18,882 research outputs found

    BoWFire: Detection of Fire in Still Images by Integrating Pixel Color and Texture Analysis

    Get PDF
    Emergency events involving fire are potentially harmful, demanding a fast and precise decision making. The use of crowdsourcing image and videos on crisis management systems can aid in these situations by providing more information than verbal/textual descriptions. Due to the usual high volume of data, automatic solutions need to discard non-relevant content without losing relevant information. There are several methods for fire detection on video using color-based models. However, they are not adequate for still image processing, because they can suffer on high false-positive results. These methods also suffer from parameters with little physical meaning, which makes fine tuning a difficult task. In this context, we propose a novel fire detection method for still images that uses classification based on color features combined with texture classification on superpixel regions. Our method uses a reduced number of parameters if compared to previous works, easing the process of fine tuning the method. Results show the effectiveness of our method of reducing false-positives while its precision remains compatible with the state-of-the-art methods.Comment: 8 pages, Proceedings of the 28th SIBGRAPI Conference on Graphics, Patterns and Images, IEEE Pres

    Automating the construction of scene classifiers for content-based video retrieval

    Get PDF
    This paper introduces a real time automatic scene classifier within content-based video retrieval. In our envisioned approach end users like documentalists, not image processing experts, build classifiers interactively, by simply indicating positive examples of a scene. Classification consists of a two stage procedure. First, small image fragments called patches are classified. Second, frequency vectors of these patch classifications are fed into a second classifier for global scene classification (e.g., city, portraits, or countryside). The first stage classifiers can be seen as a set of highly specialized, learned feature detectors, as an alternative to letting an image processing expert determine features a priori. We present results for experiments on a variety of patch and image classes. The scene classifier has been used successfully within television archives and for Internet porn filtering

    Fusing image representations for classification using support vector machines

    Full text link
    In order to improve classification accuracy different image representations are usually combined. This can be done by using two different fusing schemes. In feature level fusion schemes, image representations are combined before the classification process. In classifier fusion, the decisions taken separately based on individual representations are fused to make a decision. In this paper the main methods derived for both strategies are evaluated. Our experimental results show that classifier fusion performs better. Specifically Bayes belief integration is the best performing strategy for image classification task.Comment: Image and Vision Computing New Zealand, 2009. IVCNZ '09. 24th International Conference, Wellington : Nouvelle-Z\'elande (2009

    Tongue Image Analysis for Diabetes Mellitus Diagnosis Based on SOM Kohonen

    Get PDF
    Tongue diagnosis is an important diagnostic method for evaluating the condition of internal organ by looking at the image of tongue . However, due to its qualitative, subjective and experience-based nature, traditional tongue diagnosis has a very limited application in clinical medicine. Moreover, traditional tongue diagnosis is always concerned with the identification of syndromes rather than with the connection between tongue abnormal appearances and diseases. This is not well understood in Western medicine, thus greatly obstruct its wider use in the world. In this paper, we present a novel computerized tongue inspection method aiming to address these problems. First, two kinds of quantitative features, chromatic and textural measures, are extracted from tongue images by using popular digital image processing techniques. Then, SOM Kohonen are employed to model the relationship between these quantitative features and diseases. The effectiveness of the method is tested on 35 patients affected by Diabetes Mellitus as well as other 30 healthy volunteers, and the diagnostic results predicted by the previously trained SOM Kohonen classifiers are compared with the HOMA-B

    Techniques for effective and efficient fire detection from social media images

    Get PDF
    Social media could provide valuable information to support decision making in crisis management, such as in accidents, explosions and fires. However, much of the data from social media are images, which are uploaded in a rate that makes it impossible for human beings to analyze them. Despite the many works on image analysis, there are no fire detection studies on social media. To fill this gap, we propose the use and evaluation of a broad set of content-based image retrieval and classification techniques for fire detection. Our main contributions are: (i) the development of the Fast-Fire Detection method (FFDnR), which combines feature extractor and evaluation functions to support instance-based learning, (ii) the construction of an annotated set of images with ground-truth depicting fire occurrences -- the FlickrFire dataset, and (iii) the evaluation of 36 efficient image descriptors for fire detection. Using real data from Flickr, our results showed that FFDnR was able to achieve a precision for fire detection comparable to that of human annotators. Therefore, our work shall provide a solid basis for further developments on monitoring images from social media.Comment: 12 pages, Proceedings of the International Conference on Enterprise Information Systems. Specifically: Marcos Bedo, Gustavo Blanco, Willian Oliveira, Mirela Cazzolato, Alceu Costa, Jose Rodrigues, Agma Traina, Caetano Traina, 2015, Techniques for effective and efficient fire detection from social media images, ICEIS, 34-4

    Object-Based Greenhouse Classification from GeoEye-1 and WorldView-2 Stereo Imagery

    Get PDF
    Remote sensing technologies have been commonly used to perform greenhouse detection and mapping. In this research, stereo pairs acquired by very high-resolution optical satellites GeoEye-1 (GE1) and WorldView-2 (WV2) have been utilized to carry out the land cover classification of an agricultural area through an object-based image analysis approach, paying special attention to greenhouses extraction. The main novelty of this work lies in the joint use of single-source stereo-photogrammetrically derived heights and multispectral information from both panchromatic and pan-sharpened orthoimages. The main features tested in this research can be grouped into different categories, such as basic spectral information, elevation data (normalized digital surface model; nDSM), band indexes and ratios, texture and shape geometry. Furthermore, spectral information was based on both single orthoimages and multiangle orthoimages. The overall accuracy attained by applying nearest neighbor and support vector machine classifiers to the four multispectral bands of GE1 were very similar to those computed from WV2, for either four or eight multispectral bands. Height data, in the form of nDSM, were the most important feature for greenhouse classification. The best overall accuracy values were close to 90%, and they were not improved by using multiangle orthoimages
    • 

    corecore