

UNIVERSITY
OF TRENTO

 DEPARTMENT OF INFORMATION AND COMMUNICATION TECHNOLOGY

38050 Povo – Trento (Italy), Via Sommarive 14
http://www.dit.unitn.it

THICK 2D RELATIONS FOR
DOCUMENT UNDERSTANDING

Marco Aiello and Arnold M.W. Smeulders

2002

Technical Report # DIT-02-0063

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Unitn-eprints Research

https://core.ac.uk/display/11828913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

.

Thick 2D Relations for Document

Understanding

Marco Aiello ∗,1 Arnold M.W. Smeulders

Intelligent Sensory Information Systems, University of Amsterdam,
Kruislaan 403, 1098 SJ Amsterdam, The Netherlands

Abstract

We use a propositional language of qualitative rectangle relations to detect the read-
ing order from document images. To this end, we define the notion of a document
encoding rule and we analyze possible formalisms to express document encoding
rules such as LATEX and SGML. Document encoding rules expressed in the proposi-
tional language of rectangles are used to build a reading order detector for document
images. In order to achieve robustness and avoid brittleness when applying the sys-
tem to real life document images, the notion of a thick boundary interpretation
for a qualitative relation is introduced. The framework is tested on a collection of
heterogeneous document images showing recall rates up to 89%.

Key words: document image analysis, document understanding, spatial reasoning,
bidimensional Allen relations, constraint satisfaction: applications

1 Introduction

When Dave placed his own drawing in front of the ‘eye’ of HAL—in 2001: A
Space Odyssey—HAL showed to have correctly comprehended and interpreted
the sketch. “That’s Dr. Hunter, isn’t it?” (Rosenfeld, 1997). But what would
have happened if Dave used the first page of a newspaper in front of the eye
and started discussing its contents? Considering HAL a system capable of AI,
we expect HAL to recognize the document as a newspaper, to understand how
to extract information and to understand its contents. Finally, we expect Dave

∗ Corresponding author.
1 Presently at Department of Information and Telecommunication Technologies,
University of Trento, Via Sommarive, 14, 38050 Trento, Italy

Preprint submitted to Elsevier Science 29 August 2002

and HAL to begin a conversation on the contents of the document. In short,
HAL has to be able to perform document image analysis.

Document image analysis is the set of techniques to recover syntactic and se-
mantic information from images of documents, prominently scanned versions
of paper documents. An excellent survey of document image analysis is pro-
vided in (Nagy, 2000) where, by going through 99 articles that appeared in the
IEEE’s Transactions on Pattern Analysis and Machine Intelligence (PAMI),
Nagy reconstructs the history and state of the art of document image analysis.
Research in document images analysis is useful and studied in connection with
document reproduction, digital libraries, information retrieval, office automa-
tion, and text-to-speech.

One may have different goals when performing document image analysis. For
instance, one may be in interested in the reconstruction of the reading order
of a document from its image. One way to achieve this is by performing the
following intermediate steps. First, one identifies the basic components of the
document, the so-called document objects. Second, one identifies the logical
function of the document objects within the document (e.g., title, page num-
ber, caption). This is called logical labeling. Last, one infers the order in which
the user is to read the document objects. This phase is called the reading or-
der detection. In the process, one moves from basic geometric information of
the document composition, the layout structure, to semantic information, the
logical structure. document objects and their spatial arrangement are proto-
typical examples of elements of the layout structure, while the reading order
is an instance of the logical structure.

In Figure 1, we illustrate possible flows of information in document image
analysis. The first row represents the flow from the document image to its
reading order. The following row represents the flow from the image to the
identification of the document class. Discovering to which scientific publication
belongs a given document image is an example of document classification. One
should interpret the arrows in the figure as possible choices. It is perfectly
normal to move from one row to another, or to stop the analysis at the layout
structure level. For example, systems for mail delivery do not need to perform
any document classification, or reading order detection.

The first document image analysis systems were built to process documents of
a specific class, e.g., forms for telegraph input. One of the recent trends is to
build systems as flexible as possible, capable of treating the widest variety of
documents. This has led to categorize the knowledge used in a document image
analysis system into: class specific and general knowledge (e.g. Cesarini et al.,
1999). In addition, such knowledge can be explicitly available or implicitly
hard-coded in the system.

2

Document
Objects

Detection

Detection
Layout

Reading
Order

Detection

Document
Classification

Logical
Labeling

Identification
Genre

Document
Image

Syntactic Intermediate Semantic Semantic

Layout Structure Logical Structure
Input

Fig. 1. Various tasks in document image analysis and understanding. Left to right,
from input data towards semantic content.

Lee et al. (2000) present a system to analyze technical journals of one kind
(PAMI) based on explicit knowledge of the specific journal. The goal is that
of region segmentation and identification (logical labeling). The knowledge
is formalized in “IF-THEN” rules applied directly to part of the document
image and “IF-THEN” meta rules. Though the idea of encoding the class
specific knowledge of a document is promising, it is not clear whether the
proposed approach is scalable and flexible. Given the specific form of the IF-
THEN rules, the impression is that the system is not suited for the analysis of
documents different from PAMI. Experimental results show good performance
in the task of logical labeling, especially in the detection of formulas and
drawings embedded in the main text.

There are a number of problems related to the rule based approaches found
in the literature. The most prominent is the high specificity of the rules. The
specificity makes it hard or impossible to extend such systems to documents
of a class different from the one for which the system was originally designed.
Another problem is the lack of proof of correctness or termination. Recent
rule-based approaches for layout and logical structure detection are presented
in (Klink and Kieninger, 2001; Lee et al., 2000; Niyogi and Srihari, 1996) while
an older one is (Tsujimoto and Asada, 1992).

Given the difficulty in designing appropriate rules for the analysis of docu-
ments, approaches based on learning are interesting. The document classifi-
cation components of the WISDOM++ system (Altamura et al., 2001) are
based on first-order learning algorithms (Esposito et al., 2000). Another ad-
vantage of such systems is their flexibility compared to the non-learning based
systems. By training the system on a different class of documents with similar
layout, it should be possible to reuse the same architecture. On the negative
side, the rules learned are not intuitive. More often than not, these rules are

3

impossible to modularize for further use on different document classes.

An important aspect of a document image analysis system working at the
logical structure level is the representation of the information extracted from
the document. The key here is a modularity and standardization of the rep-
resentation. Markup languages are a good example of representation means
with such qualities. The system presented in (Worring and Smeulders, 1999)
uses HTML as its final output form, while Altamura et al. (2001) use XML.
More abstract representations are labeled and weighted graphs. These have
been used in various systems such as, for instance, the ones presented in (Li
and Ng, 1999; Cesarini et al., 1998; Walischewski, 1997).

As we are investigating practical applications of spatial reasoning formalisms,
it is relevant to review approaches using these kind of formalisms. In particu-
lar, we consider bidimensional extensions of Allen’s interval relations, that is,
rectangular relations. To the best of our knowledge, bidimensional Allen rela-
tions have been used in document image analysis in three cases (Klink et al.,
2000; Singh et al., 1999; Walischewski, 1997). In all these approaches, bidi-
mensional Allen relations are used as geometric features descriptors, at times
as labels for graphs and at other times as layout relations among document
objects. Thus, the use of Allen relations is relegated to feature comparison
and it is not used for performing any other kind of reasoning.

We present a methodology based on inference with bidimensional qualitative
spatial relations for logical structure detection of document images. In par-
ticular, the methodology addresses the issue of detecting the reading order
in documents from an heterogeneous collection without using any document
specific knowledge.

The methodology is implemented in a prototype system named SpaRe (Spatial
Reasoning component) part of a larger architecture for logical structure detec-
tion in a broad class of documents. In the next section, we give an overview
of the architecture. In Section 3, we describe the methodology based on the
concept of document encoding rule and of thick boundary interpretation of
bidimensional Allen relations. Section 4 is dedicated to the experimental re-
sults and their discussion. Directions for future work and a discussion of the
methodology are presented in Section 5.

2 A logical structure detection architecture

In (Aiello et al., 2002), the authors present a logical structure detection archi-
tecture. Departing from a pre-processed document image the goal of such an
architecture is that of logically labeling the document objects and subsequently

4

identify the reading order. The system uses general document knowledge only,
hence, it is applicable to documents of different classes.

General document
encoding rules

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

Spatially
admissible

read. orders

Reading
order

SpaRe

Labeled layout

classifiers

Trained document object Language of the document

(language corpora)

Preprocessed image

spatial reasoning
module

Natural language
processing

modulemodule

K
no

w
le

dg
e

C
om

po
ne

nt
s

Sy
st

em
D

at
a

Logical labeling

body_of_text

body_of_text

figure
body_
of_text

Fig. 2. The flow of knowledge and data in the logical structure detection architecture
presented in (Aiello et al., 2002).

Referring to Figure 2, one has a glimpse of the architecture presented in (Aiello
et al., 2002). The input is a pre-processed document image in which the docu-
ment objects have been segmented, local textual content recognized and font
information identified. The original document can be of any class as long as it
is acceptable that document objects are represented by rectangles. Overlap-
ping document objects are accepted by the system.

There are three modules: a logical labeler, a spatial reasoning reading order
detector, and a natural language processing ‘disambiguator’. Logical labeling
on the pre-processed image is achieved via pre-trained classifiers.

The spatial reasoning module starts from the logically labeled layout of the
document and, using general document encoding rules, it outputs a number
of reading orders. The module is the subject of the remainder of the paper.

The natural language processing module starts from the spatially admissible
reading orders and the textual content of each one of the textual document
objects. It uses this information to prune the set of spatially admissible reading
orders of those which are linguistically not acceptable. This is performed by
applying a combination of statistical methods and shallow parsing techniques.
The statistical tools are trained on a large corpora of text. The training corpora
is based on (Hersh et al., 1994) and (Baayen et al., 1995) which are independent
from the document classes analyzed. Details of this module are presented in
(Todoran et al., 2001b).

The output of the system is a reading order for the input document image.
To be more precise, the output is a list of reading orders for the document
ranked in order of linguistic plausibility (a probability is assigned to each

5

reading order). Experimental results on two different collections of documents
for each module and for the whole system have been presented in (Aiello et al.,
2000; Todoran et al., 2001b; Aiello et al., 2002).

3 Methodology

We focus on the spatial reasoning module of the architecture presented in the
previous section. Figure 3 is a zoom-in of the spatial reasoning component
in Figure 2 highlighting details. First, the generic document knowledge in the
form of document encoding rules may have different origins. Second, the spatial
reasoning module SpaRe, is actually composed of two sub-modules. The first
one, which performs inference on the spatial relations of the layout and on the
document encoding rules, is based on constraint satisfaction techniques. The
second one is a module to sort graphs, that is, directed transitive cyclic ones.
In the following sections, we analyze each of these items.

General document
encoding rules

���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������

Spatially
admissible

read. orders

Labeled layout

D
at

a

CSP solver

Sorting DTG

Expert Learning Document author

K
no

w
le

dg
e

O
ri

gi
n

of
K

no
w

le
dg

e
C

om
po

ne
nt

s
Sy

st
em

figure

body_of_text

body_
of_text

body_of_text

Fig. 3. The flow of knowledge and data in the spatial reasoning module SpaRe.
The document encoding rules originate from an expert, or from previous learning
or are given directly by the document author. The module itself is composed of a
constraint satisfaction problem solver and a handler for directed transitive cyclic
graphs.

6

3.1 Document encoding rules

A document encoding rule is a principle followed by the author of a document
to convey an intent of the author by layout details. document encoding rules
can be one of two types: general or class specific. Document encoding rules
can be expressed in a informal or in a formal manner. Informal rules are
proposed in natural language or by sketch. Examples are found in books such
as (Reynold, 1979). Examples of generic and specific, and formal and informal
rules are presented in Figure 4.

general class specific

informal “the caption neighbors
its figure”

“the caption starts with the
word “Fig.” with font size
12pt, green text, and it is
centered”

formal ∀f ∈figure ∃c ∈caption: ∀c ∈caption→

neighbors(f, c) text starts(c, “Fig. ”)∧

font color(c, “Green ”)∧

point(c, 12)∧centered(c)

Fig. 4. Examples of generic and specific, and formal and informal rules. The formal
rules are expressed in a first-order like language for documents whose semantics
should be self-evident.

Let us consider a number of formal ways to express document encoding rules.

LATEX is a compiled markup language. Typically, there is a number of source
files with the main marked-up text (the .tex files), a number of style defi-
nition files (.sty, .cls) and a compiler. The document encoding rules can
reside as macros in the .tex file, but the most common solution is that
document encoding rules reside inside the style files. Consider the figure
environment in the class file for generating transactions for the ACM. 2

2 M. Aiello. (2001). http://www.acm.org/pubs/submissions/latex_style/
acmtrans2m.cls. The class file currently in use at ACM, an extension of the
acmtrans2e.cls version.

7

\newcounter{figure}
\def\thefigure{\@arabic\c@figure}
\def\fps@figure{tbp}
\def\ftype@figure{1}
\def\ext@figure{lof}
\def\fnum@figure{Fig.\ \thefigure}
\def\figure{\let\normalsize\footnotesize \normalsize

\@float{figure}}\let\endfigure\end@float
\@namedef{figure*}{\@dblfloat{figure}}
\@namedef{endfigure*}{\end@dblfloat}

The above definition, among other things, 3 defines the figure as belonging
to a float environment (Goossens et al., 1994) whose default major features
are: a float occupies the top of a page; a float does not have to appear
where it is declared in the source; a float should not occupy more than 70%
of the page otherwise it is moved after the first \clearpage instruction; if
a caption is present it cannot be split across pages. The ACM transactions
style file provides further class specific definitions for displaying the caption
which overwrite the corresponding LATEX definitions.

\long\def\@makecaption#1#2{\vskip 1pc
\setbox\@tempboxa\hbox{#1.\hskip 1em\relax #2}
\ifdim \wd\@tempboxa >\hsize #1. #2\par \else
\hbox to\hsize{\hfil\box\@tempboxa\hfil}
\fi}

\def\nocaption{\refstepcounter\@captype \par
\vskip 1pc \hbox to\hsize{\hfil \footnotesize
Figure \thefigure\hfil}}

The second example of a document rule in LATEX places the word “Fig-
ure” the figure counter immediately below the picture, placing a vertical
space of 1pc units (i.e., 12pt). The size of such text is set to the value of
\footnotesize.

More abstractly, the document encoding rule for a figure says that a figure
is left to float in the main text, its preferred position is on top of a page
and the caption is placed immediately below. The figure and caption always
appear in the above/below spatial relation on one page.

WYSIWYG are computer systems in which the input of the user corre-
sponds almost exactly to the final layout of the document (WYSIWYG
stands for ‘what you see is what you get’). A prototypical example is Mi-
crosoft’s Word. In these sort of systems, it is hard to distinguish between
the syntactic and the semantic portion of document encoding rules, as they
are hidden in the implementation. The only control that the user has over
the formal document encoding rules is through the functionalities provided
by an interface allowing the user to change rule parameters.

In a common way of employing the WYSIWYG-style there are few strict

3 See (Knuth, 1984) for details over the syntax and semantics of TEX.

8

document encoding rules, while the user still enforces elements of style. In
a typical way of doing, captions may be put underneath a figure and also
typically be indented (apart from the one place where the user forgot to
implement that).

However, when observing the text one could learn document encoding
rules, for example, that captions are always below the figure and immedi-
ately following it provided there is one. In that case, one would require rules
which can express topological relationships with some form of tolerance as
the user will implement notions like alignment and marking with a limited
precision. In addition, one would require rules which express topographic
relationships as they can be implemented in the freedom to move around
on the 2D-screen where the WYSIWYG-program runs, implying that the
caption is always close to the figure. Finally, to address the inconsistencies
of ad hoc rule implementation and the lack of discipline to enforce them
would require rules with a less than strict character.

SGML languages are a family of interpreted markup languages, whose best
known members are HTML and XML. The eXtensible Markup Language,
XML for short, achieves a clear separation between content (the .{XML}

file), syntactic document encoding rules (.css, .xsl, .dtd) and semantics of
the document encoding rules (the browser’s interpretation of the document
encoding rules). For instance, the document encoding rule for a caption like
<CAPTION> A figure </CAPTION> could be the following:
• (syntax): inside a .css file

CAPTION
{dispaly: block; font-size: 12pt; color: #000000; text-align: center}
• (semantics): the browser will display the text “A figure” in one block of

text, in black color, using the default font, using the font size 12pt, and
center it.
To the same degree SGML as WYSIWYG offers the possibility to move

around the images of the document objects and hence implement document
encoding rules by habit rather than by a priori rules. As the user has no
visual feedback, the factual encoding rules are more informal than in the
WYSIWYG paradigm. Hence, here are needed topological and topographi-
cal rule sets to describe the power of SGML but even more forgiving than
in the WYSIWYG style.

Abstract formal languages can also serve as document encoding languages,
for instance, first-order logic. The syntax and semantics are the usual ones
for first-order logic, taking special care in giving adequate semantics to
spatial relations and predicates.

A final example of a general document encoding rule stated informally in
natural language is the following:

“in the Western culture, documents are usually read top-bottom and left-right.”
(1)

9

One can immediately spot a problem of stating rules in natural language, that
is, ambiguity. In fact, we do not know if one should interpret the “and” as
commutative or not. Should one first go top-bottom and then left-right? Or,
should one apply any of the two interchangeably? It is not possible to say from
the rule merely stated in natural language.

In the next section, we define an abstract propositional formal language to ex-
press qualitative spatial relations among document objects to formally express
document encoding rules.

3.2 Relations adequate for documents

Considering relations adequate for documents and their components, requires
a preliminary formalization step. This consists of regarding a document as
a formal model. At this level of abstraction a document is a tuple 〈D, R, l〉
of document objects D, a binary relation R, and a labeling function l. Each
document object d ∈ D consists of the coordinates of its bounding box (defined
as the smallest rectangle containing all elements of that object)

D = {d | d = 〈id, x1, y1, x2, y2〉}

where id is an identifier of the document object and (x1, y1) (x2, y2) represent
the upper-left corner and the lower-right corner of the bounding box of the
document object. In addition, we consider the logical labeling information.
Given a set of labels L, logical labeling is a function l, typically injective, from
document objects to labels:

l : D → L

In the following, we consider an instance of such a model where the set of
relations R is the set of bidimensional Allen relations and where the set of
labels L is {title, body of text, figure, caption, footer, header, page number,
graphics}. We shall refer to this model as a spatial [bidimensional Allen] model.
Bidimensional Allen relations consist of 13×13 relations: the product of Allen’s
13 interval relations (Allen, 1983; van Benthem, 1983) on two orthogonal axes.
(Consider an inverted coordinate system for each document with origin (0,0)
in the left-upper corner. The x axis spans horizontally increasing to the right,
while the y axis spans vertically towards the bottom.) Each relation r ∈ A
is a tuple of Allen interval relations of the form: precedes, meets, overlaps,
starts, during, finishes, equals, and precedes i, meets i, overlaps i, starts i,
during i, finishes i. We shall refer to the set of Allen bidimensional relations
simply as A and to the propositional language over bidimensional Allen rela-
tions as L the remainder of the paper. Since Allen relations are jointly exhaus-
tive and pairwise disjoint, so is A. This implies that given any two document
objects there is one and only one A relation holding among them.

10

y

x

d

d

1

2

y

x

d

d
1

2

(a) (b)

Fig. 5. (a) The document object d1 is Part of d2, as the projection of d1 on both
axes is during the projection of d2; (b) The document object d2 Overlaps with d2,
as the projection on x of d1 overlaps that of d2 and on y it overlaps i that of d2.

Document objects are represented by their bounding boxes and the relative
position of these objects plays a key role in the interpretation of the meaning
of the document. For example, if a document object is above another one it
is likely that it should be read before. If a document object is contained in
another one, it is likely that the contained one is a ‘part’ of the containing
one, for instance the title of a remark inside a frame. document objects can be
also overlapping. This last feature is more common when the document has
different colors and colored text runs over pictures, logos and drawings.

All relations of the examples above are expressible in terms of L. For instance,
‘being part of’ is

Part(d1, d2) iff (during x(d1, d2) ∨ starts x(d1, d2) ∨ finishes x(d1, d2))∧
(during y(d1, d2) ∨ starts y(d1, d2) ∨ finishes y(d1, d2)) (2)

To analyze the expressive power of L, we encode the basic RCC5 (Randell
et al., 1992) relations:

• Part−1(d1, d2) = Part(d2, d1),
• Equal(d1, d2) = equal x(d1, d2) ∧ equal y(d1, d2),
• Disconnected(d1, d2) = precedes x(d1, d2) ∨ precedes i x(d1, d2)∨

precedes y(d1, d2) ∨ precedes i y(d1, d2),
• Overlap(d1, d2) = ¬Part(d1, d2) ∧ ¬Part−1(d1, d2)∧
¬Equal(d1, d2) ∧ ¬Disconnected(d1, d2)∧
¬ExternalConnection(d1, d2).

Similarly, one can encode RCC8 in L. Examples of document objects satisfying
the part and the overlap relations are presented in Figure 5.

11

Restricting attention to RCC relations one looses a feature of L of great im-
portance, namely, its ordering expressivity with respect to the axes. Take
for instance the Disconnected relation. There are various ways in which
two document objects can satisfy this relation. If either precedes x(d1, d2) ∧
equal y x(d1, d2) or precedes i x(d1, d2) ∧ equal y x(d1, d2) holds, then it is
true that the RCC8 predicate Disconnected(d1, d2) holds, but the two situa-
tions are most different. In the first case, d1 is to the left of d2, in the second
case it is to the right. In other words, in the first case it is likely that d1 is to
be read before than d2 in the document, while in the second case d2 is to be
read before d1. This is one of the key features that we exploit in using L to
define document encoding rules.

Consider again the example of the relation between a figure and its caption in
the LATEX ACM transactions class file. This spatial relation is L definable:

(during x(figure, caption)∨equals x(figure, caption))∧precedes y(figure, caption)

The spatial relation between the word “Figure” and the figure counter is also
L definable:

meets x(“Figure ”, figure counter)∧
equals y(“Figure ”, figure counter) ∨ during i y(“Figure ”, figure counter)

Other features of the LATEX definitions are not L definable: trivially, all font
and textual features. But also size and distance features are not L definable,
e.g., the fact that the white space between a figure and a caption is of a fixed
amount (1pc).

3.2.1 Document encoding rules with L

The language L is adequate to express mereotopological and ordering relations
among rectangles. Here, we show how to use this power to express formal
unambiguous document encoding rules.

Take the informal document encoding rule (1) expressed in natural language.
Consider the layout of a document as presented in Figure 6.a, where the
numbering of the document objects is provided counterclockwise. After having
read the document object 2, to which one should the reader move? Only having
the layout and not the content of the text there is not a unique choice. One
would either move to the block of text 4 or to block 3. In the first case,
one has followed the left-right rule, in the latter the top-bottom rule. No one
would have proposed to move to block 1, this because it is in violation of the
top-bottom rule.

The top-bottom, left-right document rules are expressible in the language L

12

1 4

2 3 4

1

2

3

56

(a) (b)

Fig. 6. Layouts of documents considering text objects only.

by:

before in reading(d1, d2) iff precedes x(d1, d2) ∨meets x(d1, d2)∨
overlaps x(d1, d2) ∨ precedes y(d1, d2)∨
meets y(d1, d2) ∨ overlaps y(d1, d2) (3)

The equation reads “the document object d1 is ‘before in the reading order’ of
the document object d2 if the a Boolean combination of basic L relations are
satisfied.” The rule (3) is the formal counterpart to (1). Though the generality
of (3) is also its weakness. Too many document objects satisfy it, calling for
the design of rules balancing between being more restrictive and being general.
Consider the layout proposed in Figure 6.b. It is hard to judge if one would
follow the reading 1, 2, 6, 3, 5, 4 or the reading 1, 6, 5, 2, 3, 4, but the reading
1, 6, 2, 3, 5, 4 surely seems odd. Without knowing the content of the document,
we are inclined to consistently apply a column-wise or row-wise rule. There-
fore, a candidate for a general and yet more restrictive rule in comparison with
(3) is a column-wise document rule. In this case, one first goes top-bottom,
then left-right. A rule to encode this behavior is again expressible with L. It
has the following form:

13

before in readingcol(d1, d2) iff

precedes x(d1, d2) ∨meets x(d1, d2)∨

(overlaps x(d1, d2)∧
(precedes y(d1, d2) ∨meets y(d1, d2) ∨ overlaps y(d1, d2)))∨

((precedes y(d1, d2) ∨meets y(d1, d2) ∨ overlaps y(d1, d2))∧
(precedes x(d1, d2) ∨meets x(d1, d2) ∨ overlaps x(d1, d2)∨
starts x(d1, d2) ∨ finishes i x(d1, d2) ∨ equals x(d1, d2)∨
during x(d1, d2) ∨ during i x(d1, d2) ∨ finishes x(d1, d2)∨
starts i x(d1, d2) ∨ overlaps i x(d1, d2))) (4)

An analogous row-wise rule is obtained by inverting the axes in (4).

3.2.2 Thick boundary interpretation

The direct application of systems based on Allen or similar relations results in
brittle systems. This is because Allen relations rely on the precise identification
of a boundary of the interval. This means that some relations never occur in
practical situations. One goes directly from precedes to overlaps and from
overlaps to during without ever identifying an instance of meets, starts, or
finishes. To solve this drawback of Allen-like relations, we provide a less
brittle interpretation of the relations.

Instead of considering two interval extremes to be equal when they have the
same coordinates, we consider them equal if they are closer than a fixed thresh-
old distance T. This can be seen as if the bounding boxes of the document
objects have a thick boundary. We name the set of 13 Allen’s relations thus
interpreted thick boundary rectangle relations.

The thickness of the boundary is assumed identical for all objects in the doc-
ument. It is fixed with respect to the page size. The optimal value is found
through experimentation. There is a constraint on the T with respect to the
size of the smallest document object: it should not exceed half the size of the
shortest side of all bounding boxes. Referring to Figure 7, one sees how the A
relations with their thick interpretation are more tolerant in the establishment
of a relation between two intervals. For example, interval a meets interval b
not only if xa

2 = xb
1, but also if xb

1−T ≤ xa
2 ≤ xb

1 +T . With the thick boundary
interpretation, Allen’s relation maintain the jointly exhaustive and pairwise
disjoint property (cf. Aiello et al., 2002, for a proof).

14

Exact TBRR

Precedes_x
xa

2 < xb
1 xa

2 < xb
1-T

Meets_x
xa

2 = xb
1 xb

1-T £ xa
2 £ xb

1+T

Overlaps_x
xa

1<xb
1 xa

1 < xb
1-T

xb
1<xa

2<xb
2 xb

1+T< xa
2 < xb

2-T

Starts_x
xa

1=xb
1 xb

1 -T £ xa
1 £ xb

1 +T
xa

2< xb
2 xa

2 < xb
2 -T

During_x
xa

1> xb
1 xa

1> xb
1+T

xa
2< xb

2 xa
2< xb

2-T

Finishes_x
xa

1> xb
1 xa

1> xb
1+ T

xa
2= xb

2 xb
2 -T £ xa

2 £ xb
2 +T

Equals_x
xa

1= xb
1 xb

1 -T £ xa
1 £ xb

1 +T
xa

2= xb
2 xb

2 -T £ xa
2 £ xb

2 +T

x1

x1

x2

x2

a
b

T

a

T

a

T T

a

a

a

a

b

Fig. 7. The thick boundary interpretation of Allen’s relations. The interval b is
considered fixed and the threshold T is highlighted on its extreme points. The
interval a varies in all 13 possible positions. On the left, the equation of the standard
interpretation of Allen’s relations. On the right, the thick boundary interpretation.

3.3 Inference

Equipped with a qualitative spatial language for document objects L, with
document encoding rules and the layout and logical labeling information, we
are now in the position to perform inference in order to achieve ‘understanding’
of a document. Following is the definition of document understanding in this
context.

First, we define the notion of an admissible transition between document ob-
jects. Given a pair of document objects d1 and d2, a document model 〈D, R, l〉
and a set of document encoding rules S, we say that (d1, d2) is an admissible
transition with respect to R iff the bidimensional Allen relation (d1, d2) ∈ R
is consistent with S.

A spatially admissible reading order with respect to a document model 〈D, R, l〉
and a set of document encoding rules S is a total ordering of document objects
in D with respect to the admissible transitions.

15

The understanding of the document with respect to a document model 〈D, R, l〉
and a set of document encoding rules S is the set of spatially admissible read-
ing orders.

Following the above definitions, we see that inference is performed by two fol-
lowing steps. The first one is a constraint satisfaction step in which instances
of bidimensional Allen relations are matched against document encoding rules
expressed in L. The second one is a graph sorting procedure similar to topo-
logical sorting.

(a) (b)

Fig. 8. A page from the Communications of the Association for Computing Machin-
ery and a possible layout segmentation of it.

Consider the image from the magazine Communications of the Association for
Computing Machinery presented in Figure 8.a. A possible segmentation of its
layout (Figure 8.b) is formally represented by

[1, body_of_text, [13, 23, 93, 101], Times, 11, 0, 16]
[2, body_of_text, [100, 23, 180, 101], Times, 11, 0, 16]
[3, caption, [13, 107, 180, 122], Arial, 11, 0, 16]
[4, graphics, [13, 122, 115, 183], Courier , 11, 16, 0]
[5, figure, [115, 122, 180, 183], None , 11, 0, 16]
[6, body_of_text, [13, 191, 93, 261], Times, 11, 0, 16]
[7, body_of_text, [100, 191, 180, 261], Times, 11, 0, 16]
[8, footer, [108, 267, 171, 270], Arial, 7, 0, 16]
[9, page_number, [175, 267, 180, 270], Arial, 12, 0, 16]

where each element of the list represents one document object together with
its layout and logical labeling information. The first element is a unique iden-

16

tifier, the second is the logical label, the third is the upper-left corner and the
bottom-right corner of the bounding box, the fourth is the font of the text
(if applicable), then the size of the font, the color of the font, and the last
element is the color of the background.

Consider using the general document encoding rule (3). For all pairs of docu-
ment objects labeled by ”body of text”, we consider their bidimensional Allen
relation. Then we input these together with (3) into a constraint satisfaction
solver. Obtaining the following set of admissible transitions

[1, 2], [1, 6], [1, 7], [2, 6], [2, 7], [6, 2], [6, 7]

1

7

2 6

Fig. 9. The graph of spatially admissible transitions for the body of text document
objects of the document in Figure 8.

One can view this as a directed graph of spatially admissible transitions, Fig-
ure 9. There are two possible complete total orderings of this graph. They
are

[1, 6, 2, 7] [1, 2, 6, 7]

Following the above definition, the two spatially admissible reading orders
constitute the ‘understanding’ of the document in Figure 8.b with respect to
the set of document encoding rules {(3)}. Once the set of spatially admissible
transitions is identified, the task it that of totally sorting the graph. The algo-
rithm to perform the sorting of directed transitive cyclic graphs is presented
in Appendix A.

3.4 Complexity

The number of textual document objects that can be present in a page can
vary greatly. It may go from a few in a simple one column page to more than
20 in complex multi-column pages and, in extreme cases such as big-format
newspapers, to over 50. This generates a concern about the complexity of the
methodology proposed here.

17

It turns out that the methodology has polynomial complexity in the number of
document objects present in a page. Let us informally sketch here the reason
for this.

The methodology is composed of two separate phases. First, all pairs of doc-
ument objects are tested to see whether the document encoding rules are sat-
isfied. This is a constraint satisfaction task involving boolean combinations of
bidimensional Allen relations. Balbiani et al. (1998) have shown that this task
has polynomial complexity. The constraint satisfaction is performed n(n− 1)
times, where n is the number of document objects. Thus, the complexity of
the first phase is still polynomial. Second, the set of all spatially admissible
relations created in the first phase is sorted. This is performed using the algo-
rithm presented in Appendix A having worst case complexity of O(n2). The
complexity can be lowered to O(n + m), where m stands for the number of
edges in the graph of spatially admissible relations, but given the proliferation
of edges this is not convenient in practice. In short, the overall complexity of
the proposed methodology is polynomial.

0 5 10 15 20
number of document objects

0

0.25

0.5

0.75

1

1.25

1.5

se
co

nd
s

Execution time on UW-II

Cubic curve
interpolating
the median points

Fig. 10. Execution time in seconds with respect to the number of document objects
in the pages from the UW-II dataset.

Additional evidence for the polynomial complexity comes from the experimen-
tation with a prototype based on the methodology. The prototype was tested
on the 624 pages of the University of Washington dataset UW-II (Phillips and
Haralick, 1997). In Figure 10, the execution time of the prototype with respect
to the number of document objects found in a page is shown. For the set of
all documents with a given number of document objects the median execu-
tion time is represented by a bullet. The curve displayed on the graphic is the
interpolating curve of the points. It is a cubic curve with small coefficients

18

(−0.011 + 0.011n− 0.002n2 + 0.0002n3).

4 Evaluation

The methodology proposed has been implemented in a prototype system:
SpaRe. The core of SpaRe is implemented in the declarative programming
language Eclipse, 4 making use of the finite domain constraint satisfaction
libraries.

To test SpaRe, we used the Media Team Data-Base (MTDB) from the Uni-
versity of Oulu, (Sauvola and Kauniskangas, 2000). The data set consists of
scanned documents of various types: technical journals, newspapers, maga-
zines, and one-page commercials. Elements from the data set are presented
in Figure 11. We only used the documents in English, resulting in a data set
of 34 documents having 171 pages. The MTDB data set has a ground truth
at the document object level. Every document object has a layout label and
a logical label. The reading orders are part of the ground truth. Of the 171
pages, 133 have a unique reading order, 32 have two independent reading or-
ders, 5 have three, and 1 has four. We considered the layout information from
the ground truth as the input to our system. As there is no ground truth for
textual content and font information, we used the TextBridge OCR package
from ScanSoft 5 to extract these.

For evaluation purposes, the documents in the data set were split into three
main groups, based on their complexity:

• trivial documents containing up to 3 textual document objects;
• regular documents containing between 4 and 8 textual document objects;
• complex documents containing more than 8 textual document objects;

Out of 171 document pages, 98 are of type trivial, 66 of type regular and 7 are
of type complex.

The goal of the experimentation was to evaluate whether SpaRe is effective in
the detection of the reading order given the layout information. As subtasks,
we were interested in evaluating the performance with different document
encoding rules and with different values of the threshold for the thick boundary
interpretation of bidimensional Allen relations.

The experiments consisted of three cases. In the first case, we have used the
layout and labeling information from the ground truth and the general doc-

4 http://www-icparc.doc.ic.ac.uk/eclipse.
5 TextBridge SDK 4.5, http://www.scansoft.com.

19

(a) (b) (c) (d)

Fig. 11. Sample images from the MTDB data set.

ument encoding rule (3), denoted as General Rule on Ground Truth data. In
the second case, we have used the layout and labeling information from the
ground truth and the column and row-wise document encoding rules (4), de-
noted as Column/Row Rules on Ground Truth data. In the last case, we have
used the layout and labeling information from an existing logical labeler (see
Section 2) and the column and row-wise document encoding rules (4), denoted
as Column/Row Rules on the logical labeler data. For each one of these we have
varied the threshold of the thick boundary interpretation from 0 to 400 dots.

4.1 Criteria

To evaluate SpaRe, we use precision and recall (Baeza-Yates and Ribeiro-Neto,
1999). The set of reading orders detected (D) is compared to the ground truth.
For 38 documents, the ground truth defines independent reading orders on
non-intersecting subsets of the textual objects within the same document.
In these cases, the reading orders are composed by one main sequence of
document objects and one or two blocks to be read independently; e.g., a
page containing a frame with independent text. To account for this portion
of documents with multiple reading orders (20% of the whole data set), we
consider a reading order correct if it is identical to at least one permutation
of the independent reading orders as defined in the ground truth.

We refer to the set of permutations of the ground truth as the set of correct
reading orders (C). Then, the precision and recall are defined as follows:

p =
| D ∩ C |
| D |

r =
| D ∩ C |
| C |

(5)

The values lie between 0 and 1 inclusive, where 0 indicates the worst possible
performance and 1 the best possible one. Because there is only one reading
order, the recall can only be 1 if the correct reading is among the ones detected,
or 0 if it is not. This makes the recall less informative of the overall behavior

20

of the system.

4.2 Results

We have evaluated the results in terms of the average precision and recall
defined in Equation 5.

General Rule on Ground Truth data. We have used the general docu-
ment encoding rule (3) on the ground truth layout and logical labels of the
MTDB documents. The values of average precision with respect to increas-
ing values of the threshold are shown in Figure 12.

Fig. 12. Average precision for increasing threshold values (between 0 and 50) using
the general rule on the ground truth of the MTDB data set. The maximum value
is for the threshold value of 30.

The average precision and recall of the system for the entire MTDB data
set for the threshold value of 15 are:

Document Number of SpaRe

group Documents p r

trivial 98 0.96 0.99

regular 66 0.31 0.97

complex 7 0.003 1.00

average 171 0.06 0.98

SpaRe detected 2714 reading orders for the 171 document pages in the data
set. In the case of a very rich and complex document, 2157 reading orders
were detected. For other four documents, 140, 50, 37 and 15 reading orders

21

were detected. For the remaining collection the average of reading orders
detected was of 1.74. In two cases, none of the reading orders as detected
were correct.

Column/Row rule on Ground Truth data. We have used together the
column and row-wise document encoding rules on the ground truth layout
and logical labels of the MTDB documents. The values of average precision
with respect to increasing values of the threshold are shown in Figure 13.
The maximum value of precision is for the threshold value of 15.

Fig. 13. Average precision for increasing threshold values (between 0 and 50) using
the column/row rule on the ground truth of the MTDB data set.

The average precision and recall of the system for the entire MTDB data
set for the threshold value of 15 are:

Document Number of SpaRe

group Documents p r

trivial 98 0.97 0.99

regular 66 0.79 0.97

complex 7 0.88 1.00

average 171 0.89 0.98

SpaRe detected 190 reading orders for the 171 document pages in the data
set. For 16 documents 2 reading orders were detected, including the correct
one. In one case, none of the two reading orders as detected were correct. For
one document, 4 possible reading orders were detected and none of them
was correct. For the rest of 154 documents, SpaRe detected one reading
order only and in one case this was not correct.

In the case of a two column scientific article composed of 6 textual docu-
ment objects, SpaRe detected 4 reading orders. These were all wrong because

22

a short subtitle (“Acknowledgments”) was too close to a white space in the
neighboring column and was considered the title of the neighboring row in
a row-wise reading. This row-wise connection was possible in four different
ways, all incorrect. In case of a first page of an article in a magazine com-
posed of 3 textual document objects, the title was on the left of the main
text and centered vertically. In a reading order, the title was considered by
SpaRe to be a subtitle of one of the two main bodies of text. It was placed
incorrectly in the center of the reading order instead of on top of it. For one
document composed of 4 textual document objects organized in one column
with two subtitles and poorly typeset, SpaRe wrongly detected the reading
order. The reason is that the subtitles were almost embedded in the main
text and in overlap relation in the x axes instead of meet. The problem
disappears when increasing the threshold value above 25 points.

The column-wise document rule has as one of its conditions that two
blocks meet on the x axis. But with the boundary’s thickness set to 0, this
never occurs in the data set. On the other hand, allowing thickness, the
meet relation holds among some neighboring document objects.

Column/Row on the logical labeler data. We have used the column and
row-wise document encoding rules on the output of a logical labeling system
on the MTDB documents. The values of average precision with respect to
increasing values of the threshold are shown in Figure 14. The maximum
value of precision is for the threshold value of 15.

Fig. 14. Average precision for increasing threshold values (between 0 and 50) using
the column/row rule on the data from the logical labeler.

The average precision and recall of the system for the entire MTDB data
set for the threshold value of 15 are:

23

Document Number of SpaRe

group Documents p r

trivial 98 0.92 0.94

regular 66 0.74 0.92

complex 7 0.86 1.00

average 171 0.84 0.94

SpaRe detected 192 reading orders for the 171 document pages in the data
set. For 18 documents 2 reading orders were detected where the ground
truth indicates only one. For one document, 4 possible reading orders were
detected and none of them was correct. For the rest of 152 documents, SpaRe
detected one reading order only. For 11 documents the correct reading order
was not detected by SpaRe. In particular, for the simple documents 2 extra
reading orders were detected and the number of wrongly understood docu-
ments was of 6. For the regular documents, the number of wrong detections
was 5. For the 7 complex documents, there were no errors.

All additional misdetections of the reading order using the logical labeler
data in place of the ground truth data are due to the misclassification of title
objects. They are confused with footers, captions or rulers. The misclassi-
fication in the logical labeler data propagates to SpaRe. Eight additional
documents are interpreted erroneously.

4.3 Discussion of the results

Varying the threshold in the thick boundary interpretation of Allen bidimen-
sional relations does influence the overall performance considerably. In Fig-
ure 15, we compare the values of precision and recall for the three experimental
cases increasing the threshold from 0 (no thickness) to 400 points. We notice
that the precision increases considerably when the threshold goes from 0 to
5-10 points. Then it stabilizes showing minor variation over a wide range of
thicknesses.

Moving the thickness from 0 to the maximum values corrects the situations
in which boundary detection is not ideal. The reason for the stabilization of
the precision between 15 and 100 points can bee interpreted as follows. In a
document, document objects need not be found perfectly aligned. As far as
the variation is small, the document layout is still intelligible. The acceptable
variation depends on the specific document. For example, in a multicolumn
document without overlapping frames, it is necessary to allow a small variation
because the elements of a column will never be perfectly aligned; on the other
hand, the variation should not go beyond half of the size of the white space

24

between two adjacent columns otherwise columns will be confused.

Letting the thickness grow much beyond 100, makes the precision fall down
as the thickness becomes too big with respect to the average document block
size. The document objects become ‘blurred’ entities and overlap becomes the
most frequent relation. Performance degrades rapidly.

Considering the maximum values in Figure 12, Figure 13, and Figure 14, we
notice that the maximum value is different for different rules.

The recall is stable and has always a high score between 0.9 and 1.0. This
makes this measure of little interest in the presented experimentation. The
reason for this high values resides in the fact that only one reading order is
considered for the documents.

Fig. 15. Comparing precision and recall for the three experimental cases with respect
to increasing threshold (from 0 to 400). From foreground to background, the recall
for the general rule on ground truth data, the recall for column/row rules on ground
truth data, the recall for column/row rules on the logical labeler data, the precision
for the general rule on ground truth data, the precision for column/row rules on
ground truth data, and the precision for column/row rules on the logical labeler
data.

From the comparison of the use of the column and row-wise rules on the ground
truth and on the logical labeler data (with threshold set to 15), one notices
a small degradation of the overall performance. On the whole collection this
means an appreciable decrease in performance, but not a total brake-down of
the approach, as the precision goes from 0.89 to 0.84 and the recall from 0.98
to 0.94.

Considering the use of the general and the column and row-wise document
encoding rules, one notices a big difference with respect to precision. The

25

problem with the general document encoding rule is its generality. It looses
almost none of the correct readings of a document, but it finds too many. For
instance, for a three column document with an image in the central column
composed of 14 textual document objects, the general rule gives 2714 admis-
sible reading orders while using the column-wise rule one gets only the correct
one. When performing the experiment with the column and row-wise rules,
we appreciate the sharp increase in precision, while the recall remains unmod-
ified. This means that the rules are less general to detect less reading orders,
but are not too specific to degrade the performance. Even on a heterogeneous
collection of documents such as the MTDB, the column and row-wise rules
have high values of recall and, most notably, precision. It is safe to conclude
that the general rule is of no interest when compared with the column and
row-wise rules.

The average execution time of SpaRe is appreciably fast. On a standard Sparc
300 Mhz machine, it takes about 28 seconds of wall clock time to process the
whole data set. The median execution value for a document is of 10 millisec-
onds. The execution time increases more than linearly with the number of
document objects. Therefore, there is a practical upper bound to the com-
plexity and richness of document components that can be analyzed.

5 Conclusions

We have shown the feasibility, and efficacy, of applying a symbolic approach
to logical structure detection in the context of document image analysis and
understanding. The approach is based on a spatial language of rectangles
and basic mereotopological rectangle relations (bidimensional Allen relations).
Inference is achieved via constraint satisfaction techniques.

We have shown a bidimensional Allen based language to have appropriate
expressive power for the task of document understanding. Though, what the
language misses is a notion of neighborhood or some other kind of weak metric
expressivity. Considering the 11% of the documents understood erroneously
using the column and row-wise rules on the ground truth, one may argue
that the correct order would have been captured by using a rule preferring
neighboring text objects. Something not expressible in bidimensional Allen.
In (Aiello et al., 2002), the first steps in this directions are takes by using
Voronoi diagrams.

The logical labeler adds 4% of misclassified reading orders. Little can be modi-
fied in SpaRe to overcome these failures. When logical labels do not correspond
with the actual logical function of the objects, any symbolic approach shows
brittleness.

26

Two notable features of the presented symbolic approach are its flexibility
and modularity. SpaRe is flexible enough to treat a wide variety of documents,
including scientific articles, newspapers, magazines and commercial hand-outs,
in a single run.

To increase the number of document classes handled, future work includes
an extension to explicitly deal with independent reading orders. Independent
reading orders are the case of complex documents, such as newspapers where
pieces of text independent of one another coexist on the same sheet. The fore-
seeable key point of such an extension lies in the identification of appropriate
document rules.

In conclusion, we do not know if HAL was equipped with a symbolic document
image analysis system or with one based on different technologies. The only
thing we know is that whenever a HAL-like machine will be available we expect
it to read and understand the contents of any printed document brought to
its attention.

References

Aiello, M., Monz, C., and Todoran, L. (2000). Combining linguistic and spatial
information for document analysis. In Mariani, J. and Harman, D., editors,
Proc. of RIAO’2000 Content-Based Multimedia Information Access, pages
266–275. CID.

Aiello, M., Monz, C., Todoran, L., and Worring, M. (2002). Document Un-
derstanding for a Broad Class of Documents. International Journal on
Document Analysis and Recognition. Accepted with revisions. An earlier
version appeared as (Todoran et al., 2001a).

Allen, J. (1983). Maintaining knowledge about temporal intervals. Commu-
nications of the ACM, 26:832–843.

Altamura, O., Esposito, F., and Malerba, D. (2001). Transforming paper
documents into XML format with WISDOM++. International Journal of
Document Analysis and Recognition, 4(1):2–17.

Arlazarov, V., Dinic, E., Kronrod, M., and Faradjev, I. (1970). On economical
finding of transitive closure of a graph. Soviet Math. Dokl., 11:1270–1272.

Baayen, R., Piepenbrock, R., and Gulikers, L. (1995). The CELEX lexical
database (release 2). Distributed by the Linguistic Data Consortium, Uni-
versity of Pennsylvania.

Baeza-Yates, R. and Ribeiro-Neto, B. (1999). Modern Information Retrieval.
Addison Wesley.

Balbiani, P., Condotta, J., and Fariñas del Cerro, L. (1998). A model for rea-
soning about bidimensional temporal relations. In Cohn, A. G., Schubert,
L., and Shapiro, S., editors, Proc. of the International Conference on Prin-

27

ciples of Knowledge Representation and Reasoning (KR’98), pages 124–130.
Morgan Kaufmann.

Cesarini, F., Francesconi, E., Gori, M., and Soda, G. (1999). A two level
knowledge approach for understanding documents of a multi-class domain.
In Hull et al. (1999), pages 135–138.

Cesarini, F., Gori, M., Marinai, S., and Soda, G. (1998). INFORMys: A
flexible invoice-like form-reader system. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 20(7):730–746.

Esposito, F., Malerba, D., and Lisi, F. (2000). Machine learning for intelli-
gent processing of printed documents. Journal of Intelligent Information
Systems, 14(2/3):175–198.

Goossens, M., F., M., and Samarin, A. (1994). The LATEX Companion.
Addison-Wesley.

Hersh, W., Buckley, C., Leone, T., and Hickam, D. (1994). OHSUMED: an
interactive retrieval evaluation and new large test collection for research. In
Proc. of ACM-SIGIR conference on Research and development in informa-
tion retrieval, pages 192–201. Springer.

Hull, J., Lee, S., and Tombre, K., editors (1999). ICDAR, IEEE.
Klink, S., Dengel, A., and Kieninger, T. (2000). Document structure analysis

based on layout and textual features. In Murshed, N. and Amin, A., editors,
Proc. of International Workshop on Document Analysis Systems, DAS2000,
pages 99–111. IAPR.

Klink, S. and Kieninger, T. (2001). Rule-based document structure under-
standing with a fuzzy combination of layout and textual features. Interna-
tional Journal of Document Analysis and Recognition, 4(1):18–26.

Knuth, D. (1984). The TEXbook. Addison–Wesley.
Knuth, D. E. (1968). The Art of Computer Programming. Addison Wesley.

Third edition 1998.
Knuth, D. E. and Szwarcfiter, J. L. (1974). A structured program to gen-

erate all topological sorting arrangements. Information Processing Letters,
2(6):153–157.

Lee, K., Choy, Y., and Cho, S. (2000). Geometric structure analsysis of doc-
ument images: A knowledge approach. IEEE Trans. on Pattern Analysis
and Machine Intelligence, 22(11):1224–1240.

Li, X. and Ng, P. (1999). A document classification an extraction system with
learning ability. In Hull et al. (1999), pages 197–200.

Munro, I. (1971). Efficient determination of the transitive closure of a directed
graph. Information Processing Letters, 1(2):56–58.

Nagy, G. (2000). Twenty Years of Document Image Analysis in PAMI. IEEE
Trans. Pattern Analysis and Machine Intelligence, 22(1):38–62.

Niyogi, D. and Srihari, S. (1996). Using domain knowledge to derive logical
structure of documents. In Alferov, Z., Gulyaev, I., and Pape, D., editors,
Proc. Document Recognition and Retrieval III., pages 114–125. SPIE.

Phillips, I. and Haralick, R. (1997). Uw-ii english/japanese document image
database. CD-Rom.

28

Randell, D., Cui, Z., and Cohn, A. G. (1992). A Spatial Logic Based on
Regions and Connection. In Proc. of Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’92), pages 165–176. San Mateo.

Reynold, L. (1979). The Thames and Hudson Manual of Typography. Thames
& Hudson.

Rosenfeld, A. (1997). Eyes for Computers: How HAL Could “See”. In Stork,
D., editor, HAL’s Legacy, pages 210–235. MIT Press.

Sauvola, J. and Kauniskangas, H. (2000). MediaTeam Document Database
II. CD-ROM collection of document images, University of Oulu, Finland.
http://www.mediateam.oulu.fi/MTDB/index.html.

Schiirmann, J., editor (1997). ICDAR, IEEE.
Singh, R., Lahoti, A., and Mukerjee, A. (1999). Interval-algebra based block

layout analysis and document template generation. In ”Workshop on Doc-
ument Layout Interpretation and its Applications”. Event connected with
Hull et al. (1999).

Toda, S. (1990). On the complexity of topological sorting. Information Pro-
cessing Letters, 35(5):229–233.

Todoran, L., Aiello, M., Monz, C., and Worring, M. (2001a). Document Un-
derstanding for a Broad Class of Documents. Technical Report ISIS-TR-
2001-15, University of Amsterdam.

Todoran, L., Aiello, M., Monz, C., and Worring, M. (2001b). Logical structure
detection for heterogeneous document classes. In Document Recognition and
Retrieval VIII, pages 99–110. SPIE.

Tsujimoto, S. and Asada, H. (1992). Major components of a complete text
reading system. Proc. of the IEEE, 80(7):1133–1149.

van Benthem, J. (1983). The Logic of Time, volume 156 of Synthese Library.
Reidel, Dordrecht. [Revised and expanded, Kluwer, 1991].

Walischewski, H. (1997). Automatic knowledge acquisition for spatial docu-
ment interpretation. In Schiirmann (1997), pages 243–247.

Warshall, S. (1962). A Theorem on Boolean Matrices. Journal of the ACM,
9(1):11–12.

Worring, M. and Smeulders, A. (1999). Content based internet access to paper
documents. International Journal of Document Analysis and Recognition,
1(4):209–220.

A Sorting transitive directed graphs

We extend the notion of topological sorting a directed acyclic graph (Knuth,
1968; Knuth and Szwarcfiter, 1974). Instead of a directed ‘acyclic’ graph, we
sort a directed ‘cyclic’ graph whose edge relation is transitively closed. We call
the latter directed transitive cyclic graph. More formally, a directed transitive
cyclic graph is a graph G = 〈V, E〉 such that if (i, j) ∈ E and (j, k) ∈ E, then

29

(i, k) ∈ E. In what follows, we assume that there are n vertices |V | = n and m
edges |E| = m. The problem of sorting a directed transitive graph G consists
of creating sequences of nodes of the graph such that for any pair of nodes u
and v in G appearing in any sequence, then (u, v) must be an edge of G.

Algorithms to perform topological sorting of directed acyclic graphs work it-
erating the following procedure until all nodes have been visited. First, a node
v with no predecessors

∀u 6= v ¬∃(u, v) ∈ E

is identified. The node v is placed in the output. Then, all the edges (v, u)
such that ∀u 6= v (v, u) ∈ E are removed from the graph. In other words, the
set of edges E of the graph is replaced by its subset E/{(v, u) ∈ E} without
the edges departing from the node v. If the original graph is acyclic, then
the algorithm outputs a topological sorting of the input graph, otherwise the
output is incorrect. The complexity of this sort of algorithms is O(m + n).
Notice that the algorithm does not return any clue on the incorrectness of
the output in the case the input graph is cyclic. This is rather natural when
considering the complexity of topological sorting and that of identifying cycles
in directed graphs. It is well known that the latter is in NL-hard (see, for
instance, (Toda, 1990)).

The algorithm for sorting transitive cyclic directed graphs takes as input a
connected graph G = 〈V, E〉 and outputs a sequence of nodes v1 ·v2 ·v3 · . . . ·vn

such that:

(1) for all i: vi ∈ V ,
(2) |v1 · v2 · v3 · . . . · vn| = |V |,
(3) for all i 6= j: vi 6= vj,
(4) if i < j: (vi, vj) ∈ E.

One starts by removing all self-loops (v, v) ∈ E to setup the graph. Then the
main cycle of the algorithm begins by considering all the nodes and counting
the number of edges departing from each one, also known as degree of the node:
deg(v) = |{(v, w) ∈ E| w ∈ V }|. Then one chooses a node with the highest
degree, which has to be the same as the number of nodes of the graph minus
one. In other words, the node is related — is ‘before’ — all other nodes of the
graph. As we allow for cycles, there can be more than one node satisfying this
condition. Once a node with maximal degree has been chosen, we remove it
from the graph together with all the edges connected to it, both outgoing and
incoming, and repeat the procedure on the remaining subgraph.

Consider the simple example in Figure A.1. The input graph is G = 〈{1, 2, 6, 7}
{(1, 2), (1, 6), (1, 7), (2, 6), (2, 7), (6, 2), (6, 7)}〉, it is easy to check that it meets
the input conditions. The first step of the algorithm is to create a list of nodes

30

1

7

2 6

Fig. A.1. A simple directed transitive cyclic graph.

and their occurrences: L = {(1, 3), (2, 2), (6, 2), (7, 0)}. The node 1 is selected
as first node of the output, as its degree is 3 = |V | − 1. The list L is then
updated to L = {(2, 2), (6, 2), (7, 0)}. Two choices are possible at the following
iteration: either 2 or 6. Suppose the first item is chosen, then L becomes {(6, 1),
(7, 0)}. Finally, the output is updated with 6 and 7, respectively, yielding the
final output of {1, 2, 6, 7} (also {1, 6, 2, 7} is a correct solution, and it can be
computed by backtracking to the point in which v2 was chosen in place of v3).

Let us now proceed with a more precise definition of the algorithm. The pre-
liminary step of the algorithm consists of the construction of a list L of pairs
(v, o), where o is the degree of v, i.e., o = deg(v). In pseudo-code, we have:

fail ← false;

for all v such that (v, v) ∈ E;

E ← E/(v, v);

while(|V | > 0 and (not fail))

sort L in descending order of occurrences

% let (v∗, l) be the first element of L

if (l 6= |V | − 1)

fail ← true;

else

output ← output + v∗;

V ← V/v∗;

for all w such that (v, w) ∈ E or (w, v) ∈ E;

E ← (E/(v∗, w))
⋂

(E/(w, v∗));

update(L);

Given that sorting a set of up to n values, each of which is an integer in
the interval [0,n-1] can be performed with a bucket sort in O(n), one can

31

conclude that the complexity of the proposed algorithm is in the O(n2) class. 6

If the algorithm terminates with fail set to false, then a correct sorting of
the original directed transitive graph graph G will be found in the variable
output. If no check is performed on the input graph, nothing can be said in
case the algorithm returns true for the variable fail. On the other hand, if the
input graph is tested to be transitively closed, then fail set to true indicates
that no sorting for the input graph G exists. Algorithms to transitively close a
graph can be found in the literature (Warshall, 1962; Munro, 1971; Arlazarov
et al., 1970), and are also relatively inexpensive: O(n3), O(n2.376), and O(n3

ln(n)
),

respectively.

6 It is possible to devise an algorithm for directed transitive graph sorting with lower
asymptotic complexity, though this is beyond the scope of the presented material.
The steps of such an algorithm consist of: 1) finding strongly connected components
of the graph, which is in O(n + m); 2) consider the graph of the strongly connected
components; 3) topologically sort the new graph. This algorithm has O(n + m)
complexity where n is the number of nodes and m the number of edges.

32

