validation, except second genetic evo-
lution classifier which showed higher variance. Our choice of using
wrapper random forests as candidate classifier was motivated by the
fact that this configuration reached the highest performance with the
least amount of overfitting.

16
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Figure 2.1: (a) Baseline contrast-enhanced CT scan of melanoma patient pre-
senting with metastases in the liver and lymph nodes in the axilla and sub-
clavicular area (b) Follow-up scan of the same patient showing complete re-
sponse in the axillary region and partial response of the lesions in the liver
and neck (c) Baseline CT scan of a NSCLC patient presenting lesion in the left
lung, that showed progression at a later FU CT (not shown) (d) Baseline CT
scan of a melanoma patient presenting lesions in the right lung, that showed
response at a later FU CT (not shown) (e) Schematic representation of the
radiomics feature extraction process (f) Schematic of the machine learning
process.
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2.3 Results
2.3.1 Immunotherapy response kinetics

To assess immunotherapy response kinetics, 203 (123 NSCLC, 80
melanoma) patients were analyzed with a total of 1055 target lesions.
Lesions were similarly distributed between NSCLC (n=572, 54%) and
melanoma (n=483, 46%). The most common lesion sites were lung
(n=359, 34%), lymph nodes (n=312, 30%), and liver (n=212, 20%).
Most lesions (n=746 vs 309, chi-square-test p<0.01) showed either
stable (n=395) or partial response (n=351).

Melanoma lesions showed better overall response than NSCLC (40%
vs 27% responding, p<0.01; 23% vs 34% progression, p<0.01). This
trend was more evident for lung lesions, where we observed progres-
sion in NSCLC (39% vs 14%, p<0.01) and response in melanoma (48%
vs 26%, p<0.01). Hepatic melanoma lesions showed response in com-
parison with NSCLC (22% vs 36%, p=0.04). Examples are shown in
Figures 2.1c-d.

Comparing per-patient response patterns in both cancer types, we ob-
served that 23% (n=47) showed uniform response, 27% (n=55) uni-
form progression, and 22% (n=45) mixed response. The remaining 28%
(n=56) of the patients did not have multiple target lesions or presented
only stable lesions. Significantly higher survival rates were seen in uni-
form response (log-rank test, p<0.01). This was evident in melanoma
(log-rank-test, p<0.01), while in NSCLC, despite similar trends, did not
reach significance (p=0.08). Per-patient response kinetics are shown in
Figure 2.2a. Kaplan-Meier curves are shown in Figures 2.2b-d.

2.3.2 Radiographic differences between responding and
progressive lesions

To investigate radiographic differences between responding and
progressing lesions, we compared their radiomic features (see Table
21). Among the most common locations (lung, lymph nodes,
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Figure 2.2: (a) Response kinetics curve depicting individual lesion responses
(as dots) on a patient-to-patient basis (b) 1 year survival plot for all analyzed
patients, (c) for melanoma patients only, (d) for NSCLC patients only.

liver and adrenal gland), responding lesions presented higher
levels of irregular patterns (Wavelet. HLH . GLSZM_ZoneEntropy;,
Kenward-Roger-test p=0.007) with more compact, spherical profiles
(SurfaceVolumeRatio, p=0.01). Subanalysis on location revealed
increased values of morphological heterogeneity in hepatic, nodal,
and splenic lesions associated with response (p<0.02). Of the
most common NSCLC lesions, similar trends for morphological
heterogeneity were seen at organ level in pulmonary and hepatic
lesions, as well as lymph nodes also characterized by the presence
of hypodense regions (p=0.007). No significance was observed in
primary NSCLC tumors. Among most common melanoma lesions
greater morphological heterogeneity showed association with
response (GLCM DifferenceEntropy, p=0.006). Similar trends for
morphological heterogeneity were seen but lower sample numbers
did not allow to pass the patient correction.
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2.3.3 Radiomic biomarker to predict immunotherapy
responding and stable lesions

To assess the performance of radiomics to rule out progression, we
used machine learning to develop a single radiomic biomarker with
133 patients in the discovery set and 70 patients in test (see Table 2.2).
A random forest with wrapper feature selection was used to develop
radiomic biomarkers based on the performance in the discovery set
and were validated on the independent test set.

In NSCLC, radiomic biomarker from pulmonary (0.83 AUC, Mann-
Whitney-U-test p<0.001) and nodal metastases (0.78 AUC, p<0.001)
showed significant performance. Satisfactory performance was ob-
served in NSCLC primary tumors (0.79 AUC, p=0.05), hepatic (0.75
AUC, p=0.13) and adrenal lesions (0.70 AUC, p=0.18) but did not reach
significance mostly due to the low number of samples.The model per-
formed poorly on both pulmonary and hepatic melanoma lesions (0.55
AUC). Despite these results, a trend toward significance is shown in
nodal metastases (0.64 AUC, p=0.05) (see Figure 2.3a). Evaluation of
the radiomic biomarker on all 303 lesions within the test dataset re-
sulted in significant predictive performance (0.66 AUC, p<0.01; see Ta-
ble 2.2).

By combining predictions made on individual lesions, it is possible
to do a pre-treatment patient-wise prediction of immunotherapy re-
sponse (see Methods). Significant performances were observed to pre-
dict OS for both tumour types (0.76 AUC for all patients, p<0.01; 0.76
AUC for NSCLC patients, p<0.01; 0.77 AUC for melanoma patients,
p<0.01; see Figure 2.3b), with a significant survival difference at 1-year
of 25% (77% vs 52%, log-rank-test, p=0.02; see Figure 2.3c). Interest-
ingly, in melanoma patients, we observed significant performance to
predict OS and response, despite the lower performance on a lesion
level.

This radiomic immunotherapy response biomarker could not
significant predict overall survival in patients treated with
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neoadjuvant chemoradiotherapy (p=0.07), nor in terms of overall
patient response (AUC=0.63; p=0.09). In terms of lesion response, the
biomarker was inversely correlated to response of lung lesions in
non-immunotherapy patients (n=61, AUC=0.70, p=0.04), but did not
show any significant predictive value in the remaining nodal (n=61,
AUC=0.59, p=0.24) and liver lesions (n=12, AUC=0.65, p=0.29).
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Figure 2.3: Performance of the selected classifier on the independent test set
for (a) NSCLC lesions and (b) melanoma lesions. (c) Patient level response at
first follow-up, and (d) Prognostic performance of the imaging biomarker on
a patient level.

2.3.4 Biological validation of the radiomic biomarker

To evaluate the biological basis of the radiomic biomarker, we evalu-
ated it in an independent dataset of 262 NSCLC patients with matched
array-based gene expression data [Gro+17]. Through ranked gene set
enrichment analysis, we found that the top gene-sets showing signif-
icant association with the radiomic biomarker were involved in cell
cycle progression and mitosis. This indicates that a link between high
tumor proliferation and improved response to immunotherapy may
exist, and provides rationale for early-application immunotherapy as
a therapeutic option for aggressive rapidly-expanding cancers.



Chapter 2. Lesion response prediction to immunotherapy

2.4 Discussion

Our aim was to evaluate radiomics-based models and their potential
to predict treatment response in metastatic melanoma and NSCLC pa-
tients receiving anti-PD-1 antibodies.

We found that lesions with more heterogeneous morphological pro-
tiles with non-uniform density patterns and compact borders are more
likely to respond to immunotherapy - irrespective of organ and/or
cancer type. Higher levels of SurfaceVolumeRatio in nonresponding
lesions in both cancers suggest that more compact and spherical pro-
tiles are associated with better response.

Based on these results, it would be prudent to point out that morpho-
logical heterogeneity does not necessarily correspond to genetic het-
erogeneity: infiltration, inflammation, neovascularization, and necro-
sis could also be associated with morphological irregularities. Assum-
ing that a well-vascularized monoclonal tumour growing in the ab-
sence of an immune system would expand uniformly in all directions,
any deviation could suggest a fault of one of aforementioned charac-
teristics. If we were to relax one of these conditions, e.g. by adding
an immune system, we would observe infiltration and inflammatory
microenvironment [McG+16] affecting the tumor morphology — now
comprising more than solely tumor cells. Irregular vascularization
might cause non-homogeneous growth patterns while hampering T-
cell infiltration [Hua+13]. The role of the other compartments need to
be taken into account in order to explain the overall tumor growth.

Overall results of machine learning model show good predictive per-
formance for NSCLC metastases. In melanoma the same model per-
formed poorly. Besides the smaller melanoma cohort, the heteroge-
neous therapeutic backgrounds likely played a role in the morphologi-
cal characterisation. While NSCLC patients received chemotherapy as
first-line, melanoma patients received a variety of different treatments
prior to immunotherapy. This could potentially have led to standard-
ization of defined genetic profiles and tumour microenvironments in
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NSCLC [GM12; Aer+14; Gro+17; Rio+17]. In melanoma patients the
diversity of therapeutic backgrounds might have induced different ge-
netic profiles and microenvironments. Despite the lower performance
on individual melanoma lesions, we still see a correlation with re-
sponse and overall survival at a patient level, suggesting a relationship
between individual lesion response and overall tumor burden.

GSEA on an external cohort revealed associations of the radiomic
biomarker to proliferative potential in NSCLC, suggesting that
highly proliferative tumors may show preferential response to
immunotherapy. While standard of care for patients with aggressive
cancer showing rapid expansion is platinum-doublet chemotherapy,
these results provides the biological rationale for previous work
demonstrating why combination therapy is a viable option in first-line
metastatic settings, [Gan+18b].

We designed the study using a lesion-based approach, reflecting the
metastatic condition characterizing patients receiving immunotherapy.
This enabled us to investigate lesions individually while avoiding the
issue of mixed response. Whenever possible, we limited selection bi-
ases and tried to avoid overfitting. Further validation in larger cohorts
is warranted.

As imaging can provide information of the total tumor burden which
allows the analysis of each lesion individually, its value lies comple-
mentary to currently known biomarkers (limited to single lesion sam-
ples). Despite the correlations found to overall patient survival and
molecular pathways, further studies are needed to investigate the in-
teraction between single (or clusters of) lesions, tumor biology and
clinical status. Only a multidisciplinary aimed to integrate data from
different disciplines can create a fully integrated solution that can be
implemented into the clinical workflow.
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2.5 Conclusions

Our findings suggest associations between radiomics characteristics
and immunotherapy response showing consistent trends across can-
cer types and anatomical location. Lesions that are more likely to re-
spond to immunotherapy typically present with more heterogeneous
morphological profiles with non-uniform density patterns and com-
pact borders. Moreover, we provide a predictive machine learning
model that could be used within the context of lesion response to treat-
ment, patient treatment response, and response pattern characteriza-
tion. Furthermore, we evaluated the biological basis of the proposed
biomarker and found to be correlated with cell proliferative potential.
Motivated by the results and the wide availability of routine clinical
CT scans for cancer immunotherapy patients, we aim to expand this
research further to the design of clinically applicable automatic com-
puter models that could support the oncological decision-making pro-
cess.
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Lesion diagnosis of therapy-induced
lung disease

Stefano Trebeschi et al. “Deep learning distinguishing pulmonary
progression from pulmonary sarcoid-like lesions in immunotherapy-
treated melanoma patients”. In: British Journal of Cancer, accepted for
publication (2020).
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Abstract

Background. Immunotherapy is being used in an increasingly vari-
ety of cancer types. As a result of its mechanism of action, immune-
related side-effects may occur that are important to be distinguished
from tumor progression - emphasizing the need for timely detection.
In this study, we used deep learning applied to routine clinical CTs for
diagnosis of intrapulmonary sarcoid-like granulomatous lesions sub-
sequent to antiCTLA-4 monotherapy.

Methods. A deep learning network developed for lung cancer screen-
ing was used and fine-tuned on a cohort of 4579 lung nodules of 138
melanoma patients, of which 1679 lung nodules of 69 patients were
used for independent testing(6 diagnostic outcomes).

Results. The network reached 0.68AUC (p<0.001) for histologically-
proven sarcoid-like granulomatous lesions. Its performance could be
improved for pulmonary metastases compared to the original screen-
ing network (0.76 versus 0.61AUC, p<0.001). These results suggest
the presence of treatment-induced morphological changes, not present
in the original treatment-naive dataset. We found significant differ-
ences in the network’s ability to distinguish between sarcoid-like and
post-infection granulomas (0.71AUC, p<0.001), suggesting reliance on
inflammation-associated features. The diagnostic score prognostic for
1-year OS (0.70AUC, p<0.002).

Conclusion. Artificial intelligence can improve the diagnosis of
sarcoid-like granulomatous lesions. If validated, these findings could
enhance the current diagnostic and treatment workup for patients
receiving immunotherapy.
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3.1 Introduction

Since the approval of the first checkpoint inhibitors in 2011 for stage-IV
melanoma patients [Man11; Hod+10; US ; Eurc], cancer immunother-
apy rapidly grew to include a larger variety of cancer types. This cul-
minated in 2017 with the first ever approval of a cancer treatment in
any solid tumor with high microsatellite instability or mismatch repair
deficiency [Mar+19].

Due to the nature of immunotherapeutic agents, inflammations
and autoimmune-like disorders are among the most common
side-effects, termed immune-related adverse effects. These
include immune-related toxicities of the skin, endocrinopathies,
hepatotoxicity, and pneumonitis [FPP16]. While some of them pose
little risk to the patient (e.g. skin rash) [Gol+16], others could lead to
more serious, life-threatening conditions. Pneumonitis, for example,
may represent a life-threatening situation [Fra+18], often affecting
treatment continuation or (in more critical situations) trigger the
administration of corticosteroids and immunosuppressants [LG16;
SDL16], with the danger of developing irreversible interstitial lung
disease that might limit patient outcome. Timely detection of these
adverse effects is therefore essential for the management of patients
undergoing immunotherapy [Dim+18].

While an effort has been made to adapt imaging follow-up schemes
[Sey+17b], treatment-specific diagnosis of immune-related adverse ef-
fects is still limited due to the lack of familiarity of radiologists with
this novel treatment modality [Nis+15], and the limitations of rou-
tine clinical imaging unable to clearly differentiate immunecompart-
ments (i.e. the cellular composition of the microenvironment) and
tissue immune-infiltrates. Due to the unique nature of the therapy
and the rapidly increasing number of patients receiving checkpoint in-
hibitors, the need for novel diagnostic tools to fit treatment specific
needs is clear.

We examined lung “sarcoid-like” granulomatous disease as a side
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effect of CTLA-4 checkpoint inhibitors 11, which currently lacks
accurate, non-invasive, treatment-specific diagnostic tools. Studies
have raised the awareness of increasing incidence of sarcoid-like
lesions in malignancies with an incidence rate of 4.3% [Ask+99;
Bon+15; CK07; PGW95; Rei06; Egg+19]. These lesions arise from the
checkpoint inhibitor mediated activation of the immune system, and
present as nodular inflammations. Granulomatous lesions are not
easily distinguishable from metastatic lesions on routine radiological
scans, often being mistaken for progression of malignancy [Sid+17].
The reason for this is because they represent with similar imaging
morphology on computed tomography (CT) as well as may show
activity on positron emission tomography — computed tomography
(PET-CT) resulting in a lack of diagnostic specificity of radiological
appearance [Egg+19]. In addition, different nodule types have
different treatment options. While guidelines have been established
for the management of the incidental finding of solitary pulmonary
nodule in patients without pre-existing conditions [NO19; Gra+16],
the management of lung nodules still remains challenging in these
patients [Nai+18] as well as in cancer patients [Gre+17]. Because
of this, further imaging followup examinations during cancer
immunotherapy are often needed to observe the development of a
suspected possible granulomatous lesion, and even then, biopsy often
remains the only option for accurate differential diagnosis [Egg+19;
Ohs+17].

As standard radiological diagnostic tools do not provide accurate and
non-invasive solutions, current evidence in the literature suggests that
superior results could be achieved through the usage of artificial intel-
ligence (AI) [Bi+19b] — more specifically, deep learning. Unlike stan-
dard radiological reporting based on qualitative evaluation of visible
features, Al methods applied on routine clinical imaging allow for the
quantitative evaluation of recurrent imaging patterns — anatomical
structures and morphologies, possibly invisible to the human eye —
that can be linked to the presence of a medical condition. Al effec-
tively allows radiological images to be used as a source of quantita-
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tive, minable data for diagnosis and prognostication. This study aims
to evaluate the performance of deep learning methods in the differen-
tial diagnosis of (biopsy proven) lung sarcoid-like granulomatous dis-
ease of advanced melanoma patients undergoing CTLA-4 checkpoint
inhibitors.

3.2 Materials and methods
3.2.1 Study cohort

For this study, we retrospectively included consecutive patients with
stage IIIA-IV melanoma treated with anti-CTLA4 monotherapy (3 or
10 mg/kg) every 3 weeks (until disease progression, discontinuation
due to toxicity or patient withdrawal) within the Department of
Dermatology of the University Hospital of Zurich (USZ; Zurich,
Switzerland) from 2012 - 2018. Of those n=72 patients were treated
within clinical trials (clinicaltrials.gov NTC00636168, NTC01844505,
NTC02388906). The remaining number of patients were treated with
anti-CTLA4 as standard of clinical care. These patients were included
according the ethical approval for the monocentric biodatabank
(including imaging assessment and patient outcome) in melanoma
patients treated with targeted and/or immunotherapy (EK 647). All
patients underwent standardized imaging-based tumor response
assessment with contrast-enhanced computed tomography (CT)
with a follow up (FU) interval of 8-10 weeks during the treatment.
Only patients with diagnosed intrapulmonary nodules and with a
pre-existing CT examination at least 1 year prior to the time point of
melanoma diagnosis were included. Patient history and clinical data
were collected from electronic medical records. Patients with a known
history of immunodeficiency and/or autoimmune disease were
excluded. Data was collected according to the approval of the local
ethics commission (EK 647 and KEK-ZH 2014-0193) and following the
guidelines of the Helsinki Declaration on Human Rights with signed
patient consent. Data analysis was carried out at the Netherlands
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Cancer Institute (NKI; Amsterdam, The Netherlands) according to the
approval of the local institutional review board (IRBd19-083).

3.2.2 Imaging Acquisition

CT images were acquired in a supine position in full inspiration.
CT scans were performed with 3 different types of scanners: a 128
slice multidetector CT scanner (Somatom Flash, Siemens, Erlangen,
Germany), a 128 slice multidetector CT scanner (Somatom Edge
Plus, Siemens, Erlangen, Germany), and 64 slice multidetector
CT scanner (Somatom AS, Siemens, Erlangen, Germany). The
following parameters were used: tube voltage 120 kV, automated
attenuation-based tube current modulation with a reference tube
current-time product of 320mAs/rotation; pitch 3.2; gantry rotation
time 0.25s, collimation 128x0.6 mm and 64x0.6 mm, respectively.
Images were reconstructed with a slice thickness of 2 mm, an
increment of 1.6 mm, a soft tissue kernel B36, and slice thickness 1.5,
an increment of 1, a hard tissue kernel B57, respectively. For contrast
enhanced CT scans 65 ml iopromide (Ultravist 300, 300mg/ml;
Bayer Schering Parma, Berlin, Germany) was injected at a flow rate
of 2.1 ml/s followed by 60 ml of saline solution at the same flow
rate. Bolus tracking in the descending aorta was performed with a
signal-attenuation threshold of 120 HU and a delay of 25 seconds for
the arteriovenous contrast phase.

3.2.3 Imaging assessment, data preparation, and
preprocessing

Read-out of imaging data was performed by two radiologists (LT 4
years of experience, TN 11 years of experience), consulting follow-up
scans and clinical data when required. The readout assessment of the
radiologists was performed in concordance, meaning unclear lesions
were assessed in consensus. Because of this methodologic approach,
no inter-observer assessment was evaluated. Each lung nodule was

32



marked with a 3-dimensional spherical region of interest (ROI)
positioned in the center of the lesion, allowing to analyze the nodule
itself and its surrounding anatomical information. Each nodule was
assigned with a unique identifier that was kept consistent through
its follow-ups for longitudinal tracking. An additional volumetric
segmentation of lung nodules was provided only for lesions in the
sarcoid-like granulomatous group, due to time constraints.

Recorded anatomic information included: side (left or right lung), lung
lobe (upper, lower, middle or lingula), and subpleural versus intrapul-
monary space. The intrapulmonary findings were categorized as fol-
lowing (also see Table 3.1) [Nai+18; CSA19]: metastasis, non-specific
pulmonary perifissural lymph node, non-specific granuloma (gener-
ally post-infection), ground-glass lesion, scar tissue (post-infection or
postoperative), focal infectious inflammation, and sarcoid-like granu-
lomatous lesion. Scar tissue was excluded from the dataset, due to
scarcity of samples (no samples in the discovery set). Non-specific
granuloma were identified as known intrapulmonary lesions already
documented on CT examination performed at least 1 year prior to the
diagnosis of melanoma that remained stable during all follow up CTs,
these lesions can be partially calcified.

To generate nodule-specific imaging data, each lung lesion was
cropped to a cube of 64x64x64 voxels (isotropic voxel resampling
at 0.75 mm) according to the location recorded by the readers.
Hounsfield units are clipped between -1000 (air density) and 1000
(cortical bone density) and normalized to zero mean and one standard
deviation.

3.2.4 Deep learning

The dataset was divided into discovery and independent validation set
based on patient identifiers. A publicly available 3-dimensional con-
volutional neural network was used on our dataset!. The network was

Lurl: github.com/LouisFoucard /DSB17_3d_lung_nodule_classifier
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originally trained to classify malignant pulmonary lesions in a pub-
licly available screening imaging dataset. We optimized the original
network on our dataset via fine-tuning: the first six convolutional and
batch normalization layers were frozen during fine-tuning, and the
original multi-layer perceptron was replaced by a global average pool-
ing followed by a softmax classifier. In other words, we employed the
original screening network to extract quantitative imaging features,
and replaced the original binary classifier (malignant vs benign) with
a 6-class classifier, one class per diagnostic outcome. The improve-
ment of the diagnostic performance was evaluated by comparing the
performance of the original network on our dataset, to our optimized
network for the classification of malignant lesions (as the original net-
work was trained only to distinguish malignant lesions from benign
ones with the use of the publicly available LUNA dataset?). The LUNA
dataset is composed of 158 patients with different malignancies, in-
cluding malignant and benign lesions. Sarcoid-like lesions labeling
was not provided. The diagnostic parameters of the LUNA dataset
were assessed by a team of expert readers. Biopsies were taken in a
number of unclear cases. The LUNA dataset is more heterogeneous, as
it contains contrast and non-contrast scans, as well as different voxel
sizes and resolution parameters. To reduce overfitting and improve
generalization, images were augmented with random rotation of 10°,
shift and zoom of 10%, and random axis flipping. Additional regular-
ization was implemented via dropout (p = 0.5) on the softmax classifier.
To counter class imbalance, focal loss (3, a = 2.0, 1.0) was used during
training [Lin+17]. Adam was used for stochastic optimization (Ir =
0.001) [KB14], with batch size set to 32 samples. A detailed representa-
tion of the network is given in Figure 3.1. The trained network output
consisted of a group of six probabilities, one per diagnostic outcome:
non-specific granulomas, sarcoid-like granulomatous lesions, focal in-
fections, perifissural lymph nodes, ground-glass lesions and metas-
tases. Due to the lack of samples in the training set and/or test set,
scars were excluded.

Zurl: lunal6.grandchallenge.org
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Figure 3.1: Deep learning architecture

3.2.5 Statistical analysis

To assess diagnostic performance, each score was analyzed individu-
ally against all other diagnostic outcomes (i.e. one-vs-all) using the
area under the receiver operating curve (AUC). Confidence intervals
were estimated via bootstrapping performed using repeated sampling
with replacement (1000 times). Statistical significance was assessed via
Mann-Whitney-U test. Further analysis was performed to the score as-
sociated with sarcoid-like granulomas lesions against all others diag-
nostic scores individually (i.e. one-vs-one) using the same statistical
metrics. Lesions” malignancy scores generated by the original screen-
ing network, and lesions” volumes were used for diagnostic perfor-
mance comparison. Significant differences in diagnostic performance
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(i.e. between AUCSs) were assessed via McNeil test.

Diagnostic scores can be used for both prognostication and stratifica-
tion. To assess the prognostic performance of our Al-diagnostic signa-
ture at baseline (e.g. first available scan), a patient-wide imaging sig-
nature was created. In this imaging signature, the highest probability
per outcome across all lesions in the scan was recorded. The resulting
diagnostic signature described the probability of the patient having at
least one lesion with a specific diagnostic outcome (e.g. metastasis,
non-specific pulmonary perifissural lymph node, non-specific granu-
loma, ground-glass lesion, focal infectious inflammation, and sarcoid-
like granulomatous lesion). Unsupervised principal component anal-
ysis was used to transform the patient-wise signature to a single-value
prognostic score. Predictive performance of this score was estimated
with Kaplan Meier curves. Statistical significance was assessed via
log-rank test. Multivariate Cox regression was used to assess statis-
tical significance against other known diagnostic and clinical parame-
ters used for prognostication, tumor stage, presence of lung metastases
and young age (<65 years).

3.2.6 Saliency Maps

Imaging features used by the network and associated with sarcoid-like
granulomatous lesions were analyzed through saliency maps [SVZ13].
Saliency visualization is a technique which highlights sections of the
original image that are deemed predictive by the network to estimate
the diagnostic score. These highlighted sections are referred to as
“salient regions”. Saliency maps of sarcoid-like granulomas lesions
were generated, along with metastases and non-specific granulomas
(similar pathophysiology but different stages of infection) as controls.
The qualitative (purely visual) analysis was limited to the top-8
lesions analyzed by the radiologists per class where the algorithm
returned the highest probability of the classification. In other words,
these were the eight lesions where the algorithm was most confident
in its “diagnosis”.
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3.3 Results
3.3.1 Study cohort

From consecutive n=293 patients a total of n=165 melanoma patients
were included in this study (62 female, median age 63 years, range
55 - 74 years). Twenty-seven patients were excluded due to the
lack of visible lung nodules or insufficient image quality. In total,
we included n=138 patients (87 males, 51 females, median age 64
years, melanoma cancer stage IIIA-C N=27, stage IV N=111), n=980
CT scans, and n=4579 lung nodules — n=1059 baseline nodules
longitudinally followed-up with an average of 6 CT scans (IQR=6)
every 8 to 12 weeks. Manifestation of granulomatous disease
was confirmed through biopsy in n=8 patients (n=74 CT scans
performed in these patients, see Table 3.2). In our study cohort all
sarcoid-like lesions CT or PET/CT suggested a malignant cause of
these pulmonary nodules, leading into biopsy or thoracic surgery.
Also, retrospectively we could not find any imaging pattern that
might be specific for sarcoid-like granulomatous disease in our study
population. In Figure 3.2c morphologically the overlap between
metastases and non-specific granuloma can be seen if compared
to the introduced characteristics in Table 3.1. Out of n=317 lung
nodules of the patients presenting sarcoid-like granulomas disease,
60.57% (n=192) nodules were sarcoid-like granulomatous lesions.
The overall number of nodules per patient in this group does not
significantly differ to the negative control (16 versus 17 nodules on
average respectively, mann-whitney-u test p = 0.23). The majority
of the nodules were either melanoma lung metastases (n=2772,
60.54%), or perifissural intrapulmonary lymph nodes (n=1150,
25.11%).  Non-specific granulomas, sarcoid-like granulomatous
lesions, and ground glass lesions were rare, accounting for 7.21%
(n=330), 4.19% (n=192) and 1.64% (n=75) respectively. Because in all
patients CT examinations prior to the diagnosis of melanoma were
available, all metastases could be identified as new lesions occurring
after melanoma diagnosis. All nonspecific lesions like non-specific
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pulmonary perifissural lymph node and non-specific granuloma
could be identified in the CT examination at least one year prior to
first diagnosis of melanoma. Occurrences of scars, inflammations and
lesions shifts (e.g. from perifissural lymph nodes to metastases) were
each below 1%. Location-wise, nodules were unevenly distributed
(chi-square test, p<0.001) with lower lobes accounting for half of the
nodules (23.69% or n=1085, and 25.88% or n=1185, for left and right
lungs respectively). Nodules in the lingula were the rarest (4.93% or
n=226, see Table 3.3).

3.3.2 Diagnostic performance

The discovery set consisted of n=69 patients and n=2830 nodules,
while the independent test set consisted of the remaining n=69
patients (n=5 with sarcoid-like granulomatous disease) and
n=1679 nodules (n=35 sarcoid-like granulomatous lesions). On the
independent test set, the network reached an average performance
of 0.69 AUC. Higher performances were reached for ground-glass
lesions (0.82 AUC, CI: 0.67 — 0.9, p=0.002), nonspecific granulomas
(0.79 AUC, CI: 0.77 — 0.82, p<0.001), and metastases (0.76 AUC, CI:
0.74 — 0.78, p<0.001). Perifissural lymph nodes and sarcoid-like
granulomas lesions reached diagnostic performance of 0.69 AUC
(CI: 0.67 — 0.72, p<0.001) and 0.68 AUC (CI: 0.61 — 0.76, p<0.001),
respectively. The network performed poorly on focal infectious
inflammations (0.40 AUC, CI: 0.27 — 0.56, p=0.26). No significant
difference in diagnostic performance has been detected between
nodules at first appearance and nodules at follow-ups (McNeil-test,
all p>0.48). Overall, the proposed fine-tuned network significantly
outperformed the original one in the classification of metastatic
lesions in our test set (0.76 AUC vs 0.61 AUC; McNeil-test, p<0.001)
and the volumetric measure within the sarcoid-like granulomatous
group (0.76 AUC vs 0.53 AUC; McNeil-test, p<0.001). Further analysis
on diagnostic outcome pairs revealed higher diagnostic performance
in distinguishing between sarcoid-like granulomatous lesions versus
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ground-glass lesions (0.82 AUC, CI: 0.59 — 0.97, p=0.005), and
sarcoid-like granulomatous lesions versus non-specific granulomas
(0.71 AUC, CI: 0.63 — 0.80, p< 0.001). Differential diagnosis of
sarcoid-like granulomatous lesions versus perifissural lymph nodes
and metastases performed similarly to the general case (0.69 AUC,
CIL: 0.62 — 0.76, p<0.001 and 0.68 AUC, CI: 0.60 — 0.74, p<0.001,
respectively). The network appears to be unable to distinguish
between sarcoid-like granulomatous lesions and focal infection
inflammations (0.37 AUC, CI: 0.11 — 0.71, p=0.22). No significant
difference in diagnostic performance has been detected between
nodules at first appearance and nodules at follow-ups (mcneil-test, all
p>0.57, see Figure 3.2a). To check that the different scan properties
did not interfere with the deep learning model, a sub-analysis within
the scans of the granulomatous patients only (N=63 lesions that were
not granulomatous) was performed. The result kept being significant
(p=0.01), and similar to the one reported for the entire dataset (0.64
AUC, CI: 0.55 — 0.73), which lead us to the conclusion that even when
the scan properties are inhomogeneous, the result holds.

3.3.3 Predictive performance

Overall median survival of the cohort of patients in the independent
test set was 16.6 months. Using the diagnostic score at baseline, we
were able to identify two risk groups (i.e. high score and low score,
according to score median) with a median survival difference of 12
months (11.3 vs 23.5 months, log-rank-test, p=0.03) and a predictive
performance of 0.70 AUC for 1 year overall survival (CI: 0.59 — 0.81,
p=0.002). In multivariate analysis, the score remained significant for
overall survival (p=0.02) against tumor stage (>stage III, p=0.08),
presence of lung metastases (p=0.43) and younger age (<65 years,
p=0.87).
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3.3.4 Saliency maps

The saliency maps generated for non-specific granulomas, sarcoid-like
granulomatous disease and metastases (Figure 3.2c) revealed
predictive features in the intralesional periphery, and in the
perilesional parenchyma. The intralesional periphery was highlighted
in case of sarcoid-like granulomatous-lesions and metastases,
whereas imaging features in perilesional parenchyma were deemed
predictive by the network in non-specific granulomas. Additionally,
in non-specific granulomas a heterogeneous pattern could be depicted
compared to the other cases. Salient regions on vasculature (within
and around the lesions) could be found across all classes. Anatomical
landmarks (e.g. ribs, intercostal muscles, surrounding organs) were
not found to be predictive in any of the samples.
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Figure 3.2: (a) Area under the receiver operating characteristic curve of each
diagnostic outcomes versus all other diagnostic outcomes. MET metastases
(Scr indicates the score of the original, non-fine tuned model trained on
screening imaging data, Vol indicates the diagnostic performance of volume),
PLN perifissural lymph nodes, NSG non-specific granuloma, SLG Sarcoid-
like granulomatous lesions, GGL ground glass lesions, SCA scars, INF in-
fections, SH shifts. (b) Kaplan Meier curves of high and low risk groups,
stratified according to the diagnostic score at baseline (c) Saliency maps of
sarcoidlike granulomatous lesions and respective controls (metastases and
non-specific granulomas).
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3.4 Discussion

Cancer immunotherapy checkpoint inhibitors changed the treatment
landscape of various cancer types including melanoma. Due to the
nature of immunotherapeutic agents, immune-related side effects are
common. As these adverse effects could lead to life-threatening con-
ditions, timely detection is essential. While efforts have been made
to adapt imaging follow-up schemes, treatment-specific diagnosis is
still limited partially due to the novelty of this therapy. Our aim was
to evaluate the diagnostic performance of artificial intelligence (deep
learning) and medical imaging in the diagnosis of sarcoid-like granu-
lomatous lesions, which arose as an immune-related adverse effect to
anti-CTLA4 checkpoint inhibitors in melanoma patients.

Our results show good performance of our Al model for differentiation
of sarcoid-like granulomatous lesions against metastases, perifissural
lymph nodes, non-specific granulomas, and ground-glass lesions with
highly significant AUC-values. Despite the large data imbalance with
very few sarcoid-like granulomatous lesions available for training, the
careful design of the Al model and training procedure allowed to bal-
ance the diagnostic performance of each lesion outcome around 0.69
AUC. No significant difference has been observed in diagnostic per-
formance at nodule baseline compared to their follow-ups, suggesting
that the Al model was independent from treatment time-points.

Overall, our network significantly outperformed nodule volume, and
visual features in distinguishing cancer lesions from benign lesions.
While this difference might have been a direct result of unaccounted
changes in the pre-processing steps, image acquisition (e.g. not all pa-
tients under screening receive contrast medium) or adjustments in the
network architecture and training procedure, one should also account
for the discrepancy of patient characteristics. The original network
was trained on the LUNA dataset, a publicly available lung screen-
ing imaging dataset, containing mostly treatment-naive subjects. It
has not yet been proven whether cancer lesions of patients undergo-
ing immunotherapy are subject to morphological changes visible in
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CT images. However, it would be reasonable to assume that the ac-
tivation of the immune system driven by checkpoint inhibitors might
cause changes in the visible (and potentially not-readily-visible) mor-
phology of the tumor as a result of the inflammatory process.

Further analysis revealed higher diagnostic performance of the Al
model (up to 0.82 AUC) in the distinction between sarcoid-like
granulomatous lesions versus immune-related phenomena, such as
non-specific granulomas, and ground-glass lesions. Ground-glass
lesions are focal, diffuse, and (partially) solid abnormalities [Hen+02].
Their classification is purely based on radiological characteristics,
while the histopathological type might include infection and drug
toxicity, sarcoidosis, and malignancy [Hen+02; Kim+13; MS05],
among others. The ability of the model in distinguishing between
non-specific granulomas and sarcoid-like granulomatous lesions is
particularly interesting, as these two nodule types share some similar
underlying biological mechanisms. Their difference can be accounted
for in two ways. First, non-specific granulomas are generally
post-infection, while sarcoid-like granulomatous lesions present an
ongoing immune-response. Second, non-specific granulomas are
more likely to contain necrotic and fibrotic components, generally
not associated with sarcoid-like lesions [IRT07]. Saliency maps of
non-specific granulomas displayed predictive imaging features in
the surrounding parenchyma and vasculature, whereas sarcoid-like
granulomatous lesions showed salient regions in the intralesional
periphery. One could hypothesize that the saliency map might depict
a still active immune response in the intralesional periphery of the
sarcoid-like granulomas lesion in comparison to a possible chronic
enclosing immune reaction of the lung parenchyma surrounding the
nonspecific granuloma. It is not possible to draw hypotheses, with
the same level of certainty, that account for the difference between
metastases and sarcoid-like lesions. While sarcoid-like lesions and
non-specific granuloma share the same biological basis, cancer
lesions lie far apart. Saliency maps clearly depict regions in the
intralesional periphery, as well as parenchyma, to be predictive. This
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could, however, be due to a number of factors, including potential
differences in wvascularization, immune- and tumor-infiltration,
morphological features associated with the displacement of healthy
tissue, and so on. Further validation is also needed to confirm its
biological basis.

Prognostic analysis of the diagnostic score at baseline revealed signifi-
cant correlation with overall survival, which remained significant even
when compared to known negative prognostic factors, such as tumor
stage, spread, and age. Diagnostic scores at baseline, such as the radi-
ological tumor stage and pathological TNM classification of malignant
tumors, have already been linked to overall survival. In this context, a
more complete, quantitative descriptor of the patient status at start of
treatment could potentially have prognostic

To the best of our knowledge, this is the first study to investigate
the performance of artificial intelligence in the differential diagnosis
of intrapulmonary sarcoid-like granulomatous disease in cancer
patients undergoing immunotherapy. The earliest case-report
of granulomatous disease associated with checkpoint inhibitors
was published in 2016 by Danlos et al. [Dan+16] and presented
a melanoma patient undergoing anti-PD1 checkpoint inhibitors
[Dim+18] who developed a sarcoid-like granulomatous lesion in
the mediastinal lymph node and skin after complete response.
The authors acknowledged the link between the development of
sarcoid-like lesions and the cell-mediated immunity induced by the
treatment, while warning of possible adverse clinical implication
for sarcoid-like lesions misdiagnosed as tumor progression. Similar
reports have been published, including reports for patients receiving
anti-PD1 + anti-CTLA4 combinations [Suo+16], and in lung cancer
patients receiving anti-PD1 antibodies [Bir+17].

Regarding imaging, evidence in the literature is still scarce. A visual
analysis on the morphology of granulomatous lesions in a cohort of
18 patients with common variable immune deficiency presented fea-
tures, like generalized diffuse reticular pattern and lower lobe predom-
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inance in 80% of non-specific granulomas positive patients [Par+05].
Molecular imaging, in the form of fluoro-D-glucose positron emission
tomography (FDG-PET), is the only reported method for non-invasive,
quantitative imaging assessment of sarcoid-like granulomatous lesions
[Cap+16]. Activated leukocytes, macrophages and activated helper T-
cell (CD4+) show increased FDG uptake, highlighting spots of ongo-
ing inflammation. In these cases, FDG-PET has demonstrated high
sensitivity (90%-100%). However, translating these results in the dif-
ferential diagnosis of patients undergoing checkpoint inhibitors is not
straightforward, as the method relies on the detection of activated in-
flammatory components which are likely to be present also in can-
cer lesions. Although these studies present insights into the viability
of imaging for the assessment of sarcoid-like granulomatous lesions,
none of them was performed with concurrent, immunotherapy-treated
metastatic disease, where cancer lesions are likely to also have siz-
able active immune-compartments. Clinically, the prospect of routine
imaging being able to provide a quantitative, non-invasive diagnos-
tic profile of the whole tumor burden that can also be used in prog-
nostication models is appealing. Such tools would enable clinicians
to accurately monitor the treatment and steer it accordingly, while si-
multaneously avoiding additional invasive (and potentially harmful)
examinations for the patient.

3.4.1 Limitations and future outlook

The lack of accurate non-invasive diagnostic methods can be explained
by several factors. These include the rare (and often asymptomatic) na-
ture of the disease, the novelty of the treatment, and the unfamiliarity
of radiologists with treatment side-effects, among others. These fac-
tors make data collection complicated, leading to small-sized datasets.
The diagnostic accuracy reported and the limited amount of diagnostic
outcomes considered in our cohort, would not meet the requirements
to use Al alone in the clinical workflow. Better performances are to
be expected with increased availability of sarcoid-like granulomatous
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lesion images for training and external validation cohorts. However,
due to the rarity of the adverse effect, it is more likely to achieve better
performance by leveraging more advanced Al methods, currently un-
der research. For example, additional improvements in the diagnostic
performance could be achieved by giving the model access to the clin-
ical history of the patient. This however would require more complex,
multi-modal approaches to be investigated separately. Because of the
limited dataset in our study no clinical data was included to avoid
an unwanted confounder in the evaluation of the performance solely
based on imaging features. Additionally, further investigations should
include biological validation where the imaging features learnt and
leveraged by the Al model are linked back to micro-environmental and
genetic quantitative features. While in this study we partially address
the problem by leveraging the biological similarity between sarcoid-
like granulomatous lesions and post-infectious granulomas, any fur-
ther conclusion would need to be proven by adequate biological mark-
ers, possibly not relying on the generalizability assumption of single
lesion biopsy. Finally, in this study we investigated sarcoid-like granu-
lomatous lesions as a side-effect of CTLA-4 checkpoint inhibitors. Fur-
ther research in the applicability of this method for treatments focusing
on the PD1/PD-L1 axis and combination therapies are required.

3.5 Conclusions

Aim of this study was to apply novel technologies of artificial
intelligence on routine medical imaging for the diagnosis of
sarcoid-like granulomatous lesions induced by novel cancer
immunotherapeutic agents. = We found significant performance
in the diagnosis of sarcoid-like granulomatous lesions, while
simultaneously significantly improving the performance of the
original screening network for the diagnosis of pulmonary metastases.
Moreover, the network was able to distinguish between sarcoid-like
granulomatous lesions and non-specific post-infection granulomas.
Further investigation is needed to explore the links between the
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imaging features and biological phenomena, and improvement of the
diagnostic performance to clinical acceptability.
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Prognostic value of chest imaging
monitoring

Stefano Trebeschi et al. “Prognostic value of deep learning mediated
treatment monitoring in lung cancer patients receiving immunother-
apy”. In: Frontiers in Oncology, accepted for publication (2021).
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Abstract

Background Checkpoint inhibitors provided sustained clinical benefit
to metastatic lung cancer patients. Nonetheless, prognostic markers in
metastatic settings are still under research. Imaging offers distinctive
advantages, providing whole-body information non-invasively, while
routinely available in most clinics. We hypothesized that more prog-
nostic information can be extracted by employing artificial intelligence
(Al for treatment monitoring, superior to 2D tumor growth criteria.

Methods A cohort of 152 stage-IV non-small-cell lung cancer patients
(NSCLC)(73 discovery, 79 test, 903 CTs), who received nivolumab were
retrospectively collected. We trained a neural network to identify mor-
phological changes on chest CT acquired during patients” follow-ups.
A classifier was employed to link imaging features learnt by the net-
work with overall survival.

Results Our results showed significant performance in the indepen-
dent test set to predict 1-year overall survival from the date of im-
age acquisition, with an average area under the curve (AUC) of 0.69
(p<0.01), up to AUC 0.75 (p<0.01) in the first 3-5 months of treat-
ment, and 0.67 AUC (p=0.01) for durable clinical benefit (6-months
progression-free survival). We found the Al-derived survival score to
be independent of clinical, radiological, PDL1, and histopathological
factors. Visual analysis of Al-generated prognostic heatmaps revealed
relative prognostic importance of morphological nodal changes in the
mediastinum, supraclavicular and hilar regions, lung and bone metas-
tases, as well as pleural effusions, atelectasis and consolidations.

Conclusions Our results demonstrate that deep learning can quantify
tumor- and non-tumor related morphological changes important for
prognostication on serial imaging. Further investigation should focus
on the implementation of this technique beyond thoracic imaging.
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4 1 Introduction

Recent advancements in the understanding of the tumor-immune cell
interactions [LKA96; Ish+92] have enabled the development of novel
drugs for the treatment of advanced-stage lung cancer. Immune check-
point inhibitors, in particular, have been shown to provide sustained
clinical benefit to patients, especially in the metastatic setting [Bor+15;
Bra+15; Her+16].

Metastatic markers that can be used for patient selection (i.e. before
the start of treatment), as well as for treatment monitoring (i.e. during
treatment), are still under research [Ten+18; HCC19b; Ros+19]. In
the context of oncological research, most predictive/prognostic
markers are derived from tissue samples , routinely-extracted blood
[Wan+19], or non-invasive radiological imaging (surrogate imaging
markers). Tissue samples derived from biopsies (usually taken from
anatomically accessible locations) often fail to account for inter- and
intra-lesion heterogeneity, and response assessed during evaluation of
tissue samples of only a few lesions does not necessarily mean that all
lesions have responded in the same way. Furthermore, serial biopsies
during longitudinal follow-up are cumbersome for the patient but
also impractical. Regardless of biomarker source, monitoring of
response to therapy remains challenging. As such, they are not part of
the routine clinical workflow of patients.

Standard clinical imaging provides a non-invasive overview of
the entire tumor burden and has the potential to more accurately
evaluate the overall response of the patient to the treatment. Yet,
imaging evaluation is currently limited to 2-dimensional “subjective”
measurements of tumor size changes [Eis+09], time-consuming
ROI delineation [Tre+19; Sun+18], and/or to values approximating
metabolic activity (i.e. SUV values in PET) [Ten+18]. By limiting the
use of imaging for response evaluation to only these approaches,
many (potentially prognostic) imaging characteristics are ignored.
For example, as the disease evolves in multiple distal sites,
traditional imaging assessment methods would not account for
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the microenvironment of each lesion, despite the fact that several
potential prognostic factors (e.g. angiogenesis, inflammation,
and lymphocytic infiltration) likely depend on that environment
[Gar+19]. Since immunotherapy is a systematic treatment modality,
changes indicating response are not limited to one location but can
occur all over the body. This is particularly relevant in patients
treated with anti PD-1 blockade where lymphadenopathy [NHH19;
Tir+15], parenchymal inflammations, edema [Ale+19; Joh+16], and
compression atelectasis (18), can be observed. Ideally, during image
response evaluation these conditions, together with tumor growth,
should be monitored and quantified as they might hold valuable
prognostic information.

Using Artificial Intelligence (AI), treatment monitoring tools can be
built, capable of rapidly assessing gross morphological changes be-
tween two (or more) follow-up images of the same patient [Bi+19a],
in a fully-automatic manner, completely independent of human input.
In this context, image registration can be used as the basis for such a
method. At its core, image-to-image registration is the process of es-
tablishing a voxel-wise match between two radiological images. By
establishing a match, we can measure voxel-level differences between
corresponding objects represented in the images quantitatively. While
conventional registration techniques are very limited for this applica-
tion, deep learning-based methods have shown promise in image-to-
image registration [HKY20]. There are three main advantages to using
deep learning-based image registration as the core technique. The first
advantage is that registration networks are trained to match a pair of
images, voxel-wise. This creates a network that is explicitly trained to
quantify differences between two images. By leveraging its internal
features, we can effectively obtain feature vectors that represent these
voxel-wise changes. These vectors can be used for classification pur-
poses. The second advantage of using image registration is that it can
be trained on large unlabeled datasets (i.e. lacking any kind of man-
ual annotation, such as segmentations or RECIST-like measurements),
while not compromising its ability to model voxel-wise details, that are
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likely lost in a classical unsupervised autoencoder approach. The third
advantage of using image-to-image registration is that, unlike stan-
dard RECIST, such a method could be fully automatic and not require
any manual input (e.g. two-dimensional diameter measurements), and
not be limited to changes in the tumour size, but it would also account
for global morphological changes, whether tumour associated or not,
throughout the body. Applying an image-registration-based Al algo-
rithm in oncological follow-up imaging enables us to develop a novel
method that can accurately measure gross morphological changes dur-
ing treatment. Quantitative measurements of these changes can then
be used for prognostication.

This study aims to investigate the potential prognostic value of
Al-mediated monitoring on CT scans in non-small cell lung cancer
(NSCLC) patients receiving anti-PD-1 immune checkpoint blockade.
Relying on existing technical research on image-to-image registration,
we hypothesize the existence of quantitative imaging features
describing a set of gross morphological changes during treatment
that hold prognostic value. To test this hypothesis, we developed a
deep learning network for thoracic image-to-image registration and
studied the prognostic value of features learnt by the network in
NSCLC patients being treated with PD-1 blockade.

4.2 Materials and methods
4.2.1 Study cohort

For this study, we retrospectively included patients with stage IV
NSCLC treated with anti-PD1 monotherapy within The Netherlands
Cancer Institute - Antoni van Leeuwenhoek Hospital (NKI-AVL;
Amsterdam, The Netherlands) between 2014 and 2016. All patients
underwent standardized, imaging-based tumor response assessment
with contrast-enhanced computed tomography (CT), with follow-up
(FU) intervals of 8-12 weeks. We retrieved all available FU scans
within the first two years of treatment, together with a baseline
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scan (BL) performed 8 weeks before and up to 1 week after start of
treatment. To encode pre-treatment tumor spread, a pre-baseline scan
(PBL), defined as the first available scan before BL, was also retrieved
when available. The exact dates of each scan were recorded with
respect to the start of treatment (in days). Patients with only one scan
available throughout the entire treatment regimen, or whose scan
would not fully cover the thorax, were excluded from the analysis.
The cohort was divided into a discovery and independent test set
based on the patient identifier: patients with even ID numbers were
assigned to the discovery set, patients with odd ID numbers were
assigned to the independent test set. The study was carried out at the
NKI-AVL with the approval of the local Institutional Review Board
(IRBd19-083). This cohort is a longitudinal expansion of a previously
described NSCLC cohort [Tre+19].

4.2.2 Image acquisition

The CT scans were performed by either covering the chest or
covering the chest and abdomen using multi-slice CT equipment
(Toshiba Aquilion CX, Minato, Tokyo, Japan; Siemens Somatom
Sensation Open, Erlangen, Germany) with a tube voltage of 120
kVp, slice thickness of 1 mm, and in-plane resolution of 0.75 x 0.75
mm. The bolus injection was performed at 3 ml/s (Omnipaque 300,
GE Healthcare, Chicago, Illinois, US) not pre-warmed, with a total
amount based on the patient weight + 40 cc (minimum of 90 cc and
maximum of 130 cc) followed by a saline flush of 30 cc. The chest
CT examinations were performed 40 seconds after contrast injection,
whereas the chest and abdomen examinations were performed at 70
seconds.

4.2.3 Data curation

Radiological datasets are often heterogeneous. To mitigate differences
in radiological image acquisition, all CT scans were cropped between
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the liver and the lower neck region using the method proposed by
Zhang et al. [ZWZ17], and linearly resampled to 2 mm isotropic voxel
size. Hounsfield units were clipped between -120 (fat) and 300 (can-
cellous bone) and rescaled between 0 and 1. CT scans were further
cropped to 192 x 192 x 160 voxels from the center point in order to
provide the network with regular image shapes during training.

4.2.4 Al-mediated quantitative treatment monitoring

To harness Al for quantitative treatment monitoring, we developed
a 3-dimensional convolutional neural network to perform image-to-
image registration between subsequent follow-ups of the same patient
(architecture shown in Figure 4.1), based on the research of Balakr-
ishnan et al. [Bal+19] and Zaho et al. [Zha+19b]. The network com-
prised of two subsequent parts: the first performing affine registration
aimed to provide alignment of the scans (i.e. to correct for different pa-
tient positions), the second section performing deformable registration
and aimed to identify morphological changes during the course of the
treatment (i.e. longitudinal tracking).

Architecture-wise, the first part of the network consisted of a VGG-like
network comprised of a series of five convolutional blocks, and two
fully-connected layers, regressing the 12 parameters of the affine trans-
form. The output transform of the network was applied to the moving
image, concatenated to the fixed image, and fed into the second part of
the network. The second part of the network followed a U-Net archi-
tecture [RFB15], and it aimed to quantify non-linear anatomical differ-
ences between the input scans. This consisted of an encoding section,
comprising 4 convolutional blocks downsampling the images by half
the size via striding, a convolutional latent space with stride of 1, and
4 deconvolutional blocks each upsampling the inputs by double the
size via striding. Skip connections were implemented between encod-
ing and decoding layers following the implementation in the original
paper. The network was trained to minimize the correlation coefficient
loss [Zha+19b]. Unlike standard measurements of classical registration
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procedures, this loss is easy to compute in the continuous case. Three
penalties were also employed to mitigate for unlikely morphological
deformations, each weighted 1/10 in the final loss. Adam optimizer
was used during training, with an initial learning rate of 8 x 10-5. A
curriculum learning scheme was implemented during training, such
that the loss would be computed on a smoothed version of the images.
The smoothing was implemented via average pooling, starting with a
kernel size of 9, and reduced by 3 at epochs 100, 150, and 175. Batch
size was set to 2. To mitigate negative effects resulting from the small
batch size, group normalization was employed instead of batch nor-
malization. Figure 4.1 shows a detailed overview of the model loss
used. The network was trained on a publicly available dataset of 1010
patients of the lung image database consortium [McN+07; Arm+11;
Cla+13] with 10% hold out during training to control for overfitting
(i.e. patients whose ID were multipliers of 10 were held out). Our code
can be found online!.

4.2.5 Prognostication through quantitative monitoring

To explore the prognostic value of Al-mediated treatment monitor-
ing, we trained a random forest classifier [B201], with wrapper feature
selection, to predict survival based on network imaging features ex-
tracted from pairs of subsequent follow-up scans. More specifically,
the RFC was trained longitudinally, on pairs of subsequent scans, to
predict whether the patient would survive 1 year from the date of the
latest of the two scans (see Figure 4.2). The input of the RFC consisted
of 96 feature maps from the latent space of the decoder that represented
the morphological changes between the prior and the subsequent scan.
These are the deepest features found in the middle layer of the second
section of the network — the one handling deformable registration.
These features come in tensor shape, hence the name feature maps. For
classification purposes, it is standard to transform the feature maps of

!code: github.com/nki-radiology/PAM.git
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the network to a feature vector, to be fed into a classifier. Global aver-
age pooling is the technique commonly used to create a feature vector
out of a set of feature maps: each entry of the feature vector is the av-
erage value of the corresponding feature map. Alongside the global
average pooling, we also included standard deviation, skewness and
kurtosis, as we deemed the feature maps too large to be represented
just by the mean activation — 1000 values per feature map, compared
to 49 of a classical ResNet architecture.

To correct for temporal discrepancies (e.g. differences in time between
follow-ups), the amount of days elapsed between the two scans, and
the days elapsed since the start of treatment were also fed to the RFC.
Furthermore, morphological changes should be order invariant: the
differences estimated between image A and B should be the same as
the differences between image B and A. To provide order invariance,
we applied element-wise multiplication of the feature maps generated
by swapping the input scans. More specifically, we computed the fea-
ture maps for the scan pair prior-to-subsequent, and the feature maps
for the pair subsequent-to-prior. Then we multiplied them together,
element-wise. The multiplication preserved only those changes that
were detected in both directions, therefore providing order invariance
to our model. The discovery set was used for training, while testing
was performed on the independent validation set. Both the registra-
tion network and the random forest classifier were trained on the par-
titioned data, at once, with their respective default parameters — no
cross-validation or model selection was performed.

4.2.6 Prognostic heatmaps

Occlusion sensitivity was employed to visualize the parts of the im-
age that were deemed prognostic of the outcome [ZF14]. The main
idea of the occlusion algorithm is based on the assumption that remov-
ing a predictive section / region from the original image will change
the algorithm prediction substantially. In contrast, removing a non-
predictive section/region from the original image, the algorithm pre-
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diction will stay unchanged. We occluded a section (or patch) of the
input image presented to the RFC. The prognostic value of that patch
is then computed as the difference of the RFC survival score produced
by the occluded image vs the original unoccluded one. The resulting
prognostic map is the result of the algorithm scrolling the ROI through
the image, and repeating the procedure. This was filtered with the
gross morphological changes map to produce a prognostic map of the
gross morphological changes used for visual interpretation. Details of
the algorithm reported in Algorithm 1. Visual assessment of the re-
sulting prognostic maps was carried out by an expert reader (T.N.B.,
board certified radiologist, 2 years experience in thoracic imaging at
a tertiary oncologic center), blinded to all clinical parameters, includ-
ing survival. All scan pairs were assessed with the prognostic maps
overlaid on top. The reader was tasked to identify the areas of acti-
vation (i.e. hot spots) in the scan pair, and report them categorized as
tumor-related areas, secondary comorbidities, and general anatomical
areas. Tumor-related areas and secondary comorbidities, which were
not highlighted in the prognostic map, were recorded separately.

4.2.7 Independence from known prognostic factors

To test the independence of our AI model, we ran a multivariate
analysis against known prognostic factors. Age and pathological
cancer subtypes were extracted directly from the anonymized patient
records. Changes in tumoral burden were computed based on the
available manual segmentations of the total tumor — i.e. all visible
and segmentable lesions in the body, except for bone and brain.
To ensure comparability with 2D measurements from standard
RECIST criteria, volumes where converted to pseudo-diameters via
d = {/(6V/m), where V is the total tumoral burden. This computes the
diameter of the sphere equi-volumetric to the total tumour burden.
Tumor PD-L1 expression scoring was performed according to the
instruction manual of the qualitative immunohistochemical assay
developed as a complementary diagnostic tool for nivolumab (PD-L1
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IHC 22C3 pharmDx, Dako, Carpinteria, CA). PD-L1 expression levels
were determined by observing complete circumferential or partial
linear expression (at any intensity) of PD-L1 on the plasma cell
membrane of viable tumor-cells. In parallel, the pattern of staining
in CD4 stained slides, which also stain CD4+ lymphocytes and
macrophages, was evaluated and compared to PD-L1 stained slides
in order to avoid false positive assessment due to PD-L1 expressing
macrophages in between tumor cells. Assessment of expression levels
was performed in sections that included at least 100 tumor cells that
could be evaluated.

Algorithm 1 Generation of Heatmaps for Model Explainability

1: procedure GENERATEHEATMAP(prior, subsq, A¢, Agor)
2: refgcore <— Survival score on the original images
ROI «— Cube of 64 x 64 x 64 in the top left back corner
occl < Set intensties within the ROI to zero in prior and subsq
occlseore <— Compute the survival score on occluded
ROIimportance < ‘OCCIUdedscore - refscore|
prog-map[ROI] «— max(progmap[ROI], ROLportance)
if ROI has not scrolled through the whole image then
Move the ROI 8 voxels along one of the axis
10: Go to step 4

11: def-map < Anatomical changes between prior and subsq
12: return smooth ( def-map x prog-map )

4.2.8 Statistical analysis

To assess prognostic performance, the area under the receiver
operating curve (ROC-AUC) was used. Confidence intervals were
estimated via bootstrapping performed using repeated sampling
with replacement (10000 times). Statistical significance was assessed
via Mann-Whitney-U test. Kaplan Meier models were employed
for survival analysis. Statistical significance of survival metrics
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was assessed via log-rank test. Prognostic (treatment monitoring)
performance was quantified in terms of overall survival from the date
of the scan. Biomarker performance was quantified in terms of overall
survival and durable clinical benefit (complete or partial response,
or stable disease, for at least 6 months) from the start of treatment.
Cox-Hazards models were used for comparison of known prognostic
factors.
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Figure 4.2: Schematic representation of the evaluation of prognostic values
through quantitative monitoring. Radiological examinations are shown as
pre-baseline (PBL), baseline (BL) and follow-up (FU), with respect to the start
of treatment (SoT). Prediction of survival is made based on the time of death
(D). For each pair of subsequent scans, we label the earlier one as prior and
the subsequent as subsequent (Subs).
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4.3 Results
4.3.1 Study cohort

A total of n=152 patients, n=903 CT scans, and n=611 scan matched
pairs of subsequent CT scans were included in this study (see Figure
4.4). The discovery set consisted of n=73 patients (and n=276 scan
pairs), while the independent validation set had n=79 patients (and
n=335 scan pairs). Median age of the entire cohort was 64.4 (IQR 57.8
— 68.9), with a higher prevalence of males (57.9%). Adenocarcinoma
was the most common subtype, reported in 61% of the cohort. No dif-
ferences in clinical characteristics were encountered between discov-
ery and validation set, except for survival. In comparison to the dis-
covery set, the independent validation set had 180 days longer over-
all survival, and 101 days longer progression-free survival. Imaging-
wise, we collected n=129 pre-baselines (PBL; 14.3%), n=149 baselines
(BL; 16.5%), n=135 first follow-ups (FU1; 15.0%), and n=103 second
follow-ups (FU2; 11.4%). Subsequent follow-ups (FU3+) constituted
the remaining 42.9% of the dataset (n=387). Time-wise, BL scans were
acquired on average 26 days before the start of treatment (IQR 37 —
14), while the first FU scan, 68 days after (IQR 46 — 77). Subsequent
follow-ups were made on average every 77 days (IQR 55 — 95). Acqui-
sition of non-contrast enhanced PET-CT instead of contrast enhanced
CT was the main reason for lack of imaging during follow-up. Further
patient characteristics in Table 4.1.

4.3.2 Image registration performance

We evaluated the performance of the registration algorithm merely to
identify the cases where the registration algorithm failed. The eval-
uation of a registration algorithm is usually performed by evaluating
the distance between two known corresponding landmarks in the reg-
istered image. This can be done automatically, in a circular fashion.
Namely, by selecting N random points in an image, we can transform
them to their new coordinates in the target image, and back, using the
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registration functions T4 g to represent the transformation from source
to target, and T4 as the transformation from target to source. Ideally,
these should be the inverse of one another. Practically however there is
a registration error propagating from source to target and back. We es-
timate this error to be proportional to the euclidean distance between
N and Tpa(Tap(N)). It is not exactly the registration error, as this de-
pends on two subsequent dependent registration steps. However, as
registration is merely the auxiliary task in our model, a full evaluation
of the registration procedure — also in terms of architecture and net-
work components — is beyond the scope of this study. The purpose
of this analysis is to analyze the worst cases, i.e. the failures of the
algorithm.

We ran the evaluation for all scan pairs, with 100 randomly generated
points that were transformed from prior to subsequent, and back to
prior. The resulting error was 1.67 cm, on average (CI: 0.87 — 3.18).
We selected for visual inspection the three three worst cases, with er-
ror 4.54, 3.76 and 3.75 cm, respectively (see Figure in 4.3). This can
be considered the closest cases of failure of the algorithm. In each of
these cases, we can notice the presence of unlikely deformation, like
in the heart or the thoracic wall. Although a penalty was set to deter
this behaviour, we would refrain from increasing it, as it might limit
the ability of the network to model other deformations. The strength
of the algorithm is represented by the classifier able to distinguish in-
formative deformations from non-informative ones. Overall, in other
locations of the image, the registration was still successful in matching
anatomical structures properly.

4.3.3 Prognostic performance

We fed pairs of subsequent follow-up scans to our network trained for
(CT chest) image-to-image registration, and trained a random forest
classifier (RFC) on its feature maps to investigate the prognostic value
of the imaging features learnt by the network. Overall results of the
RFC survival score on the independent validation set show an AUC
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Prior Scan Affine Warp Deformable Warp Subsequent Scan

Figure 4.3: The three worst registration cases, and the result at each step of
the deep learning registration pipeline.

of 0.68 (n=335, CI: 0.62 — 0.74, p< 0.001) to predict 1-year overall sur-
vival from the date of the later scan of the scan pair (see Figure 4.4b).
The highest prognostic value can be found for the scan pair BL-FU1,
reaching an AUC of 0.74 (n=61, CI: 0.61 — 0.86, p< 0.001), and for the
scan pair FU1-FU2, reaching an AUC of 0.75 (n=42, CI: 0.58 — 0.89,
p=0.002). A decrease in performance is observed during follow-ups,
with a 0.71 AUC (n=42, CI: 0.50 — 0.89, p=0.02) for the pair FU2-FU3.
None of these differences however reached statistical significance. In-
terestingly, RFC survival scores on the pair PBL-BL also showed prog-
nostic value (0.69 AUC, n=51, CI: 0.54 — 0.83, p=0.01). After the fourth
follow-up image, the prognostic performance of the model dropped
(0.57 AUC, n=131, CI: 0.47 — 0.67, p=0.11). This trend becomes evident
when looking at the performance with respect to the days between the
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later scan in the scan pair, and the start of the treatment (see Figure
4.4c). In this respect, we divided the exam pairs in five groups, based
on the time between the day of the later scan, and the day of start of
treatment (i.e. before start of treatment, 0-90 days from start, 90-180
days and >365 days), and tested the performance in each group in-
dividually. Exam pairs performed before start of treatment showed an
AUC of 0.72 (n=48, CI: 0.57 — 0.86, p=0.006), between start and 90 days
after start of treatment showed an AUC of 0.73 (n=64, CI: 0.59 — 0.84,
p<0.001), between 90 and 180 days showed an AUC of 0.68 (n=59, CI:
0.51 — 0.83, p=0.01), between 180 and 365 days an AUC of 0.66 (n=89,
CIL: 0.51 — 0.79, p=0.01). Exam pairs performed in the second year of
treatment showed an AUC of 0.63 (n=75, CI: 0.50 — 0.75, p=0.04). Re-
sults summary in Table 4.2.

4.3.4 Biomarker performance

To investigate the prognostic value of Al-monitoring as a biomarker
we ran a survival analysis on the scan pairs closest to the date of treat-
ment start, i.e. PBL-BL and BL-FU1. High and low risk groups were
defined for each scan pair by splitting the RFC survival scores on the
median value. The scan pair BL-FU1 offered the highest prognostic
performance (p= 0.02), with a median survival difference of 357 days
(637 vs 280 days median survival respectively, p=0.02, see Figure 4.3d).
A similar trend was observed for the PBL-BL pair, with a median sur-
vival difference of 239 days (467 vs 228 days median survival, respec-
tively, see Figure 4.3e). This, however, did not reach statistical signifi-
cance (p=0.16). For durable clinical benefit (6 months progression-free
survival from start of treatment), we ran a classification analysis on the
same scan pairs. This yielded a significant performance of 0.67 AUC
(CI: 0.52 —0.80, p=0.01) for the BL-FU1 pair, and a similar trend for the
PBL-BL pair (0.61 AUC, CI: 0.44 — 0.77, p=0.10).
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4.3.5 Combination of multiple time-points

To investigate the prognostic value of AI-monitoring across multiple
time points, we combined the prognostic scores of PBL-BL monitor-
ing, and BL-FU1 monitoring (see Figures 4.3f-g). For this particular
analysis, we chose the start of treatment as reference, as differences
in follow-up schemas might magnify when combining multiple time-
points. Across the subset of patients analyzed (with PBL, BL and FU1
scans available, n=43), 53% survived 1 year after start of treatment
(n=23). Patients with high expression of prognostic features during
the monitoring of both PBL-BL and BL-FU1 (n=15) showed the highest
increase in survival, with an enrichment from the baseline of 27% (80%
survived 1 year after start of treatment). On the contrary, patients with
low prognostic features on both PBL-BL and BL-FU1 (n=14) showed
a diminution from baseline of 24% (29% survived 1-year after start
of treatment). A point of interest is to be made for patients showing
conflicting prognostic scores between PBL-BL and BL-FU1 (positive-
negative and negative-positive, n=7, respectively). While these groups
do not seem to show any deviation from the baseline (50% survived
1-year after start of treatment), further analysis on OS showed com-
parable results to the negative-negative group (p= 0.99) over a longer
time span (2 year, see Figure 4.3h). The positive-positive group, on the
other hand, kept showing significantly higher OS compared to both
negative-negative (p= 0.01) and negative-positive (p= 0.003) groups.

4.3.6 Comparison with known prognostic factors

To compare the prognostic value of Al-monitoring against other
known clinical prognostic factors, we ran a multivariate cox-hazards
survival analysis. Specifically, we compared the RFC prognostic
scores to age, cancer subtype, volumetric changes in total tumor
burden between BL and FU1, and PDL1 expression at baseline. To
mitigate collinearity, we reduced PBL-BL / BL-FU1 scores to a single
score by principal component analysis. Complete data was available
for 22 patients in the independent validation set. Results showed our
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RFC survival score preserved statistical significance (0.35 HR, CI:
0.12 — 0.97, p= 0.04) against age (2.69 HR, CI: 1.20 — 6.05, p= 0.02),
volumetric change of total tumor burden (2.36 HR, CI: 0.67 — 8.22,
p = 0.18), >1% PDL-1 expression (0.26 HR, CI: 0.03 — 2.22, p= 0.22),
adenocarcinoma (0.34 HR, CI: 0.03 — 4.43, p= 0.41) and squamous
subtype (0.14 HR, CI: 0.01 — 3.01, p=0.21).

4.3.7 Visual inspection of prognostic maps

The main idea behind predictive maps was to evaluate the predictive
value of different regions of the image by removing those regions, one
at the time, and estimating the difference in predicted survival. Fig-
ure 4.3 shows an example. The input scans are displayed in the first
column. The second column shows the prognostic map generated by
the occlusion algorithm (Algorithm 1). The patchy look of the over-
lay is the result of the cubic ROI, being scrolled around the image.
Its intensity values are proportional to the change in predicted sur-
vival resulting from occluding that region. The third column is the
deformation map, where hotspots correspond to regions of gross mor-
phological changes (i.e. pleural effusion). The fourth column was the
visualization presented to the reader. It is the result of the fusion be-
tween the prognostic map and the deformation map, and highlights
the prognostic changes identified by the algorithm.

At visual inspection, lymph node metastases and lung lesions were
common hotspots in the prognostic maps. Nodal metastases were
present in 58% of scan pairs (n=57), and highlighted as prognostic in
81% of the cases (n=46). The mediastinum contained the most nodal
hotspots, being highlighted in 80% of cases, followed by supraclavic-
ular and hilar nodal metastases, highlighted in 67% and 57% of cases
respectively. Axillary and pericardial nodal metastases were hotspots
in 75% and 50% of cases, but found only in n=4 and 2 scan pairs respec-
tively. Large lung masses were found in 45% of scan pairs (n=39), and
highlighted as prognostic in 85% of cases. The same rate was observed
for small lung nodules, while being less frequent, found in 30% of the
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scan pairs (n=26). Bone metastases were found in 20% of scan pairs
(n=17). Nonetheless, they were deemed prognostic by the algorithm
in 82% of cases. Pleural masses, liver metastases and subcutaneous le-
sions, while being almost exclusively hotspots in the prognostic maps,
accounted together for only 13 scan pairs. Among secondary comor-
bidities, pleural effusion, consolidations and atelectasis were the most
common, accounting for 31%, 28% and 20% of scans pairs (n=27, 24,
and 17, respectively). Hotspots were found in 94% cases of atelec-
tasis (n=16), 93% cases of pleural effusions (n=25), and 83% cases of
non-specific consolidation (n=20). Pericardial effusions were hotspots
in 75% of the times, but found only in 8 cases. Only one case of as-
cites was reported, which the algorithm also highlighted as prognostic.
Hotspots in anatomical regions included the spine in 56% of cases, the
thoracic wall in 55% of cases, and various regions in the upper thorax,
including periscapular (51%), shoulders (49%), neck (48%), and supr-
aclavicular (45%), with the exception of the axilla, highlighted only in
13% of scan pairs. Normal lung parenchyma was highlighted in 28%
of cases. Remaining hotspots include the great vessels (9%) and the
breast (4%). Detailed summary reported in Table 4.3.
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Figure 4.4: (a) CONSORT diagram (b) 1-year survival classification perfor-
mance on the independent validation set, with respect to the clinical follow-
up routine (highlighted in green the ROC-AUC of the scan pairs used for the
2-years survival analysis) and (c) corrected by time. (d) 2-years Kaplan-Meier
curves of the RFC survival score of BL-FU1 and (e) PBL-BL. (f) Combination
of the PBL-BL and BL-FU1 RFC survival scores with (g) enrichment of each
of the four quadrants (f) and (h) survival of each of the four quadrants. (i)
Example of the occlusion sensitivity method used for Al explainability and
visualization.
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4.4 Discussion

Advanced treatment monitoring through more detailed quantitative
descriptors of the overall status of the patient, as visualized on routine
imaging scans, could provide valuable prognostic information. Our
aim was to investigate the potential prognostic value gained by Al-
based treatment monitoring on imaging in NSCLC patients treated by
PD-1 checkpoint inhibitors. To test this, we implemented a convolu-
tional neural network for image-to-image registration, and trained it
on a large public dataset of chest CT scans. The trained network was
then used to longitudinally model gross morphological changes be-
tween subsequent scans of NSCLC patients receiving PD1 checkpoint
inhibitors. Morphological changes identified by the network were then
used to train a classifier to predict 1-year OS from the date of the latest
scan.

Our results showed significant performance in the independent test
set for the prediction of 1-year OS from the date of image acquisition,
with an average AUC of 0.69, and up to 0.75 AUC for the first 3 to
5 months after start of treatment, and 0.67 AUC for durable clinical
benefits, suggesting the presence of (Al-quantified) gross morpholog-
ical changes encoding prognostic value. These results are compara-
ble to state-of-the-art methods, which currently employs laborious and
time-consuming segmentation procedures [Tre+19; Sun+18]. While the
field of research has been focusing on single-lesion analysis — lever-
aging different known factors in cancer growth, including vascularity
[Ali+19], oxygenation [Tun+], and metabolic activity [Mu+18] — our
approach offers a novel fully automatic procedure which completely
eradicates the need of time-consuming segmentations, and simultane-
ously offers a way to provide a full picture of the patient status as seen
on chest imaging. While this does not preclude the usefulness of the
single-lesion approach, it proposes a way for future multi-scale solu-
tions that leverage both single lesion imaging biomarkers as well as
whole image approaches that provide general quantitative informa-
tion about the status of the patient receiving treatment. Research ef-
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forts, however, have to be made in order to overcome the bottleneck
of manual ROI delineation procedures, either in the form of automatic
segmenters [Yan+18], or with implicit Al representations of the total
tumor burden.

In addition to the statistical analysis of the performance, we
investigated the choices the Al made by means of sensitivity occlusion
[ZF14]. This resulted in a set of prognostic heatmaps, highlighting
regions of morphological changes that the Al deemed prognostic
relevance. Gross morphological changes in nodal and lung lesions
held the highest prognostic value, especially nodal lesions in the
mediastinum, hilum, and supraclavicular region. Further results
suggested additional prognostic value for morphological changes
affecting the lungs, either in the form of compression from the
thoracic wall (due to pleural effusion or pleural masses), non-specific
consolidations, or atelectasis. These results also seemed to extend
to other regions, with ascites and pericardial effusions also being
highlighted as prognostic, despite their rare occurrence. The Al
seemed to pay particular attention to the skeleton, with the spine
being the anatomical region most commonly highlighted by the Al
in the prognostic maps, and bone metastases deemed prognostic in
most cases where those were present. As common imaging follow-up
schemas, such as RECIST [Sch+16; Sey+17a], do not account for tumor
burden in the bones, our findings suggest that, on the contrary, such
phenomena should not be ignored. Further investigations should lead
to novel guidelines, which can provide valuable contribution from the
imaging beyond diametrical measurements.

Particular attention should also be paid to nodal metastases and nodal
growths during treatment. Imaging features of nodal metastases were
found already to be correlated with disease progression for NSCLC,
melanoma, and head and neck cancer [Tre+19; Yu+19], though no dis-
tinction was made between the location of the lymph nodes. However,
both our findings and the current literature suggest that this informa-
tion may be of value. This would be especially interesting in the light
of regional (tumor draining) lymph nodes which play a critical role in
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terms of anti-tumor immunity and priming (37), increased expression
of cytokines and checkpoint markers [Ho+20a], and changes in the im-
mune compartments resulting in a tumor favorable microenvironment
[JPP18]. A major hurdle that remains in the analysis of lymph nodes is
represented by the radiological assessment, often in contrast with the
pathological one. Most radiomics studies so far focused on the detec-
tion of positive nodal metastases rather than their prognostic values
[Ho+20b; Sha+20; Tan+19; Li+20; Zhe+20; Che+20].

The analysis of lung lesions is far more common. Imaging features
from lung lesions have been reported to hold prognostic value for pa-
tients receiving immunotherapy in several studies [Tre+19; Mu+18;
Tan+18; Tun+19; Sun+20b; Pat+19]. Indeed our findings confirm the
association between lung lesions and treatment outcome, with about
85% percent of them being hotspots in the Al-generated prognostic
maps, independent of size. Most of the studies published so far focus
on the analysis of the tumor region and/or the peritumoral bound-
ary, which may hold valuable information regarding tumor vascular-
ization and inflammatory environment. In this study, the proposed
AI model monitors the whole image including both the healthy tis-
sue as well as the tumor(s). As the growth of a cancer lesion does not
uniquely depend on the genetic makeup, but rather a complex inter-
action of microenvironmental features and favorable location for seed-
ing, it would not be surprising to establish a link between a compre-
hensive modelling tool of cancer growth and its biological features.
Even in this case however, further research is needed to establish any
link between imaging features and tumor biology.

Following our results, we observed an increase in the prognostic
performance of the Al resulting from the combination of multiple
time points, namely pre-baseline, baseline and first follow-up. This
analysis showed good OS for patients with higher Al-survival scores
(AI-RFC™hi) in both pre-baseline to baseline scan pair, and baseline
to first follow-up — and worse OS for the opposite case (AI-RFC"lo).
Interestingly, patients with contradicting scores (AI-RFC'hi for
pre-baseline to baseline scan pair, and AI-RFC’lo for the baseline
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to follow-up, and vice versa) showed worse survival, similar to
the double negative group. These results suggest the existence
of a prognostic combination of pretreatment and early-treatment
characteristics, both of which should be accounted for during patient
stratification. Further insights could be achieved by more advanced
AI methods that would account for larger time spans, or even the
entirety of patients’ treatment history.

The combined score was demonstrated to be an independent prog-
nostic parameter even when corrected for other known prognostic pa-
rameters. This is of particular interest when we consider the possible
role of such a tool, for example as an additional input to the tumor
board during treatment decision making. Further research is required
to study its implementation in the clinical settings.

4 41 Limitations and future outlook

Our study aimed to monitor Al-measured gross morphological
changes between imaging follow-up for survival prediction in
NSCLC patients receiving PD1 checkpoint antibodies. In this study,
we pre-trained a neural network on a large dataset of chest CT scans,
and fine-tuned it for survival on our smaller local immunotherapy
dataset. Under the current settings, we limited the analysis to chest
imaging which, in addition to the chest, frequently included the
lower neck and the upper abdomen. While this limitation could hold
for lung malignancy, extension to other cancer types would require
this technique to be extended to include the whole body — i.e. the
abdomen and, when available, the brain. Moreover, due to the limited
amount of data, it was not possible to explore more complex machine
learning algorithms for the prediction of survival, nor for more precise
visualization of the prognostic maps. Expansion of the dataset, both
in terms of patients and in terms of time points, would certainly
allow for an increase in performance and better explainability of
the AI algorithm. Specifically, an extension of the field of view of
the algorithm to the whole body, as well as the usage of parameters
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other than imaging, could potentially improve the performance of the
algorithm to be usable in the clinics. Further clinical validation of
the method is also needed. While this study presented a comparison
of this method with response evaluation criteria (e.g. changes in
total tumor burden) and biomarkers (e.g. PD-L1 expression), the
primary objective for future studies should be a comparison with
the clinical standard, namely the RECIST criteria. It remains to be
investigated whether this method would be complementary to the
current radiological response evaluation (i.e. RECIST). Furthermore,
additional investigations are required to link biological features to
tumor growth and gross morphological changes. Further analysis
should also study the effects of different machine acquisition
parameters, and the sensitivity of the method to imaging acquisition
parameter variability. Looking into the future, we envision that an Al
solution could be set up as a clinical decision support system capable
of providing information to the treating physician complementary to
traditional clinical and pathological input data.

4.5 Conclusion

In this study, we aimed to investigate the potential prognostic value of
Al-mediated monitoring in NSCLC patients receiving PD-1 blockade.
We hypothesized the existence of quantitative imaging features de-
scribing a set of gross morphological changes happening during treat-
ment that hold prognostic information. Our results demonstrate the
existence of such factors (as described by the Al on imaging), that are
tumor-related, such as nodal, lung and bone lesions, as well as non-
tumor related, such as pleural effusions, atelectasis and non-specific
consolidations. Further investigation should focus on the develop-
ment of more flexible models that can extend beyond thoracic imaging,
as well as on external validations.
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N- N+ p-value

Area under the ROC curve

With respect to the follow-up sequence

All 128 207 < 0.001 0.68 (CI: 0.62 — 0.74)
PBL—BL 27 24  0.010 0.69 (CI: 0.54 — 0.83)
BL—FU1 30 31 <0.001 0.74 (CI: 0.61 — 0.86)
FU1—FU2 18 32  0.002 0.75 (CI: 0.58 — 0.89)
FU2—FU3 14 28  0.015 0.71 (CI: 0.50 — 0.89)
FU3 + 39 92 0112 0.57 (CI: 0.47 — 0.67)
With respect to days from start of treatment
<0 25 23 0.0057 0.72 (CI: 0.56 — 0.86)
0—90 33 31 <0.001 0.73 (CI: 0.60 — 0.84)
90 — 180 19 40  0.013 0.68 (CI: 0.51 — 0.83)
180 —365 26 63 0.011 0.66 (CI: 0.51 — 0.79)
365 + 25 50  0.037 0.63 (CI: 0.50 — 0.75)

Table 4.2: Prognostic and predictive performance.
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ALL PBL — BL BL — FU1
Tumor Related
Lymph Nodes 46/57 (80.70%)  21/27 (77.78%)  25/30 (83.33%)
— Pericardial 1/2 (50.00%) 1/1 (100.00%) 0/1 (0.00%)
— Medjiastinal 42/53(79.25%) 18/25(72.00%) 24/28 (85.71%)
— Hilar 16/28 (57.14%)  7/12 (58.33%) 9/16 (56.25%)
— Supraclavicular  16/24 (66.67%)  5/10 (50.00%)  11/14 (78.57%)
— Axillary 3/4 (75.00%) 1/2 (50.00%) 2/2 (100.00%)
Large Lung Nod. 33/39 (84.62%) 16/20 (80.00%) 17/19 (89.47%)
Small Lung Nod. 22/26 (84.62%)  8/11(72.73%)  14/15 (93.33%)
Bone Metastases 14/17 (82.35%)  7/7 (100.00%) 7/10 (70.00%)
Pleural Masses 6/6 (100.00%) 3/3 (100.00%) 3/3 (100.00%)
Liver Metastases 5/6 (83.33%) 2/3 (66.67%) 3/3 (100.00%)
Subgq. Lesions 1/1 (100.00%) — 1/1 (100.00%)
Secondary Comorbidities
Pleural Effusion 25/27 (92.59%) 12/12 (100.00%) 13/15 (86.67%)
Consolidation 20/24 (83.33%) 10/12(83.33%) 10/12(83.33%)
— Post-radiation 3/3 (100.00%) 2/2 (100.00%) 1/1 (100.00%)
Atelectasis 16/17 (94.12%)  9/9 (100.00%) 7/8 (87.50%)
— Post-obstructive 7/8 (87.50%) 4/4 (100.00%) 3/4 (75.00%)
Pericardial Effusion  6/8 (75.00%) 2/3(66.67%) 4/5 (80.00%)
Ascites 1/1 (100.00%) — 1/1 (100.00%)
General Anatomical Areas

Spine 48/86 (55.81%) 26/43 (60.47%) 22/43 (51.16%)
Thoracic Wall 47/86 (54.65%) 25/43 (58.14%) 22/43 (51.16%)
Periscapular 44/86 (51.16%) 20/43 (46.51%) 24/43 (55.81%)
Shoulder 42/86 (48.84%) 23/43 (53.49%) 19/43 (44.19%)
Neck 41/86 (47.67%) 20/43 (46.51%) 21/43 (48.84%)
Periclavicular 39/86 (45.35%) 19/43 (44.19%) 20/43 (46.51%)
Lung Parenchyma  24/86 (27.91%) 13/43 (30.23%) 11/43 (25.58%)
Axilla 11/86 (12.79%)  6/43 (13.95%) 5/43 (11.63%)
Great Vessels 8/86 (9.30%) 5/43 (11.63%) 3/43 (6.98%)
Breast 3/86 (3.49%) 1/43 (2.33%) 2/43 (4.65%)

Table 4.3: Results from the visual inspection of the Al-generated prognostic
maps. Subq. = subcutaneous, Nod. = Nodule.
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Chapter 8. Towards integrated healthcare

Abstract

Medical imaging is a vital part of the clinical decision making pro-
cess, especially in an oncological setting. Radiology has experienced
a great wave of change and the advent of quantitative imaging has
provided a unique opportunity to analyze patient images objectively.
Leveraging radiomics and deep learning, there is increased potential
for synergy between physicians and computer networks — via com-
puter aided diagnosis (CAD), computer aided prediction of response
(CARP), and computer aided biological profiling (CABP). The ongo-
ing digitalization of other specialties further opens the door for even
greater multidisciplinary integration. We envision the development of
an integrated system composed of an aggregation of sub-systems in-
teroperating with the aim of achieving an overarching functionality (in
this case better CAD, CARP, and CABP). This will require close multi-
disciplinary cooperation between the clinicians, biomedical scientists,
and (bio)engineers as well as an administrative framework where the
departments will operate not in isolation but in successful harmony.
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8.1 Introduction

Medical imaging has historically played a key role in cancer screening,
diagnosis, staging, and therapeutic response monitoring. On a daily
basis, treating physicians rely on input from imaging to help formulate
patient management plans [Sev+17]. This is especially true within the
context of modern oncological guidelines, where patients are stratified
into increasingly complex subgroups based on biological, clinical, and
radiological parameters.

Historically, qualitative semantic features were used to describe tu-
mour morphology — as observed in the patient image. These descrip-
tions were a reflection of a scoring system based on visual assessment.
Semantic features were shown in literature to have correlations with
stage, prognosis, and even response prediction [Yip+17b]. However,
as one could imagine, this method suffered from shortcomings rooted
in its dependence on subjective scoring and the limited sensitivity of
the human eye.

Modern, ubiquitous imaging modalities, such as CT, MRI, and PET
in radiology (and digital images in pathology) are primarily quantita-
tive in nature. This characteristic is harnessed, using computational al-
gorithms, to extract quantitative features and generate mineable data.
Rather than relying solely on subjective interpretation of images, these
quantitative features can be used to objectively characterize tumour
morphology.

In radiomics, medical images are processed to generate quantitative
features and this mineable data can then be used for clinical purposes.
Radiomic features serve the purpose of describing morphological char-
acteristics (e.g. density distribution, recurrent patterns and textures,
shape and outline...) in an objective, quantitative manner. The ambi-
tion is to find completely non-invasive radiomic features that could be
used as predictive and prognostic biomarkers.
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8.2 The promise of radiomics

The advent of radiomics has opened a brand new avenue in cancer re-
search and presents a unique opportunity to data scientists and radiol-
ogists alike. Broadly speaking, two prominent potential have emerged
for radiomics — tumour characterization and therapeutic response pre-
diction (Figure 8.1).

The search has begun to identify imaging markers that could be used to
assess biological parameters (i.e. genetic mutations or surface expres-
sion of particular molecules) in the tumour. Normally, such biological
assessment of a tumor is achieved by biopsy — a process that is highly
invasive, carries potential risk for patient morbidity, and can only elu-
cidate information for lesions in sites easily accessible to surgeons. Ra-
diomics provides the opportunity to non-invasively assess the biolog-
ical profile (i.e. surface marker expression, genetic mutational status,
blood markers etc...) of all the lesions simultaneously and instanta-
neously. With the increased use of computer models to diagnose con-
ditions and predict response to therapy, this new field where biological
parameters can non-invasively be assessed using quantitative features
and computer models can be termed Computer Aided Biological Pro-
tiling (CABP).

One of the earlier studies to leverage radiomic features in the assess-
ment of genetic mutational status (i.e. radiogenomics) was the work
of Segal et al. in human liver cancer where combinations of twenty-
eight imaging traits were shown to be capable of reconstructing 78% of
the global gene-expression profile (i.e. mRNA levels) of these tumours
[Seg+07]. Further research ensued on a number of tumour types — with
varying degrees of success.

With rise of deep-learning based image analysis, computer algorithms
could be used to extract radiomic features on a large scale which could
then be linked to predictive and prognostic biomarkers in cancer (that
would otherwise be obtained surgically).
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Unlike more traditional radiomics approaches where feature extrac-
tion and data analysis consisted of two separate steps, deep learning
fuses these processes together and iteratively optimizes one with re-
spect to the other. In other words, deep learning provides radiomics
models with optimal features and optimal data analysis for a specific
clinical problem. This advanced form of computer-aided biological
profiling (where a neural network can extract features and link them
together on a massive scale) can be termed as Deep Learning Mediated
Tumour Profiling (DL-TP).

The next application of radiomic features in cancer research was
prediction of response to different forms of treatment (i.e. Computer
Aided Response Prediction (CARP)). In non-small cell lung cancer
(NSCLC), Coroller et al. identified seven features that were
predictive for pathological gross residual disease and one feature
for pathological complete response [Cor+16]. Further studies later
identified other radiomic features that would predict response to
conventional treatment (i.e. chemo/radiotherapy) in bladder cancer
[Cha+17] and locally advanced rectal cancer [Lov+18].
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Figure 8.1: A schematic of a future radiomics pipeline highlighting a simpli-
fied workflow for CABP and CARP wherein patient images are input into a
specialized (series of) Al algorithm(s) and based on the outcome, can be clas-
sified. CABP algorithms assess the profile of the tumour (for stratification)
while CARP algorithms focus purely on the prediction of response to (and
ultimately selection of) therapy. CAD = Computer Aided Diagnosis, CARP =
Computer Aided Response Prediction, CABP = Computer Aided Biological
Profiling.

8.3 Integrated systems in healthcare

While the suffix of “—omics” has come to denote the idea of extracting
valuable information from datasets, radiomics is only the latest addi-
tion to the ever-growing list of new fields of study within the fusion
of advanced technology and modern medicine. Images derived from
tissue (e.g. general microscopy, immunohistochemistry etc...) have
also been subject to quantitative analysis and new information is being
generated beyond what would be observed by a pathologist i.e. path-
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omics. Genomics, the branch of molecular biology concerned with the
mapping of the human genome, has helped to identify many genetic
mutations and pathways that have been used for prognostication or as
novel targets for modern therapeutics and has heavily relied on com-
puter models developed by skilled bioinformaticians.

As it currently stands, different medical disciplines have developed
different stratification methods, primarily based on their own field (i.e.
radiological classifications, pathological and chemical laboratory clas-
sifications, clinical checklists used for prognostication etc...) — quite
often to the exclusion of other departments. As these traditional scor-
ing systems were often based on subjective interpretations of analogue
readouts, combining these disparate outputs is quite challenging. The
rise of the quantitative aspects of various medical disciples (i.e. the
“—omics”) presents a remarkably unique opportunity wherein infor-
mation from different diagnostic modalities can be objectively inte-
grated.

8.4 Conclusion

The long term vision for precision medicine should focus on the
development of integration strategies, wherein data derived from the
patient themselves could be used to guide the treating physician.
Through intricate analyses that integrate clinical data, blood markers,
pathomics, radiomics, and genomics, we envision that a patient can
be provisionally diagnosed (via computer aided diagnosis), stratified
into a molecular subtype of their tumour (via computer aided
biological profiling), and have a recommended treatment formulated
(via computer aided response prediction). This aggregation of
sub-systems cooperating with the aim of achieving an overarching
functionality (in this case better CAD, CARP, and CABP) is termed as
the integration system (see Figure 8.2). This will require hand-in-hand
multidisciplinary collaboration between the biomedical field (i.e.
clinicians, geneticists, radiologists, pathologists, clinical chemists),
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and the technical field (i.e. computer scientists, physicists, engineers,
statisticians, and mathematicians) as well as an organizational
structure wherein the departments will operate not in isolation but in
successful integration.

Computer Aided
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- Histology

Computer Aided
Response Prediction

- Response to therapy
- Ideal monotherapy
- Suggested combination

OUTPUT

4
|
|
|
|
|
|
|
|
|
|
1
|
|
|
|
|
1
|
|
|
|
|
|
|
|
1
|
1
|
|
|
|
|
|
|
|

L

Figure 8.2: A schematic flow chart envisioning the usage of patient-derived
data (in light blue) from raw materials (in purple) as a means to improve
CAD, CARP, and CABP and ultimately help guide decisions by the multidis-
ciplinary management team. CAD = Computer Aided Diagnosis, CARP =
Computer Aided Response Prediction, CABP = Computer Aided Biological
Profiling.
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Chapter 9. Discussion

Cancer immunotherapy drugs have been shown to improve outcomes
in advanced stage cancer patients [Lar+18; Vok+18; Alb+20; Pai+19].
As these treatments will expand in the future (in terms of the num-
ber of monotherapy drugs and their combinations [Bla+18; Mot+19;
Hel+19], or by exploiting synergistic effects of non-systemic treatments
[PCW19; Twy+15]) the need for personalized medicine, and therefore
markers able to select the right treatment for each patient, will increase
accordingly [Liit+20; LN19; MSG17]. Currently, biopsy-derived mark-
ers remain the most common type of marker under research [Bai+20;
DC19; McK+20]. However, given the invasiveness of the procedure,
the risk for sampling error and the fact that it provides information
only of few biopsied lesions which does not always reflect the infor-
mation of the entire tumour load, there is a need for non-invasive
biomarkers that could reliable provide us the whole body information
on how the patient will respond to treatment [SMH19; Du+19].

We hypothesized that advanced analytical methods of radiomics and
artificial intelligence on clinical-routine whole-body imaging data
could be used for a non-invasive prediction of treatment response and
prognostication of outcome in patients receiving immunotherapy.

To test our hypothesis, we first investigated whether there are lesion-
wise radiomic computer tomography (CT) features that could be asso-
ciated with lesion specific biological profiles and tumor growth (chap-
ters 2 and 3). The results would allow us to build an Al model for
lesion response prediction in lung cancer and melanoma patients re-
ceiving immunotherapy. From these data, we observed that patients
with mixed responses (i.e. some lesions growing while others shrink-
ing) were associated with worse survival (chapter 2).

To investigate this further, we set up a different image analysis
pipeline, that would enable us to gain insights into different patterns
of response, and their relation to survival. We therefore developed an
image analytic Al-system, able to quantify whole-body morphological
changes in the interval between follow-up scans of the same patient,
and investigated whether these changes would be correlated with
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overall survival (chapters 4 and 5). Our results confirmed that the
association between response patterns and survival outcomes cannot
be explained solely by growth or shrinkage of single-lesions (or
a sparse group thereof), nor by a group of tissue-based markers.
Instead, our results suggest that specific subsets of lesions, which
differ depending on the cancer type, as well as tumour and
treatment-induced changes, were equally or better suited to explain
overall survival than standard clinical, patho-immunological, and
radiological factors (chapters 4, 5 and 6).

In this work, we applied different Al techniques for the study and de-
velopment of imaging markers and imaging analytic pipelines. Chap-
ter 2 was developed using engineered, handcrafted features, which al-
lowed to focus the analysis to the tumor region only, and prove the
existence of predictive imaging features within the tumour — albeit
with a significant demand for manual labelling. The region of inter-
est was extended to include the surrounding tissue in chapter 3. Here,
we made use of a more advanced Al method for building the ana-
lytic pipeline, namely deep transfer learning. Through visualization
techniques, we could observe that the Al algorithm was making use
of inner-tumour features, as well as features from the surrounding tis-
sue, highlighting the potential of these advanced techniques to handle
more complex data. We took this idea further, by developing an Al-
algorithm (chapters 4, 5 and 6) able to analyse the whole body — which
of course includes tumors and surrounding tissues. We made use of
novel deep self-supervised learning to remove the need of manual la-
belling, and deep learning based image registration to tailor the algo-
rithm to the specific clinical need of response pattern modelling. This
led to the development of the prognostic Al-monitor (PAM), which we
envision to adapt and extend further into the clinics for imaging and
non-imaging data.

The research work in this thesis provided evidence of the existence
of morphological patterns in imaging, as processed by Al algorithms,
that can function as predictive and prognostic markers in cancer pa-
tients receiving immunotherapy. Moreover, our results highlight how
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imaging is the only routinely available tool which allows us to search,
localize and connect data patterns across the entire body. Other, more
invasive methods, might provide good predictive value as well (de-
spite the fact that this was not observed for both PD-L1 expression, as
well as laboratory results), but none of them is able to collect, process
and prognosticate based on information that span across the whole
body. This is a fundamental aspect in immunotherapy treated patients,
as these often present with metastatic disease.

Our work culminates in the development of PAM: an Al-system
that allows for comparative analysis between whole-body scans.
Conceptually, the closest tool used in the clinics is the Response
Evaluation Criteria in Solid Tumour (RECIST) [Sch+16; Eis+09; Sey+17a].
Our findings suggest that aspects that are not included in the current
RECISTs can be easily, quickly and fully automatically assessed via
Al-radiomics systems, such as PAM. We've proved that in patients
receiving immunotherapy, response patterns evaluated from Al
methods are equally or better suited to describe survival than
approximate tumour growth (i.e. growth corresponds to decreased
survival). In this cohort, it is evident that different lesions contribute
differently to the prognosis (chapters 4, 5 and 6), suggesting that a
different (possibly cancer-specific) selection of target lesions might be
needed. It is also evident that non cancer lesions, such as treatment-
and cancer-induced complications (chapters 4 and 5) and their
diagnostic profiles (chapter 3), should be quantitatively accounted
for in response evaluation, as they influence the survival of patients
receiving immunotherapy.

A comprehensive overview is also of the current status of
immunotherapy imaging marker research is also given in chapter
7. When compared to the work presented in this thesis, we see that
single lesions analysis (chapters 2 and 3) are the most common in the
literature. Response prediction studies have been proposed, with
various degrees of novelty, by other studies [Nar+20; He+20; Maz+20;
Bas+20; Mu+20; Tun+19; Vai+20; Par+20c], and led to similar results.
Most of these studies [Nar+20; Bas+20; Mu+20; Tun+19; Vai+20;
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Par+20c] made use of the original experimental design presented in
chapters 2 and 3. Different designs included Al-radiomics models
built to predict biological factors relevant to immunotherapy, like
tutal mutational burden [He+20; Vee+20], microsatellite instability
[Del+20], tumour micro-environment [Maz+20]. Only one study,
by Del Re et al. [Del+20] proposed the integration of radiomics to
biopsy-derived markers, which led to higher accuracies.

In chapters 4, 5 and 6 we proposed a completely different approach
than the one applied in these studies. Conceptually, it could be
associated with delta radiomics [Kho+20]. In delta radiomics, the
difference between radiomics signature on serial imaging is used for
response prediction and prognostication. This however is mostly
based on radiomics signatures extracted from time-consuming
segmentations, which also limits the analysis to the regions of the
tumour, and does not account for any other prognostic or predictive
factor that is not a cancer lesion. Instead, our approach is fast,
comprehensive, fully automatic, and easily extendable to other
imaging types, cancer types and possibly therapies.

The role of Al in clinical decision making

None of the aforementioned studies, including ours, address
exhaustively how these methods would fit into a possible clinical
scenario. The treatment of cancer patients is currently decided in
a multidisciplinary meeting of medical specialists, i.e. the tumour
board [El +14]. Here, the case of each cancer patient is presented, and
discussed. The outcome, a patient-specific treatment and care plan,
is the result of diagnostic information, oncologic guidelines [Bes+14;
Mic+19; Bel+14] and expert knowledge, carefully knitted together, to
achieve an optimal balance of different objectives, namely: prolonged
survival, sufficient quality of life, and accomodation of patient’s own
requests [Sle+90; BTO01; Hir+05; McQ+95; Wee+98; Mar+14]. In this
complex interplay of experts and specialties, it might be worth to
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tigure out where exactly an Al system like PAM (chapters 4, 5 and 6 ),
or the lesion-wise correspondent (chapters 2 and 3), would fit.

The easiest scenario would see the Al being actively interrogated by
clinicians in order to estimate the treatment with the highest prognos-
tic likelihood. In this scenario however, it would be unclear to what
extent such Al should be trained: should this include only the main
treatment, or should this also account for side and palliative ones?
The infeasibility of this solution becomes clearer when considering the
plethora of treatment combinations that will be available in the near
future [JD19; Roc+19; BBB18].

In the short term, a more likely scenario might see the training of main
Al systems for the main available drugs (including immunotherapeu-
tic ones). Lesions or side-effects likely to impair the success of the sys-
tematic treatment would be treated locally instead, via e.g. radiother-
apy or radiofrequency ablation. The usefulness of such an approach
is particularly evident in immunotherapy, where patients can remain
under treatment up to 1 year, or until there are visible clinical bene-
fits in doing so — namely the disease remains stable and under con-
trol [BC18; BKG20; Smi+20]. In this scenario, the Al would therefore
accompany the tumour board, quickly analysing baseline and follow-
up data to identify situations of risk to be discussed within the board.
Such a scenario would see the clinicians in the board empowered with
an “Al-eye”, while still retaining control of the treatment planning.

It is important to note that the role of the Al to be played in this sce-
nario does not replace the therapeutic specialities of the tumor board,
but rather acts as complementary to them. However, the role of di-
agnostic specialties in relation to the AI would have to be defined.
Our results from the multivariate analyses of chapters IV, V and VI
show that currently used clinical methods can be complementary to
Al-based methods. While we cannot preclude future development of
other Al systems to replace current diagnostic methods and roles, cur-
rent evidence is insufficient to support the replacement of any clinical
role by Al
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The position of Al in integrated diagnosis

The large amount of data generated by current diagnostic
departments (chapter 7), as well as the call for integrative diagnostic
(chapter 8), requires specialized integrative Al-systems able to process
high-dimensional, heterogeneous data, and scale it down, for expert
interpretability. In this work, specialists in diagnostic disciplines (i.e.
radiologists) were interpreters of Al-machine readings. In a future
scenario where an “orchestra” of Als will be running simultaneously
within the department, the diagnostic specialist will have to assume
the role of “conductor”, collecting the results from different machines,
interpreting and filtering them, and sharing them with the tumour
board. Only the information relevant to the final objective should be
provided to the board.

The objective itself remains the main hurdle. While improvement of
survival is an objective, measurable function that can be analyzed
mathematically, quality of life and accommodation of patient-specific
requests require human comprehension and understanding. To the
best of our knowledge, it is still unclear whether, in the near future,
there will be an Al-machine able to create treatment plans which,
for example, could accommodate even simple requests, such as
“regardless of the prognosis, avoid amputation” or “spare bowel
control, as much as possible”. One could argue that an Al system
could be trained to replicate the choices made in past cases. Even
assuming that such an Al could be trained, and ignoring all practical
issues related to it, such as the lack of necessary data to train such a
system (e.g. conversations between physicians and patients), doubts
would persist of whether this scenario were the wisest. Current
accomplishments in cancer treatment are the results of years of
multidisciplinary dialogue between different fields of science, which
has the physicians as central coordinating nodes, thanks to their
practical experience with patients. Were this node to be replaced by
an Al trained to replicate treatment plans from the past (or variation
of them), the entire innovation process might collapse, with negative
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long term outcomes far overreaching the money saved from a
reduction of personnel. We therefore argue that the optimal, and
safest scenario is the one proposed, where the Al and the physician in
the tumour board interact, interrogate and improve each other.

In this work, we aimed to assess the predictive and prognostic value of
Al-radiomics on routinely available whole-body imaging in cancer pa-
tients receiving immunotherapy. Thanks to the usage of these systems,
we gained deeper insights into the relation between tumour morphol-
ogy and tumour response to immunotherapy, and immunotherapy re-
sponse patterns to overall survival. This culminated in the develop-
ment of an Al-system, PAM, tailored for follow-up analysis of can-
cer patients undergoing immunotherapy, and publicly shared with the
community.

We envision the shared model to spark additional development from
the clinical, as well as technological side. An extension of the current
models, for example, to include more cancer types or stages, and differ-
ent treatments. This process would be straightforward, and require rel-
atively small fine-tuning procedures. It is to be seen if the same proce-
dures and principles can be applied to different, non-imaging data that
are routinely available during follow-up, such as laboratory, genetic
and tissue data. Namely, if the same principle of tracking changes,
evaluation response and relating it to prognostic outcomes using Al-
systems still holds for non-imaging data. Even more, the question re-
mains of how these systems would play in an integrative diagnostic
scheme, where different Als, working with different data types and
different objectives are orchestrated together to provide clinically rel-
evant information. We encourage further research in these questions
prior to a clinical prospective validation.

In conclusion, this work presents a prospective of how Al-radiomics
systems could benefit oncological care, with practical application in
immunotherapy: one of the most promising, yet challenging treatment
modality currently available. We showed not only how these systems
can be used for prediction and prognostications, but also how they
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can be used to gain additional medical and oncological insights, which
relevance outreaches the original fields of radiology or computer sci-
ence.
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Valorisation

Relevance

Cancer immunotherapy is becoming a standard treatment for
advanced-stage cancer patients. While results from numerous clinical
trials show significantly higher response and survival rate compared
to the standard chemoradiotherapy, there is still a number of patients
who do not benefit from starting (or continuing) the treatment. In the
meanwhile, patients can experience treatment side-effects, normally
manifested as auto-immune and inflammatory disorders, such as
dermatitis, pneumonitis, colitis, hepatitis, and granulomatous disease
[Zho+20]. While the impact of treatment side-effects on the response
is still under investigation, with meta-analyses pointing to them as
positive prognostic factors [Zho+20], it is well known that the cost
of immune checkpoint inhibitors can pose a significant strain on
hospital resources, and public resources in general, especially in
Europe where access to healthcare services are guaranteed, regulated
and subsidised by the government. Immunotherapy is known to cost
up to ten times more than chemotherapeutic options. The average
immunotherapeutic treatment costs in the order of the hundreds of
thousands of euros, compared to the tens of thousands needed for
traditional chemotherapy [Ver+18]. In patients that are not likely to
derive any clinical benefit from immunotherapy, these resources could
be reallocated for other therapeutic options. In this thesis, we propose
the use of artificial intelligence on already-available routine clinical
imaging. By enhancing the analytic process with Al, we reach an
accurate, and cost-effective marker that, by virtue of being trained on
routine imaging, can scale well from academic centers to peripheral
hospitals.
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Target population

This thesis has a wide target population. It includes radiologists who
are already using medical imaging as a fundamental tool in their diag-
nostic process, and who will likely be in charge of the new technologies
that will be developed out of this thesis and in the field of artificial in-
telligence in general. Some of the techniques described and proposed
here, such radiomics analysis of cancer lesions (Chapters 2 and 3), or
whole-body prognostic monitoring (Chapters 4, 5, and 6), offer a new
way to analyze radiological scans. Radiologists will be at the forefront
of the implementation (Chapter 7 and 8). Their contribution will be vi-
tal in developing the interaction of these technologies within the clini-
cal team.

Radiologists will also play a role when these technologies will enter
the multidisciplinary tumor board. As mentioned in Chapters 7 and
9, the envisioned usage of the Al methods developed within this thesis
reflects this point. We envision our system to be an interactive window
into the status of the patient, their potential risks for survival, and sug-
gestions for most likely response to different treatment options. Treat-
ment planning will be defined according to this data and the input of
the clinicians in the board. Members of the tumour board will be es-
sential in the study of the interaction between Al and clinicians, and
the development of a coordinated approach for its development and
implementation.

In this, tech companies, specifically the ones that are involved in the
development of Al-based healthcare solutions will also play a role.
These entities possess the know-how of the actual implementation pro-
cess, which should cover multiple practical aspects, from the hardware
requirement to the steps for approval from the healthcare regulators
(e.g. the European Medicines Agency [Coh+20]).

The methodology presented in this thesis targets mostly cancer pa-
tients with advanced disease, namely spread outside of the original
location and throughout the body. In the majority of the cases, the
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main clinical intent in these patients is palliative, in other words, to
improve quality of life more than survival. Even in immunotherapy,
where we observed higher survival rates and even some complete re-
sponses, palliative intent remains the primary focus [SC18]. Al-based
technologies, such as the one presented, aside from suggesting the
most effective treatment which would in turn improve response and
overall survival, could also help pin-point localized conditions of risk,
which could impair quality of life, and give the clinician indications to
address the issue. In summary, the overall expected outcome from em-
ploying Al-based evidence decision-making is improved survival and
improved quality of life.

To the scientific community, we provide evidence not only of the effi-
cacy of Al-mediated pipelines, but also the success of multidisciplinar-
ity in research, with all the work published in this thesis relying on the
joint, coordinated work of experts from different fields.

Innovation and future

The results of this thesis show how prognostic and predictive factors
can be found by artificial intelligence-based image analysis on routine
radiological scans of cancer patients receiving immunotherapy. We
filled the knowledge gap, and demonstrated a link between imaging-
derived morphological features to its biological profile and treatment
outcome in immunotherapy, being one of the first investigations to do
so. We further identified the limitation of the classical image analysis
pipeline that we employed in the initial study, which involves a ra-
diologist identifying a region of interest to analyse, and improved it
to a new analytic pipeline, termed prognostic monitoring, which does
not require manual input, which is not limited to static baseline imag-
ing, and which utilises the entire whole-body scan. This represents a
shift from the image analysis pipelines that have been proposed so far,
not for its full automatic aspect, but rather because we shift the iden-
tification of factors to the Al, removing any bias that may come from
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human analytics. In other words, we are not developing a pipeline
which automates the manual work already performed in the clinics,
but rather developing something that was not even present in the clin-
ics, i.e. tracking of all morphological changes in the body. We are
not employing Al to reduce the information included in a whole-body
scan to a limited set of factors easily understandable by humans, such
as change in tumor size, but we rather let the Al-algorithm run inde-
pendently to determine what are the factors that correlate with worse
prognosis. We are not training an Al-model to imitate us, or think like
us (i.e. smaller tumor, better outcomes), rather we let the Al-algorithm
draw its own conclusions from the data.

We envision more studies following this idea, as it would produce
novel solutions, which are complementary to, and not disruptive of,
the current clinical world. The Al-algorithms developed in this study
are still prototypes. Future propostive will be to extend them to a fully
functional medical device, tested on pan-cancer and pan-treatment
clinical trials, and approved by the appropriate regulatory agencies.
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Summary

Chapter 2. Lesion response prediction to immunotherapy:.

In this chapter, we aimed to link imaging-derived, radiomics features
with outcome, lesion-wise. Our findings suggest associations between
radiomics features and immunotherapy response. Lesions that are
more likely to respond to immunotherapy typically present with more
heterogeneous morphological profiles with non-uniform density pat-
terns and compact borders. Moreover, a machine learning model is
provided that could be used within the context of lesion response to
treatment, patient treatment response, and response pattern character-
ization.

Chapter 3. Lesion diagnosis to therapy-induced lung disease.

Aim of this chapter was to apply artificial intelligence analytic
pipelines on routine medical imaging for the diagnosis of sarcoid-like
granulomatous lesions induced by novel cancer immunotherapeutic
agents. We found significant performance in the diagnosis
of sarcoid-like granulomatous lesions, while simultaneously
significantly improving the performance of the original screening
network for the diagnosis of pulmonary metastases. Moreover, the
network was able to distinguish between sarcoid-like granulomatous
lesions and non-specific post-infection granulomas.  Diagnostic
signatures were also found to possess prognostic relevance.

Chapter 4. Prognostic value of chest-imaging monitoring.

In this chapter, we aimed to investigate the potential prognostic value
of Al-mediated monitoring in NSCLC patients receiving PD-1 block-
ade. We hypothesized the existence of quantitative imaging features
describing a set of gross morphological changes happening during
treatment that hold prognostic information. Based on image-to-image
registration, we develop a deep learning algorithm for the detection
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of changes between serial imaging of the same patient. Our results
demonstrate the existence of such factors (as described by the AI on
imaging), that are tumor-related, such as nodal, lung and bone lesions,
as well as non-tumor related, such as pleural effusions, atelectasis and
non-specific consolidations.

Chapter 5. Whole-body imaging-based prognostic monitoring.

In this chapter, we investigated the prognostic information of
Al-derived whole-body imaging monitoring markers in advanced
urothelial cancer receiving checkpoint inhibitors. We hypothesised
that quantitative Al-derived features describing morphological
changes happening during the course of treatment could hold
prognostic information. To this end, we designed and implemented
a prognostic Al-monitor (PAM), based on the prototype design
of Chapter 4, and extended to handle heterogeneous datasets
and abdominal imaging. Our findings demonstrate that PAM is
complementary to existing monitoring methods, while reaching
comparable or superior accuracy. We argue that this could be
the result of PAM’s ability to analyze the whole body, including
non-target cancer lesions and non-cancer lesions.

Chapter 6. Prognostic response patterns in brain imaging.

In this chapter, we present an expansion of the PAM analytic pipeline
to brain imaging of BM patients receiving immunotherapy. Our re-
sults demonstrate that PAM can be extended to imaging modalities be-
yond CT, and be used to capture prognostic response patterns that are
unique and complementary to a wide range of different brain-specific
markers, currently used in the clinics.

Chapter 7. The future of artificial intelligence immunotherapy trials.

Clinical trials serve as a barrier of entry for new interventions and
treatments prior to implementation in routine clinical practice. At its
essence, the primary role of a clinical trial is to monitor a patient longi-
tudinally using the diagnostic disciplines (radiology, pathology, and
laboratory medicine) to assess clinical outcomes. As the diagnostic
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fields have begun to fully digitalise, large volumes of data are being
generated per patient - creating a ripe environment for the implemen-
tation of Al In this chapter, we will explore how Al has been applied
in each of these diagnostic disciplines and discuss how this may influ-
ence clinical trials in the future.

Chapter 8. Towards integrated healthcare.

Medical imaging is a vital part of the clinical decision making process,
especially in an oncological setting. Radiology has experienced a great
wave of change and the advent of quantitative imaging has provided
a unique opportunity to analyze patient images objectively. Leverag-
ing Al there is increased potential for synergy between physicians and
computer networks — via computer aided diagnosis (CAD), computer
aided prediction of response (CARP), and computer aided biological
profiling (CABP). The ongoing digitalization of other specialties fur-
ther opens the door for even greater multidisciplinary integration. In
this chapter, we envision the development of an integrated system
composed of an aggregation of sub-systems interoperating with the
aim of achieving an overarching functionality (in this case better CAD,
CARP, and CABP). This will require close multidisciplinary coopera-
tion between the clinicians, biomedical scientists, and (bio)engineers
as well as an administrative framework where the departments will
operate not in isolation but in successful harmony.
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