188,481 research outputs found

    A step towards understanding paper documents

    Get PDF
    This report focuses on analysis steps necessary for a paper document processing. It is divided in three major parts: a document image preprocessing, a knowledge-based geometric classification of the image, and a expectation-driven text recognition. It first illustrates the several low level image processing procedures providing the physical document structure of a scanned document image. Furthermore, it describes a knowledge-based approach, developed for the identification of logical objects (e.g., sender or the footnote of a letter) in a document image. The logical identifiers provide a context-restricted consideration of the containing text. While using specific logical dictionaries, a expectation-driven text recognition is possible to identify text parts of specific interest. The system has been implemented for the analysis of single-sided business letters in Common Lisp on a SUN 3/60 Workstation. It is running for a large population of different letters. The report also illustrates and discusses examples of typical results obtained by the system

    Processing Camera-captured Document Images: Geometric Rectification, Mosaicing, and Layout Structure Recognition

    Get PDF
    This dissertation explores three topics: 1) geometric rectification of cameracaptured document images, 2) camera-captured document mosaicing, and 3) layout structure recognition. The first two topics pertain to camera-based document image analysis, a new trend within the OCR community. Compared to typical scanners,cameras offer convenient, flexible, portable, and non-contact image capture, which enables many new applications and breathes new life into existing ones. The third topic is related to the need for efficient metadata extraction methods, critical for managing digitized documents. The kernel of our geometric rectification framework is a novel method for estimating document shape from a single camera-captured image. Our method uses texture flows detected in printed text areas and is insensitive to occlusion. Classification of planar versus curved documents is done automatically. For planar pages, we obtain full metric rectification. For curved pages, we estimate a planar-strip approximation based on properties of developable surfaces. Our method can process any planar or smoothly curved document captured from an arbitrary position without requiring 3D data, metric data, or camera calibration. For the second topic, we design a novel registration method for document images, which produces good results in difficult situations including large displacements, severe projective distortion, small overlapping areas, and lack of distinguishable feature points. We implement a selective image composition method that outperforms conventional image blending methods in overlapping areas. It eliminates double images caused by mis-registration and preserves the sharpness in overlapping areas. We solve the third topic with a graph-based model matching framework. Layout structures are modeled by graphs, which integrate local and global features and are extensible to new features in the future. Our model can handle large variation within a class and subtle differences between classes. Through graph matching, the layout structure of a document is discovered. Our layout structure recognition technique accomplishes document classification and logical component labeling at the same time. Our model learning method enables a model to adapt to changes in classes over time

    Document Image Analysis for World War II Personal Records

    No full text
    Complete collections of invaluable documents of unique historical and political significance are decaying and at the same time they are virtually inaccessible, necessitating the invention of robust and efficient methods for their conversion into a searchable electronic form. This paper presents the issues encountered and problems addressed in the MEMORIAL project, whose goal is the establishment of a digital document workbench enabling the creation of distributed virtual archives based on documents existing in libraries, archives, museums, memorials, and public record offices. Successful approaches are described in the context of the chosen data class: a variety of typewritten documents containing personal information relating to the presence of individuals in World War II Nazi concentration camps

    Thick 2D Relations for Document Understanding

    Get PDF
    We use a propositional language of qualitative rectangle relations to detect the reading order from document images. To this end, we define the notion of a document encoding rule and we analyze possible formalisms to express document encoding rules such as LATEX and SGML. Document encoding rules expressed in the propositional language of rectangles are used to build a reading order detector for document images. In order to achieve robustness and avoid brittleness when applying the system to real life document images, the notion of a thick boundary interpretation for a qualitative relation is introduced. The framework is tested on a collection of heterogeneous document images showing recall rates up to 89%

    Logical segmentation for article extraction in digitized old newspapers

    Full text link
    Newspapers are documents made of news item and informative articles. They are not meant to be red iteratively: the reader can pick his items in any order he fancies. Ignoring this structural property, most digitized newspaper archives only offer access by issue or at best by page to their content. We have built a digitization workflow that automatically extracts newspaper articles from images, which allows indexing and retrieval of information at the article level. Our back-end system extracts the logical structure of the page to produce the informative units: the articles. Each image is labelled at the pixel level, through a machine learning based method, then the page logical structure is constructed up from there by the detection of structuring entities such as horizontal and vertical separators, titles and text lines. This logical structure is stored in a METS wrapper associated to the ALTO file produced by the system including the OCRed text. Our front-end system provides a web high definition visualisation of images, textual indexing and retrieval facilities, searching and reading at the article level. Articles transcriptions can be collaboratively corrected, which as a consequence allows for better indexing. We are currently testing our system on the archives of the Journal de Rouen, one of France eldest local newspaper. These 250 years of publication amount to 300 000 pages of very variable image quality and layout complexity. Test year 1808 can be consulted at plair.univ-rouen.fr.Comment: ACM Document Engineering, France (2012
    • …
    corecore