36,312 research outputs found

    A semantic-based platform for the digital analysis of architectural heritage

    Get PDF
    This essay focuses on the fields of architectural documentation and digital representation. We present a research paper concerning the development of an information system at the scale of architecture, taking into account the relationships that can be established between the representation of buildings (shape, dimension, state of conservation, hypothetical restitution) and heterogeneous information about various fields (such as the technical, the documentary or still the historical one). The proposed approach aims to organize multiple representations (and associated information) around a semantic description model with the goal of defining a system for the multi-field analysis of buildings

    Structure from motion systems for architectural heritage. A survey of the internal loggia courtyard of Palazzo dei Capitani, Ascoli Piceno, Italy

    Get PDF
    We present the results of a point-cloud-based survey deriving from the use of image-based techniques, in particular with multi-image monoscopic digital photogrammetry systems and software, the so-called “structure-from-motion” technique. The aim is to evaluate the advantages and limitations of such procedures in architectural surveying, particularly in conditions that are “at the limit”. A particular case study was chosen: the courtyard of Palazzo dei Capitani del Popolo in Ascoli Piceno, Italy, which can be considered the ideal example due to its notable vertical, rather than horizontal, layout. In this context, by comparing and evaluating the different results, we present experimentation regarding this single case study with the aim of identifying the best workflow to realise a complex, articulated set of representations—using 3D modelling and 2D processing—necessary to correctly document the particular characteristics of such an architectural object

    Semantic Visual Localization

    Full text link
    Robust visual localization under a wide range of viewing conditions is a fundamental problem in computer vision. Handling the difficult cases of this problem is not only very challenging but also of high practical relevance, e.g., in the context of life-long localization for augmented reality or autonomous robots. In this paper, we propose a novel approach based on a joint 3D geometric and semantic understanding of the world, enabling it to succeed under conditions where previous approaches failed. Our method leverages a novel generative model for descriptor learning, trained on semantic scene completion as an auxiliary task. The resulting 3D descriptors are robust to missing observations by encoding high-level 3D geometric and semantic information. Experiments on several challenging large-scale localization datasets demonstrate reliable localization under extreme viewpoint, illumination, and geometry changes

    Efficient Registration of Pathological Images: A Joint PCA/Image-Reconstruction Approach

    Full text link
    Registration involving one or more images containing pathologies is challenging, as standard image similarity measures and spatial transforms cannot account for common changes due to pathologies. Low-rank/Sparse (LRS) decomposition removes pathologies prior to registration; however, LRS is memory-demanding and slow, which limits its use on larger data sets. Additionally, LRS blurs normal tissue regions, which may degrade registration performance. This paper proposes an efficient alternative to LRS: (1) normal tissue appearance is captured by principal component analysis (PCA) and (2) blurring is avoided by an integrated model for pathology removal and image reconstruction. Results on synthetic and BRATS 2015 data demonstrate its utility.Comment: Accepted as a conference paper for ISBI 201

    Convolutional neural network architecture for geometric matching

    Get PDF
    We address the problem of determining correspondences between two images in agreement with a geometric model such as an affine or thin-plate spline transformation, and estimating its parameters. The contributions of this work are three-fold. First, we propose a convolutional neural network architecture for geometric matching. The architecture is based on three main components that mimic the standard steps of feature extraction, matching and simultaneous inlier detection and model parameter estimation, while being trainable end-to-end. Second, we demonstrate that the network parameters can be trained from synthetically generated imagery without the need for manual annotation and that our matching layer significantly increases generalization capabilities to never seen before images. Finally, we show that the same model can perform both instance-level and category-level matching giving state-of-the-art results on the challenging Proposal Flow dataset.Comment: In 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017

    Neural View-Interpolation for Sparse Light Field Video

    No full text
    We suggest representing light field (LF) videos as "one-off" neural networks (NN), i.e., a learned mapping from view-plus-time coordinates to high-resolution color values, trained on sparse views. Initially, this sounds like a bad idea for three main reasons: First, a NN LF will likely have less quality than a same-sized pixel basis representation. Second, only few training data, e.g., 9 exemplars per frame are available for sparse LF videos. Third, there is no generalization across LFs, but across view and time instead. Consequently, a network needs to be trained for each LF video. Surprisingly, these problems can turn into substantial advantages: Other than the linear pixel basis, a NN has to come up with a compact, non-linear i.e., more intelligent, explanation of color, conditioned on the sparse view and time coordinates. As observed for many NN however, this representation now is interpolatable: if the image output for sparse view coordinates is plausible, it is for all intermediate, continuous coordinates as well. Our specific network architecture involves a differentiable occlusion-aware warping step, which leads to a compact set of trainable parameters and consequently fast learning and fast execution
    • 

    corecore