ABSTRACT

Title of dissertation: PROCESSING CAMERA-CAPTURED
DOCUMENT IMAGES:
GEOMETRIC RECTIFICATION,
MOSAICING, AND LAYOUT
STRUCTURE RECOGNITION
Jian Liang, Doctor of Philosophy, 2006
Dissertation directed by: Dr. Daniel DeMenthon
Dr. David Doermann

Professor Rama Chellappa
Institute for Advanced Computer Studies

This dissertation explores three topics: 1) geometric rectification of camera-
captured document images, 2) camera-captured document mosaicing, and 3) layout
structure recognition. The first two topics pertain to camera-based document image
analysis, a new trend within the OCR community. Compared to typical scanners,
cameras offer convenient, flexible, portable, and non-contact image capture, which
enables many new applications and breathes new life into existing ones. The third
topic is related to the need for efficient metadata extraction methods, critical for
managing digitized documents.

The kernel of our geometric rectification framework is a novel method for es-
timating document shape from a single camera-captured image. Our method uses
texture flows detected in printed text areas and is insensitive to occlusion. Classifica-

tion of planar versus curved documents is done automatically. For planar pages, we



obtain full metric rectification. For curved pages, we estimate a planar-strip approx-
imation based on properties of developable surfaces. Our method can process any
planar or smoothly curved document captured from an arbitrary position without
requiring 3D data, metric data, or camera calibration.

For the second topic, we design a novel registration method for document
images, which produces good results in difficult situations including large displace-
ments, severe projective distortion, small overlapping areas, and lack of distinguish-
able feature points. We implement a selective image composition method that out-
performs conventional image blending methods in overlapping areas. It eliminates
double images caused by mis-registration and preserves the sharpness in overlapping
areas.

We solve the third topic with a graph-based model matching framework. Lay-
out structures are modeled by graphs, which integrate local and global features and
are extensible to new features in the future. Our model can handle large variation
within a class and subtle differences between classes. Through graph matching,
the layout structure of a document is discovered. Our layout structure recognition
technique accomplishes document classification and logical component labeling at
the same time. Our model learning method enables a model to adapt to changes in

classes over time.
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Chapter 1
Introduction

1.1 Motivation

In this dissertation we present our work on three main topics:
e Geometric rectification of camera-captured document images,
e Camera-captured document mosaicing, and
e Recognition of layout structure in document images.

The first two topics are motivated by the recent trend in the OCR community
of augmenting the use of flat-bed scanners with digital cameras [38, 19, 35]. From a
technical point of view, cameras offer convenient, flexible, portable, and non-contact
image capture, which opens the door to many new applications and gives new life
to existing ones. From a market point of view, the vast number of digital cameras
owned by consumers provide a large potential market for document capture and
OCR. Both drive the recent trend of camera-based document analysis.

This trend brings many opportunities as well as challenges to the OCR, com-
munity. For example, handheld devices (such as PDAs and cell phones) equipped
with cameras are ideal platforms for mobile OCR applications such as recognition of
street signs in foreign languages, out-of-office digitization of documents, and text-to-

voice input for the visually impaired. In industrial market, high-end cameras have



been used for digitizing thick books and fragile historic manuscripts unsuitable for
scanning; in consumer market, camera-based document capture is in use in the desk-
top environment [65]. A challenge facing the OCR community is that, due to the
differences between scanners and cameras, traditional scanner-oriented OCR, tech-
niques are not generally applicable to camera-captured documents. Although digital
cameras have recently made advances in resolution, noise level, shutter speed, white
balancing, exposure metering, etc., fundamental obstacles exist in using them for
the purpose of OCR. Unlike a flat-bed scanner which fixes the image plane, carefully
controls lighting, and obtains large-sized images with a moving optical component,
a camera-captured image may suffer from problems such as non-planar page shape,
uneven lighting, low resolution, perspective distortion, out-of-focus or motion blur,
and under- or over- exposure. As a result, we either must modify traditional OCR
techniques to make them compatible with new images or modify the images so they
can use available OCR algorithms. Both have pros and cons. From an engineer-
ing perspective, the second approach has the advantage of keeping existing working
modules intact, which is important in terms of reliability and code reuse. Therefore,
our first two topics focus on processing camera-captured document images to make
them OCR compatible.

Our third topic originates from the need for metadata extraction in document
image analysis. Metadata plays an important role in applications such as indexing
and retrieval, automatic routing, re-authorization, abstract generation, and device
dependent formatting. For example, despite the phenomenal success of full text

search engines on the web, their heavy dependence on the ‘quality’ of query keywords



(i.e., the more common the keywords, the less the discriminating power) and their
inability to express constraints that are not content-based limit their performance.
It is very difficult to formulate the query, to “find all correspondences sent to Mr.
Smith,” as a full text search query because the document class, correspondence, and
the functional attribute, sent to, are not related to any keywords. The name, Smith,
is so common that the turn-out would be too large to be useful. In another example,
most PDF or HTML documents are formatted for large desktop or laptop displays
and are inappropriate for the small screens on handheld devices such as PDAs and
cell phones. This means that the content must be reformatted according to the
terminal’s requirement upon delivery, and such reformatting clearly depends on the
metadata associated with the content.

Most current OCR systems can recognize the text content, but few of them
extract extensive metadata. Although metadata identification from text is possible
by using Natural Language Processing (NLP) techniques, it is often unreliable. This
is because NLP only has access to text content that cannot carry other useful visual
information about the document. In particular, we find that layout styles convey
important information about the function of the document as well as functions of
different zones on the page. Many publishers restrict their authors and editors to
carefully designed templates that generate a consistent style in their publications;
many non-public domain documents such as personal correspondences also follow
widely accepted layout conventions. The understanding of layout styles allows hu-
man readers to distinguish a letter from a report without even knowing the language

of the document. Our third topic, therefore, questions how to simulate the human



ability to recognize the document layout and apply it to the problem of document

classification and logical component labeling.

1.2 Geometric image rectification

Many factors contribute to the difficulties of using scanner-oriented OCR technique
to process camera-captured document images [38], such as uneven lighting, out-of-
focus blur, motion blur, complex background objects, and non-planar pages with
perspective distortion. It is well-known that state-of-the-art OCR. software packages
do not properly handle a non-planar document under perspective projection. As
seen in Figure 1.1, at the page level such distortions bend straight margins and
text lines, thus defeating the assumptions of many well-known page segmentation
algorithms [52, 49, 32]. At the word and character level, the distortion make char-
acter segmentation difficult because characters can no longer be split perpendicular
to the text base line. Even if characters are successfully segmented, the distorted
characters are unlikely to be represented in the training data set, causing low recog-
nition rates. To a lesser degree, these challenges also apply to planar pages. The
experimental results summarized in Tables 3.8 and 3.9 show disappointing OCR
performance for synthetic camera-captured document images (both curved and pla-
nar). The synthetic images used for the tests are virtually free of noise and blur, and
have sufficient resolution. This eliminates the opportunity of improving performance
through pure 2D image enhancement.

In the literature, the geometric rectification of camera-captured document im-
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Figure 1.1: Comparison between flat and warped document images. (a) A clear scan
of a document page. (b) A sub-image of (a) enlarged. (c) Word “the” enlarged from
(b). (d) The same document page with curved shape under perspective projection.
(e) A sub-image of (d) with similar content as (b). (f) Text line segmentation might
be possible (locally) after rotating (e) so that text lines are roughly horizontal. (g)

Word “the” with distorted characters that OCR cannot recognize.



ages largely depends on additional knowledge outside the image. In one branch of
this area, 3D range data is required [5, 57, 68] so that shape is directly known. This
approach only suits large projects such as digital library acquisition because it re-
quires special hardware. Another area of research assumes a flat document [14, 56]
to simplify the underlying page shape. Obviously, these methods for flat pages can-
not handle an opened book with curved surfaces. To process curved pages, either
the camera pose must be restricted [7] or additional metric information of the page
[67, 24] is required. Overall, to the best of our knowledge, no current method other
than ours exists for processing general document images captured by cameras.

Our approach does not require multiple views, extra 3D or metric data about
the page, specific pose/shape knowledge, or camera calibration. We make three
basic assumptions. First, the document page should contain sufficient printed text
content. This requirement is valid considering that the user is interested in document
analysis, not general image analysis. Second, the document is either flat or smoothly
curved (i.e., not torn or creased). And third, the camera is a standard pin-hole
camera in which the z-to-y sampling ratio is unity and the principal point (where
the optical axis intersects the image plane) coincides with the image center. Most
digital cameras satisfy the third assumption.

Under these three assumptions, we show that we can constrain the physical
page by a developable surface model, obtain a planar-strip approximation of the
surface using texture flow data extracted from the image, and use the 3D shape
information to restore the frontal-flat document view. Our approach presents a

unified solution for both planar and curved documents. Figure 1.2 illustrates our



approach. It takes one camera-captured document image as input, either planar or

curved, and outputs the frontal-flat view of the page.

/ . s \

Image
Rectification

Figure 1.2: Example of geometric image rectification.

1.3 Document mosaicing

Another problem associated with processing camera-captured documents involves
the conflict between limited resolution and field of view for most consumer-grade
digital cameras. For low resolution cameras, such as PDA or cellphone cameras, if a

whole letter-size document is included in the field of view, the characters might be



illegible. On the other hand, if the resolution is increased by either zooming in or
moving closer to the page, then only a small portion of the page can be captured.
There are two possible solutions: 1) keep the field of view large, take multiple low
resolution images, then apply super-resolution techniques [8, 21, 54] to generate a
high resolution image of the entire page; or 2) take multiple high resolution pictures
of small portions of the document, then apply mosaicing techniques to generate
a composite result. As [2] shows, super-resolution methods have some inherent
limitations. More importantly, in practice it is difficult to keep handheld cameras
at a fixed position. Varying poses make image registration very difficult, if not
impossible, to meet the requirement of super-resolution. As for mosaicing, most
methods proposed for document images are designed for scanners [61, 72|, where
overlapping images differ only by rotation and translation. A few methods are
developed using cameras but they require additional hardware to restrict the camera
pose [50, 76]. Video mosaicing methods allow changes in scale and perspective.
However, frame-to-frame difference is usually minute [45, 64]. Furthermore, if the
camera motion is not pure panning and zooming, i.e., if the optical center moves,
most video mosaicing produces a panorama view that is not a projective view of the
world [55]. In the context of document mosaicing, this means that the result image
is still distorted.

Our mosaicing approach for camera-captured documents does not impose re-
strictions on camera pose/motion and suits images with large perspective distortion
and small overlapping areas. In other words, our method allows the user to take

pictures from arbitrary positions. We assume that the portion of the document



in each image is almost flat. We first remove perspective distortion using geomet-
ric rectification methods, then register the images pairwise. Finally, we seamlessly
blend them to produce a high resolution composite image which contains the frontal
flat view of the document.

Figure 1.3 illustrates the concept of camera-captured document mosaicing,
where four pictures, each capturing a portions of a document, are mosaiced into a

high resolution composition.

1.4 Layout structure recognition

The third topic of our work focuses on the analysis of layout structure in document
images. The layout of a document is designed to facilitate its readers to understand
the content and convey information absent in the text. Therefore, layout analysis
is an important area in document image understanding.

In particular, we notice that documents in one class usually share a common
layout style and documents from various classes can often be distinguished by their
different layout styles. Hence, the analysis of layout structure can assist document
classification. Within a document class, physical layout is closely linked to logical
structure [25]. The logical structure of a document image involves logical roles of
individual zones, reading order, and logical relationship among zones. Typically,
a logical component in a document class is consistently represented by a specific
zone in the page. As a result, analysis of layout structures provides an approach to

discover logical structures.
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Figure 1.3: Example of document mosaicing. (a) Four images cover a whole docu-

ment. (b) Mosaicing produces a high resolution composition.
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In the literature, classification of document images and extraction of logical
structures from document images are studied as two separate subjects. Most pre-
vious work in document image classification use a global representation of the page
layout that does not provide explicit local features. Documented work on logical
structure analysis usually performs functional analysis at the component level with-
out considering global layout styles. Furthermore, many approaches requires a fair
amount of training and models must be retrained from scratch if classes change or
new classes are added.

We present a unified approach to both document classification and logical
structure analysis using a graph-based model. Our model can accommodate hetero-
geneous features, both global and local. We call the process that matches models to
instances as layout structure recognition. Through this process, we simultaneously
determine the class of the document instance and its logical structure (see Figure 1.4
for a conceptual illustration). With an adaptive learning method, a document model
can be initialized with a relatively small number of samples and improved with new
samples later on. This avoids the problem of expensive retraining when classes

change or new classes emerge.
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Chapter 2
Analysis of Texture Flow in Document Images

2.1 Motivation

We are interested in the analysis of texture flow fields in document images because
they provide a powerful tool for analyzing the underlying page shape, and the lat-
ter presents one of the key problems in rectification of camera-captured document
images.

Informally, a flow field defines an orientation function at every point in the

space. In the 2D plane R?, one way to describe the flow field is:

O(z,y) : R* — S'

which defines a dominant orientation 6 at (x,y).

A flow field can be visualized by short line segments or continuous curves
following the local orientations. Psychological observations suggest that abstract
representations of continuous 2D flow fields should be such that locally the line
segments or curves are parallel [3, 59]. Inversely, an image with a texture pattern
that exhibits local parallelism gives a viewer the perception of a flow field. We call
this a texture flow field. A typical example is the pattern of a zebra’s stripes.

More than one texture flow field can co-exist in one space. For example, a

piece of fabric usually exhibits two orthogonal texture flow fields. This also holds
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true for a document page in which we can identify a major texture flow field and a
manor texture flow field. Text lines and white line space form very prominent parallel
structures that define the major field, while the vertical character strokes present
a weaker (hence the name) minor field. For most languages and scripts, vertical
strokes represent important elements in characters, and characters align along text
base lines. Therefore, these two texture flow fields are common to most printed
documents.

It is well known that texture on surfaces can assist the shape perception process
in human visual system. Texture flows fields have the same effect [36]. During
this interpretation process, we usually make unconscious assumptions, such as that
the flow field follow the lines of curvature direction, or that it follow the geodesic
direction, or that it represents contours cut by a group of parallel planes. These
assumptions are extensively utilized in line drawing to convey shape information
(see Figure 2.1).

In the context of document pages, our physical world knowledge ensures that
1) the two texture flow fields defined above are locally orthogonal to each other,
2) they are both geodesics of the page surface, 3) globally the page can be flattened,
and 4) on the flat page each texture flow field points to a consistent direction.
These assumptions help a viewer to quickly obtain a good idea of local surface
orientation and global surface shape. Certain exceptions, such as a paragraph of
italic text that defies the orthogonality between two fields or a large figure or picture
absent with these two fields, can make this process harder. In these situations,
shape information can be interpolated or extrapolated using surrounding normal
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Figure 2.1: Shape perception from line arts. The curves in both (a) and (b) are
cutting contours by (a) one group of parallel planes, and (b) two groups of parallel
planes. The ‘latitude’ lines in (c) are cutting contours by a group of horizontal

planes, and the ‘longitude’ lines are geodesics.

text areas. Furthermore, page boundaries, text margins, and picture borders, can
all be clues for generating shape perception.

While these auxiliary clues are helpul, they are not always reliable because
of possible occlusion. If a shape estimation method depends on these clues, it will
have difficulty when another object occludes the document and creates a false text
margin or page boundary. On the contrary, techniques based on texture flow fields
in printed text are not affected by occlusion because occlusion only eliminates some
portions of the fields and does not change the remaining part. The shape of the
visible part of the page can always be found using the visible texture flow fields.

In the following sections, we first review related work, then describe our ap-

proach to estimating texture flow fields in document images.
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2.2 Related work

As with many computer vision problems, the first step in dealing with complex real
life images involves finding the region of interest. In our case, the region of interest
is the document in the image; to be precise, we are interested in the printed text
area (including tables) but not arbitrary figures or pictures. We focus on printed
text (and tables) because it presents more consistent major and minor texture flows
than figures or pictures. In the literature, the process of finding text areas in images
is called text identification. Methods for text identification in complex images can
be roughly grouped as gradient-based, color-based, and texture-based. For more
details of these three groups of techniques, refer to [38]. In practice, these methods
all begin by finding possible text pixels and follow with a grouping/verification
procedure. The output can be either a binary mask or bounding boxes that enclose
text areas.

Image binarization classifies each pixel as either foreground or background.
For most documents, pixels belonging to printed markings should be labeled fore-
ground and all other pixels background. The problem may become complicated
if there are multi-layer foreground or background, such as overlapping and multi-
color areas, or textured paper background. Binarization greatly reduces the image’s
complexity and almost all scanner-oriented OCR techniques are designed for binary
images. Binarization is usually accomplished by thresholding a gray level image. It
has been widely accepted that for documents with non-uniform background color

and /or brightness or uneven illumination, adaptive thresholding provides a powerful
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solution [66].

During scanning, a document may not be perfectly aligned with the scanner
frame, resulting in text lines skewed with respect to the horizontal axis. Skew
removal algorithms attempt to restore perfectly horizontal text lines. When multiple
text blocks exist at different skew angles, the problem is not well-defined. Most skew
removal algorithms assume one skew angle for the whole image and rely on printed
text to estimate the skew. Skew detection is related to texture flow detection in
document images because, locally, the major texture flow direction defines the skew
angle. Therefore, all the following skew detection methods have the potential of
detecting major texture flow, and, to some extent, they are also applicable to minor
texture flow.

There are several major skew detection techniques, including Hough transform
[37, 1, 33], auto-correlation [74, 9], projection profile analysis [10], and connected
component clustering [53, 43]. Hough transform is widely used for line detection,
therefore can detect text lines, which, in turn, assist in estimating the skew angle. Its
main drawback involves high computational cost. Some variations [33] are less com-
putationally expensive. Auto-correlation based methods compute the correlation of
the image with itself at a certain offset (w,h). The result yields maxima, when w
and h are such that text lines in the two images overlap. The offsets that result in
maximum correlation are related to the skew angle. By varying (w,h), one finds
the best skew angle that produces consistently maximum correlation. This method
provides good results for dense text area with constant line spacing. The method

of projection profile analysis, as its name suggests, computes the profile of projec-
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tion of the binary image at a given angle. If the angle corresponds to the correct
skew, the profile exhibits a clear peak-and-valley pattern due to the separation of
text lines and white space, which maximizes the entropy of the profile!. Connected
component clustering methods either find the nearest neighbor of each component
or group components into text lines, then use the orientation of nearest-neighbor-
pairs, or the direction of text lines, to estimate the skew. All these approaches can
be applied to the entire image or to selected small regions for the sake of speed.
In the latter case, results from different regions are usually combined by voting or

averaging because we assume only one skew angle for the page.

2.3 Texture flow estimation

Our texture flow estimation module consists of three steps. The first step involves
text identification and binarization, which filters out irrelevant objects in the image
and converts gray level pixels to binary bits. The next step detects the major
texture flow, in a multi-resolution fashion in terms of both spatial resolution and
angle precision. In the second step, a rough estimate of the minor texture flow is
also obtained. Based on this rough estimate, the third step refines the precision of

minor texture flow.

!Under the assumption that the profile value follows a Gaussian distribution, its entropy can

be computed by standard deviation.
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2.3.1 Text identification

We adopt the gradient-based methodology and implement the following procedure

to find the text area and binarize the image:

1. Compute the edge map of the image using the Laplacian of Gaussian method

[27] and retain pixels with strong edge magnitude;

2. Perform a close (dilation followed by erosion) morphological operation to fill

holes and gaps, and the result is the text area.

3. Within the text area, apply Niblack’s adaptive thresholding method [66] to

the original image to obtain a binary text image.

Our method works well with our experiment data. Figure 2.2 shows the results
of one example. In real images, strong texture in non-text areas and soft text
(because of out-of-focus or motion blur) could affect the results of our method.
More sophisticated techniques would be needed to address the text identification
problem in real images, which is a complicated topic deserving a thesis of its own.

We do not, however, focus on it in this dissertation.

2.3.2 Major texture flow

Because the major texture flow is equivalent to the local text line direction, it can be
found using various skew detection methods summarized in Secton 2.2. We choose
the projection profile analysis method for its simplicity and robustness. Essentially,

for a given point, we place a window of size w X h centered at the point and rotated
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Figure 2.2: Text identification and binarization. (a) Original document image. (b)

Binary text in white overlaid on text area in gray.

by an angle «, then compute the projection profile of the image inside the window
along the w edge. We take the standard deviation of the profile as its energy
measure £. By gradually changing « from 0 to 7, we obtain a sequence of £ measures.
Ideally, the energy sequence should have maxima at the angles corresponding to the
texture flow directions (see Figure 2.3) and typically, the largest peak indicates the
angle of the major texture flow and the second one is for the minor texture flow.
However, noise is inevitable in a small sampling window? because of the randomness
of character shape. Especially, in areas where the text is sparse or non-text elements
are not removed by text identification, the result may have multiple maxima in
the £-a curve. In most cases, the incorrect peaks are lower than the two correct

ones, so they can be removed easily. However, there are exceptions. Because the

2The window size is mainly limited by the curvature in texture flows. It is also restricted by

the computational cost.
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angles corresponding to the false peaks are usually random, we can detect them by

comparing the neighboring information.

Pr(ﬂfile Energy

Projection Angle

(a) (b)

Figure 2.3: Projection profile analysis. (a) A projection profile built for a given
angle, showing a clear peak-and-valley pattern as the angle coincides with the text
line direction. (b) Ideal projection energy vs. angle graph where within [0, 7) two

peaks correspond to text line and vertical character stroke directions, respectively.

Relaxation labeling is a well-known method [29] for utilizing contextual infor-
mation. This method organizes data as a graph in which nodes have both correct
and incorrect labels as candidates. It assumes that a correct label at a node is sup-
ported by correct labels at neighboring nodes, and incorrect labels are not or less
supported. So, the collected support from neighboring nodes can be used to find
the correct label among the candidates. For us, the nodes are the sampling points
at which we compute the £-a data, and the labels are the a angles corresponding
to maxima in £. At neighboring nodes, the correct angles are similar due to the

continuity of texture flows, so they support each other.
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More specifically, we divide the image into blocks (of size X x Y) and use the
block centers as sampling points, or the nodes. At each node, we sample « in [0, 7)
with precision @, collect the £-a data and select K highest peaks from the curve.
For node ¢, the energy values of the candidates are denoted by & and corresponding
angles are represented as «;, £ = 1,..., K. Each candidate is associated with a

confidence value within 0 and 1, which is initially set to

Cik = &k/ (maxff:l(&- )) .

The contextual information of neighboring nodes is quantified by a compati-
bility function r;;(ky, k2), which measures the influence of candidate k, of node j to
candidate k; of node 7. In conjunction with the confidence value Cj;, we use the
following formula to compute the support a candidate receives from surrounding

nodes:
K
Sik = 5(2.’ k? {T}a {C}) = Z Z rij(k’ kQ)Cjkzv
J€U; ka=1
which sums the compatibilities between label k at node ¢ and all other labels in the
neighborhood U;, weighted by the corresponding confidence values. In our imple-
mentation, we include eight neighbors of node ¢ in U;. The contextual support is

incorporated into the confidence of label k at node 7 using the insights of Hummel

and Zucker [30]. Here, we choose the following iterative implementation:

~t t t
Ci. — Cy +0s,
Ct
t+1 ik
Cik = SK Gt
k=1 ik
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where § controls the iteration step size, t and t + 1 represent the present and next
iteration count.

As for the compatibility function r;;, we define it as:

rij(kla kz) = COS(F(O&ikl, Oéjk2>),

where

I'(a,b) = min(mod(a — b, 7), mod(b — a, 7))

computes the best aligned difference between the two angles. The value of r reaches
maximum 1 when the two angles differ by an even multiple of 7/2 and minimum 0
when the difference is an odd multiple of 7/2. In other words, r is maximized when
the two angles are parallel and minimized if they are orthogonal.

We find that a few iterations (typically ten) are sufficient to increase the con-
fidence of a correct label to be maximum among all competing candidates at the
node, if we use a large 0 to accelerate the iteration. After relaxation labeling, the
angles corresponding to the major texture flow become top candidates. We store
them in E}! and remove them from the candidates. Then, we re-run the relaxation
labeling algorithm. This time, the top candidates correspond to the minor texture
flow directions. They are stored in Ej.

Even with the relaxation process, E}f and EJ* may include errors. It could be
that text in a block is too sparse, or non-text elements are overwhelmingly present
in the block, such that the correct angles are not represented by any peaks in the

E-a curve. Nevertheless, we implement a verification step to correct the errors. We
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check the texture flow estimate at every node against the average of its neighbors.
Any estimate with a difference above a certain threshold is replaced by the local
average. Thus, we ensure that both E}! and Ej* are coherent.

In our implementation, we use a multi-resolution approach to compute texture
flow fields for improving the computational efficiency. We use relatively large spatial
sampling size (X xY) and angle sampling precision (®) for Ef and EZ*. Then we use
a smaller block size (x X y) to re-divide the image and interpolate or extrapolate E}
and EJ' to obtain EM and ET", which are the texture flow estimates at the centers
of small blocks. At each block center, we scan the angle range [EY — &, EM + @]
with a finer step ¢(< ®) and apply the same projection profile analysis method to
find the best major texture flow estimate corresponding to the maximum energy.
The results are stored in E}. Finally, we interpolate/extrapolate E} to obtain a
dense major texture flow field, E™, that covers every pixel in the text area.

For the minor texture flow, the process from Ej* to E™ (the counterpart of

EM) is described in the following section.

2.3.3 Minor texture flow

With varying width scripts, it is impossible to align vertical character strokes in
different text lines, therefore the projection profile analysis method does not work
as accurately for minor texture flow detection as for detecting major texture flow. It
can provide a coarse estimate EJ", but we need another method to refine the result

to obtain E™.
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We notice that in printed text, the horizontal and vertical strokes usually
present the major linear structures. Therefore, we can extract these linear struc-
tures, remove those aligned with £, and use the remaining ones to estimate E™.
We use a directional filter to search for line segments of a certain length at a specific
direction. Figure 2.4(b) shows one example filter (20-pixel long, 60 degree angle).
When we convolve a directional filter with a binary text image, the result has large
responses at centers of line segments whose directions coincide with the filter’s di-
rection. We remove short line segments by setting the response below a threshold to
zero, then average the remaining response within a window to measure the ‘strength’
(S) of local linear structures at the specified direction ().

Ideally, S should be maximized when £ is aligned with the vertical strokes. To
address possible errors caused by noise and the randomness of character structure,
we fit a third order polynomial curve to S-0 data and select the angle of the curve
peak as the vertical stroke direction. As a result, we obtain minor texture flow
estimate, EI", at the centers of re-divided image blocks. We interpolate/extrapolate

E3' to compute E™, the minor texture flow field.

2.4 Synthetic data generation

We use synthetic images to evaluate our texture flow estimation module. There
are three reasons for using synthetic images. First, synthetic images do not contain
CCD noise, uneven lighting, motion blur or out-of-focus blur, background objects,

and lens distortion, so we can concentrate on our core problem. Second, we can
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(b) (d) (f)

Figure 2.4: Vertical character stroke direction detection. (a) A sub-image of bina-
rized text image from the document in Figure 2.2(a). (b) A directional filter tuned
to 60° angle, enlarged to show details. (c) Output of applying a 120° filter to (a).
(d) Thresholded result of (c). (e) Output of a 60° filter. (f) Thresholded result

of (e).
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generate a large amount of images with known poses, shapes, or focal lengths, so
that we may understand the results better. The third, and most critical reason is
that only with synthetic images can we inexpensively obtain ground truth data for
the purpose of evaluation.

Synthetic images are generated using a module described in Appendix A.
Along with the images, it also generates ground truth data of the major/minor
texture flow fields, ruling lines and their vanishing points, and surface normals, so
we can evaluate our intermediate results at each step 3.

We converted five pages in a PDF file to TIFF images at 300dpi, and we use
them as the flat document images. Their sizes are all 1600 x 2500 pixels. Each page
is skewed by three angles, 15°, 0°, and —15°. After skewing, the parts outside the
original page frame are cropped (see Figure 2.5(c)(d)). We designed four sets of
pose parameters, each defining the rotation and translation of the document page
in the camera’s coordinate system, plus the focal length. The combination of five
pages, three skews, and four poses gives us 60 synthetic images of planar documents
(see Figure 2.5(a)(b)(c)). For curved documents, we designed two cylindrical shapes
(see Figure 2.5(d)), which, together with the previous combinations, provide a total
of 120 images.

For images of both planar and curved documents, images with non-zero skew
have some false text margins and page boundaries because of the cropping effect.
Such images present difficulties for rectification algorithms that rely on text margins

or page boundaries [75, 13, 14, 12, 24]. For curve documents, the skew also results

3Except for texture flows, the other intermediate results are discussed in Chapter 3.
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in an angle between the cylinder directrix and the text lines, which most current

algorithms [78, 79, 73, 7, 69] cannot handle.

2.5 Evaluation

Once we obtain the estimated texture flow field and ground truth data, we take a
group of sample points in the text area in the image and compute the average flow
direction error compared to the ground truth data as the performance benchmark
for the particular image. For every image, we produce one benchmark number for
each texture flow field estimate, and, for a group of images, we further compute the
mean and standard deviation of individual benchmarks as group-wise performance
indices. For perfect estimation, both the mean and standard deviation should equal
7Zero.

Table 2.1 summarizes the texture flow estimation benchmarks obtained from
60 planar pages. The first row shows the overall performance, while the other
rows illustrate results grouped by page, pose, or skew. The numbers are in the
form of ‘mean/standard deviation’, all in degrees. Overall, we observe satisfactory
precision, with the average error in E* being 0.31 degrees and 0.90 degrees for
E™. We also notice that the error in E™ is consistently larger than that of EM,
which is understandable since the text line and white line space separation presents a
significantly more prominent parallel pattern compared to vertical character strokes.

In terms of the effect of different poses, page contents and skew angles, we do

not record any significant variation in texture flow estimation errors among different
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Figure 2.5: Synthetic document image samples. From left to right (a) flat page no. 1
through no. 5, (b) pose no.1 through no. 4, (c¢) 0°, 15°, and —15° skew, (d) shape
no. 1, pose no. 1, 0° skew; shape no. 2, pose no. 2, 15° skew; shape no. 1, pose no. 3,

—15° skew; shape no. 2, pose no. 4, 0° skew.
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groups. It is possible that when the tilt angle of the plane increases beyond those in
the test images, we could see larger errors. This is especially so with E™, because
its accuracy is linked to the stroke length, which will be greatly affected by severe
perspective foreshortening caused by a large tilt. However, under severe perspective
distortion, the character strokes will smear into each other and become inseparable
even with perfect rectification. So, in practice, when excessive tilt increases the
errors of texture flow estimation to an intolerable level, it also defies the need for
rectification.

Table 2.2 shows the results obtained from 120 synthetic curved document
images. The overall performance is satisfactory. The average error for E™ (1.12
degrees) is close to that observed in planar pages, with only 0.22 degrees. The
average error for EM (0.80 degrees) suffers an 0.49 degrees increase compared to
that of planar pages, which is considerably larger in both absolute and relative
sense. This occurs because in our test data the curvature of EM is much larger
than E™, so the local variation of EM is larger, which increases the difficulty of
estimation.

Similar to Table 2.1, Table 2.2 does not show significant differences in texture
flow estimation among different page, pose, and skew groups.

The block size (X x Y and z x y) and angle sampling rate (® and ¢) have
an important effect on both accuracy and computational speed. Smaller values
favor accuracy but slow computation. A good trade-off between accuracy and speed
depends on the maximum texture flow curvature in the image. For planar pages,
the curvature of texture flows is small, so we can use relatively large values. For
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(mean/std)x1° || Major texture flow E* | Minor texture flow E™
All 0.31/0.04 0.90/0.34

Page 1 0.34/0.05 0.76,/0.22
Page 2 0.30/0.03 0.66/0.21
Page 3 0.32/0.04 0.89/0.19
Page 4 0.31/0.02 0.89/0.28
Page 5 0.31,0.04 1.31/0.39
Pose no.1 0.31/0.04 1.04/0.21
Pose no.2 0.33/0.05 0.91/0.47
Pose no.3 0.33/0.03 0.96/0.15
Pose no.4 0.29/0.02 0.70/0.36
0° skew 0.30/0.02 0.91/0.34
15° skew 0.35/0.04 0.89/0.34
—15° skew 0.29/0.04 0.90/0.36

Table 2.1: Evaluation

documents.
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curved pages, the optimal values should be computed using the estimated curvature
of texture flows. However, this presents a dead lock. In practice, we simply use

relatively small and fixed values.

(mean/std)x1° || Major texture flow £ | Minor texture flow E™
All 0.80/0.16 1.12/0.44

Page 1 0.80/0.14 0.89/0.22
Page 2 0.76/0.17 0.90/0.27
Page 3 0.82/0.18 1.00/0.27
Page 4 0.82/0.17 1.14/0.41
Page 5 0.79/0.17 1.69/0.44
Pose no.1 0.83/0.14 1.20/0.34
Pose no.2 0.85/0.14 1.12/0.50
Pose 1no.3 0.75/0.13 1.30/0.46
Pose no.4 0.76/0.21 0.87/0.35
0° skew 0.72/0.13 1.03/0.45
15° skew 0.80/0.17 1.11/0.41
—15° skew 0.87/0.15 1.22/0.46

Table 2.2: Evaluation

documents.
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2.6  Discussion

In this chapter, we presented an approach to detecting texture flow fields in docu-
ment images. We extract two texture flow fields, which represent the local text line
direction and vertical character stroke direction, respectively. Our method works
with both planar and curved document images.

Figures 2.6, 2.7, and 2.8 show the ground truth and estimated texture flows
from synthetic images of both planar and curved documents. Figure 2.9 shows
estimated texture flows from two real images, in which one is a planar document and
the other is a curved document. In all cases, both the major and the minor texture
flows are quite accurate, with the major one slightly better. Most errors occur near
text margins, mainly because less text is available to support the estimation.

As we have discussed, our text identification module is based on the high
gradient property of text. In our synthetic images, it works well because the images
contain no blurring. In real images, there are two possible problems. The first one is
the loss of text in areas affected by out-of-focus or motion blur. This problem does
not affect the accuracy of texture flow estimation in other areas. The second problem
is false detection in strongly textured non-text areas such as pictures in the document
or an object in the background. The second problem is more challenging because
non-text elements cause errors in texture flow estimation and affect subsequent
procedures including shape estimation and image rectification. To overcome it, text
properties, other than high gradient, should be utilized. Because text identification

in complex real images is a complicated problem deserving a thesis of its own and
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there are many on-going research efforts addressing this problem (e.g., [11, 42]), we
do not address this problem any more in this dissertation.

Problems with our texture flow detection algorithm arise mainly from errors
in text identification. Other than that, accuracy drops at text boundaries compared
to the interior of text areas because there is less text near boundaries to support
the estimation. The limited length of vertical character strokes is the reason for
relatively low accuracy of minor texture flow estimation. In our test images, this
length is usually less than 25 pixels. Due to quantization, the end of the stroke
may have an one-pixel displacement, which amounts to 2.3°(= tan_li). As for the
major texture flow, its accuracy is limited by the length of text line sections that
are (almost) straight. In our data, it is much larger than 25 pixels. In general,
we expect a higher accuracy for major texture flow estimation unless text lines are
extremely curved. In such extreme cases, there is no need for rectification anyway.

With the mesh shown in Figures 2.6, 2.7, 2.8 and 2.9, it may seem inviting
to finish rectification by ‘morphing’ the irregular mesh toward a rectangular mesh.
While this method may be applied to a small portion of the page, it is inappropriate
for the whole document because we do not know the aspect ratio of each cell in the
mesh. We must recover the local surface orientation to obtain the aspect ratio of

each cell, and further integrate local information in a global way to obtain the scale

ratio of neighboring cells. In other words, we still need to estimate the page shape.
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Figure 2.6: Texture flow result of a synthetic planar page. (a) Ground truth (b) Estimation
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Figure 2.8: Texture flow result of another synthetic curved page. (a) Ground truth (b) Estimation
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Figure 2.9: Texture flow results on real images. (a) Planar page (b) Curved page
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Chapter 3
Rectification of Camera-captured Document Images

3.1 System overview

The system work flow of our image rectification framework is illustrated in Fig-
ure 3.1. The text identification and texture flow estimation modules were described
in Chapter 2.

Because a plane is a special case of a curved surface, our shape estimation
method developed for curved pages can also handle planar pages. However, for
planar pages we can use a simpler method that is faster. Therefore, we develop a
hypothesis testing module to discriminate planar and curved documents, using the
geometric property of surfaces and texture flows. For planar pages, we use the two
texture flow fields to find the horizontal and vertical vanishing points and compute
the homogeneous transformation matrix with which we remove the perspective dis-
tortion from the original image. For curved pages, we model the page shape by a
developable surface, which can be approximated by a group of planar strips. We
estimate each strip’s position and flatten the page by rectifying the planar strips in

a piecewise manner.
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Figure 3.1: Work flow of geometric image rectification
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3.2 Rectification of planar document images

3.2.1 Related work

An image of a planar document page captured by a camera is subject to perspective
distortion unless the optical axis of the camera remains perpendicular to the page.
As a result of the perspective distortion, the characters further away from the camera
appear smaller, and text lines appear convergent at one point, called the vanishing
point. In general, the projection transformation from a 3D world plane to the 2D
image plane can be described by a 3 x 3 homogeneous matrix H with eight degrees
of freedom (dof). If all eight dof’s are known, the perspective distortion can be
removed completely. From the OCR viewpoint, however, not all of the eight dof’s
are equally important.

It is shown in [41] that H can be uniquely decomposed into a concatenation
of three matrices, S, A and P, which are similarity, affine, and ‘pure projective’
transformations, respectively:

sRoxs t
H =SAP =

]
—_
o]
]
—_
@]

o' 1

(@)
[a)
—_
o~
—
o~
[\
o~
w

In matrix S, s is an isotropic scaling factor that cannot be determined from
the image alone and is not part of the eight dof’s; Royo is a 2D rotation matrix
involving one angle, and t is a translation vector defining z- and y- displacements.
Matrix S contains three dof’s in total. From a single image, t cannot be determined,
neither is it important for our rectification purpose. So, we are reduced to only one
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rotation angle.

In matrix P, 1o, = (1,5, 13)" represents the vanishing line of the world plane in
the image. This line contains two dof’s because the representation of 1, is homoge-
neous. In matrix A two more dof’s exist, a and 3, and their geometric interpretation
specifies the images of the circular points [62]. Overall, the rotation angle, the van-
ishing line, and the circular points contain five dof’s which determine a planar metric
rectification [41].

In [41], it is shown that the following knowledge of the world plane can con-

strain these five dof’s:

e A known angle between lines;

e Equality of two (unkown) angles;

e A known length ratio.

Any combination of sufficient (at least five) and independent constraints can
be used to solve for a planar metric rectification. Dependent constraints can only
improve the accuracy [41]. Zandifar et al. [75] apply this method to rectify pre-
sentations and posters captured by video cameras. They find line segments in the
image using edge detection and mean shift clustering. Lines of similar directions in
the image are assumed parallel in the world plane and grouped together, and lines
in groups with significantly different dominant directions are assumed orthogonal in
the world plane. Typically, these lines correspond to poster boundaries, presentation

frames, and text lines in the poster/presentation. Their method requires five pairs of
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lines orthogonal in the world plane, which provide five right angles, or, equivalently,
the horizontal and vertical vanishing points' and two right angles, to solve for the
five dof’s.

In practice, however, it is difficult, if not impossible, to obtain five independent
constraints. For example, if the edges of five right angles come from two groups of
parallel lines in the world, then they provide only three independent angles [41].
This problem can be circumvented by reducing the number of required dof’s [47].
The rotation in R is not necessary because, from the OCR point of view, it can be
handled by deskewing. The two dof’s in a and (3 can be interpreted as the ratio
%, which controls the shearing, and %, which controls the z-to-y aspect ratio. This
aspect ratio is not critical from the viewpoint of OCR because most OCR engines
automatically normalize each character image to a fixed size. This leaves us with
only three dof’s, which are immediately solvable using the horizontal and vertical
line segments, or, equivalently, using the horizontal and vertical vanishing points
(13, 14].

Pilu [56] uses a bottom up method to locate both horizontal and vertical linear
clues. They use the convergent points of linear clues as the two vanishing points.
Clark et al. [13, 14] use a perspective projection profile analysis method, similar to
the orthogonal projection profile analysis typically used in deskewing, to locate the
horizontal vanishing point. They propose two methods for vertical vanishing point
detection. In [13], they locate the vanishing point by computing the convergent

point of the two margins of a fully justified text block. In [14], they extract the left

'The two vanishing points are equivalent to three angle constraints.
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margin of a left justified text block or the central line of centered text block, then
use the equidistant property of text lines to compute the position of the vertical
vanishing point along the margin or central line. The equidistant property of text
lines is equivalent to a known-length-ratio constraint. When not sufficient text is

present, page or frame boundaries can be used [12] if they are visible.

3.2.2 Discrimination of planar and curved documents

Perspective projection preserves linearity, so straight text lines on planar documents
remain straight in the camera-captured image. Furthermore, these co-planar and
parallel 3D lines share a common vanishing point in the image [26]. These two
properties do not hold true for curved text lines on curved documents?. Therefore,
we can determine whether an image contains a planar or curved document by testing
the linearity and convergence of text lines, which, in our case, can be verified using
the major texture flow field. For the same reason, the minor texture flow field is
also useful.

Let {p;}, be a set of points evenly sampled in the text area, and {a;} be
the flow directions at sample points. The homogeneous representation of the flow
tangent line at each point (a line passing through the given point with the direction

of the flow) is given by

2Under perspective projection, if a curve lies on a plane of sight (a plane passing through the
optical center), then its projection is a straight line in the image. However, text lines on a curved
document can simultaneously satisfy this requirement. Their projections cannot converge at a

single point, either.
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xT; COS ¢;

l; = v | X | sing

where p; = (24, ;).
Under the planar page hypothesis, all these flow tangent lines converge at a

vanishing point, say v (in homogeneous representation), which can be written as

/v =0,Vi.

This means that v lies in the null space of the sub-space spanned by {1;}; in
other words, the rank of L = (1;,...,1y) is less than three. On the contrary, under
the curved document hypothesis, v does not exist, which means that the null space
of L is § and L has full rank.

We use SVD decomposition to test the hypotheses. Let S; and S5 be the
largest and least eigenvalues of L, respectively. We use S3/5; as the convergence
quality measure. If it rests below a predefined threshold, we decide that L does not
have full rank. In our implementation, we have a tighter threshold for the test based
on major texture flow field, and a weaker one for minor field, because major texture
flow field estimation is more accurate. If either test indicates that L has full rank,

we decide that the document is curved; otherwise, it is planar.
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3.2.3 Plane surface estimation

For planar document images, as a result of the previous hypothesis test, we obtain
vy, and v, the vanishing points of major and minor texture flow tangent lines. As
Section 3.2.1 shows, a metric rectification has five dof’s. The line connecting vy,
and v, is 1, the vanishing line of the world plane. The knowledge of 1., reduces
the projective transformation to an affine transformation. The positions of the
vanishing points in the world plane (the infinity points at North and East) allow
us to remove the shearing and rotation from the affine transformation. However,
we cannot recover the x-to-y ratio. In summary, we can obtain a homogeneous
transformation that remove perspective distortion up to an unknown z-to-y aspect
ratio. In practice, we set the z-to-y ratio one. For OCR, this is sufficient given the

discussion in Section 3.2.1.
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Figure 3.2: Non-unique image rectification results. (a) A perspective distorted
image. (b) and (c) are two possible rectification results that have different z-to-y

aspect ratios.
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If we assume a zero offset for the principal point in the image plane, we can
further compute the camera focal length and hence the surface normal. Suppose the
two vanishing points are v, = (x5, y,)" and v, = (7,,%,)", then the 3D directions

of the horizontal and vertical lines on the page in the camera coordinate system are

given by

Vh - (V;Lrhf)—r)

(3.1)
Vv = (V;ra f)T>
where f is the focal length. Due to their orthogonality,
VIV, =0, (3.2)

and it follows that

f =V _V;Vva

if v v, <0.

Special care should be taken when either v, or v, lies at the infinity of the
image plane. Whether at the infinity or not, let us define v, and v, as the unit 2D
vectors in their directions respectively. In theory, only two cases are possible. In the

first, both vanishing points are at the infinity. In this case, Equation 3.1 becomes
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and Equation 3.2 becomes
v, v, =0,

neglecting f at all. Therefore, we cannot solve for f. However, this case implies that
the page is parallel to the image plane, so there is neither perspective distortion nor
the need for rectification.

In the second case, only one vanishing point lies at the infinity. Without loss
of generality, let v, be at the infinity. This means that all text lines in the 3D
world are parallel to the image plane, so their projections in the image plane are
also parallel lines. Meanwhile, the 3D minor texture flow is not parallel to the image

plane, causing foreshortening in this direction. In this case, Equation 3.1 becomes

and Equation 3.2 becomes
Vv, =0,

again not involving f. Therefore we still cannot solve for f. This time, however, we
do have perspective distortion. Since we do not have f, we are back to the situation
where we can remove the distortion up to an unknown aspect ratio.

In practice, due to noise, we may arrive at theoretically impossible vanishing
point combinations. It could be that v)v, > 0; or at least one vanishing point
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lies at the infinity, but ¥} v), # 0. Whatever the situation, we cannot solve for f
and can only compute a homogeneous transformation to remove the shearing and
foreshortening, leaving an unknown z-to-y ratio.

In the general case where f can be computed, we can calculate the plane

orientation as

N:VhXVU,

where N is the plane normal vector, and X denotes the cross product operation.

The full knowledge of the plane surface is then determined by f and N.

3.2.4 Metric rectification

Having determined the page plane, we can remove perspective distortion completely.
The needed homogeneous transformation is computed in the following way:
Consider an arbitrary point, (z(,y;), in the image plane. In the camera’s
3D coordinate system, its position is (zf, ), f)", where f is the focal length. The
corresponding 3D point, W, in the document page must lie on the line of sight
through the optical center and the point (z{, v}, f)'. So, W = d(x}, 4}, f) T, where
d(> 0) is an unknown depth factor. Let V(= V;/|V,|) and V,(= V,/|V,]|) be the
3D unit vectors representing the directions of 3D major and minor texture flows.
Suppose that we set up a 2D coordinate system in the document plane so the z-axis
is aligned with V), while the y-axis is (must be) aligned with V,. Every point on
the document plane, thus, has a 2D coordinate (z,y). Assume that W is at (xg, yo)

within the 2D coordinate system, then the 3D position, P, of any point (z, %) in the
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document plane can be computed by

P=(z—-20)Vn+(y—1y)Vo+ W,

or, in matrix form,

The camera’s internal parameters determine the transformation from 3D world
coordinate system to camera image plane. The parameters of a general projective
camera model can be defined by a 3 x 3 upper triangular matrix K, which has five
degrees of freedom [26]. Two dof’s correspond to the offset of the principal point in
image plane; one is the focal length; one is the x-to-y pixel aspect ratio; the last one
is a shear parameter. Most digital cameras have unit z-to-y ratio and zero shear.
Also, the principal point offset is typically zero. Therefore, the K matrix can be

simplified to

f 00
K=1070]:
001

where f is the focal length. A 3D point P = (X,Y,Z)" in the camera’s coordinate

system projects to a point (z/,y’) in the image by

U X
v | =K|[ v [, (3.3)
W A
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where

Thus, the homogeneous transformation from document plane to image plane

is the concatenation

1 0 —Xp
H=K<Vh v, W) 01 —y |- (3.4)
00 1

The inverse of H maps every point in the image plane back to the frontal-flat

view of the document page and is called the rectification matrix. That is,
(@y) B (@),
@) B )

In Equation 3.4, d and (zg, yo) can take any value. The value of (¢, yo) decides
an irrelevant translation of the rectified image within the destination plane. The
depth factor d determines the scale of the rectified image — the larger the depth,
the larger the rectified image.

Suppose W = (0,0,df)", and (z9,%0) = (0,0). Let v, = (x5, yn)" and v, =

(T, 9) " 50 Vi = (2, yn, )T and V, = (2,,9,, f) . Then, Equation 3.4 becomes
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f 00 Tn T, 0 T, T, 0
H=10 fo0 v v O | =S| vn wo 0] (3.5)
00 1 Forodr 11 d

and it follows that

yvd _xvd 0
1
df('rhyv - xvyh)

H_l = —yhd a:hd 0 )

Y — Yo Ty — Th ThlYv — Tolh

ZE'/ _ TR tTYTy
T z4y+d
y = TYn+YYu
r4y+d ’
and
! /
z = d B ~uy

(yh_yv)zl"'(xv_xh)y/""(xhyv_xvyh) ’ (36)
y = d zpy —yva’
(Yn—yo)x' +(zv—2p)Y +H(ThYs —ToYn )’

which maps a point, (2, '), in the input image to the rectified image, (z,y). Equa-
tion 3.6 shows that the magnitudes of x and y are proportional to the magnitude of
d. This confirms our claim that the depth of W determines the scale of the rectified
image.

Because we cannot determine the positive directions of V; and V, (corre-
sponding to the ‘left’ and ‘up’ in a flat document) from texture flow analysis alone,
the rectified image may be reversed in x- or y- direction, or both. A simple solution

is to pass the rectification result and several reversed versions to an OCR engine
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and select the one with the best recognition confidence. More sophisticated methods
also exist [70].

Some examples of camera-captured planar documents (both synthetic and real)
and their rectification results are shown in Figures 3.3, 3.4, and 3.5. In Figure 3.5,
the top two real images in the left column are captured with the camera pointing
straight at the document, resulting in no perspective distortion and both the hori-
zontal and vertical vanishing points at the infinity. In the bottom image, only the
vertical vanishing point is at the infinity. In all three cases, full metric rectification

is impossible. However, the rectified images are satisfactory.

3.3 Rectification of curved document images

3.3.1 Related work

Compared with flat page rectification, the de-warping of curved document images
is significantly more difficult because of the infinite number of dof’s associated with
the surface geometry.

One way of dealing with the surface reconstruction problem involves com-
pletely removing the unknown dof’s with direct 3D shape knowledge obtained from
special equipment. Brown et al. [5] use a structured light system to gather range
data of deformed manuscripts, and they combine this data with the 2D image cap-
tured by a digital camera to restore the flat frontal view. In their work, the 3D
surface is represented by a triangular mass-spring particle mesh, which has an en-

ergy function associated with the lengths of the springs. They ‘force’ the mesh to
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Figure 3.3: Comparison of synthetic images

Finding Text Regions Using Localised Measures
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Abstract

We present a method based on statistical propeties of local image neighbourhoods
for the location of text in eal-scene images. This has appliations in robot vsion,
and desktop and wearable computing. The satstcal measures we deseribe extact
propertes of the image which charactrise text, invariant 0 a large degree o the
orienttion, scale or colour of the text i the scene. The measures are employd by
a neural network (0 classify egions of an image as ext or non-text, We thus avoid
the use of different thresholds for the various siuations we expect, including when
. o A, or when the text plane is not fronto-paralel 1o the ca

We brielly discuss a

s and the possibilit of recovery of the text for ptical

characte recognition.

1 Introduction
Automatic textin may or may

not be fronto-parallel to the viewing plane, is an area of computer vision which has not
yet been extensively researched. The problems involved are to first locate the text, then
align it cormectly to obtain a fronto-parallel view, and finally pass it to an OCR system or
a human observer for higher level interpretation. In this paper we are concerned with the
first stage of his task.

The research into retrieval of text from 3D scenes has applications for navigating
robots that need to gain information from the text in their surroundings, replacing the
document scanner with a point and click camera, as an aid for the visually impaired,
‘general Wearable Computing tasks benefiting from knowledge of local text, and other
automated tasks requiring the ability to read where it is not possible to use a scanner.

A text in non-fr plate recog-
nition. Cui et al. [4] iitialy locate a licence-plate in an image using
the plate is black-on-white, and has high horizontal spatial variance. They then track
features of the plate’s characters over a sequence of images and use this to correct the
plate’s perspective distortion. Barroso et al. 1] locate the number plate by examining the
troughs and peaks in horizontal cros the image. They h

much of the activity is
based around useful constraints and assumptions of the orientation of the text, ts colour
and approximate size.
In other related work, Messelodi and Modena [7] extract lines of text of unknown
2 Theyi

aheuristic fiter to: 2 0 those not t. The

| .

lusions and Future Work

2d a novel method of finding text regions in images where the document is
1on a plane fronto-parallel to the camera view, and the size and greylevel
Cis unknown. Five complementary local pixel neighbourhood measures were
d. These were fed as input features into a neural network to classify pixels as
focusing attention on text regions we can direct higher level processing steps
ficiently. We have avoided the use of thresholds and the parameters we employ,
s circular masks radii, are kept constant throughout. From the results in Figures 4
it can be seen that small, medium, and large text can be detected in the image. In
sture we would like to provide a more detailed analysis of the performance of the
nique.
In order to digitise the located text, we need to remove the perspective effects of
. text plane and recover a fronto-parallel view of it in readiness for an OCR system.
ar perceived method would initially segment paragraphs and lines of text in each local
Xt region, as in [5] or [7). Once a paragraph has been robustly segmented, its horizontal
vanishing point can be calculated as the intersection of the separate lines in the paragraph,
and its vertical vanishing points can be calculated either from the paragraph’s margins or
from the spacing between adjacent lines. With estimates for the vanishing points, we
can then recovera face-on view of the paragraph which would be suitable for digitisation
by OCR. We are also investigating the use of an active camera which can zoom in on
interesting regions for more detailed analysis.
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of planar documents and rectification

results. The false text margin in the lower image has no effect on the result.
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Figure 3.4: Comparison of images of real planar documents and rectification results.

Both full page and partial page can be handled.
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Figure 3.5: Comparison of images of real planar documents and rectification results.

Results are satisfactory despite full metric rectification is unavailable.
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a flat plane under minimum energy constraint through an iterative process. This
is similar to physically flattening the manuscript with minimal tearing and stretch-
ing. Their extended work [4] revises the energy as a function of the angles between
springs, and this leads to a one-pass computation without iteration. Pollard et al.
also use a structured light system to obtain range data of opened books, then fit a
discrete developable surface to the 3D data through an iterative optimization [58].
The basic ideas of [5, 4] and [58] share many common elements.

Realizing that 3D data or calibration is not always available in many applica-
tions, researchers have tried to induce indirectly the shape from a single 2D image.
However, 3D shape estimation from a single 2D image alone presents a difficult, if
not impossible, problem for general cases. The theories in this area heavily rely
on prior knowledge of lighting or surface geometry, and many treat only ortho-
graphic projection model equivalent to a pin-hole camera with infinite focal length.
However, for many cameras (particularly the zoomless cameras attached to mobile
devices), the focal length tends to be small. The lighting condition in camera-
captured images is typically unconstrained and unknown a priori, which defies the
use of shape-from-shading methods. The markings on document pages are usually
neither isotropic (considering that the space between lines is much wider than the
space between words or characters), nor do they form distinct and repetitive textel
structures. Therefore, shape-from-texture methods do not suit this case well. For
stereo vision or structure-from-motion techniques, they do not work with a single
image. Therefore, general shape-from-X techniques can give some qualitative, but

not accurate quantitative, 3D information needed for our task.
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In some special cases, people use additional constraints to facilitate the shape
estimation process. For example, for the scans of books in flatbed scanners, Zhang
et al. [77] propose a shape-from-shading based method to estimate the curved shape
of opened books. Their work pivots on two key points: 1) the page shape near the
spine of an opened book is cylindrical, and 2) during scanning the flatbed scanner
casts light at a fixed direction. Therefore, the shading on the white area of the paper
is proportional to the cosine of the angle between the surface normal and the incident
light. By comparing the shade to the white area (in the flat part of the page), they
can recover the local surface orientation. In [7], Cao et al. address opened books
captured by cameras. They also assume that the page shape is cylindrical, and they
require a straight frontal view of the page so the cylinder’s generatrix is orthogonal
to the camera’s optical axis. Under these conditions, they extract text lines on the
page to locate the cylinder’s directrices and compute the 3D directrix shape from
two 2D curved text lines. In [69], Ulges et al. make the same cylindrical shape
and straight frontal view assumptions, but take a different approach. They observe
that line spacing in 3D world is uniform over the entire page, while change of depth
leads to change of line spacing in the image. By investigating this changes in line
spacing, they can estimate the depth difference up to a scaling factor. They locate
the sheared bounding boxes of each character (which in 3D space are rectangles),
use the depth information to infer the aspect ratios of each box, and restore their
correct rectangular shape. In [24], a method is proposed to estimate the shape of a
developable surface. It has the potential of handling document page under general

poses. However, its requirement for metric knowledge of a closed contour in the
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surface limits its applicability.

Given the difficulty involved in 3D structure analysis, another alternative fo-
cuses on 2D image processing techniques that could counter the distortion caused by
curved surface and perspective projection. Such methods usually aim to straighten
curved text lines to meet OCR requirements. Zhang and Tan [78, 79] restore the
overall linearity of text lines in scans of thick books where curve distortion becomes
obvious near the book spine. They locate the curved portion of a text line by clus-
tering nearby connected components, and they move the components back to the
baseline determined by other components in the straight portion. However, the dis-
tortion of each component (character) is not addressed. Wu and Agam [73] build
a mesh using curved text lines and morph the mesh toward a rectangular mesh
in order to reduce the distortion. Their method does not address the perspective
foreshortening in the vertical direction.

Given multiple images, the shape can be estimated using stereo vision, or
other structure-from-motion techniques. In [68], Ulges et al. report their work on
recovering document shape using general stereo vision techniques. They place the
document in a cubic frame with known physical size and take two images from
slightly different positions. The cubic frame enables them to compute the epipolar
geometry, which simplifies point matching in two images and calibrates the stereo
camera. They obtain depth information using standard triangulation given the
correspondence in two images and camera calibration. The rest of their work on

flattening is similar to [5, 4, 58].
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3.3.2 Page surface modeling

The shape of a curved document belongs to a family of 2D surfaces called developable
surfaces, as long as the document is not torn, creased, or deformed by a soak-and-
dry process. In mathematical terms, developable surfaces are 2D manifolds that
can be isometrically mapped to an Euclidean plane. In other words, developable
surfaces can unroll to a plane without tearing or stretching. This developing process
preserves intrinsic surface properties, such as arc length and angle between lines on
the surface. Because of their ability to map to a plane, developable surfaces are
widely used to construct sophisticated volumes out of flat material with minimum
stretching, ranging from ships to French fries containers.

Developable surfaces represent particular cases of a more general class of sur-
faces called ruled surfaces. Ruled surfaces are envelopes of a one-parameter family
of straight lines in 3D space. That is, a ruled surface can be thought to be swept
in space by straight lines (rulings or rectilinear generators) which lie entirely on
the surface. The degrees of freedom of a ruled surface are significantly fewer than
for a general 2D surface because we can specify the surface by 1) giving a curve
(the directriz) on the surface that crosses all rulings and 2) specifying the ruling
direction at every crossing point. Developable surfaces are even more restricted;
they are envelopes of a one-parameter family of planes. For developable surfaces, all
tangent planes at points along one ruling coincide, which means the movement of
the rectilinear generator cannot be arbitrary. Given this property, we can approx-

imate a developable surface with a finite number of planar strips that come from
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the family of tangent planes. Although this is only a first order approximation,
it is sufficiently accurate for our application, while greatly cutting the number of
unknowns for which we need to solve.

It is well known [22] that a developable surface can be either a flat plane, a
cylinder, a cone, the envelope of tangents to a twisted 3D curve, or the combination
of any of the above connected smoothly at common rulings. Let us consider how
to represent each type of developable surface with planar strips. For planes, the
approximation is precise and trivial. For cylinders, rulings are parallel; for cones,
rulings are convergent at a vertex. Any two rulings of a cylinder or a cone, therefore,
are co-planar. The strip on the common plane between two neighboring rulings can
approximate the small piece of cylindrical or conic surface between the two rulings.
Any two neighboring planar strips formed in this way join seamlessly at the common
ruling border (see Figure 3.6). However, this statement does not hold true for a
developable surface formed by tangents to a twisted 3D curve, where these tangents
(rulings) are not necessarily co-planar. In general, two co-planar lines may not exist
on such a surface. For a small portion of the surface, of course, we can find an
optimal plane to approximate it. For example, if given two segments of two rulings,
we can optimize the plane by minimizing the sum of squares of distances between
segment end points and their projections on the plane. However, two neighboring
strips constructed this way will not join seamlessly. This being said, it does not
present a prohibitive problem. First, the seams decrease as we increase the number
of strips so rulings become denser. Second, in practice, planes, cylinders and cones

are sufficient to describe most curved documents’ shape. Any deviation from these
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basic types is small compared to other sources of noise, such as lens distortion.
Figure 3.6 illustrates our idea of approximating a curved document surface

with planar strips. As the number of strips increases, the approximation becomes

increasingly accurate. The de-warping can be accomplished by rectifying the strips

piece by piece.

I

Figure 3.6: Strip-based approximation to a developable surface. (a) Three planar

strips approximate a developable surface. (b) The surface is de-warped piecewise.

3.3.3 Projected rulings

Rulings are straight 3D lines that lie entirely on the curved document page. We call
their projections on the image projected rulings, or 2D rulings. To find 3D rulings,
we first need to locate their 2D projections. Similarly, we can distinguish 2D texture
flows detected in the image and their 3D counterparts on the document surface. A
3D texture flow field defines a 3D orientation, or, equivalently, a unit 3D vector for

every point on the document. This vector lies in the tangent plane at that point.
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Recall that all points along a ruling on a developable surface share the same tangent
plane. It follows that the 3D flow vectors at all points along a ruling lie in a common
tangent plane. Furthermore, they are all parallel.

On the other hand, if the texture flow vectors at all points along a 3D curve are
parallel, this curve must be a ruling. To prove this, consider any two points. If the
3D major and minor texture flow vectors at these points are parallel, respectively,
then the two tangent planes at these points must also be parallel*. Therefore, all
the tangent planes along the 3D curve is the same. On a developable surface, this
can be true only if the curve is a ruling, or, the surface is a plane.

Therefore, we have the following properties:

The 3D major and minor texture flow vectors along any 3D ruling on a devel-
opable document surface are constant (i.e., the flow directions are parallel, respec-
tively).

The 3D major and minor texture flow vectors along a non-ruling curve on a
non-planar developable document surface cannot both be constant (i.e., they cannot
both be parallel).

As a result, 2D texture flow vectors along a 2D ruling converge to a common
vanishing point (see Figure 3.7). This vanishing point may be at the infinity if the

3D flow vectors are parallel to the image plane. If a group of 2D flow vectors do not

3To prove the parallelism of all 3D major (minor) texture flow vectors along a ruling, imagine
that we unroll the document surface onto the tangent plane at the ruling. In the flat document,
the texture flow vectors are parallel. So, on the tangent plane of the curved surface, they are also

parallel.

4Because the surface normal must be the cross product of major and minor texture flow vectors.
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converge at a single point, they are most likely not parallel® and, therefore, their

base points do not lie on a 2D ruling. This property can help us detect 2D rulings.

I

=

Figure 3.7: Parallel 3D texture flow vectors along a 3D ruling and convergent 2D

texture flow vectors along the corresponding 2D ruling.

For any given point in the image, and any given line r through it, we take M
sample points ({(x;,y;)}£,) along the part of the line contained in the text area.
We denote the 2D major texture flow unit vector at sample points by {t;}M, where
t; = (t%,¢/)7 and [t/ = 1. We do not use the minor flow at this time because
it is less accurate. We use exactly the same convergence testing method based on
singular value decomposition described in Section 3.2.2 to compute the convergence

quality. If the convergence quality is good, we declare r as a 2D ruling.

This method succeeds in areas with a large curvature of the major texture

5Tt is possible for a group of non-parallel 3D vectors to project to a group of convergent 2D
vectors. However, this requires all the planes of sight of these 3D vectors form a pencil of planes
that share a common 3D line. At the same time, in our context, the base points of these 3D vectors
must be on one plane of sight so the base points of their projections are co-linear. It is extremely

unlikely to satisfy both simultaneously.
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flow, because a small deviation from the correct 2D ruling direction causes a rela-
tively large change in the values of {t;}, and hence affects the convergence quality.
Fortunately, a small curvature of the major texture flow means a nearly flat sur-
face, and in this case the accuracy of the 2D ruling becomes less important for the
rectification result. In the extreme case where the curvature approaches zero so the
surface becomes completely flat, there is no unique ruling for any given point, i.e.,
any line through it represents a correct ruling.

Through any point on a non-planar developable surface there is one and only
one 3D ruling, so any two 3D rulings do not intersect. The only exception is the
vertex of a cone. However, a conical vertex can not reside inside a document page,
otherwise the paper must be creased at this point. Therefore, any two 3D rulings do
not intersect within the document. Under perspective projection, the projections of
two non-intersecting 3D rulings do not intersect in the image plane, either, unless
one is occluded by the other. In the case of occlusion, the invisible part does not
need rectification. So, we can always assume that any two 2D rulings do not intersect
within the document. This property allows us to use the detection results in high
curvature areas, which are more accurate, to help find rulings in other areas.

We first find a group of N reference points, {p;}},, in the image within the
text area. These reference points should be such that the 2D rulings through them
roughly cover the entire text area (see Appendix B). For each p;, we compute the
convergence quality measure ¢;; for a range of possible ruling directions, denoted
by {¢i;} (¢i; € [0,7)). We want to find a group of ruling directions with the best
overall convergence quality where nearby rulings do not intersect each other inside
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the text area, i.e.,

N N-1
{9252‘}521 = ?g[lglil)l ZQ’(pia ©;) + Z U (pi, pig1; Gis i) |
i€[0,m) Li=1 i=1

where

oo, if r; and r;,1 intersect within the text area,
U (pi, pit1; Gis Piv1) =
0, otherwise.
prohibits two nearby rulings to intersect within the text area. The cost function
decomposes into terms that depend only on each pair of (¢;, p;r1), thus we can

solve this minimization problem using a dynamic programming method. Figure 3.8

illustrates the result.

3.3.4 Vanishing points of rulings

Under perspective projection, an infinite 3D line projects to a 2D line terminating
at its vanishing point [26]. More importantly, all parallel 3D lines have the same
vanishing point in the image. So, a vanishing point is determined only by the direc-
tion of the 3D line, not its position. Inversely, the 3D line direction is determined
solely by its vanishing point, because it is parallel to the ray through the camera’s
optical center and the vanishing point. Figure 3.9 shows three parallel 3D lines, L1,
Lo, and L3, projecting onto the image plane I as 2D lines, [, l5 and I3, respectively.
The 2D lines converge at the vanishing point V. Point O is the optical center, and
OV gives the 3D direction of the 3D lines. Therefore, the vanishing points of 2D
rulings are important to defining their 3D counterparts.

Our method for estimating vanishing points of rulings originates from the same
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Figure 3.8: Projected ruling detection results in (a) synthetic images and (b) real

images.
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Figure 3.9: Projections of parallel 3D lines share a common vanishing point on the

image plane.

insights as [14], which are as follows: Text lines are equally spaced on the page,
while in the image they are no longer equally spaced due to perspective. The page’s
tilt determines the degree of change in line spacing, and the tilt is related to the
position of vanishing points of rulings. In [14], Clark et al. find the intersections of
text lines with the justified text margin (or, equivalently, the central line of centered
text blocks) using perspective projection profile analysis, then solve for the position
of the vanishing point using the distances between the intersections. However, this
method works only with planar pages, requires a justified text margin (or the central
line), and is computationally expensive because of the search in a two-parameter
space.

Our method offers three key improvements. First, text lines in our data are

curved, so we propose to compute curve-based projection profiles in which the projec-
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tion paths are curves that follow the major texture flow at every point. Second, the
text line spacing is constant only within a paragraph, while the inter-paragraph spac-
ing could be different. So, we derive a criterion to group text lines into paragraphs
before we apply the constant spacing property. Third, we simplify the vanishing
point estimation to a closed form solution which essentially solves a one-parameter
linear system. This processes much faster than searching in a two-parameter space.

In the curve-based projection profile analysis, we select the estimated 2D ruling
line as the base line (see Figure 3.10). The lengths of projection paths are fixed. The
profile has peaks corresponding to text lines and valleys for white space. We first
find the principal ‘wave length’ A\ of the profile by detecting the strongest frequency
response in its FFT result. We de-noise the profile by smoothing it with a kernel of
size \. After that, we apply adaptive thresholding (also with window of size \) to
obtain a binary profile where ‘1’ represents text line and ‘0’ white space. Without
loss of generality, assume the rising edges give the ‘top’ positions of text lines and the
falling edges give the ‘bottom’ positions. We create a one-dimensional coordinate
system along the 2D ruling, and denote the ‘top” and ‘bottom’ positions of text lines
by {pu}r, and {py}L,, respectively, where T is the number of text lines. Also, a
coordinate system is established on the 3D ruling, and the corresponding positions
are {P;}L, and { Py}, (see Figure 3.11). In the following, we use the top positions
({pu}L,, and { Py} ) to describe our method and drop the ¢ subscript for the sake
of simplicity.

We know A = P,,; — P; is constant within a paragraph. Under perspective
projection, §; = p;11 — p; is not, in general, a constant. Because of the invariant
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Figure 3.10: Curve-based projection profile (CBPP). (a) The two straight lines
represent two base lines between which a curve-based projection profile is computed
along the text line directions. (b) The CBPP profile. (c¢) Smoothed result of (b).

(d) Binarized result of (c). Three paragraphs are identified.
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Figure 3.11: Vanishing point of a 2D ruling corresponds to the point at infinity on

the 3D ruling.
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cross-ratio property [26], the intervals in the 3D world and their counterparts in the

image satisfy the following equality:

Dit1 — Dil[Pits — Pital _ |Piv1 — Bi||Piys — Piyol _ A-A _ 1 Vi (3.7)
Divo — Dillpivs — Pit1l | Piy2 — Pi||Piys — Piya|  2A-2A 47

Thus, for any four consecutive text lines, if the above equality holds (within a
threshold), we claim they come from the same paragraph; otherwise, they do not.
The following is the pseudo-code for paragraph segmentation, where the input is the

list of text line positions {p;}_,, and the output is the set of paragraphs P:

1. Set paragraph list P = (); set current paragraph P, = (); set the current
position index j = 1.

2. Take {pl}{;rj?’ and verify it against Eq. 3.7.

3. If Eq. 3.7 holds (within a given error bound) P, :«— P. U {pl}{;rj’ )

4. Otherwise, P :«— P U{P.}, and reset P. = 0.

o2. J+—g+1

6. Stop if 7 =T — 2; otherwise go to step 2.

Careful readers may notice that this process implicitly requires at least four
text lines in a paragraph. This usually works fine with most documents; for docu-
ments with short paragraphs, such as yellow pages, the verification error bound can

be relaxed.
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If we let P;,3 converge toward oo, then p;,3 converge toward v, which is the

coordinate of the vanishing point along r (see Figure 3.11). Eq. 3.7 becomes

[pis1 — pillv — pital — |Piy1 — Pil|Piys — Piyo :} Vi
IDite — pillv — pix1|  Pis—oc |Prpo — By||Piys — Piya| 277

which is a linear equation in v. Given the paragraphs P, we can solve for the
optimal position v in a Least Square sense. Because v is only a scalar variable, the
linear equations are simply in the form of Xv =Y, where X and Y are two column
vectors, so v = (XTY)(X"X)".

Similarly, the discussion above applies to ({py};, { Pr}L ), therefore the two
sets of paragraphs found using the text line ‘top’” or ‘bottom’ positions can be used

together in computing v.

3.3.5 Page shape estimation

The knowledge of projected texture flows, rulings and their vanishing points reveal
some information about the local surface orientation. This local information is
noisy. Furthermore, we do not know the camera parameters yet. In the following,
we describe our approach for estimating the developable surface normals plus the
camera focal length that optimally satisfy the texture flow and ruling estimates.
The orientations of the planar strips that approximate the document shape
can be described by a group of unit 3D surface normals denoted as {N;}~ , where
L is the number of strips. We have L = N — 1, where N is the number of detected
rulings. In addition, we need the 3D position of one reference point on each strip
to describe its plane fully. We backproject 2D ruling reference points onto the
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document page as the 3D reference points, denoted as {P;}Z ;.

It is impossible to recover absolute depth from a single image unless we have
a priori metric knowledge of the page surface. We can only recover {P;} up to a
scale factor. Moreover, {P;} is not independent of {IN;}. If a set of surface normals
for any 3D surface is known, then, in theory, we can use integration to find the 3D
position of any point on the surface given an initial point. So, if {IN;} is known, we
can give P an arbitrary depth (which corresponds to the varying scale factor) and
use discrete integration to get the other {P;}. It follows that the real unknowns are
f and {N;}.

Before we describe our method to estimate f and {IN;}, let us first define the

variables (see Figure 3.12):

Figure 3.12: Definitions of variables used in page shape estimation.

e Wanted unknowns:

— 3D normals: {N;}Z,
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— 3D reference points: { P}

— Focal length: f

o Available data:

— Projected rulings in the image: {r;}4}!
— Projected reference points in the image: {p; }24!

— Projected texture flow in the image: t and b at every point

e Other related variables:

— 3D rulings: {RZ}'LL:—E]-

— 3D texture flow: For the i-th strip, we select a group of J; sample points
inside the strip, and define T;; as the 3D major texture flow vector at

the j-th point, and B;; as the minor texture flow vector.

— 3D line-of-sight vector: For the j-th sample point in the i-th strip, we
define V;; as its line-of-sight vector which originates from optical center

O toward the sample point.

All the 2D and 3D vectors are of unit length.
The 3D vectors are orthogonal to the surface normal at the sample points.
At the same time, they are coplanar with the 3D line-of-sight vectors and their 2D

counterparts. Therefore
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R; = n((ri x Vi) x (N; +N; 1)),
T = nl(ti x Vij) x Ny), (3.8)
By = nl((by x Vi) x N).
where 7(+) represents the normalization operator, i.e., n(v) = v/|v|. Note that we
use N; + N;,; to approximate the surface normal at any point along R,;.
There are four constraints that we can derive from the developable property

of the page and the property of printed text:

e Orthogonality between surface normals and rulings: Ideally, we would want
NllRi = N?Ri = 0. Since we have fixed R; to be orthogonal to N;_; + N,
we only need to check R (N; —N;_;). We define y; = X' (AN/ R;)? where

AN; = N; — N;_4, and ideally u; = 0.

e Parallelism of text lines inside each strip: Text line directions are represented
by T;;. We use pp = >, >; | Ti; — T;|* to measure their parallelism, where T;

is the average of all T;; within the i-th strip. Ideally po = 0.

e Geodesic property of text lines crossing two neighboring strips: The text lines
on two neighboring strips form two different angles with the 3D ruling that
separates the strips. After unwarping, the angles do not change. If the text
line is straight in the unwarped image, the sum of the two angles must be .

We use 3 = ;((Tiy1 — T;) "R;)? to measure this straightness, and ideally

w3 = 0.

e Orthogonality between text line direction and vertical stroke direction: The
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orthogonality can be measured by py =32, 3, |TiJTB¢j|2, which in the idea case

should be zero.
In our experiments, we embedded two additional constraints:

e Smoothness: We use us = >, |[AN;|? to measure the surface smoothness.
A large value indicates abrupt changes in normals of neighboring strips and,

therefore, should be penalized.

e Unit length: FEach normal should be of unit length. We measure this by

fe = 325(1 — [NG[)2.

The overall optimization objective function is the weighted sum of all con-

straint measurements,

6
i=1

where X represents all normals and the focal length f, and «; are weights.
Notice that f affects the line-of-sight vectors, which contributes to the objective
function through Eq. 3.8.

Overall, given {r;}, {t;;} and {b;;}, the objective function is fully determined
by the unknown {N;} and f. The optimal set of {IN;} and f* should minimize F.

A good initial value of X is essential for optimizing this highly non-linear
objective function. Such initial values can be obtained using the estimated vanishing
points of rulings. These vanishing points, when given the focal length, determine
the direction of 3D rulings. Since surface normals are orthogonal to 3D rulings,
this eliminates one degree of freedom from the unknown normals. The remaining
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degree of freedom allows a normal to rotate inside the plane orthogonal to the
ruling. So, a set of rotation angles determines the objective function. Furthermore,
the computation of the objective function involves either each individual normal
(in o, 4, pe), or two neighboring normals (in gy, ps, ps). Therefore, we can use
a dynamic programming search to find the set of rotation angles that gives the
minimum objective function output.

The focal length is not covered by the dynamic programming search, however,
as it is independent of the surface normals. We have to perform an exhaustive
search for the initial focal length. More specifically, we select a set of possible focal
lengths constrained by the physical lens specification and, for each value, we find
the ‘best’ surface normals and compute the objective function. We fit a third-order
polynomial curve to the objective function values vs. the focal lengths and find the
best initial focal length f° at the minimum of the curve. Then, we compute the
best initial normals {N°}, using f°.

Our non-linear optimization module derives from a subspace trust region
method based on the interior-reflective Newton method described in [16, 15]. Each
iteration involves the approximate solution of a large linear system using the method
of preconditioned conjugate gradients.

After we have estimated the surface normals and focal length, we can select an
arbitrary depth for one of the 3D reference point (which determines the depths of
all other reference points) and fully determine the depths of all planar strips. In the
rectification process, these planar strips are rectified piece by piece using the method
we develop for planar document pages. We can arbitrarily scale the final image by
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modifying the strips’ rectification matrices, so the depth value is not critical.

3.3.6 Frontal-flat view restoration

We use Eq. 3.4 in Section 3.2.4 to remove the perspective distortion of each planar

strip that approximates the curved document page. Let us repeat Eq. 3.4 here:

1 0 —x
HZK(Vh V., W) 01 —yp
00 1

The matrix K is determined by focal length f. For the i-th strip, we substitute
T; for V},, and B, for V,,. We need to compute W, the 3D reference point position
on the strip, and (xg, yo), the position of the reference point in the final image. We
denote them as P; and (x;, ;).

Suppose H;!| is the rectification matrix for (i — 1)-th strip. We map the 2D
reference point p; = (2}, to the destination image using H;',, and that position
is (w3, 1)

We know P; and P;_; are both on the (i — 1)-th strip, so (P; — P;_1) is
perpendicular to the normal of (i — 1)-th strip, i.e., N (P; — P;_;) = 0. Let

P, = (X,Y,Z)", then Eq. 3.3 produces

FX—alZ = 0
Y —yiz =0
where (z},y!) is the image of P; in the image plane. After some manipulation we

obtain
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fo0 -z |Pi= 0
0 f -y 0

which computes P; using the information of (i — 1)-th strip.

In summary, we start by setting Py = (2, v}, f)" and (z1,y1) = (0,0), then
compute H;. We use P; and H; to compute Py and H,, so on and so forth.
Eventually, all planar strips are rectified.

However, the perspective-free planar strips will not fit perfectly to form the
flat document we want. First, if the surface happens to be formed by a family
of tangents to a twisted 3D curve, planar strip approximation is not seamless (see
Section 3.3.2). Second, and more likely, the noise and error in the data cause
conflicts among the constraints that govern the shape optimization process, so the
planar strips are not seamless. Whatever reason, the seams between neighboring
strips cause discontinuity along their borders in the rectified image. We need to

merge those strips to produce a seamless document.

Let us first define a few more variables (see Figure 3.13):

{r;}41: 2D rulings.

{s;}L | strips in the original image separated by 2D rulings.

{H;'}£ |: homography rectification matrices for planar strips.

{s/}L ,: rectified strips in the destination image.
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Figure 3.13: Computing the target grid points for seamless morphing.

o {C; }3]:1: a group of curves following major texture flow in the original image.

11, rectification of {C;}7_, in the destination image, where

Cl; = H;(C; N 's;) is the section in s.

pi;: intersection points of C; and r;.

H ' H'

q;Jf and g;;: pij — 4, Pij — quJr

+
]

e y,;; and y;;: y-coordinates of ¢;; and q;;- .

gi = (Xi(ys + )/ (2L): mean value of {g;;}2; U{qj}i,-

Ideally, C; should be mapped to a straight horizontal line in the destination
image, which means ¢;; and qi'g coincide, and y% is constant, Vi, 7. However, due to
imperfections in shape estimation, C; usually is not straight, nor horizontal, and is

broken. We correct this problem by dividing each strip into small pieces, and for
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Figure 3.14: Computing the affine transform for triangular patches.

each piece we compute a rectification transformation. This step amounts to local
morphing on top of the planar strip rectification. The control points in the original
image are ¢;;, which lie on C;. Their corresponding points ({¢;;}) in the destination
image should satisfy the continuity, straightness and horizontal properties of C;.
Therefore, we set g;; to the intersections of line y = y; and line m

In the original image, we construct two triangles based on four neighboring
points, i.e., A(q;jGiv1j¢ij+1) and A(giv1j41¢i+1;%;+1). The four points have g;;, Giy1j,
Jij+1, Qi+1j+1 as their target positions. For each triangle, we compute an affine
transformation to map its vertices to the targets (see Figure 3.14). After the triangle
based adjustment, we obtain a seamless document (see Figure 3.15).

Figures 3.16 and 3.17 compare camera-captured images of curved documents
(both synthetic and real) and their rectified counterparts. Overall, the rectified
images are close to the frontal-flat view of the documents, despite some imperfection

near text boundaries.
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Figure 3.15: Post-processing flattened strips to obtain seamless document image.
(a) 2D rulings found for a document. (b) Piecewise rectification result. Note the

gap and discontinuous text lines. (c¢) After post-processing, the document image is

seamless.
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Figure 3.16: Comparison of synthetic images of curved documents and rectification

results.
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Figure 3.17: Comparison of images of real curved documents and rectification re-

sults.
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3.4 Evaluation

3.4.1 Evaluation methodology

We evaluate the performance of image rectification using synthetic images. We
benchmark the quality of the rectified image by OCR rates, i.e., we compare the
OCR rates obtained from the original image with the rectified one. Ultimately, our
algorithms are designed for document analysis, thus OCR rates can be viewed as
the most important performance index. We compute both character recognition
score (CRS) and word recognition rate (WRR) using the OCR ground-truthing
tool described in [80]. Both CRS and WRR are percentage numbers, where 100%
means perfect recognition, and 0% means complete failure. CRS is computed using
the shortest editor’s distance measure, which essentially finds the best approximate
match between two text strings. WRR provides the actual percentage of words with
all characters correctly recognized.

With synthetic images, we can also compare the estimated 2D and 3D rulings,
focal length, and surface normals to the ground truth data used or generated by the
synthesis module (see Appendix A). Section 2.4 describes our synthetic data.

Given 2D rulings and surface normals as directional values, we measure their
precisions by the average direction error which is an angle. Such measurements are
independent of image scales. However, the coordinates of vanishing points in the
image plane and focal length are both metric values dependent on the image scale.
If we compare the estimates with ground truth directly, the difference will be scale

dependent, too. A good benchmark should be independent of the image scale.
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First, we notice that the rays from the optical center to the vanishing points
of rulings are parallel to the 3D rulings, so the precision of vanishing points can be
equivalently measured by the corresponding 3D ruling direction. To position the
optical center with respect to the image plane, we assume perfect knowledge of the
focal length. The 3D ruling direction error does not solely originate from the CBPP-
based estimation of vanishing points along 2D rulings; it also derives partially from
the error in 2D ruling estimation.

Second, we benchmark the focal length estimation in a similar way. We take
a reference point in the image and compare two rays from this point to the optical
centers given by the correct focal length and the estimated value, respectively, which
provides an error angle. This measurement is scale independent unless the reference
point is at the principal point (under our assumption, the image center), in which
case the error angle is always zero. In our test, we choose one image corner — all
corner produces equivalent result if the principal point coincides the image center
— so the angle between the ray and the optical axis has the physical interpretation
of being half of the field of view. By this interpretation, the error in field of view
measures the focal length accuracy.

Having argued for scale independent benchmarks, we also acknowledge image
size and resolution have an important impact on the performance of our algorithms.
In particular, high resolution benefits the minor texture flow estimation, which, in
turn, has an impact on shape estimation, which a completely scale independent
benchmark should take into account. One solution is to control the precision of the

texture flow — by adding noise to ground truth, for example.
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In our tests, the sizes and resolutions of synthetic images do not vary exces-
sively. We did not observe large variances in texture flow precision, either. There-

fore, we settle with the semi scale-independent benchmarks, as described above.

3.4.2 Performance of shape estimation

All 60 synthetic images of planar documents are correctly classified as ‘planar’ by
our system. Table 3.1 summarizes the evaluation results in the same format as
Table 2.1, i.e., the first row shows the overall averaged performance and standard
variations, while the other rows illustrate results of controlled groups. We have three
major groups exploring the effects of document content, page pose, and skew angles,
each having several sub-groups. All numbers are in degrees. In average, the field of
view error is 3.30 degrees, while the plane-normal error is 2.40 degrees. Considering
we do not require any camera calibration as input, such shape estimation results
exceeds expectation.

In general, we do not notice significant variation in the precisions of field of
view and plane normal among different sub-groups for each major group, except for
the sub-group Pose no. 1, Pose no. 2 and -15° skew. Examination of the test
images reveals the combination of these poses and skew results in images where text
lines are (almost) parallel (for example, see the right-most image in Figure 2.5(c)),
one of the configurations where the focal length cannot be (accurately) estimated.

All the 120 synthetic images of curved documents are correctly classified as

‘curved’” by our system. Table 3.2 and Table 3.3 summarize the performance of
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(mean/std)x1°

Field-of-view

Plane normal

All 3.30/3.63 2.40/3.01

Page 1 2.93/2.75 2.28/1.98
Page 2 2.00/1.25 1.34/0.93
Page 3 2.88/2.43 1.80/1.54
Page 4 4.81/5.84 3.66/5.58
Page 5 3.86/4.07 2.92/2.58
Pose no.1 5.06/3.07 3.69/2.30
Pose no.2 4.39/5.70 3.14/5.00
Pose no.3 2.01/0.88 1.39/0.68
Pose no.4 1.73/1.97 1.38/1.70
0° skew 2.22/1.71 1.61/1.36
15° skew 2.16/1.55 1.57/0.86
—15° skew 5.51/5.28 4.01/4.63
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Table 3.1: Evaluation of shape estimation for synthetic planar document images.




shape estimation, including 2D and 3D rulings, field of view and surface normals.

The data in Table 3.2 show good performance in 2D and 3D ruling direction
estimation and no significant difference within the major groups, except among
three skew angles. As the absolute skew angle increases, we could expect a drop in
2D ruling estimation precision. Consider the extreme case where skew angle is 90°
so the major texture flow becomes parallel to the rulings (i.e., cylinder generatrix,
in our context). In this case, any 2D major texture flow vectors in the document
converge, so we cannot identify correct 2D rulings using the major texture flow.
Instead, we should use the minor texture flow.

Ideally, the skew angle should be first estimated — locally we can define the
skew angle as the angle between 3D major texture flow and 3D rulings — then, if
it is small, we should use the major texture flow to estimate 2D rulings. Otherwise,
we use the minor texture flow. However, this creates a dead lock since we could not
find 3D rulings unless we have 2D rulings. In practice, usually the skew angle is not
excessive, and because the major texture flow shows higher precision in estimation
(shown in Table 2.1 and 2.2), we choose to use the major texture flow in all cases.

We notice 3D ruling errors are consistently greater than 2D ruling errors.
Because 2D angles are the projection of 3D angles onto the image plane, thus they
are always smaller than their 3D counterparts.

In Table 3.3, we note good overall performance in terms of field of view and
surface normals, which are 3.08 degrees and 2.44 degrees, respectively, in average
after the optimization process. The surface normals receive a larger improvement

compared to the initial estimation than field of view estimations, because the opti-
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Table 3.2: Evaluation of 2D and 3D ruling estimation for synthetic images of curved

document.

(mean/std)x1°

2D ruling

3D ruling

All

1.82/1.26

2.91/1.88

Page 1
Page 2
Page 3
Page 4

Page 5

2.35/1.46
1.58/1.06
1.44/0.76
1.92/1.48

1.76/1.27

3.22/1.82
2.17/1.31
2.80/1.15
3.33/3.03

2.99/1.28

Pose no.1

Pose no.2

Pose no.3

Pose no.4

2.11/1.36
0.91/0.60
2.20/1.27

2.09/1.27

2.95/1.71
1.72/1.03
3.71/2.48

3.22/1.41

0° skew

15° skew

—15° skew

0.90/0.47
2.14/1.07

2.42/1.50

1.80/0.87
3.49/2.22

3.41/1.76
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mization constraints can effectively decrease the excessive errors (if any) in planar

strip normals using the good neighboring strip normals. The focal length is opti-

mized in a global sense, so the optimization effect is not as significant.

(mean/std)x1° Initial estimation Optimized estimation
Field-of-view | Surface normal | Field-of-view | Surface normal
All 3.21/3.42 3.90/2.68 3.08/3.41 2.44/2.72
Page 1 3.18/3.45 3.97/1.93 3.02/3.52 2.21/1.04
Page 2 3.73/3.69 3.22/1.52 3.40/3.68 2.06/0.85
Page 3 2.52/2.82 3.47/1.20 2.57/2.80 2.18/0.72
Page 4 3.18/3.37 4.02/2.48 3.33/3.35 2.50/1.19
Page 5 3.43/3.88 4.82/4.82 3.09/3.89 3.29/5.98
Pose no.1 5.72/4.32 3.73/1.43 5.65/4.42 2.45/1.17
Pose no.2 3.08/2.43 3.68/1.91 2.93/2.48 2.10/0.73
Pose no.3 2.39/2.50 4.39/2.41 2.02/2.07 1.83/0.78
Pose no.4 2.22/3.45 3.74/4.03 2.32/3.54 3.36/4.97
0° skew 2.17/2.15 2.63/1.76 2.18/2.14 1.81/0.54
15° skew 3.29/4.33 5.09/3.44 3.15/4.35 2.91/4.40
—15° skew 4.20/3.09 3.87/1.78 3.96/3.13 2.56/0.94

Table 3.3: Evaluation of shape estimation for synthetic images of curved documents.

To investigate the relationship between shape properties and the estimation

accuracy, we design two experiments. In the first, we fix the pose, and use seven
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shapes with similar appearance but different curvature (see Figure 3.18). Each shape
is combined with the five document pages, resulting in 35 total images. Table 3.4
summarizes the accuracies of texture flow and ruling estimation, while Table 3.5
shows shape estimation performance. In the second experiment, we fix the shape
and use seven different poses (see Figure 3.19). The results are summarized in
Tables 3.6 and 3.7.

Not surprisingly, both the increases in surface curvature and tilt angle increase
the difficulty of estimating texture flow, ruling, field of view, and surface normal.
Especially with the last two, most curved, and most tilted documents, almost all
benchmarks drop sharply. In practice, however, it is rare to have images containing
documents as curved or tilted as these. The results of our algorithms are reasonable
for practical purposes. We also observe that the precision of surface normal is more
closely related, than the precision of field of view, to the error in texture flow and
rulings. Field of view is a global parameter, thus its dependency on local estimates

of texture flow and rulings are not as direct as surface normals.

92



"9[8ue 13 SurseaIoul M sosod uoA9g

:61°¢ om3Lg

ROIOUT [)IM sodeys U9A9G (RT'¢ 9INSI

93



(mean/std)x1° || Major texture flow | Minor texture flow | 2D ruling | 3D ruling
Shape no.1 0.41/0.02 1.09/0.20 | 2.06/0.80 | 2.28/0.72
Shape no.2 0.52/0.03 1.10/0.16 | 2.15/1.10 | 2.48/0.79
Shape no.3 0.62/0.04 1.02/0.12 | 2.09/0.70 | 2.46/0.60
Shape no.4 0.72/0.03 1.02/0.13 | 1.83/0.93 | 2.06/0.72
Shape no.5 0.89/0.12 1.27/0.78 | 1.79/0.34 | 2.22/0.67
Shape no.6 1.47/0.74 1.15/0.38 | 3.59/1.33 | 4.10/1.20
Shape no.7 1.72/0.28 1.26/0.51 | 5.04/1.87 | 10.98/4.82

Table 3.4: Effects of varying surface curvature on texture flow and ruling estimation.

3.4.3 OCR performance on rectified images

Qualitatively, we observe visually satisfactory results in rectified images in Fig-
ures 3.3, 3.4, 3.5, 3.16, and 3.17. Quantitatively, we measure image quality by
the OCR results. That is, we compare the OCR rates on original images to those
obtained from rectified images. We extract the text from the PDF files as ground
truth.

Table 3.8 summarizes the OCR evaluation results on synthetic planar doc-
ument images and rectification output. Overall, they demonstrate significant im-
provements in both character recognition score (CRS) and word recognition rate
(WRR). The average CRS and WRR (97.08% and 95.91%) of rectified images come

close to the state-of-the-art OCR rate on high quality scans (which is usually above
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Optimized estimation

Field-of-view

Surface normal

1.49/0.21
1.76/0.37
1.98/0.58
2.25/0.56
3.33/0.97

4.84/2.90

(mean/std)x1° Initial estimation
Field-of-view | Surface normal
Shape no.1 1.09/1.18
Shape no.2 1.53/0.64
Shape no.3 1.71/0.76
Shape no.4 1.47/0.64
Shape 1no.5 1.02/0.40
Shape 1n0.6 1.40/0.60
Shape no.7 1.39/1.66

6.45/4.49

0.98/1.25
1.40/0.65
1.33/0.92
1.23/0.76
0.61/0.20
1.43/0.55

1.10/1.17

1.06/0.14
1.34/0.31
1.57/0.22
1.43/0.20
1.86,/0.62
2.52/1.33

4.65/2.61

Table 3.5: Effects of varying surface curvature on shape estimation.

(mean/std)x1° || Major texture flow | Minor texture flow | 2D ruling | 3D ruling
Pose no.1 0.62/0.04 0.61/0.07 | 1.48/0.59 | 3.74/4.39
Pose no.2 0.69/0.04 1.01/0.69 | 1.64/0.77 | 2.20/0.78
Pose no.3 0.70/0.03 0.90/0.13 | 1.91/0.54 | 2.26/0.58
Pose no.4 0.68/0.03 1.05/0.07 | 2.63/1.33 | 2.74/0.99
Pose no.5 0.75/0.05 1.16/0.09 | 2.73/1.24 | 2.66/0.89
Pose no.6 1.19/0.86 2.17/1.97 | 2.77/1.24 | 3.28/2.11
Pose no.7 4.05/3.25 2.00/0.80 | 4.79/2.03 | 4.32/2.06

Table 3.6: Effects of varying tilt angles on texture flow and ruling estimation.
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(mean/std)x1° Initial estimation Optimized estimation

Field-of-view | Surface normal | Field-of-view | Surface normal
Pose no.1 0.74/0.82 2.28/0.45 0.67/0.79 1.55/0.18
Pose no.2 1.48/0.72 3.28/1.47 1.62/1.22 2.00/0.65
Pose no.3 1.13/0.75 2.37/0.77 0.87/0.77 1.66/0.26
Pose no.4 1.14/0.92 2.09/0.56 0.92/0.68 1.54/0.10
Pose no.5 1.70/0.49 2.71/1.16 1.73/0.57 1.56/0.38
Pose no.6 4.62/4.88 4.47/2.26 4.15/5.00 3.09/2.85
Pose no.7 7.92/3.91 6.09/2.44 7.66/4.07 3.78/2.53

Table 3.7: Effects of varying tilt angles on shape estimation.

99%). The small gap from 99% can be explained partially by the fact two of the
five pages contain mathematical formulas, and all of them possess mathematical
symbols in the text, which poses difficulties for OCR engines.

Table 3.9 shows the same level of improvement for curved pages. Compared to
Table 3.8, the additional curvature in shape costs the average CRS and WRR scores
approximately 10%. We observe most OCR errors occur near text area boundaries
where the texture flow estimation is prone to errors due to the lower percentage of
text in the neighborhood. For planar pages, this poses less a problem because the
shape computation has only one global surface normal to estimate, thus some local
errors are acceptable. For curved documents, such errors carry into the estimated

local orientation, thus appearing in the rectified image, and affecting OCR.
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(mean/std)x1%

Original image

Rectified image

CRS

WRR

CRS

WRR

All

26.14/36.14

22.92/34.24

97.08/3.55

95.91/3.80

Page 1
Page 2
Page 3
Page 4

Page 5

29.14/35.32
24.32/39.06
24.56/38.85
28.57/36.34

24.11/37.08

23.99/34.21
22.41/37.31
23.25/37.11
24.18/34.74

20.79/33.67

96.28,/6.14
98.63/1.22
96.31,/3.09
96.77/2.41

97.43/3.00

96.70/3.07
08.24/1.81
94.50/3.09
95.19/3.19

94.92/5.87

Pose no.1

Pose no.2

Pose no.3

Pose no.4

33.11/45.12
31.99/46.83
34.02/23.49

5.44/10.43

29.90/42.75
30.74/45.13
28.17/21.41

2.89/6.39

95.86/5.79
97.81/1.33
98.26/1.15

96.41/3.53

96.27/2.25
96.28/2.31
97.08/1.94

94.01/6.40

0° skew

15° skew

—15° skew

10.68/17.55
17.73/25.22

50.02/46.75

8.39/14.66
14.51/22.07

45.86/45.70

09.28/0.65
05.76,/4.86

96.21/2.73

08.57/1.29
95.69/2.03

93.47/5.01

Table 3.8: OCR evaluation of planar pages using character recognition scores (CRS)

and word recognition rates (WRR).
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(mean/std)x1%

Original image

Rectified image

CRS

WRR

CRS

WRR

All

23.05/19.52

14.29/16.52

87.64/25.38

83.83/24.75

Page 1
Page 2
Page 3
Page 4

Page 5

24.18/19.94
23.90/20.67
21.76/19.18
24.75/20.01

20.66,/19.14

15.09/17.06
15.24/17.34
13.75/16.44
15.48/16.74

11.87/16.13

95.92/2.95
88.21/27.40
86.60/26.80
85.86,/26.70

81.60/32.04

92.59/4.61
86.04,/27.00
81.94/25.67
82.34/25.91

76.22/30.61

Pose no.1

Pose no.2

Pose no.3

Pose no.4

22.02/14.66
29.88/27.58
29.17/17.00

11.71/12.45

11.82/9.98
21.83/25.45
18.52/12.87

6.00/7.26

82.09/30.39
92.26/17.66
95.94/2.76

91.76/18.08

77.41/29.08
88.55/17.40
92.67/4.38

87.70/18.44

0° skew

15° skew

—15° skew

22.05,/13.69
19.10/16.44

28.00,/25.75

11.20/11.59
10.27/10.06

21.40/22.78

89.84/26.07
93.12/4.35

79.95/34.21

87.78/25.68
87.75/6.54

75.95/32.74

Table 3.9: OCR evaluation of curved pages using character recognition scores (CRS)

and word recognition rates (WRR)
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3.5 Discussion

Our algorithms for geometric rectification of camera-captured document images
work with both planar and curved documents. The evaluation results in the last
section show satisfactory accuracy in shape estimation. The OCR performance tests
indicate the rectified images are significantly more OCR compatible than the original
images. Our method has potential usage in all camera-oriented OCR, applications,
such as text-to-voice input for the visually impaired, outdoor document archiving,
digitizing fragile manuscripts for digital libraries, etc.

Our rectification method does not specify how to determine weighting co-
efficients used in shape optimization. Experiments with different values show no
significant difference in the results. We find the relative order of magnitudes impor-
tant, not the actual coefficient values. Given sufficient training data, it is possible to

optimize these coefficients. However, this dissertation does not cover this subject.
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Chapter 4
Mosaicing of Camera-captured Document Images

4.1 Motivation and related work

Digital image mosaicing has been studied for several decades, starting from the mo-
saicing of aerial and satellite pictures, now expanding into the consumer market for
panoramic picture generation. Its success depends on two key components: image
registration and image blending. The first aims at finding the geometric relation-
ship between the to-be-mosaiced images, while the latter concerns the creation of a
seamless composition.

Many researchers have developed techniques for the special case of document
image mosaicing [31, 46, 50, 61, 72, 76]. Their basic idea involves creating a full view
of a document page, often too large to capture during a single scan or in a single
frame by stitching together many small patches. If the small images are obtained
through flatbed scanners [31, 61], image registration is somewhat easier because
the overlapping part of two images differ only by a 2D Euclidean transformation.
However, if the images are captured by cameras, the overlapping images differ by
a projective transformation. Virtually all reported work of which we are aware on
document mosaicing using cameras imposes some restrictions on the camera position
to avoid perspective distortion. Some simply require the user to point the camera

straight at the document page [46, 72]. Others require hardware support. Nakao
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et al [50] attach a video camera to a mouse, facing down at the document page.
While a user drags the mouse across the page, a sequence of pictures are taken and
registered pairwise with the help of mouse movement. In [76] a overhead camera
is fixed facing down while the document moves on the desktop. Hardware support
reduces projective transformations to Euclidean transformations. However, it also
counters the convenience, flexibility, and portability of cameras.

Our goal is to remove the constraints on camera position and motion such
that users can take pictures of a document from any position without requirement
of special hardware. Figure 4.1 shows two image patches of a document captured by
a camera. Due to unconstrained camera zooming and positions, these two images
differ greatly in perspective, resolution, brightness, contrast, and sharpness. Al-
though many methods have been proposed for image registration ([60, 34], to name
a few), the images in Figure 4.1 still present great challenges because of large dis-
placement, small overlapping area (~ 10%), significant perspective distortion, and
periodicity of printed text which presents indistinguishable texture patterns every-
where. The Fourier-Mellin registration method [60] does not succeed. We also tried
robust estimators (RANSAC and graduated assignment [23]) with a feature points
detector (PCA-SIFT [34]), which failed because the periodicity of text leads to a
large number of outliers (up to 90%) in feature point matches (see Figure 4.2).

With respect to image blending, Figure 4.3 reveals three possible problems that
have not been well addressed. First, the lighting is inconsistent between two images,
a common result of consumer grade cameras with inaccurate auto-exposure metering

and on-camera flash. Conventional blending computes the weighted average in an
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Second, for each pixel, we blend the results of applying
the transfer function from neighboring patches. This can
be done using bilinear or biquadratic interpolators as
shown in Equation 1. The resulting pixel values are the
same as if we had interpolated a separate function for
each pixel, but since we implement the transfer function
using a look-up table, the computational cost is much
smaller.

icu(%)fm o w.n S D0EI)

u=-1

=3 ct)
v=—1
p(x, y) : pixel value at block location %,y

riap,

igh, it will
2 edges of N : block size
blend into - ; X ;
n 2 bic coefficient
B e Cx(x) : bilinear or bicubi

ar natural fav(x) : transfer function for block u, v

Equation 1 — interpolated transfer function

Of course, exposure is not the only reason images might
fferent. Other effects such as vignetting may also
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Figure 4.1: Two examples of image patches for mosaicing.
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Figure 4.2: Matching points found by PCA-SIFT between two image patches.

103



overlapped area, i.e., f = aif1 + asfe, where f; and f5 are pixel values from two
images, a; and ay are two weights that sum to 1. By varying the weights, one
achieves a gradual transition from one image to another across the overlapping
area. Other more sophisticated methods exist, which are essentially variations of
weighted averaging [6]. Though averaging may work for general images, they are
not optimized for document images.

First, averaging methods treat only the overlapping area. They do not ad-
dress the overall uneven lighting across images. Second, registration may have
errors. In mis-registered areas, weighted averaging would result in double or so-
called ‘ghost’ images. Third, two images may have different sharpness because of
different resolution, noise level, zooming, out-of-focus blur, motion blur, or lighting
change. Weighted averaging essentially reduces the sharpness of the sharper image
by blending a blurred image into it. Figure 4.3(c) through (h) show the shortcomings
of averaging method. For general scenery or portrait images, a certain amount of
lighting variation and blurring is acceptable and 'ghost’ can be softened by blurring.
However, for document images, viewers and OCR packages expect sharp contrast be-
tween text and background and a minimum lighting variation. Therefore, blending

does not present the best way of creating document mosaics.

4.2 System overview

Our proposed registration method for two overlapping views consists of two steps.

First, we remove perspective distortion and rotation of individual views using text
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if we had interpolated
each pixel, but since we implement the transfer function
using a look-up table, the computational cost is much

2= S0 S e ol
= (=]
P(x, ) : pixel value at block location x, y
N: block size
Ci(x): bilinear or bicubic coefficient
fav(x) : transfer function for block u, v

Equation 1~ interpolated transfer function

Of course, exposure is not the only reason images might

(e)

Cu(x) : bilinear

()
(2)

o= Lo S Cu(x) : bilinear

(d) (h)
Figure 4.3: Challenges for blending of camera-captured document images. (a,b) Rec-
tified images. (c¢) Mosaicing using weighted averaging. (d) ‘Ghost’ image due to
mis-registration. (e) Small portion of (a). (f) Small portion of (b). (g) Weighted
averaging result of (e) and (f) extracted from (c). (h) Result of our selective image

blending method.
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lines and vertical character strokes detected in document images. This step removes
perspective foreshortening and rotation and leaves only a translation and a scaling
between the two views. Then, we find feature point matches between views using
PCA-SIFT. Although outliers still dominate, we can filter them out efficiently using
a voting mechanism similar to Hough transform. After refining the transformation
with cross-correlation block matching results we obtain an accurate registration
result.

We treat the inconsistency of lighting by localized histogram normalization,
which balances the brightness and contrast across two images as well as within
each. Then, in the overlapped area, we perform a component level selective image
composition, which preserves the sharpness of the printed markings, and ensures a
smooth transition near the overlapping area border.

Overall, Figure 4.4 illustrates the system work flow.

4.3 Image registration

After rectifying the image patches, they ideally should be free of perspective distor-
tion, and the overlapping portion of a pair of images should differ only by translation
and scale. However, the problems of small overlapping area, large displacement, and
periodicity of texture still prevent common registration methods from succeeding.
For example, the Fourier-Mellin method still fails and PCA-SIFT still generates
many false matches (see Figure 4.5) that defeat graduated assignment and make

RANSAC impractical. Our solution filters out the outliers in matches using a vot-
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Through Image Rectification
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Image Composition with
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Figure 4.4: Work flow of document mosaicing
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ing technique in the spirit of Hough transform, and uses the good matches to register
the two images.

First, let us assume the scale is known. Suppose two images (called A and
B) are placed within the same coordinate system after proper scaling, and the true
translation of image B with respect to image A is (zg,v0). Let {p;}, be the
feature points in image A, and {¢;}Y, be the matched points in image B. If p; and
¢; are a correct match, we have ¢; — p; = (zo,%0), and inequality otherwise. We
compute all the displacements between matched points, i.e., let ¢; — p; = (x4, y;).
We have (z;,y;) = (zx, yr) (We say that they are compatible), where j and k denote
any two correct matches. In the meantime, the probability of (zs,vs) = (x4, y:),
where either s or ¢ denotes an incorrect match, is extremely low assuming incorrect
matches are randomly distributed across the image. We group the matches with
equal displacement (within a certain quantization bound) into compatible groups.
Ideally, all correct matches are assigned to one group, while each incorrect match
constitutes a group of its own. Hence, the correct matches are the matches in the
largest group, and their displacements represent the correct translation. In practice,
due to the quantization in compatibility test, some incorrect matches that are similar
may be placed in one group. Even so, the sizes of such groups are highly unlikely
to surpass the size of the group of correct matches.

If the scale is imperfect, the compatibility among correct matches will degrade.
A small scale error can be contained by the quantization in compatibility test. As
the error increases, the group of correct matches will eventually split. Given a

completely incorrect scale, the displacement distribution of correct matches will
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be as random as incorrect matches, so the largest compatible group will split into
single-match groups. In summary, the largest compatible group appears when the
scale is correct.

Based on the above analysis, searching for the largest compatible group of
matches can simultaneously solve the problems of finding 1) the correct matches,
2) the correct scale, and 3) the correct translation between two images. The specific

procedure is as follows:

1. For every scale s in a range, construct the compatible groups and let g(s) be

the largest.

2. Select s* which maximize |g(s)| and s* is the correct scale.

3. Find all matches in g(s*), compute the mean of their displacements, which is

the correct translation.

For a given scale, we use a 2D histogram of the match displacements to find
the compatible groups. We divide the 2D displacement space into bins, and the
displacement of each match falls in one bin. To address quantization error at bin
boundaries, we smooth the 2D histogram by a 3 x 3 averaging kernel. Then, the bin
with the most votes is the largest compatible group. The optimal bin size should be
proportional to the average position error of the correctly matched feature points.
In practice, we find it not critical. We use 1/20 of the image diagonal length as the
bin size.

Figure 4.6 shows the sizes of the first and second largest compatible groups
found in 2D histograms for different scales. We use PCA-SIFT to find the matches
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between the two images in Figure 4.3(a)(b). The highest peak in the solid curve
identifies the correct scale. At the correct scale, the second largest group (only
three votes) is much smaller than the largest group (12 votes). This shows good
aggregation of correct matches. After examination, we found the second largest
group resides in a neighboring bin of the largest group, and the three matches are
approximately correct. These two groups would merge if the bin size is increased.
With different bin sizes we obtain curves slightly different from those in Figure 4.6.
The correct scale is always found.

The figure also shows that when the scale rests slightly larger than the best
value, the solid curve drops while the dotted line climbs. This means some matches
in the largest group shift to the second largest group in the neighboring bin. This
confirms the largest group splits when the scale is not perfect. When the scale differs
significantly from the best value, either to the left of right, the solid curve drops
to two and the dotted curve stays at one. The largest group keeps two matches
because PCA-SIFT repeated a pair of matched points in its output.

Given the best scale, we use the corresponding 2D histogram to find the
matches aggregated in the largest group at this scale. Figure 4.7 shows the cor-
rect and incorrect matches.

Using the correct matches, we compute an initial projective transformation
between the two images and map one into the other, as shown in Figure 4.8(a).
Because good matches tend to reside near the overlapped region’s center, the reg-
istration is inaccurate near the border. We further refine the registration using
cross-correlation block matching. This results in a dense and accurate matched
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Figure 4.6: 2D histogram peak values vs. scales

point set covering the whole overlapped area, which generates a refined projective

transformation (see Figure 4.8(b)).

4.4 Seamless composition

As stated in the introduction, three difficulties arise in creating a seamless docu-
ment mosaic. The first occurs because of inconsistent lighting across two images.
Documents are fundamentally binary with black print on white paper, and viewers’
eyes are sensitive to varying shades in documents. Typically, the histogram of a
document image is bimodal. Different lighting conditions cause the two modes to
shift. One way of balancing the lighting across two document images involves bina-

rizing both images. However, binarization introduces artifacts. Instead, we choose
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localized histogram normalization. Essentially, we normalize the histogram of a
small neighborhood so the two modes shift to black and white (or deep dark and
light gray), respectively. Histogram normalization preserves the transition between
background and foreground, resulting in more pleasant text images for viewers (see
Figure 4.9).

The second problem is registration error, and the third is different sharpness
of patch images. We solve both with selective image composition, i.e., each pixel in
the result is chosen from the image with the best sharpness. We measure sharpness
in an image by the local average of gradient magnitudes. The index of the chosen
image of a pixel is called this pixel’s decision.

The pixel-level decisions can be represented by a map in which the same de-
cisions are grouped into regions. The boundaries of decision regions may intersect
characters and words. So, if we apply pixel-level decisions directly, some characters
or words may consist of pieces with different sharpness chosen from different images,
which is not desirable. Furthermore, mis-registration tends to break decision regions
into small pieces, resulting in ‘ghost’ images.

Therefore we aggregate the pixel-level decisions at the word level. More specif-
ically, we compose an averaging image for the overlapped area, binarize it, dilate
the foreground, and find connected components. The dilation has two effects. First,
areas that may contain ‘ghost’ images are merged into the nearest component. Sec-
ond, dilation kernel’s width exceeds its height, so components in a word more likely
merge than components from upper or lower text lines. As a result, most connected

components contain a word. All the pixels inside a connected component vote with
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cach pixel, but since we implement the transfer function
using a look-up table, the computational cost is much
smaller.
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Figure 4.9: Results of localized histogram normalization. (a,c) Before. (b,d) After.
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their pixel-level decision, and the majority vote comprises the component decision.
The entire component is chosen from the corresponding image. This process en-
sures ‘ghost’ images are eliminated and words do not consist various sharpness. For
background areas, the variation of sharpness is not visible, so we use the pixel-level
decisions directly.

Figure 4.10 illustrates the process of selective image composition and the re-
sults. Figure 4.10(a) shows most components consist of a single word. In Fig-
ure 4.10(b), light gray and dark gray represent two component-level decision values.
The straight arrows indicate words that initially cross boundaries of pixel-level de-
cision regions. They are not broken by component-level decision regions.

Words may still be broken, not by the decision regions, but by the boundaries
of the overlapping area. The curve arrows point to two words in this case. It can
be treated by overriding the component-level decision if a connected component is
fully contained in only one image.

In the background area, the pixel-level decisions result in a large light gray
region embedded in dark gray area. This does not create visible difference in the
final image because the variation of sharpness in background is small.

In Figure 4.10, the comparison between (c) and (d) shows our approach pre-
serves the sharpness. In Figure 4.10(e), the overlapping area boundary is visible. It

is eliminated in Figure 4.10(f).
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(d,f) Selective image composition result.
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4.5 Experimental results

In the first experiment, we took four pictures of a document. Each picture covers
roughly 1/4 of the page. After geometric rectification, we select one as the base
image, and one by one mosaic the other three onto the base image. Figure 4.11
shows the four original images and the mosaicing result. In the second test, we
produced a full page mosaic from eight images (see Figure 4.12). In both tests, we
experimented with different base images and different orders of adding the remaining
images. Because the geometric rectification is not error free, the rectified images
differ slightly by projective transformations. Therefore, the mosaics using different
base images differ slightly from each other, too. The order for adding images has
no visible effect. Both Figure 4.11 and Figure 4.12 show accurate registration and

seamless composition.

4.6 Discussion

A novel method for mosaicing camera-captured document images is presented in
this chapter. Our method makes use of a geometric rectification algorithm, which
simplifies the image registration problem to the search of an unknown scale and
translation. We find candidate correspondent points in image pairs and apply a
grouping technique in the spirit of Hough transform to remove the outliers, which
typically are over 90%. Our selective image composition approach eliminates double
image defects and blurring in the composite image. Handheld devices are the main

application platform of our algorithms. With our technique, a camera can simulate
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the function of a scanner or photocopier.

Our experiments show we can obtain accurate mosaicing of full page planar
documents. Compared to planar documents, curved documents are more difficult to
rectify, so we find that the rectified images can not be registered by pure projective
transformations. Local warping or morphing would be required to register them at
pixel accuracy. Nevertheless, our method can serve as a pre-registration step, after
which local projective transformations can be computed for small image blocks.

This step, however, is out of the scope of this dissertation.
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Chapter 5
Recognition of Layout Structure in Document Images

5.1 Motivation and related work

As the number of digitized documents grows, efficient and automatic techniques for
metadata extraction become more important. Unlike electronic documents, which
are compounded with metadata during generation, digitized documents are mostly
stored in image and text format with a few tags about generation time, image prop-
erty, etc. These primitive metadata cannot serve advanced needs. For example, for
technical papers, a very important type of documents used by millions of researchers
every day, an incomplete list of metadata worth extracting includes: genre, book
title or journal title, subject, author(s) and contact information, title, keywords,
abstract, publisher, editor(s), page number, citations, copyright notice, and so on.
Other examples include correspondences such as memorandums, faxes, and letters.
Most email users rely on the convenient search function of their software to find
messages to/from a certain contact, within a date range, about a specific subject,
etc. Such functions would be also highly valuable for digitized correspondences.
While manual tagging presents a possible solution, and in fact is in use in
some commercial projects, its prohibitively high cost makes it unattractive. With
the volume of digitized documents growing increasingly faster, the speed and cost

concerns make automatic metadata extraction a necessity.
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There are two major approaches to the problem of automatic metadata ex-
traction. The first one relies on Natural Language Processing (NLP) techniques to
analyze text content recognized by OCR. NLP can identify semantic elements and
syntactic structures in text strings, such as names, locations, dates, special nouns,
important key words, etc. The frequency of certain types of words, for example,
can help determine the genre of the document. Guided by rules, NLP can extract
sender’s and receiver’s names in the text of a letter. However, except for text,
all other visual information of the document (e.g., font attributes, position of text
blocks, number of columns, page orientation) is lost in the conversion from image
to text. Such non-text features are important in determining the functional and
logical roles of zones in the page. For example, a name appearing in a small and
centered text block in the top half of the page is more likely to be the author of
the document than the same name appearing in a long paragraph at the lower right
corner. Thus, text content alone does not provide all the information needed by
metadata extraction.

The second method approaches metadata extraction from the perspective of
image analysis. In this approach, the physical structure of a document image is
analyzed to identify the functional and logical role of different zones (logical labeling)
as well as the entire document (document classification or similarity comparison).

In the literature, the problem of logical labeling is studied separately from
the problem of document classification (or similarity comparison). Algorithms for
the labeling problem mainly analyze the attributes of zones or their neighbors
[20, 44, 17, 48, 51, 71] and often lack the power to grasp the overall page struc-
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ture. On the other hand, algorithms for the classification problem typically have a
global representation for the physical layout of a document image [63, 28, 18] and
use pattern recognition techniques to obtain a distance or likelihood score. How-
ever, such global representations usually do not explicitly express local or regional
features.

Because of the large difference between document classes, a feature set that
works for one class may not suit another. Therefore, the ability to expand a system
to include new features is important.

Another important practical issue is that many systems require a fair amount
of training samples to build their models, especially statistical ones. For many tasks,
number of classes may be large and over the time, classes may vary and new classes
may appear. In these cases, it could be impractical if models need to be retrained
from scratch.

Based on the above considerations, we choose 1) a graph-based representation
of the page layout and 2) an adaptive learning approach for model training. Our
graph-based model has the flexibility to incorporate both global structure and low
level features of a document image. Also, it can be easily adapted to new features
in the future. Adaptive learning methods allow the models to be initialized with a
relatively small number of samples and to be adjusted with new samples later on.
We use a graph matching method to perform layout structure recognition, which

achieves document classification and logical labeling simultaneously.
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5.2 System overview

Our system for layout structure recognition mainly uses the results of page seg-
mentation. If zone classification and OCR are available, their results can also be
included. Page segmentation [52, 49, 32] aims to separate a document image contain-
ing heterogeneous content into homogeneous zones. The definition of heterogeneity
or homogeneity is, of course, application dependent. Typically, a document image is
decomposed into text zones and non-text zones, and within the text zones columns
and paragraphs are segmented. Zone classification identifies the type of segmented
zones, such as e.g., figures, tables, handwriting, and noise.

There are three key components in the system. The first extracts features
from the segmented zones, such as font attributes, line spacing, zone position and
size, distances between nearby zones, zone type (if zone classification is performed),
the existence of key words (if OCR is available), and construct a graph-based repre-
sentation of the page layout. The second learns a model for each class of documents
from graph instances and adaptively improves the model given new samples. The
third is in charge of finding the best match from a model to an incoming instance.
When there is only one model in the model base, the system only performs logical
labeling; otherwise, both logical labeling and document classification are conducted.

Figure 5.1 illustrates the system overview, where the learning and recognition
modules are depicted but the graph construction step is not explicitly shown. In the
figure, the verification step, which corrects the errors in the result of automatic

layout structure recognition, is the only one that requires human interaction. It is
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not always in use, though. At the very beginning, when a model is not learned yet
and there is no results from the recognition module, verification provides ground-
truthed samples to train a new model. After a model is set up, if the error rates in
recognition is high, the verified results help the adaptive learning module to improve
the model. When a satisfactory model is obtained, the verification is stopped. If,
over the time, the class changes such that new instances do not conform to the
model and performance degradation is observed, verification and adaptive learning

would be required again.

Document Page Se%mentatlon

Image OCR Database

el \ Conversion

Re-publication

Model
Learning

Layout Structure
Recognition

Verification

i

Routing

Figure 5.1: Framework of layout structure recognition system.

The labeling and classification results, together with results from page seg-
mentation, zone classification, and OCR, enable many downstream applications
that require metadata. Figure 5.2, for example, shows a digitized document and

a HTML file generated using both metadata and text.
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Figure 5.2: A digitized document is converted into HTML using meta data obtained

from layout structure recognition and text from OCR.

5.3 Layout structure modeling

We model the physical layout of a structured document image by a layout graph [40].
A layout graph is a fully connected attributed graph in which each node corresponds
to a segmented zone on a page. A node’s attributes describe the properties of
the zone, which could be geometric features, texture features, content features, or
any other features of interest. The attributes associated with an edge between
a pair of nodes reflects the relationship between the corresponding zones in the
page, including spatial relation, distance, font size ratio, common words, etc. A
layout graph summarizes the result of page segmentation and, if available, zone
identification and OCR. Layout graphs provide a flexible representation of layout

structures. With different node and edge attributes, they can describe both local
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and global aspects of the layout structure of a document.

A layout graph instance summarizes the layout structure of a document in-
stance, and a layout graph model summarizes the common layout structure of a
document class. The node and edge attributes in a layout graph model describe the
common features present in the document class. In addition, a layout graph model
associate each attribute with a weight describing the stability of this attribute within
the class. The weights for unstable attributes are low.

For a given document class, a layout graph instance usually has more nodes
than the model. For example, page segmentation may over-segment, resulting in
many small zones. Or, the page contains zones of handwritten text, stamps, or
noise, not common to the document class. A match between a layout graph instance
and a model assigns each node in the instance to a node in the model. A correct
match between a layout graph instance and a model is, in general, a many-to-one
mapping. More than one node in the instance map to one node in the model. In
addition, an instance node may map to none of the model nodes, in which case we
say it maps to null or (). Similarly, a model node may map to none of the instance
nodes.

Figure 5.3 shows a layout graph model and an instance. Let Gy (A, B, C)
represent the model and Gj(a,b,c,d) be the instance. Each of a, b, ¢, and d can
be mapped to either A, B, C, or (). There are 4* = 256 possible mappings. Two

examples are as follows:

(A—a,B—b,C —c,A—d),(A—0,B—d,C —a,0—d,0—c)
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Figure 5.3: Concept of layout graph model A ,B,C and instance a,b,c,d.

We transform the many-to-one mapping into a one-to-one mapping before
measuring the match quality. If several nodes in a graph instance map to one node
in the model, the corresponding zones in the page are grouped as a new zone, and
the nodes are replaced by a new node. The node and edge attributes are recomputed
accordingly. For example, under the mapping (A—a, B—b,C—c, A—d), G;(a,b, c,d)
transforms into G (d’, b, ¢), where a’ comes from a and d, and the mapping becomes
(A—d,B—b,C — ¢) which is one-to-one.

We denote a one-to-one mapping from a model to an instance by
h:(GyUD) — (GFUD).

We define the quality of a match between a layout graph instance and a model
as the quality of the induced one-to-one mapping h, which is measured by the

following cost function:

Chy= > C'"ah@)+ > C@ hx)h(y), (5.1)

z€(GprUd) z,y€(GpUe)
where C™(x,h(z)) is the cost representing the differences between node x and

h(x), and C¢(Ty, h(z)h(y)) is the cost measuring differences between edge Ty and
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h(z)h(y). We define C™(z, h(z)) as the weighted sum of attribute-level costs:

N

C"(x, h(x)) = >_cil(@)i, (h(@)):),

=1

where (-); denotes the i-th attribute of a node, and N is the number of attributes
of a node. C°(-,-) is defined similarly. Special costs are defined for the case where
either z, y, h(x) or h(y) is 0. The best match h*, between an instance and a model

is simply the one with the lest cost:

h* = argmin C(h) (5.2)
Vhi(GumUg)—(G1U9)

The specific form of an attribute-level cost function depends on the type of
the attribute. In our implementation, we use SSD (sum of squared difference) for

numerical attributes, and look up tables for qualitative attributes.

5.4 Model matching

Graph matching, in general, is NP-hard [23]. Practical solutions either employ
branch-and-bound search with the help of heuristics, or nonlinear optimization tech-
niques. It is more difficult to do many-to-one graph matching.

Our method of finding the match between a layout graph instance and a model
consists of two steps (Figure 5.4). In theory, our method cannot guarantee the best
match with the least cost, but, in practice, it usually finds a near-optimal solution.
In the first step, we find the best one-to-one mapping from the model G,; to the
instance G;. The second step groups unmatched nodes in Gy to the matched ones
in such a way that the cost of the final match is least. The success of our approach
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Figure 5.4: Two-step matching process

lies in our observation that, in a correct match, usually many nodes in the instance
has an one-to-one mapping with the nodes in the model. The sub-graph consisting
of such nodes can be interpreted as the ‘back bone’ of the graph. Our first step finds
the sub-graph and the best sub-graph match, and the second step groups remaining
nodes to the sub-graph.

The overall cost function is essentially a summation that can be computed
in a incremental way, so we can use an efficient branch-and-bound search strategy
to address the computational expense involved in the first step. In practice, the
search usually finishes in less than one second. For documents with Manhattan
style, we constrain two grouped zones must not overlap in the second step, which
greatly reduces the number of possible grouping schemes. For non-Manhattan style

documents, we drop this requirement. Figure 5.4 illustrates a sample matching
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process. In the first step, three of the four zones are labeled. In the second step, the
unlabeled zone d has four choices: be grouped with a, b, ¢, or to remain unlabeled.
After comparing the costs of grouping d with a, b, ¢ and ), the final decision groups

d with a, and label both of them A.

5.5 Model learning

Given the definition of the layout graph model and cost functions, the values of
attributes and their weights are learned from a set of training samples in a process
called model initialization [40]. Model initialization finds the typical attribute values
in the training set, and set the weights of stable attributes high.

Later on, if user feedback is available, a model is adaptively improved by a
process called adaptive model learning [39]. For example, in a technical paper model,
if a block above “title” is mistakenly labeled as “author”, we increase the weight
associated with the spatial attribute of the edge between node title and author —
the value of this attribute states that title is above author — to increase the cost
of such an incorrect labeling. Figure 5.5 shows an example where d is incorrectly
matched to () instead of A. In the improved model, the position attribute of node A
is modified accordingly. Inspired by error back-propagation methods used in neural
network training, we design the following method for improving model parameters.

Suppose C'(h) is the cost of the incorrect mapping h, C'(h*) is the cost of the
correct mapping h*, both under the original model. Since h is the matching result, it

follows C'(h) < C'(h*). Let N represent all incorrectly matched nodes in the model.
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Figure 5.5: Adaptive model learning.

The attributes and weights associated with nodes in N are modified in such a way
that C'(h*)—C'(h) < C(h*)—C(h), where C’(+) is the cost using new attributes and
weights. If the problem is persistent and repeats itself, eventually the modification
will lead to C'(h) > C(h*) such that the correct match results in the least cost.
More specifically, suppose v, is a numeric attribute of a node z € N, v} is

the corresponding attribute of h*(x), and v; is the attribute of h(z). If c(vy,,v;) <

*
%

(U, vF), where ¢(-, -) is the attribute-level cost function, then, this means v; is closer
to vy, than v}; in other words, v,, is unreliable. We shift v,, toward v and decrease
the weight associated with v,,. Otherwise, if c(vy,,v;) > ¢(vn,, v), we increase the

weight for v,,. In both cases, we achieve C'(h*) — C'(h) < C(h*) — C(h).
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5.6 Experiments

5.6.1 Title pages of technical papers

In the first set of experiments, we collected a total of 85 title pages from four technical
journals or proceedings (Figure 5.6). These documents share a common style of two-
column technical paper title pages, and have some slight difference in the font sizes,
positions of headers, footers, page numbers, and so on. Because of the relatively
rigid layout structure of these sample documents, we use mainly geometrical features
as attributes in the layout graph model. In our implementation, the node attributes
include the position and size of the bounding box of the corresponding region in
the image, and the average font size of text in the region (font sizes are classified as
small, normal, and large). The edge attributes express the spatial relation between
two regions. For example, the left boundary of a region can be to-the-left-of, aligned
with, or to-the-right-of the left boundary of another region. Similarly, we quantize
the spatial relationship between two horizontal boundaries as above, aligned, or
below. For each region, we consider its four boundaries plus a central line that
divides it into two equal left and right halves. Between two regions, we use a set of
nine qualitative descriptors (four for the two pairs of horizontal boundaries, four for
the two pairs of vertical boundaries, and one for the two central lines) to describe
their spatial relationship.

For attributes with numerical values (e.g., bounding box sizes) we use the
absolute differences as the cost function, and for qualitative descriptors, we simply

let the cost be 0 if there is no difference and 1 otherwise. In the model initialization
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(a) CHI'95 (b) CHI'96 (c) PAMI (d) UIST'95

Figure 5.6: Sample pages from four publications

step, the numerical attribute values are set to the averages in the training samples,
and their weights are set to the inverse of their variances. For an attribute with a
qualitative descriptor, its weight is set to the inverse of the number of descriptors
that are different from the dominant descriptor in the training set.

We use a leave-one-out strategy to test the title page model learned from these
samples. More precisely, we take out one sample page as the test sample, and use
the remaining pages to initialize the model. We call the initialization round 0. After
that, in each round, we use all the training samples one by one to adaptively modify
the model. The order of applying training samples in each round is not changed.
For each round, the incorrectly labeled regions are counted, and the average error

rate is defined as

J (4)
=114

€= =5 =

>/ NG

where NU) is the number of regions in the jth test sample, ngj ) is the number
of incorrectly labeled regions, ¢ is the iteration round number, and J is the number

of title pages. Here J = 85.
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Figure 5.7 shows the average error rate vs. the training cycles. There are a
total of 1347 zones in all sample pages. The declining trend of the error rate with
the increase of training is clear. After every training sample has been used three
times (after round 3), the error rate has dropped about 30%. In Figure 5.8 two title

pages and their labeling results are shown.

Unified Document Model

0.15 |

Averate error rate
o
=
>

o
e
@

0121

01 I I I I I
0 50 100 150 200 250 300

Training cycles

Figure 5.7: Average error rate vs. training cycles for unified model

We also grouped sample pages by the specific publication, build a model for
each of them, and test the model using the group of samples. The results are similar
to the unified model case, but we can have more power in distinguishing fine struc-
tures that are only defined within each publication. For example, PAMI has very
strict layout rules which requires an abstract followed by keywords, and the first
section must be an introduction with a centered section title. Therefore only for the
PAMI model we define “Abstract”, “Keywords”, and “IntroTitle” labels. In Fig-
ure 5.9 the result of labeling using the PAMI model is shown, in which “Abstract”,

“Keywords”, and “IntroTitle” are correctly found. Figure 5.10 shows the average
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error rate for each model vs. the iteration count. Two sets of labeling results are
shown in Figure 5.11 and 5.12.

Using the four models, we carried out a document classification test. Each
document is mapped to all four models, and its class is determined by the best
model (i.e., with the least cost). For all 85 pages, we achieved 100% accuracy in

classification.
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Figure 5.9: Labeling result for PAMI model

5.6.2 Business letters

In the second set of experiments, we applied our method on business letters. Com-
pared to title pages, business letters have less consistent layout (see Figure 5.13).

Therefore geometric features are not enough to describe the business letter model.
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Figure 5.11: Examples of labeling results for title pages (part one). (a) A PAMI

document. (b) Visualization of PAMI document model. (c) Labeling result of the

first step matching. (d) Final labeling result.

141



A

B LT o rosves ]

ScienceSpace:

Lessons for Designing Immersive Virtual Real

Marilys C. Salman,
is Dede, & Deirdre McGlym
as0n University
Fuirfax, Virginia 22030°
msalzman@ gmu.cdu
ABSTRACT
SciesceSpace Is a

cotlection of immesive vital real
xpoe. the oot wily of H"yﬂcui
mmersian w0 mukisensory percepti

SeicuceSpace, we mo lcarming lessoos
sy et e e developmest of mmnive vatadl

es

R Bowen Loftin
NASA/Johnson Space Cener
Houston, Texas 7705
bowen@ gothimeity jec.n4sa. gov.

SCIENCESPACE VIRTUAL WORLDS

o i g s S, svencoie e

KEYWORDS
il ety et pplicacn, v e g

INTROBUCTION
Ko fling civegh  puss ware stjots e e of
vy and friction. Liagiog reating aud esiaging cleciric
teds. Imaghe fcaching out s louching oy 1n 3

System foe he head and both mouse and me

and a hapeic vest, The sofiware. ..mme elcs on 3.0

objects and n\nlllnvn © rsprscnaions eaderod wsieg
Coiod rough NATA

developed

Pk skt o

This inferiace enables u o immerse sudents in 3D
. and wacile semses

lerowoeds veing 6 vl
mm»aeaummgmauummm)w
in the

bl by Eoani s g O tacm, It
vintal cmbl lcamens 1o

o eers the a0 prceiv o e
m.,..,u.. 4 s

;s
i T i,
o Lo o 1 e s o e

woriss
B e e ot et e

In NewtonWarld, wsers
B o moiion

n PaulingWorld, users

23 oot ol Sivcir ad

chemical bosding. They can
n

Figurs 2. A malcgsle in 2 Bemoglobin.
W

BRI strating the Electronic Cockiail Napkin:
o paper-like inlerface for carly design

Mark [ Gross
Envinncod Design
Uigsweryity of Calorads

BORS-OTTY

+1 301 491 8018

g cvkral rdu

ARTRACT
e demosurmn o Flecosic Cocluall Napkis. u pes
s e fr g de. T et s 412
e S by g

re wmeeay.
o b e 8 it e ot

Srpttsons o
T B a1 1 Ttk e gt g

By eeran Fra bused sysems, dolgs smvisssminn
s based frgAL

il Nagiia' is & 60 banod, st
crveramen 1w acrpesl migs |-....4.m.¢;.u
o dvving o kg o B o Bt ot
b o <o o bk of s -‘-m..m...,_ﬁ_
mnn:m—.um.-“nm-num-a

Vi-Lises Do

Grorgia Iminee of Technciogy
Atlesas GA L0183

& b dusgnr 52 muke sombipe
srestaion Heyied b4 uwn-n. e Cocaeet

Fapken, s 19 wpe b n crip
- levas Bt o 8 ¢am. Sbrersy oud
pimltion. Thavelons. e Naphin ire

of mats s gyt

e o e

i e -
-ml*ul 1ok =i et e k) s
ey

W e tntrwmt colorads e Napkin

TR =

Pt e ity o G p ma

()

T

(b)

BEREstrating the Electronic Cocktail Napki
a paper hh interface for carly design
F1-Liem B

ol o,
- Imtrtte [
DI 32 018
et ol
tTe Flecwonic Cockull Napkia.
s i for comcrytt desiga. The et ol i 15
= T
'J'.‘.'hp ""."’..».....em e e
SRR
i i i e
B e
e T
e e T e

m spiema, deign susisam.

RTOnTTex ! e —
R gh 7 e A —
R

Figore | thews fhe Coelies Naplia arawing Boust and e
St st Ak Tha Naghi vppor:

aEmEE
movsrneli)

Lot trox mm e e g e
=l

Figure 5.12: Examples of labeling results for title pages (part two). (a) A CHI'95
document. (b) Visualization of CHI'95 document model. (c¢) Labeling result of the

first step matching. (d) Final labeling result.
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The lack of consistent geometric rules is compensated, on the other hand, by the
consistent language features in business letters. For example, a salutation usually
begins with “Dear Sir,” “Dear Dr.” or “To Whom It May Concern,” and a clos-
ing usually is “Sincerely,”, “Yours,”, or “Truly yours”. In the domain of English
business letters we identify 10 logical components and 11 common content features
that typically appear or do not appear in these components (see Table 5.2). The
examples of the content features are shown in Table 5.1. As Table 5.2 suggests,
the presence or absence of certain content features is strongly related to the logical

component function.

TADE e

B

Figure 5.13: Samples of business letters

During the construction of a layout graph instance, each zone in the document
is examined to determine the presence or absence of content features. A value
pS € [0,1] is defined to indicate the confidence of the presence of content feature ¢ in
zone z. In the model, for each node n we define an expectation value ef, € [0, 1] for
every content feature ¢, indicating to which degree we expect this logical component
n to contain c¢. For example, €247 1 7oy should be high, while e . 70N
should be very low. We define the cost of labeling zone z as n based on the content
feature ¢ to be:
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Content Feature | Example

name Dr., Ms, Mr., David, Joe, Bill
location Street, Ave, PO Box, MD, VA, Apt
organization United Nation, Medical Center
date September, 2002

greeting Dear Sir or Madam,

To Whom It May Concern

closing Sincerely, Sincerely yours,
Yours sincerely, Truly,
Truly yours, Yours truly,

Regards, Best regards,

zipcode MD 20742, 00555-9642
subject RE:, Subject:

ps PS, PS., P.S.
enclosure Enclosure, Encl., Enc.
cc cc:, CC:

Table 5.1: Common indicative content features in English business letters
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Logical | component Number of occurrences in logical component
Component frequency | name | loc. | org. | date | grt. | cls. | zip. | sub. | ps | encl. | cc
RECEIVER 66 54 49 42 3 0 0 52 0 0 0 0
SUBJECT 10 5 0 6 0 0 0 0 7 0 0 0
DATE 85 1 1 0 82 0 0 0 0 0 0 0
SALUTATION 116 75 1 21 2 99 0 0 2 0 0 0
BODY 116 5 3 44 103 55 2 2 2 1 0 0
SIGNATURE 116 109 8 63 1 0 90 0 0 0 0 0
ENCLOSURE 27 3 0 2 2 0 0 0 0 0 24 0
TYPISTINIT 27 0 0 8 0 0 0 0 0 0 0 0
PS 21 2 1 12 4 0 0 0 0| 19 0 0
CC 6 6 1 1 0 0 0 0 0 0 0 6
Total — 310 | 122 270 140 | 101 92 60 10 | 19 24 6

Table 5.2: Frequencies of content features in business letter samples

Clz,n,¢) = (1 —e)pt + € (1 —pl). (5-3)

The cost C' as a function of e and p is shown in Figure 5.14. When e < 0.5, C
decreases as p decreases; if e > 0.5, C' decreases as p increases; when e = 0.5, C' is
independent of p.

Initially, the value of e is computed from the frequency of ¢ appearing in
component n in the training set. During the adaptive learning process, suppose
label n should be assigned to zone z but is assigned to zone z’ incorrectly, then the

expectation value regarding content feature c is adjusted as follows:

e Increase €f if p¢ > p;

e Decrease €S if pS < p%;

145



COSsT

Expectation 0

Presence Confidence

Figure 5.14: Cost as a function of expectation and presence confidence

As a result, C(z,n,c) — C(z/,n,c) < C'(z,n,¢c) — C'(Z',n,c), where C’ is the
cost computed using the modified e value.

We collected 116 business letters, and tested our model using the same strategy
as in the previous experiment. Figure 5.15 shows average error numbers vs. training
cycles, and Figure 5.16 gives an example of labeling result. The total number of
zones in 116 pages is 1389. The number of errors dropped (~ 60%) from about 500
to below 200 after 100 cycles of training, which shows the effectiveness of adaptive
learning. Table 5.3 breaks down precision and recall for each logical component,
where the components that are under-represented in the sample set (such as “CC,”
“SUBJECT”) have worse numbers. Overall, the average precision and recall are

both 87%, which is encouraging for a document class with very flexible structure.
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Figure 5.15: Average error rates vs. training cycles for business letter class
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Logical Component | Number of zones in 116 pages | Recall | Precision
True | Found Correct
RECEIVER 68 66 60 88% 91%
SUBJECT 10 11 6 55% 60%
DATE 85 87 7 89% 91%
SALUTATION | 116 116 108 93% 93%
BODY | 484 457 438 96% 90%
SIGNATURE | 197 198 162 82% 82%
ENCLOSURE 27 22 13 59% 48%
TYPISTINIT 28 27 15 56% 54%
PS 21 17 9 53% 43%
cC 6 5 0 0% 0%
(UNLABELED) | 347 383 322 84% 93%
Overall | 1389 | 1389 1210 87% 87%

Table 5.3: Precision and recall of different logical components
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5.7 Discussion

At the beginning of this chapter, we analyzed several issues that a successful layout

analysis system should consider:

1. The integration of local features and global structures.

2. The extensibility to new features.

3. The temporal change of a class.

4. The addition of a new class.

Our layout-structure-recognition approach satisfies all the above conditions.
The graph-based model can integrate both local features (in nodes) and global
structure (in edges) and include new features, if needed, in the future. The weighting
factors associated with attributes give the model flexibility to handle large variation
within a class. The recognition of layout structures achieves document classification
and logical labeling simultaneously.

Furthermore, we provide an automatic model initialization and adaptive learn-
ing method. Our approach requires very few training samples to begin, and can
improve the power of the model with user feedback afterward. Experiments show
satisfactory results on both title pages of technical papers and business letters. In
the literature, these two types of documents are usually processed separately, using
different methods. Our approach provides a unified framework that works on both

types, which demonstrates the power of our graph-based model.
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Document classes can be organized in a hierarchical structure. Similarly, we
could organize a tree-structured model base. For example, suppose we restrict our-
selves to business letters and technical papers. At the top level of the model base,
we would have two models, one for each type. Each top level model is the entry to a
group of sub-models that describe specific classes in the genre. In our experiments
on title pages, these sub-models would be the individual publication models. With
such a model base, we could perform layout structure recognition in a coarse-to-fine,

hierarchical way, which might improve both accuracy and speed.
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Chapter 6
Summary and Conclusions

6.1 Summary of contributions

The following summarizes the contributions of this dissertation:

1. We developed a novel framework for geometric rectification of camera-captured

document images.
e We presented a planar-strip approximation model for curved document
pages, based on developable surface properties.

e We implemented a method for estimating page shape from a single doc-
ument image, without requiring 3D data, camera calibration, or special

camera pose.

e We developed a unified solution for images of both planar and curved

pages.
2. We designed a novel method for mosaicing camera-captured document images.

e We developed an accurate image registration method for document im-
ages with large displacements, small overlapping areas, and severe pro-

jective distortions, without camera calibration or pose requirement.
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e We implemented a selective image composition method that preserves

text sharpness and eliminates ‘ghost’ images.

3. We developed a model matching approach for document layout analysis.

e We designed a graph-based representation for modeling different layout

styles, which incorporates heterogeneous features, both local and global.

e We presented an model learning method that requires minimum initial
training for a new document class and adapts a model to the changes of

a class over the time.

e We applied our layout structure recognition technique to both document

image classification and logical component labeling.

6.2 Limitations and future work

In the future, we would like to address the following limitations as well as promising

extensions of our work:

e Our text identification module needs improvement. Much research is going
on in this area and we can adopt the successful techniques. In practice, a
convenient GUI may be necessary to let users guide the text identification

process.

e Texture flow estimation can benefit directly from the increase in image reso-
lution, especially for minor texture flow. Although the increase in image size
will have a negative effect on processing speed, we believe that the impact
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can be minimized with rapid advances in hardware. For the same reason, we
believe sufficient resources will be available on mobile platforms to implement

our algorithms that currently run on desktop computers.

Our document shape estimation method does not require 3D range data, met-
ric data, or camera calibration. In some cases, such data may be available (at
low accuracy, perhaps). For example, cameras equipped with IR sensors could
generate a low resolution, low accuracy depth map along with the image; to-
day’s digital cameras can write the focal length of their auto-focus lens in the
image files. We would like to incorporate such information, when available,

into our framework.

One of the three basic assumptions we make requires the principal point be at
the image center. For applications running in a camera or in devices equipped
with cameras, this holds generally true. This may not hold true, however, for
processed images, such as those cropped from other images. In such cases, we

need to estimate the principal point offset.

The precision of geometric rectification for curved documents is relatively low
compared to planar pages. Shape-from-multi-view provides a possible way
to improve the accuracy. The correspondence problem is the key issue for
shape estimation from multiple views. Enlightened by our work on document
mosaicing, we propose to solve the correspondence problem in the following
way: 1) estimate the shape in each view independently, 2) rectify the images,
3) register them using our image registration method, 4) fine-tune matches
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locally, 5) map the matches back to the original images, 6) solve for the 3D

shape using correspondences in multiple views.

e Three interesting questions exist in regard to our model-based layout structure
recognition method. First, we would like to organize the models in a hierarchi-
cal tree structure and perform recognition in a hierarchical way. Second, the
automatic maintenance of a hierarchical model base presents an interesting
issue. This would involve detection of new document classes and insertion,
deletion, modification, merging or splitting of nodes in the model tree. Third,
our current framework aims at layout structures of single pages. The next step

should expand to the processing of multiple pages.

6.3 Conclusion

For many decades, character recognition (OCR) has been the main issue for doc-
ument image analysis. And scanners — especially flat-bed types — have been the
main, if not only, imaging devices. With OCR considered a solved problem for clean
printed text in major languages, new directions of document analysis appear at the
horizon. Our work in this dissertation addresses two issues: 1) extending the imag-
ing devices from scanners to digital cameras, and 2) extending the analysis result
from text to metadata.

With the introduction of inexpensive and high-quality digital cameras, we
predict a new trend of augmenting scanners with cameras. A great variety of new

applications (especially on mobile devices) have been created, and many applications
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once dominated by scanners possess a new life.

Two topics of our work cover the gap between current scanner-oriented OCR
techniques and camera-captured document images. Our geometric rectification
framework removes the distortion caused by non-planar document shape and cam-
era perspective projection. Our document mosaicing technique provides a solution
to uneven lighting, blurring, low resolution, and small field of view. Together, they
provide a method to transform cameras into scanners, in the sense that the output
images can be handled by current scanner-oriented OCR techniques. We expect
them to be useful in all kinds of camera-based OCR applications, especially mobile
devices.

Another topic addressed in this dissertation is related to the layout structure
of a document page, which is lost in OCR text, to the function of the document
and the functions of components in the page. Through the recognition of layout
structures, we accomplish document classification and logical component labeling
simultaneously. This enables us to extract semantic metadata without OCR text
— if available, text can reinforce this capability. Metadata can greatly enhance the

management of digitized documents.
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Appendix A

Synthetic image generation for curved documents

Our synthetic curved document image generator takes a flat document image and
a set of parameters as input and produces an image of a curved document, as well
as ground truth data about the texture flows, surface rulings, and surface normals.
Although there are computer graphics packages that can generate such images, we
find it necessary to build our own generator because of our need for ground truth
data.

In the first step, the input image is placed in the 2D plane with its center at
the origin. Then, the image is rotated around its center by a skew angle ¥ within the
2D plane. After skewing, the parts that are outside the original rectangular frame
are cropped (see Figure A.1).

The second step involves warping the 2D plane to a 3D surface. We use a
cylinder surface model since it is the most usual case for opened books. The y-
axis of the 2D plane is mapped to a generatrix of the cylinder (which is parallel
to the Y-axis), while the z-axis is warped to be a directrix (see Figure A.2). The
directrix is defined by a polynomial curve S = (sq, s1,...,8,) on the Z-X plane,
which is Z(X) = Y0, X% If S = 0, the directrix is a straight line, and the
cylinder degrades to a plane. A point (z,y) in the 2D plane and its counterpart

point (X,Y,Z) in the 3D world are related by
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1 Introduction

Autorialic location and digitisation of text in arbltrary scenes, where the text may or iay
not be fronto-parallel to the viewing plane, is an area of computer vision which has not
yet been extensively researches, The problems involved are o first locate ihe text, then
align it comectly to obtain a fronto-parallel view, and finally pass it to an OCR system or
a human observer for higher level interpretation. In this paper we are concerned with the
first stage of this task.

The research into retrieval of text from 3D scenes has applications for navigating
robots that peed to gain information from the text in their surroundings, replacing the
document scanner with a point and click camera, as an aid for the visually impaired,
eneral Wearable Computing tasks benefiting from knowledize of local text, and other
automated tasks requiring the abilicy to read where it is not possible to use a scanner

A major area of recognition of text in non-fronto-parallel views is number plate recog-
nition. Cui et lly locate a licence-plate in an image using the assumpticr
e plate is blac) . and has high horizomal sputial vasiance, They then 1
f cters over a sequence of images 2
plate’s perspestive distortion. Barroso et al. [1] locate the number plate by examining
troughs and peaks in horizontal cross-sections of the image. They segment the characiers
using projection profiles. In most examples of this application area much of the activity is
based around useful constraints and assumptions of the orientation of the fext, its colour
and approxinuate size.

In other related work, Messelodi and Modena [7] extract lines of text of unknown
erientatian from images of book cavers. They initially threshold the image and then apply
aheuristic filter o the resuling hinary regions 1o reject those not associated with text. The
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Given (z,y), Y is fixed. We solve for X (x) by interpolating a reverse lookup
table computed from z(X). Then, Z is easy to obtain.

In our model, the tangent vector U of the directrix at a surface point (X,Y, Z)

The generatrix vector V, which is also the 3D ruling vector R, is equal to the
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Figure A.2: Cylinder model for curved documents.

Y -axis vector, i.e.,

V=R=(0,1,0)".

And the surface normal N at this point is simply the cross product of U and
V, ie.,

N=UxV.

The 3D major texture flow vector T at this point can be computed by rotating

U around N by the skew angle 9, i.e,
T = Ucosd + Vsind.

The 3D minor texture flow vector B is similarly calculated with a rotation
angle 9 + /2 i.e.,

158



B = -Usind + V cosd.

Equations A and A show that the skew 1} controls the angle between the major
texture flow and cylinder directrix as well the angle between the minor texture flow
vector and cylinder generatrix (or ruling). For typical opened books, ¥ = 0.

A set of three angles define the rotation matrix R, and a 3D vector defines
the translation C. After rotation and translation, the 3D point (X,Y, Z)T becomes
(X")Y",Z")7 in the camera coordinate system. Accordingly, the surface normals,
3D texture flows, and 3D ruling directions are also rotated. Finally, the 3D point is
projected onto the image plane through the pin-hole camera described by the focal

length f. That is

X/
p = fz/a
Yl
q = fZ/-

where (p, ¢) is the position on image plane (see Figure A.3).

To compute the 2D major texture flow t at point (p, q), we notice that t and
its 3D counterpart T should be coplanar. This common plane is the cross product
of T and the line-of-sight through the optical center and (X', Y’, Z")" or (p,q, f)".

Also, t lies on the image plane whose normal is (0,0,1)". Thus

t=(0,0,1)" x (T x (p,q.f)"). (A.1)

The 2D minor texture flow b and the 2D ruling r can be calculated in the
same way.
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Figure A.3: A point on the curved page is projected onto image plane after rotation

and translation.

The last set of parameters describe the light cast on the page. There could be
any number of light sources, each characterized by a radiance R and a unit 3D vector
D indicating the light direction. Under the Lambertian assumption, the brightness
b’ of a point in the final image is

K
V' =b> RD.N,
k=1

where K is the number of light sources, b is the BRDF (bidirectional reflectance
distribution function) value at the point in original flat document equal to its pixel
value, and N is the unit surface normal at the point in 3D surface.

Above describes the generative process that maps a point in the original doc-
ument image to the final synthetic image. However, in order not to leave any pixel
in the synthetic image unfilled, we need a reverse process that maps every point in
the synthetic image back to the original image. A precise reverse mapping is more
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difficult to compute than a forward process. In computer graphics, this is usually
solved by triangulating the surface and mapping each triangle as a whole piece. In
our context, because the surface is developable, we can rectangulate the surface by
rulings, i.e., approximate the surface by a group of planar strips (Figure A.4), and
map each strip as a whole piece into the synthetic image. The specific procedure is

as follows:

Figure A.4: Planar-strip approximation in synthetic image generation.

We divide the skewed image into narrow vertical slices. For each slice, we
use the generative process to compute the 3D position W of its top-left corner
after warping, rotation, and translation. We compute the surface normal N and
two 3D texture flows (T and B) at the 3D point. We also compute the position
of its projection in the image as (zo, o). Substituting V, by T and V, by B
in Equation 3.4, and plugging in W, (z¢, o), and f (for K), we can compute a
homogeneous transformation H that maps every point in the slice to the final image,
and H™' for the reverse mapping. Furthermore, to take the skew process into
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account, the complete reverse mapping can be written as H-= S™'H!, where

cos?d sind 0
S=1| —sind cosd 0
0 0 1

is the skew matrix. Let H map the four corners of the slice to the four vertices of a
quadrilateral in the synthetic image, then, for every pixel inside this quadrilateral,
we can use H to map it back to the original image. Its color is computed using
bilinear interpolation of four surrounding pixels. If it is mapped to the outside of
the image frame, we set it to a pre-defined background color.

Under the planar-strip approximation, the 3D surface normal for any point
inside the quadrilateral is simply N. The 2D texture flows at point (p,q) can be
computed from T and B, using Equation A.1, since the 3D texture flows are constant
within the quadrilateral.

As a summary, for any pixel in the synthetic image, we can compute its color,
the 3D surface normal, 3D ruling direction, 3D major and minor texture flows, 2D

ruling direction, and 2D major and minor texture flows at this point.
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Appendix B

Selection of reference points for rulings

We first compute the center of mass for the text area. Let it be C. We estimate
the optimal 2D ruling through C' as r using major texture flow field. This ruling
may not be very accurate, which is fine as long as the direction remains roughly
correct. Let s be the line through C' and perpendicular to r. We select reference
points along s and within the text area. We also select two more reference points
on s just outside the text area, as Figure B.1 shows. In this way, the 2D rulings
through the reference points can cover the entire text area. Ideally, we would like
to have denser 2D rulings in areas where the surface curvature is high and fewer
rulings in low curvature areas. However, in our implementation, we select reference
point at equal distances for the sake of simplicity. We find that this simple scheme
works sufficiently well. The distance controls the number of 2D rulings we need to
estimate, which, in turn, controls the computation speed and shape approximation

accuracy.
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Figure B.1: Selection of reference points for rulings.
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