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This dissertation explores three topics: 1) geometric rectification of camera-

captured document images, 2) camera-captured document mosaicing, and 3) layout

structure recognition. The first two topics pertain to camera-based document image

analysis, a new trend within the OCR community. Compared to typical scanners,

cameras offer convenient, flexible, portable, and non-contact image capture, which

enables many new applications and breathes new life into existing ones. The third

topic is related to the need for efficient metadata extraction methods, critical for

managing digitized documents.

The kernel of our geometric rectification framework is a novel method for es-

timating document shape from a single camera-captured image. Our method uses

texture flows detected in printed text areas and is insensitive to occlusion. Classifica-

tion of planar versus curved documents is done automatically. For planar pages, we



obtain full metric rectification. For curved pages, we estimate a planar-strip approx-

imation based on properties of developable surfaces. Our method can process any

planar or smoothly curved document captured from an arbitrary position without

requiring 3D data, metric data, or camera calibration.

For the second topic, we design a novel registration method for document

images, which produces good results in difficult situations including large displace-

ments, severe projective distortion, small overlapping areas, and lack of distinguish-

able feature points. We implement a selective image composition method that out-

performs conventional image blending methods in overlapping areas. It eliminates

double images caused by mis-registration and preserves the sharpness in overlapping

areas.

We solve the third topic with a graph-based model matching framework. Lay-

out structures are modeled by graphs, which integrate local and global features and

are extensible to new features in the future. Our model can handle large variation

within a class and subtle differences between classes. Through graph matching,

the layout structure of a document is discovered. Our layout structure recognition

technique accomplishes document classification and logical component labeling at

the same time. Our model learning method enables a model to adapt to changes in

classes over time.
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Chapter 1

Introduction

1.1 Motivation

In this dissertation we present our work on three main topics:

• Geometric rectification of camera-captured document images,

• Camera-captured document mosaicing, and

• Recognition of layout structure in document images.

The first two topics are motivated by the recent trend in the OCR community

of augmenting the use of flat-bed scanners with digital cameras [38, 19, 35]. From a

technical point of view, cameras offer convenient, flexible, portable, and non-contact

image capture, which opens the door to many new applications and gives new life

to existing ones. From a market point of view, the vast number of digital cameras

owned by consumers provide a large potential market for document capture and

OCR. Both drive the recent trend of camera-based document analysis.

This trend brings many opportunities as well as challenges to the OCR com-

munity. For example, handheld devices (such as PDAs and cell phones) equipped

with cameras are ideal platforms for mobile OCR applications such as recognition of

street signs in foreign languages, out-of-office digitization of documents, and text-to-

voice input for the visually impaired. In industrial market, high-end cameras have
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been used for digitizing thick books and fragile historic manuscripts unsuitable for

scanning; in consumer market, camera-based document capture is in use in the desk-

top environment [65]. A challenge facing the OCR community is that, due to the

differences between scanners and cameras, traditional scanner-oriented OCR tech-

niques are not generally applicable to camera-captured documents. Although digital

cameras have recently made advances in resolution, noise level, shutter speed, white

balancing, exposure metering, etc., fundamental obstacles exist in using them for

the purpose of OCR. Unlike a flat-bed scanner which fixes the image plane, carefully

controls lighting, and obtains large-sized images with a moving optical component,

a camera-captured image may suffer from problems such as non-planar page shape,

uneven lighting, low resolution, perspective distortion, out-of-focus or motion blur,

and under- or over- exposure. As a result, we either must modify traditional OCR

techniques to make them compatible with new images or modify the images so they

can use available OCR algorithms. Both have pros and cons. From an engineer-

ing perspective, the second approach has the advantage of keeping existing working

modules intact, which is important in terms of reliability and code reuse. Therefore,

our first two topics focus on processing camera-captured document images to make

them OCR compatible.

Our third topic originates from the need for metadata extraction in document

image analysis. Metadata plays an important role in applications such as indexing

and retrieval, automatic routing, re-authorization, abstract generation, and device

dependent formatting. For example, despite the phenomenal success of full text

search engines on the web, their heavy dependence on the ‘quality’ of query keywords
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(i.e., the more common the keywords, the less the discriminating power) and their

inability to express constraints that are not content-based limit their performance.

It is very difficult to formulate the query, to “find all correspondences sent to Mr.

Smith,” as a full text search query because the document class, correspondence, and

the functional attribute, sent to, are not related to any keywords. The name, Smith,

is so common that the turn-out would be too large to be useful. In another example,

most PDF or HTML documents are formatted for large desktop or laptop displays

and are inappropriate for the small screens on handheld devices such as PDAs and

cell phones. This means that the content must be reformatted according to the

terminal’s requirement upon delivery, and such reformatting clearly depends on the

metadata associated with the content.

Most current OCR systems can recognize the text content, but few of them

extract extensive metadata. Although metadata identification from text is possible

by using Natural Language Processing (NLP) techniques, it is often unreliable. This

is because NLP only has access to text content that cannot carry other useful visual

information about the document. In particular, we find that layout styles convey

important information about the function of the document as well as functions of

different zones on the page. Many publishers restrict their authors and editors to

carefully designed templates that generate a consistent style in their publications;

many non-public domain documents such as personal correspondences also follow

widely accepted layout conventions. The understanding of layout styles allows hu-

man readers to distinguish a letter from a report without even knowing the language

of the document. Our third topic, therefore, questions how to simulate the human

3



ability to recognize the document layout and apply it to the problem of document

classification and logical component labeling.

1.2 Geometric image rectification

Many factors contribute to the difficulties of using scanner-oriented OCR technique

to process camera-captured document images [38], such as uneven lighting, out-of-

focus blur, motion blur, complex background objects, and non-planar pages with

perspective distortion. It is well-known that state-of-the-art OCR software packages

do not properly handle a non-planar document under perspective projection. As

seen in Figure 1.1, at the page level such distortions bend straight margins and

text lines, thus defeating the assumptions of many well-known page segmentation

algorithms [52, 49, 32]. At the word and character level, the distortion make char-

acter segmentation difficult because characters can no longer be split perpendicular

to the text base line. Even if characters are successfully segmented, the distorted

characters are unlikely to be represented in the training data set, causing low recog-

nition rates. To a lesser degree, these challenges also apply to planar pages. The

experimental results summarized in Tables 3.8 and 3.9 show disappointing OCR

performance for synthetic camera-captured document images (both curved and pla-

nar). The synthetic images used for the tests are virtually free of noise and blur, and

have sufficient resolution. This eliminates the opportunity of improving performance

through pure 2D image enhancement.

In the literature, the geometric rectification of camera-captured document im-

4



(a) (b) (c)

(d) (e) (f) (g)

Figure 1.1: Comparison between flat and warped document images. (a) A clear scan

of a document page. (b) A sub-image of (a) enlarged. (c) Word “the” enlarged from

(b). (d) The same document page with curved shape under perspective projection.

(e) A sub-image of (d) with similar content as (b). (f) Text line segmentation might

be possible (locally) after rotating (e) so that text lines are roughly horizontal. (g)

Word “the” with distorted characters that OCR cannot recognize.
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ages largely depends on additional knowledge outside the image. In one branch of

this area, 3D range data is required [5, 57, 68] so that shape is directly known. This

approach only suits large projects such as digital library acquisition because it re-

quires special hardware. Another area of research assumes a flat document [14, 56]

to simplify the underlying page shape. Obviously, these methods for flat pages can-

not handle an opened book with curved surfaces. To process curved pages, either

the camera pose must be restricted [7] or additional metric information of the page

[67, 24] is required. Overall, to the best of our knowledge, no current method other

than ours exists for processing general document images captured by cameras.

Our approach does not require multiple views, extra 3D or metric data about

the page, specific pose/shape knowledge, or camera calibration. We make three

basic assumptions. First, the document page should contain sufficient printed text

content. This requirement is valid considering that the user is interested in document

analysis, not general image analysis. Second, the document is either flat or smoothly

curved (i.e., not torn or creased). And third, the camera is a standard pin-hole

camera in which the x-to-y sampling ratio is unity and the principal point (where

the optical axis intersects the image plane) coincides with the image center. Most

digital cameras satisfy the third assumption.

Under these three assumptions, we show that we can constrain the physical

page by a developable surface model, obtain a planar-strip approximation of the

surface using texture flow data extracted from the image, and use the 3D shape

information to restore the frontal-flat document view. Our approach presents a

unified solution for both planar and curved documents. Figure 1.2 illustrates our
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approach. It takes one camera-captured document image as input, either planar or

curved, and outputs the frontal-flat view of the page.

OR

Image
Rectification

Figure 1.2: Example of geometric image rectification.

1.3 Document mosaicing

Another problem associated with processing camera-captured documents involves

the conflict between limited resolution and field of view for most consumer-grade

digital cameras. For low resolution cameras, such as PDA or cellphone cameras, if a

whole letter-size document is included in the field of view, the characters might be
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illegible. On the other hand, if the resolution is increased by either zooming in or

moving closer to the page, then only a small portion of the page can be captured.

There are two possible solutions: 1) keep the field of view large, take multiple low

resolution images, then apply super-resolution techniques [8, 21, 54] to generate a

high resolution image of the entire page; or 2) take multiple high resolution pictures

of small portions of the document, then apply mosaicing techniques to generate

a composite result. As [2] shows, super-resolution methods have some inherent

limitations. More importantly, in practice it is difficult to keep handheld cameras

at a fixed position. Varying poses make image registration very difficult, if not

impossible, to meet the requirement of super-resolution. As for mosaicing, most

methods proposed for document images are designed for scanners [61, 72], where

overlapping images differ only by rotation and translation. A few methods are

developed using cameras but they require additional hardware to restrict the camera

pose [50, 76]. Video mosaicing methods allow changes in scale and perspective.

However, frame-to-frame difference is usually minute [45, 64]. Furthermore, if the

camera motion is not pure panning and zooming, i.e., if the optical center moves,

most video mosaicing produces a panorama view that is not a projective view of the

world [55]. In the context of document mosaicing, this means that the result image

is still distorted.

Our mosaicing approach for camera-captured documents does not impose re-

strictions on camera pose/motion and suits images with large perspective distortion

and small overlapping areas. In other words, our method allows the user to take

pictures from arbitrary positions. We assume that the portion of the document
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in each image is almost flat. We first remove perspective distortion using geomet-

ric rectification methods, then register the images pairwise. Finally, we seamlessly

blend them to produce a high resolution composite image which contains the frontal

flat view of the document.

Figure 1.3 illustrates the concept of camera-captured document mosaicing,

where four pictures, each capturing a portions of a document, are mosaiced into a

high resolution composition.

1.4 Layout structure recognition

The third topic of our work focuses on the analysis of layout structure in document

images. The layout of a document is designed to facilitate its readers to understand

the content and convey information absent in the text. Therefore, layout analysis

is an important area in document image understanding.

In particular, we notice that documents in one class usually share a common

layout style and documents from various classes can often be distinguished by their

different layout styles. Hence, the analysis of layout structure can assist document

classification. Within a document class, physical layout is closely linked to logical

structure [25]. The logical structure of a document image involves logical roles of

individual zones, reading order, and logical relationship among zones. Typically,

a logical component in a document class is consistently represented by a specific

zone in the page. As a result, analysis of layout structures provides an approach to

discover logical structures.
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(a)

Document
Mosaicing

(b)

Figure 1.3: Example of document mosaicing. (a) Four images cover a whole docu-

ment. (b) Mosaicing produces a high resolution composition.
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In the literature, classification of document images and extraction of logical

structures from document images are studied as two separate subjects. Most pre-

vious work in document image classification use a global representation of the page

layout that does not provide explicit local features. Documented work on logical

structure analysis usually performs functional analysis at the component level with-

out considering global layout styles. Furthermore, many approaches requires a fair

amount of training and models must be retrained from scratch if classes change or

new classes are added.

We present a unified approach to both document classification and logical

structure analysis using a graph-based model. Our model can accommodate hetero-

geneous features, both global and local. We call the process that matches models to

instances as layout structure recognition. Through this process, we simultaneously

determine the class of the document instance and its logical structure (see Figure 1.4

for a conceptual illustration). With an adaptive learning method, a document model

can be initialized with a relatively small number of samples and improved with new

samples later on. This avoids the problem of expensive retraining when classes

change or new classes emerge.

11



Classification
and

Component
Labeling

Letter Tech. Paper

Figure 1.4: Example of document classification and logical component labeling.
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Chapter 2

Analysis of Texture Flow in Document Images

2.1 Motivation

We are interested in the analysis of texture flow fields in document images because

they provide a powerful tool for analyzing the underlying page shape, and the lat-

ter presents one of the key problems in rectification of camera-captured document

images.

Informally, a flow field defines an orientation function at every point in the

space. In the 2D plane R2, one way to describe the flow field is:

θ(x, y) : R2 → S1

which defines a dominant orientation θ at (x, y).

A flow field can be visualized by short line segments or continuous curves

following the local orientations. Psychological observations suggest that abstract

representations of continuous 2D flow fields should be such that locally the line

segments or curves are parallel [3, 59]. Inversely, an image with a texture pattern

that exhibits local parallelism gives a viewer the perception of a flow field. We call

this a texture flow field. A typical example is the pattern of a zebra’s stripes.

More than one texture flow field can co-exist in one space. For example, a

piece of fabric usually exhibits two orthogonal texture flow fields. This also holds
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true for a document page in which we can identify a major texture flow field and a

minor texture flow field. Text lines and white line space form very prominent parallel

structures that define the major field, while the vertical character strokes present

a weaker (hence the name) minor field. For most languages and scripts, vertical

strokes represent important elements in characters, and characters align along text

base lines. Therefore, these two texture flow fields are common to most printed

documents.

It is well known that texture on surfaces can assist the shape perception process

in human visual system. Texture flows fields have the same effect [36]. During

this interpretation process, we usually make unconscious assumptions, such as that

the flow field follow the lines of curvature direction, or that it follow the geodesic

direction, or that it represents contours cut by a group of parallel planes. These

assumptions are extensively utilized in line drawing to convey shape information

(see Figure 2.1).

In the context of document pages, our physical world knowledge ensures that

1) the two texture flow fields defined above are locally orthogonal to each other,

2) they are both geodesics of the page surface, 3) globally the page can be flattened,

and 4) on the flat page each texture flow field points to a consistent direction.

These assumptions help a viewer to quickly obtain a good idea of local surface

orientation and global surface shape. Certain exceptions, such as a paragraph of

italic text that defies the orthogonality between two fields or a large figure or picture

absent with these two fields, can make this process harder. In these situations,

shape information can be interpolated or extrapolated using surrounding normal
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(a) (b) (c)

Figure 2.1: Shape perception from line arts. The curves in both (a) and (b) are

cutting contours by (a) one group of parallel planes, and (b) two groups of parallel

planes. The ‘latitude’ lines in (c) are cutting contours by a group of horizontal

planes, and the ‘longitude’ lines are geodesics.

text areas. Furthermore, page boundaries, text margins, and picture borders, can

all be clues for generating shape perception.

While these auxiliary clues are helpul, they are not always reliable because

of possible occlusion. If a shape estimation method depends on these clues, it will

have difficulty when another object occludes the document and creates a false text

margin or page boundary. On the contrary, techniques based on texture flow fields

in printed text are not affected by occlusion because occlusion only eliminates some

portions of the fields and does not change the remaining part. The shape of the

visible part of the page can always be found using the visible texture flow fields.

In the following sections, we first review related work, then describe our ap-

proach to estimating texture flow fields in document images.
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2.2 Related work

As with many computer vision problems, the first step in dealing with complex real

life images involves finding the region of interest. In our case, the region of interest

is the document in the image; to be precise, we are interested in the printed text

area (including tables) but not arbitrary figures or pictures. We focus on printed

text (and tables) because it presents more consistent major and minor texture flows

than figures or pictures. In the literature, the process of finding text areas in images

is called text identification. Methods for text identification in complex images can

be roughly grouped as gradient-based, color-based, and texture-based. For more

details of these three groups of techniques, refer to [38]. In practice, these methods

all begin by finding possible text pixels and follow with a grouping/verification

procedure. The output can be either a binary mask or bounding boxes that enclose

text areas.

Image binarization classifies each pixel as either foreground or background.

For most documents, pixels belonging to printed markings should be labeled fore-

ground and all other pixels background. The problem may become complicated

if there are multi-layer foreground or background, such as overlapping and multi-

color areas, or textured paper background. Binarization greatly reduces the image’s

complexity and almost all scanner-oriented OCR techniques are designed for binary

images. Binarization is usually accomplished by thresholding a gray level image. It

has been widely accepted that for documents with non-uniform background color

and/or brightness or uneven illumination, adaptive thresholding provides a powerful
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solution [66].

During scanning, a document may not be perfectly aligned with the scanner

frame, resulting in text lines skewed with respect to the horizontal axis. Skew

removal algorithms attempt to restore perfectly horizontal text lines. When multiple

text blocks exist at different skew angles, the problem is not well-defined. Most skew

removal algorithms assume one skew angle for the whole image and rely on printed

text to estimate the skew. Skew detection is related to texture flow detection in

document images because, locally, the major texture flow direction defines the skew

angle. Therefore, all the following skew detection methods have the potential of

detecting major texture flow, and, to some extent, they are also applicable to minor

texture flow.

There are several major skew detection techniques, including Hough transform

[37, 1, 33], auto-correlation [74, 9], projection profile analysis [10], and connected

component clustering [53, 43]. Hough transform is widely used for line detection,

therefore can detect text lines, which, in turn, assist in estimating the skew angle. Its

main drawback involves high computational cost. Some variations [33] are less com-

putationally expensive. Auto-correlation based methods compute the correlation of

the image with itself at a certain offset (w, h). The result yields maxima, when w

and h are such that text lines in the two images overlap. The offsets that result in

maximum correlation are related to the skew angle. By varying (w, h), one finds

the best skew angle that produces consistently maximum correlation. This method

provides good results for dense text area with constant line spacing. The method

of projection profile analysis, as its name suggests, computes the profile of projec-
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tion of the binary image at a given angle. If the angle corresponds to the correct

skew, the profile exhibits a clear peak-and-valley pattern due to the separation of

text lines and white space, which maximizes the entropy of the profile1. Connected

component clustering methods either find the nearest neighbor of each component

or group components into text lines, then use the orientation of nearest-neighbor-

pairs, or the direction of text lines, to estimate the skew. All these approaches can

be applied to the entire image or to selected small regions for the sake of speed.

In the latter case, results from different regions are usually combined by voting or

averaging because we assume only one skew angle for the page.

2.3 Texture flow estimation

Our texture flow estimation module consists of three steps. The first step involves

text identification and binarization, which filters out irrelevant objects in the image

and converts gray level pixels to binary bits. The next step detects the major

texture flow, in a multi-resolution fashion in terms of both spatial resolution and

angle precision. In the second step, a rough estimate of the minor texture flow is

also obtained. Based on this rough estimate, the third step refines the precision of

minor texture flow.

1Under the assumption that the profile value follows a Gaussian distribution, its entropy can

be computed by standard deviation.
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2.3.1 Text identification

We adopt the gradient-based methodology and implement the following procedure

to find the text area and binarize the image:

1. Compute the edge map of the image using the Laplacian of Gaussian method

[27] and retain pixels with strong edge magnitude;

2. Perform a close (dilation followed by erosion) morphological operation to fill

holes and gaps, and the result is the text area.

3. Within the text area, apply Niblack’s adaptive thresholding method [66] to

the original image to obtain a binary text image.

Our method works well with our experiment data. Figure 2.2 shows the results

of one example. In real images, strong texture in non-text areas and soft text

(because of out-of-focus or motion blur) could affect the results of our method.

More sophisticated techniques would be needed to address the text identification

problem in real images, which is a complicated topic deserving a thesis of its own.

We do not, however, focus on it in this dissertation.

2.3.2 Major texture flow

Because the major texture flow is equivalent to the local text line direction, it can be

found using various skew detection methods summarized in Secton 2.2. We choose

the projection profile analysis method for its simplicity and robustness. Essentially,

for a given point, we place a window of size w×h centered at the point and rotated

19



(a) (b)

Figure 2.2: Text identification and binarization. (a) Original document image. (b)

Binary text in white overlaid on text area in gray.

by an angle α, then compute the projection profile of the image inside the window

along the w edge. We take the standard deviation of the profile as its energy

measure E . By gradually changing α from 0 to π, we obtain a sequence of E measures.

Ideally, the energy sequence should have maxima at the angles corresponding to the

texture flow directions (see Figure 2.3) and typically, the largest peak indicates the

angle of the major texture flow and the second one is for the minor texture flow.

However, noise is inevitable in a small sampling window2 because of the randomness

of character shape. Especially, in areas where the text is sparse or non-text elements

are not removed by text identification, the result may have multiple maxima in

the E-α curve. In most cases, the incorrect peaks are lower than the two correct

ones, so they can be removed easily. However, there are exceptions. Because the

2The window size is mainly limited by the curvature in texture flows. It is also restricted by

the computational cost.
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angles corresponding to the false peaks are usually random, we can detect them by

comparing the neighboring information.
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(a) (b)

Figure 2.3: Projection profile analysis. (a) A projection profile built for a given

angle, showing a clear peak-and-valley pattern as the angle coincides with the text

line direction. (b) Ideal projection energy vs. angle graph where within [0, π) two

peaks correspond to text line and vertical character stroke directions, respectively.

Relaxation labeling is a well-known method [29] for utilizing contextual infor-

mation. This method organizes data as a graph in which nodes have both correct

and incorrect labels as candidates. It assumes that a correct label at a node is sup-

ported by correct labels at neighboring nodes, and incorrect labels are not or less

supported. So, the collected support from neighboring nodes can be used to find

the correct label among the candidates. For us, the nodes are the sampling points

at which we compute the E-α data, and the labels are the α angles corresponding

to maxima in E . At neighboring nodes, the correct angles are similar due to the

continuity of texture flows, so they support each other.
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More specifically, we divide the image into blocks (of size X × Y ) and use the

block centers as sampling points, or the nodes. At each node, we sample α in [0, π)

with precision Φ, collect the E-α data and select K highest peaks from the curve.

For node i, the energy values of the candidates are denoted by Eik and corresponding

angles are represented as αik, k = 1, . . . , K. Each candidate is associated with a

confidence value within 0 and 1, which is initially set to

Cik = Eik/
(
maxK

k=1(Eik)
)
.

The contextual information of neighboring nodes is quantified by a compati-

bility function rij(k1, k2), which measures the influence of candidate k2 of node j to

candidate k1 of node i. In conjunction with the confidence value Cjk, we use the

following formula to compute the support a candidate receives from surrounding

nodes:

sik = s(i, k; {r}, {C}) =
∑
j∈Ui

K∑
k2=1

rij(k, k2)Cjk2 ,

which sums the compatibilities between label k at node i and all other labels in the

neighborhood Ui, weighted by the corresponding confidence values. In our imple-

mentation, we include eight neighbors of node i in Ui. The contextual support is

incorporated into the confidence of label k at node i using the insights of Hummel

and Zucker [30]. Here, we choose the following iterative implementation:

C̃t
ik ← Ct

ik + δst
ik,

Ct+1
ik ← C̃t

ik∑K
k=1 C̃t

ik

,
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where δ controls the iteration step size, t and t + 1 represent the present and next

iteration count.

As for the compatibility function rij, we define it as:

rij(k1, k2) = cos(Γ(αik1 , αjk2)),

where

Γ(a, b) = min(mod(a− b, π), mod(b− a, π))

computes the best aligned difference between the two angles. The value of r reaches

maximum 1 when the two angles differ by an even multiple of π/2 and minimum 0

when the difference is an odd multiple of π/2. In other words, r is maximized when

the two angles are parallel and minimized if they are orthogonal.

We find that a few iterations (typically ten) are sufficient to increase the con-

fidence of a correct label to be maximum among all competing candidates at the

node, if we use a large δ to accelerate the iteration. After relaxation labeling, the

angles corresponding to the major texture flow become top candidates. We store

them in EM
0 and remove them from the candidates. Then, we re-run the relaxation

labeling algorithm. This time, the top candidates correspond to the minor texture

flow directions. They are stored in Em
0 .

Even with the relaxation process, EM
0 and Em

0 may include errors. It could be

that text in a block is too sparse, or non-text elements are overwhelmingly present

in the block, such that the correct angles are not represented by any peaks in the

E-α curve. Nevertheless, we implement a verification step to correct the errors. We
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check the texture flow estimate at every node against the average of its neighbors.

Any estimate with a difference above a certain threshold is replaced by the local

average. Thus, we ensure that both EM
0 and Em

0 are coherent.

In our implementation, we use a multi-resolution approach to compute texture

flow fields for improving the computational efficiency. We use relatively large spatial

sampling size (X×Y ) and angle sampling precision (Φ) for EM
0 and Em

0 . Then we use

a smaller block size (x×y) to re-divide the image and interpolate or extrapolate EM
0

and Em
0 to obtain EM

1 and Em
1 , which are the texture flow estimates at the centers

of small blocks. At each block center, we scan the angle range [EM
1 − Φ, EM

1 + Φ]

with a finer step φ(< Φ) and apply the same projection profile analysis method to

find the best major texture flow estimate corresponding to the maximum energy.

The results are stored in EM
2 . Finally, we interpolate/extrapolate EM

2 to obtain a

dense major texture flow field, EM , that covers every pixel in the text area.

For the minor texture flow, the process from Em
1 to Em (the counterpart of

EM) is described in the following section.

2.3.3 Minor texture flow

With varying width scripts, it is impossible to align vertical character strokes in

different text lines, therefore the projection profile analysis method does not work

as accurately for minor texture flow detection as for detecting major texture flow. It

can provide a coarse estimate Em
1 , but we need another method to refine the result

to obtain Em.
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We notice that in printed text, the horizontal and vertical strokes usually

present the major linear structures. Therefore, we can extract these linear struc-

tures, remove those aligned with EM , and use the remaining ones to estimate Em.

We use a directional filter to search for line segments of a certain length at a specific

direction. Figure 2.4(b) shows one example filter (20-pixel long, 60 degree angle).

When we convolve a directional filter with a binary text image, the result has large

responses at centers of line segments whose directions coincide with the filter’s di-

rection. We remove short line segments by setting the response below a threshold to

zero, then average the remaining response within a window to measure the ‘strength’

(S) of local linear structures at the specified direction (β).

Ideally, S should be maximized when β is aligned with the vertical strokes. To

address possible errors caused by noise and the randomness of character structure,

we fit a third order polynomial curve to S-β data and select the angle of the curve

peak as the vertical stroke direction. As a result, we obtain minor texture flow

estimate, Em
2 , at the centers of re-divided image blocks. We interpolate/extrapolate

Em
2 to compute Em, the minor texture flow field.

2.4 Synthetic data generation

We use synthetic images to evaluate our texture flow estimation module. There

are three reasons for using synthetic images. First, synthetic images do not contain

CCD noise, uneven lighting, motion blur or out-of-focus blur, background objects,

and lens distortion, so we can concentrate on our core problem. Second, we can
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(a) (c) (e)

(b) (d) (f)

Figure 2.4: Vertical character stroke direction detection. (a) A sub-image of bina-

rized text image from the document in Figure 2.2(a). (b) A directional filter tuned

to 60◦ angle, enlarged to show details. (c) Output of applying a 120◦ filter to (a).

(d) Thresholded result of (c). (e) Output of a 60◦ filter. (f) Thresholded result

of (e).
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generate a large amount of images with known poses, shapes, or focal lengths, so

that we may understand the results better. The third, and most critical reason is

that only with synthetic images can we inexpensively obtain ground truth data for

the purpose of evaluation.

Synthetic images are generated using a module described in Appendix A.

Along with the images, it also generates ground truth data of the major/minor

texture flow fields, ruling lines and their vanishing points, and surface normals, so

we can evaluate our intermediate results at each step 3.

We converted five pages in a PDF file to TIFF images at 300dpi, and we use

them as the flat document images. Their sizes are all 1600×2500 pixels. Each page

is skewed by three angles, 15◦, 0◦, and −15◦. After skewing, the parts outside the

original page frame are cropped (see Figure 2.5(c)(d)). We designed four sets of

pose parameters, each defining the rotation and translation of the document page

in the camera’s coordinate system, plus the focal length. The combination of five

pages, three skews, and four poses gives us 60 synthetic images of planar documents

(see Figure 2.5(a)(b)(c)). For curved documents, we designed two cylindrical shapes

(see Figure 2.5(d)), which, together with the previous combinations, provide a total

of 120 images.

For images of both planar and curved documents, images with non-zero skew

have some false text margins and page boundaries because of the cropping effect.

Such images present difficulties for rectification algorithms that rely on text margins

or page boundaries [75, 13, 14, 12, 24]. For curve documents, the skew also results

3Except for texture flows, the other intermediate results are discussed in Chapter 3.
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in an angle between the cylinder directrix and the text lines, which most current

algorithms [78, 79, 73, 7, 69] cannot handle.

2.5 Evaluation

Once we obtain the estimated texture flow field and ground truth data, we take a

group of sample points in the text area in the image and compute the average flow

direction error compared to the ground truth data as the performance benchmark

for the particular image. For every image, we produce one benchmark number for

each texture flow field estimate, and, for a group of images, we further compute the

mean and standard deviation of individual benchmarks as group-wise performance

indices. For perfect estimation, both the mean and standard deviation should equal

zero.

Table 2.1 summarizes the texture flow estimation benchmarks obtained from

60 planar pages. The first row shows the overall performance, while the other

rows illustrate results grouped by page, pose, or skew. The numbers are in the

form of ‘mean/standard deviation’, all in degrees. Overall, we observe satisfactory

precision, with the average error in EM being 0.31 degrees and 0.90 degrees for

Em. We also notice that the error in Em is consistently larger than that of EM ,

which is understandable since the text line and white line space separation presents a

significantly more prominent parallel pattern compared to vertical character strokes.

In terms of the effect of different poses, page contents and skew angles, we do

not record any significant variation in texture flow estimation errors among different
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(a)

(b)

(c)

(d)

Figure 2.5: Synthetic document image samples. From left to right (a) flat page no. 1

through no. 5, (b) pose no.1 through no. 4, (c) 0◦, 15◦, and −15◦ skew, (d) shape

no. 1, pose no. 1, 0◦ skew; shape no. 2, pose no. 2, 15◦ skew; shape no. 1, pose no. 3,

−15◦ skew; shape no. 2, pose no. 4, 0◦ skew.
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groups. It is possible that when the tilt angle of the plane increases beyond those in

the test images, we could see larger errors. This is especially so with Em, because

its accuracy is linked to the stroke length, which will be greatly affected by severe

perspective foreshortening caused by a large tilt. However, under severe perspective

distortion, the character strokes will smear into each other and become inseparable

even with perfect rectification. So, in practice, when excessive tilt increases the

errors of texture flow estimation to an intolerable level, it also defies the need for

rectification.

Table 2.2 shows the results obtained from 120 synthetic curved document

images. The overall performance is satisfactory. The average error for Em (1.12

degrees) is close to that observed in planar pages, with only 0.22 degrees. The

average error for EM (0.80 degrees) suffers an 0.49 degrees increase compared to

that of planar pages, which is considerably larger in both absolute and relative

sense. This occurs because in our test data the curvature of EM is much larger

than Em, so the local variation of EM is larger, which increases the difficulty of

estimation.

Similar to Table 2.1, Table 2.2 does not show significant differences in texture

flow estimation among different page, pose, and skew groups.

The block size (X × Y and x × y) and angle sampling rate (Φ and φ) have

an important effect on both accuracy and computational speed. Smaller values

favor accuracy but slow computation. A good trade-off between accuracy and speed

depends on the maximum texture flow curvature in the image. For planar pages,

the curvature of texture flows is small, so we can use relatively large values. For
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(mean/std)×1◦ Major texture flow EM Minor texture flow Em

All 0.31/0.04 0.90/0.34

Page 1 0.34/0.05 0.76/0.22

Page 2 0.30/0.03 0.66/0.21

Page 3 0.32/0.04 0.89/0.19

Page 4 0.31/0.02 0.89/0.28

Page 5 0.31/0.04 1.31/0.39

Pose no.1 0.31/0.04 1.04/0.21

Pose no.2 0.33/0.05 0.91/0.47

Pose no.3 0.33/0.03 0.96/0.15

Pose no.4 0.29/0.02 0.70/0.36

0◦ skew 0.30/0.02 0.91/0.34

15◦ skew 0.35/0.04 0.89/0.34

−15◦ skew 0.29/0.04 0.90/0.36

Table 2.1: Evaluation of texture flow estimation for synthetic images of planar

documents.
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curved pages, the optimal values should be computed using the estimated curvature

of texture flows. However, this presents a dead lock. In practice, we simply use

relatively small and fixed values.

(mean/std)×1◦ Major texture flow EM Minor texture flow Em

All 0.80/0.16 1.12/0.44

Page 1 0.80/0.14 0.89/0.22

Page 2 0.76/0.17 0.90/0.27

Page 3 0.82/0.18 1.00/0.27

Page 4 0.82/0.17 1.14/0.41

Page 5 0.79/0.17 1.69/0.44

Pose no.1 0.83/0.14 1.20/0.34

Pose no.2 0.85/0.14 1.12/0.50

Pose no.3 0.75/0.13 1.30/0.46

Pose no.4 0.76/0.21 0.87/0.35

0◦ skew 0.72/0.13 1.03/0.45

15◦ skew 0.80/0.17 1.11/0.41

−15◦ skew 0.87/0.15 1.22/0.46

Table 2.2: Evaluation of texture flow estimation for synthetic images of curved

documents.
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2.6 Discussion

In this chapter, we presented an approach to detecting texture flow fields in docu-

ment images. We extract two texture flow fields, which represent the local text line

direction and vertical character stroke direction, respectively. Our method works

with both planar and curved document images.

Figures 2.6, 2.7, and 2.8 show the ground truth and estimated texture flows

from synthetic images of both planar and curved documents. Figure 2.9 shows

estimated texture flows from two real images, in which one is a planar document and

the other is a curved document. In all cases, both the major and the minor texture

flows are quite accurate, with the major one slightly better. Most errors occur near

text margins, mainly because less text is available to support the estimation.

As we have discussed, our text identification module is based on the high

gradient property of text. In our synthetic images, it works well because the images

contain no blurring. In real images, there are two possible problems. The first one is

the loss of text in areas affected by out-of-focus or motion blur. This problem does

not affect the accuracy of texture flow estimation in other areas. The second problem

is false detection in strongly textured non-text areas such as pictures in the document

or an object in the background. The second problem is more challenging because

non-text elements cause errors in texture flow estimation and affect subsequent

procedures including shape estimation and image rectification. To overcome it, text

properties, other than high gradient, should be utilized. Because text identification

in complex real images is a complicated problem deserving a thesis of its own and
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there are many on-going research efforts addressing this problem (e.g., [11, 42]), we

do not address this problem any more in this dissertation.

Problems with our texture flow detection algorithm arise mainly from errors

in text identification. Other than that, accuracy drops at text boundaries compared

to the interior of text areas because there is less text near boundaries to support

the estimation. The limited length of vertical character strokes is the reason for

relatively low accuracy of minor texture flow estimation. In our test images, this

length is usually less than 25 pixels. Due to quantization, the end of the stroke

may have an one-pixel displacement, which amounts to 2.3◦(= tan−1 1
25

). As for the

major texture flow, its accuracy is limited by the length of text line sections that

are (almost) straight. In our data, it is much larger than 25 pixels. In general,

we expect a higher accuracy for major texture flow estimation unless text lines are

extremely curved. In such extreme cases, there is no need for rectification anyway.

With the mesh shown in Figures 2.6, 2.7, 2.8 and 2.9, it may seem inviting

to finish rectification by ‘morphing’ the irregular mesh toward a rectangular mesh.

While this method may be applied to a small portion of the page, it is inappropriate

for the whole document because we do not know the aspect ratio of each cell in the

mesh. We must recover the local surface orientation to obtain the aspect ratio of

each cell, and further integrate local information in a global way to obtain the scale

ratio of neighboring cells. In other words, we still need to estimate the page shape.
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(a)

(b)

Figure 2.9: Texture flow results on real images. (a) Planar page (b) Curved page
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Chapter 3

Rectification of Camera-captured Document Images

3.1 System overview

The system work flow of our image rectification framework is illustrated in Fig-

ure 3.1. The text identification and texture flow estimation modules were described

in Chapter 2.

Because a plane is a special case of a curved surface, our shape estimation

method developed for curved pages can also handle planar pages. However, for

planar pages we can use a simpler method that is faster. Therefore, we develop a

hypothesis testing module to discriminate planar and curved documents, using the

geometric property of surfaces and texture flows. For planar pages, we use the two

texture flow fields to find the horizontal and vertical vanishing points and compute

the homogeneous transformation matrix with which we remove the perspective dis-

tortion from the original image. For curved pages, we model the page shape by a

developable surface, which can be approximated by a group of planar strips. We

estimate each strip’s position and flatten the page by rectifying the planar strips in

a piecewise manner.
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Texture Flow
Detection

Planar or Curved?

3D Plane
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Text Identification
and Binarization

Figure 3.1: Work flow of geometric image rectification
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3.2 Rectification of planar document images

3.2.1 Related work

An image of a planar document page captured by a camera is subject to perspective

distortion unless the optical axis of the camera remains perpendicular to the page.

As a result of the perspective distortion, the characters further away from the camera

appear smaller, and text lines appear convergent at one point, called the vanishing

point. In general, the projection transformation from a 3D world plane to the 2D

image plane can be described by a 3× 3 homogeneous matrix H with eight degrees

of freedom (dof). If all eight dof’s are known, the perspective distortion can be

removed completely. From the OCR viewpoint, however, not all of the eight dof’s

are equally important.

It is shown in [41] that H can be uniquely decomposed into a concatenation

of three matrices, S, A and P, which are similarity, affine, and ‘pure projective’

transformations, respectively:

H = SAP =

 sR2×2 t

0> 1





1
β
−α

β
0

0 1 0

0 0 1





1 0 0

0 1 0

l1 l2 l3


In matrix S, s is an isotropic scaling factor that cannot be determined from

the image alone and is not part of the eight dof’s; R2×2 is a 2D rotation matrix

involving one angle, and t is a translation vector defining x- and y- displacements.

Matrix S contains three dof’s in total. From a single image, t cannot be determined,

neither is it important for our rectification purpose. So, we are reduced to only one
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rotation angle.

In matrix P, l∞ = (l1, l2, l3)
T represents the vanishing line of the world plane in

the image. This line contains two dof’s because the representation of l∞ is homoge-

neous. In matrix A two more dof’s exist, α and β, and their geometric interpretation

specifies the images of the circular points [62]. Overall, the rotation angle, the van-

ishing line, and the circular points contain five dof’s which determine a planar metric

rectification [41].

In [41], it is shown that the following knowledge of the world plane can con-

strain these five dof’s:

• A known angle between lines;

• Equality of two (unkown) angles;

• A known length ratio.

Any combination of sufficient (at least five) and independent constraints can

be used to solve for a planar metric rectification. Dependent constraints can only

improve the accuracy [41]. Zandifar et al. [75] apply this method to rectify pre-

sentations and posters captured by video cameras. They find line segments in the

image using edge detection and mean shift clustering. Lines of similar directions in

the image are assumed parallel in the world plane and grouped together, and lines

in groups with significantly different dominant directions are assumed orthogonal in

the world plane. Typically, these lines correspond to poster boundaries, presentation

frames, and text lines in the poster/presentation. Their method requires five pairs of
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lines orthogonal in the world plane, which provide five right angles, or, equivalently,

the horizontal and vertical vanishing points1 and two right angles, to solve for the

five dof’s.

In practice, however, it is difficult, if not impossible, to obtain five independent

constraints. For example, if the edges of five right angles come from two groups of

parallel lines in the world, then they provide only three independent angles [41].

This problem can be circumvented by reducing the number of required dof’s [47].

The rotation in R is not necessary because, from the OCR point of view, it can be

handled by deskewing. The two dof’s in α and β can be interpreted as the ratio

α
β
, which controls the shearing, and 1

β
, which controls the x-to-y aspect ratio. This

aspect ratio is not critical from the viewpoint of OCR because most OCR engines

automatically normalize each character image to a fixed size. This leaves us with

only three dof’s, which are immediately solvable using the horizontal and vertical

line segments, or, equivalently, using the horizontal and vertical vanishing points

[13, 14].

Pilu [56] uses a bottom up method to locate both horizontal and vertical linear

clues. They use the convergent points of linear clues as the two vanishing points.

Clark et al. [13, 14] use a perspective projection profile analysis method, similar to

the orthogonal projection profile analysis typically used in deskewing, to locate the

horizontal vanishing point. They propose two methods for vertical vanishing point

detection. In [13], they locate the vanishing point by computing the convergent

point of the two margins of a fully justified text block. In [14], they extract the left

1The two vanishing points are equivalent to three angle constraints.
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margin of a left justified text block or the central line of centered text block, then

use the equidistant property of text lines to compute the position of the vertical

vanishing point along the margin or central line. The equidistant property of text

lines is equivalent to a known-length-ratio constraint. When not sufficient text is

present, page or frame boundaries can be used [12] if they are visible.

3.2.2 Discrimination of planar and curved documents

Perspective projection preserves linearity, so straight text lines on planar documents

remain straight in the camera-captured image. Furthermore, these co-planar and

parallel 3D lines share a common vanishing point in the image [26]. These two

properties do not hold true for curved text lines on curved documents2. Therefore,

we can determine whether an image contains a planar or curved document by testing

the linearity and convergence of text lines, which, in our case, can be verified using

the major texture flow field. For the same reason, the minor texture flow field is

also useful.

Let {pi}Ni=1 be a set of points evenly sampled in the text area, and {αi} be

the flow directions at sample points. The homogeneous representation of the flow

tangent line at each point (a line passing through the given point with the direction

of the flow) is given by

2Under perspective projection, if a curve lies on a plane of sight (a plane passing through the

optical center), then its projection is a straight line in the image. However, text lines on a curved

document can simultaneously satisfy this requirement. Their projections cannot converge at a

single point, either.
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li =



xi

yi

1


×



cos αi

sin αi

0


where pi = (xi, yi).

Under the planar page hypothesis, all these flow tangent lines converge at a

vanishing point, say v (in homogeneous representation), which can be written as

l>i v = 0,∀i.

This means that v lies in the null space of the sub-space spanned by {li}; in

other words, the rank of L = (l1, . . . , lN) is less than three. On the contrary, under

the curved document hypothesis, v does not exist, which means that the null space

of L is ∅ and L has full rank.

We use SVD decomposition to test the hypotheses. Let S1 and S3 be the

largest and least eigenvalues of L, respectively. We use S3/S1 as the convergence

quality measure. If it rests below a predefined threshold, we decide that L does not

have full rank. In our implementation, we have a tighter threshold for the test based

on major texture flow field, and a weaker one for minor field, because major texture

flow field estimation is more accurate. If either test indicates that L has full rank,

we decide that the document is curved; otherwise, it is planar.

45



3.2.3 Plane surface estimation

For planar document images, as a result of the previous hypothesis test, we obtain

vh and vv, the vanishing points of major and minor texture flow tangent lines. As

Section 3.2.1 shows, a metric rectification has five dof’s. The line connecting vh

and vv is l∞, the vanishing line of the world plane. The knowledge of l∞ reduces

the projective transformation to an affine transformation. The positions of the

vanishing points in the world plane (the infinity points at North and East) allow

us to remove the shearing and rotation from the affine transformation. However,

we cannot recover the x-to-y ratio. In summary, we can obtain a homogeneous

transformation that remove perspective distortion up to an unknown x-to-y aspect

ratio. In practice, we set the x-to-y ratio one. For OCR, this is sufficient given the

discussion in Section 3.2.1.

(a) (b) (c)

Figure 3.2: Non-unique image rectification results. (a) A perspective distorted

image. (b) and (c) are two possible rectification results that have different x-to-y

aspect ratios.
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If we assume a zero offset for the principal point in the image plane, we can

further compute the camera focal length and hence the surface normal. Suppose the

two vanishing points are vh = (xh, yh)
> and vv = (xv, yv)

>, then the 3D directions

of the horizontal and vertical lines on the page in the camera coordinate system are

given by

Vh = (v>h , f)>,

Vv = (v>v , f)>,

(3.1)

where f is the focal length. Due to their orthogonality,

V>
h Vv = 0, (3.2)

and it follows that

f =
√
−v>h vv,

if v>h vv < 0.

Special care should be taken when either vh or vv lies at the infinity of the

image plane. Whether at the infinity or not, let us define vh and vv as the unit 2D

vectors in their directions respectively. In theory, only two cases are possible. In the

first, both vanishing points are at the infinity. In this case, Equation 3.1 becomes

Vh = (v>h , 0)>,

Vv = (v>v , 0)>,

47



and Equation 3.2 becomes

v>h vv = 0,

neglecting f at all. Therefore, we cannot solve for f . However, this case implies that

the page is parallel to the image plane, so there is neither perspective distortion nor

the need for rectification.

In the second case, only one vanishing point lies at the infinity. Without loss

of generality, let vh be at the infinity. This means that all text lines in the 3D

world are parallel to the image plane, so their projections in the image plane are

also parallel lines. Meanwhile, the 3D minor texture flow is not parallel to the image

plane, causing foreshortening in this direction. In this case, Equation 3.1 becomes

Vh = (v>h , 0)>,

Vv = (v>v , f)>,

and Equation 3.2 becomes

v>h vv = 0,

again not involving f . Therefore we still cannot solve for f . This time, however, we

do have perspective distortion. Since we do not have f , we are back to the situation

where we can remove the distortion up to an unknown aspect ratio.

In practice, due to noise, we may arrive at theoretically impossible vanishing

point combinations. It could be that v>h vv > 0; or at least one vanishing point
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lies at the infinity, but v>h vh 6= 0. Whatever the situation, we cannot solve for f

and can only compute a homogeneous transformation to remove the shearing and

foreshortening, leaving an unknown x-to-y ratio.

In the general case where f can be computed, we can calculate the plane

orientation as

N = Vh ×Vv,

where N is the plane normal vector, and × denotes the cross product operation.

The full knowledge of the plane surface is then determined by f and N .

3.2.4 Metric rectification

Having determined the page plane, we can remove perspective distortion completely.

The needed homogeneous transformation is computed in the following way:

Consider an arbitrary point, (x′0, y
′
0), in the image plane. In the camera’s

3D coordinate system, its position is (x′0, y
′
0, f)>, where f is the focal length. The

corresponding 3D point, W, in the document page must lie on the line of sight

through the optical center and the point (x′0, y
′
0, f)>. So, W = d(x′0, y

′
0, f)>, where

d(> 0) is an unknown depth factor. Let Vh(= Vh/|Vh|) and Vv(= Vv/|Vv|) be the

3D unit vectors representing the directions of 3D major and minor texture flows.

Suppose that we set up a 2D coordinate system in the document plane so the x-axis

is aligned with Vh while the y-axis is (must be) aligned with Vv. Every point on

the document plane, thus, has a 2D coordinate (x, y). Assume that W is at (x0, y0)

within the 2D coordinate system, then the 3D position, P, of any point (x, y) in the
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document plane can be computed by

P = (x− x0)Vh + (y − y0)Vv + W,

or, in matrix form,

P =

(
Vh Vv W

)


1 0 −x0

0 1 −y0

0 0 1





x

y

1


.

The camera’s internal parameters determine the transformation from 3D world

coordinate system to camera image plane. The parameters of a general projective

camera model can be defined by a 3× 3 upper triangular matrix K, which has five

degrees of freedom [26]. Two dof’s correspond to the offset of the principal point in

image plane; one is the focal length; one is the x-to-y pixel aspect ratio; the last one

is a shear parameter. Most digital cameras have unit x-to-y ratio and zero shear.

Also, the principal point offset is typically zero. Therefore, the K matrix can be

simplified to

K =



f 0 0

0 f 0

0 0 1


,

where f is the focal length. A 3D point P = (X, Y, Z)> in the camera’s coordinate

system projects to a point (x′, y′) in the image by



u

v

w


= K



X

Y

Z


, (3.3)
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where

x′ = u/w,

y′ = v/w.

Thus, the homogeneous transformation from document plane to image plane

is the concatenation

H = K

(
Vh Vv W

)


1 0 −x0

0 1 −y0

0 0 1


, (3.4)

The inverse of H maps every point in the image plane back to the frontal-flat

view of the document page and is called the rectification matrix. That is,

(x, y)
H→ (x′, y′),

(x′, y′)
H−1

→ (x, y).

In Equation 3.4, d and (x0, y0) can take any value. The value of (x0, y0) decides

an irrelevant translation of the rectified image within the destination plane. The

depth factor d determines the scale of the rectified image — the larger the depth,

the larger the rectified image.

Suppose W = (0, 0, df)>, and (x0, y0) = (0, 0). Let vh = (xh, yh)
> and vv =

(xv, yv)
> so Vh = (xh, yh, f)> and Vv = (xv, yv, f)>. Then, Equation 3.4 becomes
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H =



f 0 0

0 f 0

0 0 1





xh xv 0

yh yv 0

f f df


= f



xh xv 0

yh yv 0

1 1 d


. (3.5)

and it follows that

H−1 =
1

df(xhyv − xvyh)



yvd −xvd 0

−yhd xhd 0

yh − yv xv − xh xhyv − xvyh


,

x′ = xxh+yxv

x+y+d
,

y′ = xyh+yyv

x+y+d
,

and

x = d yvx′−xvy′

(yh−yv)x′+(xv−xh)y′+(xhyv−xvyh)
,

y = d xhy′−yvx′

(yh−yv)x′+(xv−xh)y′+(xhyv−xvyh)
,

(3.6)

which maps a point, (x′, y′), in the input image to the rectified image, (x, y). Equa-

tion 3.6 shows that the magnitudes of x and y are proportional to the magnitude of

d. This confirms our claim that the depth of W determines the scale of the rectified

image.

Because we cannot determine the positive directions of Vh and Vv (corre-

sponding to the ‘left’ and ‘up’ in a flat document) from texture flow analysis alone,

the rectified image may be reversed in x- or y- direction, or both. A simple solution

is to pass the rectification result and several reversed versions to an OCR engine
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and select the one with the best recognition confidence. More sophisticated methods

also exist [70].

Some examples of camera-captured planar documents (both synthetic and real)

and their rectification results are shown in Figures 3.3, 3.4, and 3.5. In Figure 3.5,

the top two real images in the left column are captured with the camera pointing

straight at the document, resulting in no perspective distortion and both the hori-

zontal and vertical vanishing points at the infinity. In the bottom image, only the

vertical vanishing point is at the infinity. In all three cases, full metric rectification

is impossible. However, the rectified images are satisfactory.

3.3 Rectification of curved document images

3.3.1 Related work

Compared with flat page rectification, the de-warping of curved document images

is significantly more difficult because of the infinite number of dof’s associated with

the surface geometry.

One way of dealing with the surface reconstruction problem involves com-

pletely removing the unknown dof’s with direct 3D shape knowledge obtained from

special equipment. Brown et al. [5] use a structured light system to gather range

data of deformed manuscripts, and they combine this data with the 2D image cap-

tured by a digital camera to restore the flat frontal view. In their work, the 3D

surface is represented by a triangular mass-spring particle mesh, which has an en-

ergy function associated with the lengths of the springs. They ‘force’ the mesh to

53



Figure 3.3: Comparison of synthetic images of planar documents and rectification

results. The false text margin in the lower image has no effect on the result.
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Figure 3.4: Comparison of images of real planar documents and rectification results.

Both full page and partial page can be handled.
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Figure 3.5: Comparison of images of real planar documents and rectification results.

Results are satisfactory despite full metric rectification is unavailable.
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a flat plane under minimum energy constraint through an iterative process. This

is similar to physically flattening the manuscript with minimal tearing and stretch-

ing. Their extended work [4] revises the energy as a function of the angles between

springs, and this leads to a one-pass computation without iteration. Pollard et al.

also use a structured light system to obtain range data of opened books, then fit a

discrete developable surface to the 3D data through an iterative optimization [58].

The basic ideas of [5, 4] and [58] share many common elements.

Realizing that 3D data or calibration is not always available in many applica-

tions, researchers have tried to induce indirectly the shape from a single 2D image.

However, 3D shape estimation from a single 2D image alone presents a difficult, if

not impossible, problem for general cases. The theories in this area heavily rely

on prior knowledge of lighting or surface geometry, and many treat only ortho-

graphic projection model equivalent to a pin-hole camera with infinite focal length.

However, for many cameras (particularly the zoomless cameras attached to mobile

devices), the focal length tends to be small. The lighting condition in camera-

captured images is typically unconstrained and unknown a priori, which defies the

use of shape-from-shading methods. The markings on document pages are usually

neither isotropic (considering that the space between lines is much wider than the

space between words or characters), nor do they form distinct and repetitive textel

structures. Therefore, shape-from-texture methods do not suit this case well. For

stereo vision or structure-from-motion techniques, they do not work with a single

image. Therefore, general shape-from-X techniques can give some qualitative, but

not accurate quantitative, 3D information needed for our task.
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In some special cases, people use additional constraints to facilitate the shape

estimation process. For example, for the scans of books in flatbed scanners, Zhang

et al. [77] propose a shape-from-shading based method to estimate the curved shape

of opened books. Their work pivots on two key points: 1) the page shape near the

spine of an opened book is cylindrical, and 2) during scanning the flatbed scanner

casts light at a fixed direction. Therefore, the shading on the white area of the paper

is proportional to the cosine of the angle between the surface normal and the incident

light. By comparing the shade to the white area (in the flat part of the page), they

can recover the local surface orientation. In [7], Cao et al. address opened books

captured by cameras. They also assume that the page shape is cylindrical, and they

require a straight frontal view of the page so the cylinder’s generatrix is orthogonal

to the camera’s optical axis. Under these conditions, they extract text lines on the

page to locate the cylinder’s directrices and compute the 3D directrix shape from

two 2D curved text lines. In [69], Ulges et al. make the same cylindrical shape

and straight frontal view assumptions, but take a different approach. They observe

that line spacing in 3D world is uniform over the entire page, while change of depth

leads to change of line spacing in the image. By investigating this changes in line

spacing, they can estimate the depth difference up to a scaling factor. They locate

the sheared bounding boxes of each character (which in 3D space are rectangles),

use the depth information to infer the aspect ratios of each box, and restore their

correct rectangular shape. In [24], a method is proposed to estimate the shape of a

developable surface. It has the potential of handling document page under general

poses. However, its requirement for metric knowledge of a closed contour in the
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surface limits its applicability.

Given the difficulty involved in 3D structure analysis, another alternative fo-

cuses on 2D image processing techniques that could counter the distortion caused by

curved surface and perspective projection. Such methods usually aim to straighten

curved text lines to meet OCR requirements. Zhang and Tan [78, 79] restore the

overall linearity of text lines in scans of thick books where curve distortion becomes

obvious near the book spine. They locate the curved portion of a text line by clus-

tering nearby connected components, and they move the components back to the

baseline determined by other components in the straight portion. However, the dis-

tortion of each component (character) is not addressed. Wu and Agam [73] build

a mesh using curved text lines and morph the mesh toward a rectangular mesh

in order to reduce the distortion. Their method does not address the perspective

foreshortening in the vertical direction.

Given multiple images, the shape can be estimated using stereo vision, or

other structure-from-motion techniques. In [68], Ulges et al. report their work on

recovering document shape using general stereo vision techniques. They place the

document in a cubic frame with known physical size and take two images from

slightly different positions. The cubic frame enables them to compute the epipolar

geometry, which simplifies point matching in two images and calibrates the stereo

camera. They obtain depth information using standard triangulation given the

correspondence in two images and camera calibration. The rest of their work on

flattening is similar to [5, 4, 58].
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3.3.2 Page surface modeling

The shape of a curved document belongs to a family of 2D surfaces called developable

surfaces, as long as the document is not torn, creased, or deformed by a soak-and-

dry process. In mathematical terms, developable surfaces are 2D manifolds that

can be isometrically mapped to an Euclidean plane. In other words, developable

surfaces can unroll to a plane without tearing or stretching. This developing process

preserves intrinsic surface properties, such as arc length and angle between lines on

the surface. Because of their ability to map to a plane, developable surfaces are

widely used to construct sophisticated volumes out of flat material with minimum

stretching, ranging from ships to French fries containers.

Developable surfaces represent particular cases of a more general class of sur-

faces called ruled surfaces. Ruled surfaces are envelopes of a one-parameter family

of straight lines in 3D space. That is, a ruled surface can be thought to be swept

in space by straight lines (rulings or rectilinear generators) which lie entirely on

the surface. The degrees of freedom of a ruled surface are significantly fewer than

for a general 2D surface because we can specify the surface by 1) giving a curve

(the directrix ) on the surface that crosses all rulings and 2) specifying the ruling

direction at every crossing point. Developable surfaces are even more restricted;

they are envelopes of a one-parameter family of planes. For developable surfaces, all

tangent planes at points along one ruling coincide, which means the movement of

the rectilinear generator cannot be arbitrary. Given this property, we can approx-

imate a developable surface with a finite number of planar strips that come from
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the family of tangent planes. Although this is only a first order approximation,

it is sufficiently accurate for our application, while greatly cutting the number of

unknowns for which we need to solve.

It is well known [22] that a developable surface can be either a flat plane, a

cylinder, a cone, the envelope of tangents to a twisted 3D curve, or the combination

of any of the above connected smoothly at common rulings. Let us consider how

to represent each type of developable surface with planar strips. For planes, the

approximation is precise and trivial. For cylinders, rulings are parallel; for cones,

rulings are convergent at a vertex. Any two rulings of a cylinder or a cone, therefore,

are co-planar. The strip on the common plane between two neighboring rulings can

approximate the small piece of cylindrical or conic surface between the two rulings.

Any two neighboring planar strips formed in this way join seamlessly at the common

ruling border (see Figure 3.6). However, this statement does not hold true for a

developable surface formed by tangents to a twisted 3D curve, where these tangents

(rulings) are not necessarily co-planar. In general, two co-planar lines may not exist

on such a surface. For a small portion of the surface, of course, we can find an

optimal plane to approximate it. For example, if given two segments of two rulings,

we can optimize the plane by minimizing the sum of squares of distances between

segment end points and their projections on the plane. However, two neighboring

strips constructed this way will not join seamlessly. This being said, it does not

present a prohibitive problem. First, the seams decrease as we increase the number

of strips so rulings become denser. Second, in practice, planes, cylinders and cones

are sufficient to describe most curved documents’ shape. Any deviation from these
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basic types is small compared to other sources of noise, such as lens distortion.

Figure 3.6 illustrates our idea of approximating a curved document surface

with planar strips. As the number of strips increases, the approximation becomes

increasingly accurate. The de-warping can be accomplished by rectifying the strips

piece by piece.

(a) (b)

Figure 3.6: Strip-based approximation to a developable surface. (a) Three planar

strips approximate a developable surface. (b) The surface is de-warped piecewise.

3.3.3 Projected rulings

Rulings are straight 3D lines that lie entirely on the curved document page. We call

their projections on the image projected rulings, or 2D rulings. To find 3D rulings,

we first need to locate their 2D projections. Similarly, we can distinguish 2D texture

flows detected in the image and their 3D counterparts on the document surface. A

3D texture flow field defines a 3D orientation, or, equivalently, a unit 3D vector for

every point on the document. This vector lies in the tangent plane at that point.
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Recall that all points along a ruling on a developable surface share the same tangent

plane. It follows that the 3D flow vectors at all points along a ruling lie in a common

tangent plane. Furthermore, they are all parallel3.

On the other hand, if the texture flow vectors at all points along a 3D curve are

parallel, this curve must be a ruling. To prove this, consider any two points. If the

3D major and minor texture flow vectors at these points are parallel, respectively,

then the two tangent planes at these points must also be parallel4. Therefore, all

the tangent planes along the 3D curve is the same. On a developable surface, this

can be true only if the curve is a ruling, or, the surface is a plane.

Therefore, we have the following properties:

The 3D major and minor texture flow vectors along any 3D ruling on a devel-

opable document surface are constant (i.e., the flow directions are parallel, respec-

tively).

The 3D major and minor texture flow vectors along a non-ruling curve on a

non-planar developable document surface cannot both be constant (i.e., they cannot

both be parallel).

As a result, 2D texture flow vectors along a 2D ruling converge to a common

vanishing point (see Figure 3.7). This vanishing point may be at the infinity if the

3D flow vectors are parallel to the image plane. If a group of 2D flow vectors do not

3To prove the parallelism of all 3D major (minor) texture flow vectors along a ruling, imagine

that we unroll the document surface onto the tangent plane at the ruling. In the flat document,

the texture flow vectors are parallel. So, on the tangent plane of the curved surface, they are also

parallel.
4Because the surface normal must be the cross product of major and minor texture flow vectors.
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converge at a single point, they are most likely not parallel5 and, therefore, their

base points do not lie on a 2D ruling. This property can help us detect 2D rulings.

Figure 3.7: Parallel 3D texture flow vectors along a 3D ruling and convergent 2D

texture flow vectors along the corresponding 2D ruling.

For any given point in the image, and any given line r through it, we take M

sample points ({(xi, yi)}Mi=1) along the part of the line contained in the text area.

We denote the 2D major texture flow unit vector at sample points by {ti}Mi=1, where

ti = (txi , t
y
i )
> and |ti| = 1. We do not use the minor flow at this time because

it is less accurate. We use exactly the same convergence testing method based on

singular value decomposition described in Section 3.2.2 to compute the convergence

quality. If the convergence quality is good, we declare r as a 2D ruling.

This method succeeds in areas with a large curvature of the major texture

5It is possible for a group of non-parallel 3D vectors to project to a group of convergent 2D

vectors. However, this requires all the planes of sight of these 3D vectors form a pencil of planes

that share a common 3D line. At the same time, in our context, the base points of these 3D vectors

must be on one plane of sight so the base points of their projections are co-linear. It is extremely

unlikely to satisfy both simultaneously.
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flow, because a small deviation from the correct 2D ruling direction causes a rela-

tively large change in the values of {ti}, and hence affects the convergence quality.

Fortunately, a small curvature of the major texture flow means a nearly flat sur-

face, and in this case the accuracy of the 2D ruling becomes less important for the

rectification result. In the extreme case where the curvature approaches zero so the

surface becomes completely flat, there is no unique ruling for any given point, i.e.,

any line through it represents a correct ruling.

Through any point on a non-planar developable surface there is one and only

one 3D ruling, so any two 3D rulings do not intersect. The only exception is the

vertex of a cone. However, a conical vertex can not reside inside a document page,

otherwise the paper must be creased at this point. Therefore, any two 3D rulings do

not intersect within the document. Under perspective projection, the projections of

two non-intersecting 3D rulings do not intersect in the image plane, either, unless

one is occluded by the other. In the case of occlusion, the invisible part does not

need rectification. So, we can always assume that any two 2D rulings do not intersect

within the document. This property allows us to use the detection results in high

curvature areas, which are more accurate, to help find rulings in other areas.

We first find a group of N reference points, {pi}Ni=1, in the image within the

text area. These reference points should be such that the 2D rulings through them

roughly cover the entire text area (see Appendix B). For each pi, we compute the

convergence quality measure cij for a range of possible ruling directions, denoted

by {φij} (φij ∈ [0, π)). We want to find a group of ruling directions with the best

overall convergence quality where nearby rulings do not intersect each other inside
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the text area, i.e.,

{φ̂i}Ni=1 = argmin
φi∈[0,π)

[
N∑

i=1

ci(pi, ϕi) +
N−1∑
i=1

Ψ(pi, pi+1; φi, φi+1)

]
,

where

Ψ(pi, pi+1; φi, φi+1) =


∞, if ri and ri+1 intersect within the text area,

0, otherwise.

prohibits two nearby rulings to intersect within the text area. The cost function

decomposes into terms that depend only on each pair of (ϕi, ϕi+1), thus we can

solve this minimization problem using a dynamic programming method. Figure 3.8

illustrates the result.

3.3.4 Vanishing points of rulings

Under perspective projection, an infinite 3D line projects to a 2D line terminating

at its vanishing point [26]. More importantly, all parallel 3D lines have the same

vanishing point in the image. So, a vanishing point is determined only by the direc-

tion of the 3D line, not its position. Inversely, the 3D line direction is determined

solely by its vanishing point, because it is parallel to the ray through the camera’s

optical center and the vanishing point. Figure 3.9 shows three parallel 3D lines, L1,

L2, and L3, projecting onto the image plane I as 2D lines, l1, l2 and l3, respectively.

The 2D lines converge at the vanishing point V . Point O is the optical center, and

OV gives the 3D direction of the 3D lines. Therefore, the vanishing points of 2D

rulings are important to defining their 3D counterparts.

Our method for estimating vanishing points of rulings originates from the same
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(a)

(b)

Figure 3.8: Projected ruling detection results in (a) synthetic images and (b) real

images.
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Figure 3.9: Projections of parallel 3D lines share a common vanishing point on the

image plane.

insights as [14], which are as follows: Text lines are equally spaced on the page,

while in the image they are no longer equally spaced due to perspective. The page’s

tilt determines the degree of change in line spacing, and the tilt is related to the

position of vanishing points of rulings. In [14], Clark et al. find the intersections of

text lines with the justified text margin (or, equivalently, the central line of centered

text blocks) using perspective projection profile analysis, then solve for the position

of the vanishing point using the distances between the intersections. However, this

method works only with planar pages, requires a justified text margin (or the central

line), and is computationally expensive because of the search in a two-parameter

space.

Our method offers three key improvements. First, text lines in our data are

curved, so we propose to compute curve-based projection profiles in which the projec-
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tion paths are curves that follow the major texture flow at every point. Second, the

text line spacing is constant only within a paragraph, while the inter-paragraph spac-

ing could be different. So, we derive a criterion to group text lines into paragraphs

before we apply the constant spacing property. Third, we simplify the vanishing

point estimation to a closed form solution which essentially solves a one-parameter

linear system. This processes much faster than searching in a two-parameter space.

In the curve-based projection profile analysis, we select the estimated 2D ruling

line as the base line (see Figure 3.10). The lengths of projection paths are fixed. The

profile has peaks corresponding to text lines and valleys for white space. We first

find the principal ‘wave length’ λ of the profile by detecting the strongest frequency

response in its FFT result. We de-noise the profile by smoothing it with a kernel of

size λ. After that, we apply adaptive thresholding (also with window of size λ) to

obtain a binary profile where ‘1’ represents text line and ‘0’ white space. Without

loss of generality, assume the rising edges give the ‘top’ positions of text lines and the

falling edges give the ‘bottom’ positions. We create a one-dimensional coordinate

system along the 2D ruling, and denote the ‘top’ and ‘bottom’ positions of text lines

by {pti}Ti=1 and {pbi}Ti=1, respectively, where T is the number of text lines. Also, a

coordinate system is established on the 3D ruling, and the corresponding positions

are {Pti}Ti=1 and {Pbi}Ti=1 (see Figure 3.11). In the following, we use the top positions

({pti}Ti=1, and {Pti}Ti=1) to describe our method and drop the t subscript for the sake

of simplicity.

We know ∆ = Pi+1 − Pi is constant within a paragraph. Under perspective

projection, δi = pi+1 − pi is not, in general, a constant. Because of the invariant
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3 

(a) (b) (c) (d)

Figure 3.10: Curve-based projection profile (CBPP). (a) The two straight lines

represent two base lines between which a curve-based projection profile is computed

along the text line directions. (b) The CBPP profile. (c) Smoothed result of (b).

(d) Binarized result of (c). Three paragraphs are identified.

Pi+4

r

R

v
O

Pi+3Pi+2Pi+1Pi

P

Figure 3.11: Vanishing point of a 2D ruling corresponds to the point at infinity on

the 3D ruling.
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cross-ratio property [26], the intervals in the 3D world and their counterparts in the

image satisfy the following equality:

|pi+1 − pi||pi+3 − pi+2|
|pi+2 − pi||pi+3 − pi+1|

=
|Pi+1 − Pi||Pi+3 − Pi+2|
|Pi+2 − Pi||Pi+3 − Pi+1|

=
∆ ·∆

2∆ · 2∆
=

1

4
,∀i. (3.7)

Thus, for any four consecutive text lines, if the above equality holds (within a

threshold), we claim they come from the same paragraph; otherwise, they do not.

The following is the pseudo-code for paragraph segmentation, where the input is the

list of text line positions {pi}Ti=1, and the output is the set of paragraphs P :

1. Set paragraph list P = ∅; set current paragraph Pc = ∅; set the current

position index j = 1.

2. Take {pi}j+3
i=j and verify it against Eq. 3.7.

3. If Eq. 3.7 holds (within a given error bound) Pc :← Pc ∪ {pi}j+3
i=j .

4. Otherwise, P :← P ∪ {Pc}, and reset Pc = ∅.

5. j :← j + 1.

6. Stop if j = T − 2; otherwise go to step 2.

Careful readers may notice that this process implicitly requires at least four

text lines in a paragraph. This usually works fine with most documents; for docu-

ments with short paragraphs, such as yellow pages, the verification error bound can

be relaxed.
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If we let Pi+3 converge toward ∞, then pi+3 converge toward v, which is the

coordinate of the vanishing point along r (see Figure 3.11). Eq. 3.7 becomes

|pi+1 − pi||v − pi+2|
|pi+2 − pi||v − pi+1|

= lim
Pi+3→∞

|Pi+1 − Pi||Pi+3 − Pi+2|
|Pi+2 − Pi||Pi+3 − Pi+1|

=
1

2
,∀i,

which is a linear equation in v. Given the paragraphs P , we can solve for the

optimal position v in a Least Square sense. Because v is only a scalar variable, the

linear equations are simply in the form of Xv = Y, where X and Y are two column

vectors, so v = (X>Y)(X>X)−1.

Similarly, the discussion above applies to ({pbi}Ti=1, {Pbi}Ti=1), therefore the two

sets of paragraphs found using the text line ‘top’ or ‘bottom’ positions can be used

together in computing v.

3.3.5 Page shape estimation

The knowledge of projected texture flows, rulings and their vanishing points reveal

some information about the local surface orientation. This local information is

noisy. Furthermore, we do not know the camera parameters yet. In the following,

we describe our approach for estimating the developable surface normals plus the

camera focal length that optimally satisfy the texture flow and ruling estimates.

The orientations of the planar strips that approximate the document shape

can be described by a group of unit 3D surface normals denoted as {Ni}Li=1, where

L is the number of strips. We have L = N − 1, where N is the number of detected

rulings. In addition, we need the 3D position of one reference point on each strip

to describe its plane fully. We backproject 2D ruling reference points onto the
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document page as the 3D reference points, denoted as {Pi}Li=1.

It is impossible to recover absolute depth from a single image unless we have

a priori metric knowledge of the page surface. We can only recover {Pi} up to a

scale factor. Moreover, {Pi} is not independent of {Ni}. If a set of surface normals

for any 3D surface is known, then, in theory, we can use integration to find the 3D

position of any point on the surface given an initial point. So, if {Ni} is known, we

can give P1 an arbitrary depth (which corresponds to the varying scale factor) and

use discrete integration to get the other {Pi}. It follows that the real unknowns are

f and {Ni}.

Before we describe our method to estimate f and {Ni}, let us first define the

variables (see Figure 3.12):

Ni-1 Bi-1,j

Ti-1,j

Ni
Bi,j

Ti,j

Ri

Ri-1

Ri+1

Pi-1

Pi-1

Pi-1

Figure 3.12: Definitions of variables used in page shape estimation.

• Wanted unknowns:

– 3D normals: {Ni}Li=1
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– 3D reference points: {Pi}L+1
i=1

– Focal length: f

• Available data:

– Projected rulings in the image: {ri}L+1
i=1

– Projected reference points in the image: {pi}L+1
i=1

– Projected texture flow in the image: t and b at every point

• Other related variables:

– 3D rulings: {Ri}L+1
i=1

– 3D texture flow: For the i-th strip, we select a group of Ji sample points

inside the strip, and define Tij as the 3D major texture flow vector at

the j-th point, and Bij as the minor texture flow vector.

– 3D line-of-sight vector: For the j-th sample point in the i-th strip, we

define Vij as its line-of-sight vector which originates from optical center

O toward the sample point.

All the 2D and 3D vectors are of unit length.

The 3D vectors are orthogonal to the surface normal at the sample points.

At the same time, they are coplanar with the 3D line-of-sight vectors and their 2D

counterparts. Therefore

74



Ri = η((ri ×Vi)× (Ni + Ni−1)),

Tij = η((tij ×Vij)×Ni),

Bij = η((bij ×Vij)×Ni).

(3.8)

where η(·) represents the normalization operator, i.e., η(v) = v/|v|. Note that we

use Ni + Ni+1 to approximate the surface normal at any point along Ri.

There are four constraints that we can derive from the developable property

of the page and the property of printed text:

• Orthogonality between surface normals and rulings: Ideally, we would want

N>
i−1Ri = N>

i Ri = 0. Since we have fixed Ri to be orthogonal to Ni−1 + Ni,

we only need to check R>
i (Ni−Ni−1). We define µ1 =

∑L−1
i=1 (∆N>

i Ri)
2 where

∆Ni = Ni −Ni−1, and ideally µ1 = 0.

• Parallelism of text lines inside each strip: Text line directions are represented

by Tij. We use µ2 =
∑

i

∑
j |Tij −Ti|2 to measure their parallelism, where Ti

is the average of all Tij within the i-th strip. Ideally µ2 = 0.

• Geodesic property of text lines crossing two neighboring strips: The text lines

on two neighboring strips form two different angles with the 3D ruling that

separates the strips. After unwarping, the angles do not change. If the text

line is straight in the unwarped image, the sum of the two angles must be π.

We use µ3 =
∑

i((Ti+1 − Ti)
>Ri)

2 to measure this straightness, and ideally

µ3 = 0.

• Orthogonality between text line direction and vertical stroke direction: The
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orthogonality can be measured by µ4 =
∑

i

∑
j |T>

ij Bij|2, which in the idea case

should be zero.

In our experiments, we embedded two additional constraints:

• Smoothness: We use µ5 =
∑

i |∆Ni|2 to measure the surface smoothness.

A large value indicates abrupt changes in normals of neighboring strips and,

therefore, should be penalized.

• Unit length: Each normal should be of unit length. We measure this by

µ6 =
∑

i(1− |Ni|)2.

The overall optimization objective function is the weighted sum of all con-

straint measurements,

F (X) =
6∑

i=1

αiµi

where X represents all normals and the focal length f , and αi are weights.

Notice that f affects the line-of-sight vectors, which contributes to the objective

function through Eq. 3.8.

Overall, given {ri}, {tij} and {bij}, the objective function is fully determined

by the unknown {Ni} and f . The optimal set of {N∗
i } and f ∗ should minimize F .

A good initial value of X is essential for optimizing this highly non-linear

objective function. Such initial values can be obtained using the estimated vanishing

points of rulings. These vanishing points, when given the focal length, determine

the direction of 3D rulings. Since surface normals are orthogonal to 3D rulings,

this eliminates one degree of freedom from the unknown normals. The remaining
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degree of freedom allows a normal to rotate inside the plane orthogonal to the

ruling. So, a set of rotation angles determines the objective function. Furthermore,

the computation of the objective function involves either each individual normal

(in µ2, µ4, µ6), or two neighboring normals (in µ1, µ3, µ5). Therefore, we can use

a dynamic programming search to find the set of rotation angles that gives the

minimum objective function output.

The focal length is not covered by the dynamic programming search, however,

as it is independent of the surface normals. We have to perform an exhaustive

search for the initial focal length. More specifically, we select a set of possible focal

lengths constrained by the physical lens specification and, for each value, we find

the ‘best’ surface normals and compute the objective function. We fit a third-order

polynomial curve to the objective function values vs. the focal lengths and find the

best initial focal length f 0 at the minimum of the curve. Then, we compute the

best initial normals {N0}, using f 0.

Our non-linear optimization module derives from a subspace trust region

method based on the interior-reflective Newton method described in [16, 15]. Each

iteration involves the approximate solution of a large linear system using the method

of preconditioned conjugate gradients.

After we have estimated the surface normals and focal length, we can select an

arbitrary depth for one of the 3D reference point (which determines the depths of

all other reference points) and fully determine the depths of all planar strips. In the

rectification process, these planar strips are rectified piece by piece using the method

we develop for planar document pages. We can arbitrarily scale the final image by
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modifying the strips’ rectification matrices, so the depth value is not critical.

3.3.6 Frontal-flat view restoration

We use Eq. 3.4 in Section 3.2.4 to remove the perspective distortion of each planar

strip that approximates the curved document page. Let us repeat Eq. 3.4 here:

H = K

(
Vh Vv W

)


1 0 −x0

0 1 −y0

0 0 1


.

The matrix K is determined by focal length f . For the i-th strip, we substitute

Ti for Vh, and Bi for Vv. We need to compute W, the 3D reference point position

on the strip, and (x0, y0), the position of the reference point in the final image. We

denote them as Pi and (xi, yi).

Suppose H−1
i−1 is the rectification matrix for (i − 1)-th strip. We map the 2D

reference point pi = (x′i, y
′
i) to the destination image using H−1

i−1, and that position

is (xi, yi).

We know Pi and Pi−1 are both on the (i − 1)-th strip, so (Pi − Pi−1) is

perpendicular to the normal of (i − 1)-th strip, i.e., N>
i−1(Pi − Pi−1) = 0. Let

Pi = (X, Y, Z)>, then Eq. 3.3 produces
fX − x′iZ = 0

fY − y′iZ = 0

,

where (x′i, y
′
i) is the image of Pi in the image plane. After some manipulation we

obtain

78





N>
i−1

f 0 −x′i

0 f −y′i


Pi =



N>
i−1Pi−1

0

0


.

which computes Pi using the information of (i− 1)-th strip.

In summary, we start by setting P1 = (x′1, y
′
1, f)> and (x1, y1) = (0, 0), then

compute H1. We use P1 and H1 to compute P2 and H2, so on and so forth.

Eventually, all planar strips are rectified.

However, the perspective-free planar strips will not fit perfectly to form the

flat document we want. First, if the surface happens to be formed by a family

of tangents to a twisted 3D curve, planar strip approximation is not seamless (see

Section 3.3.2). Second, and more likely, the noise and error in the data cause

conflicts among the constraints that govern the shape optimization process, so the

planar strips are not seamless. Whatever reason, the seams between neighboring

strips cause discontinuity along their borders in the rectified image. We need to

merge those strips to produce a seamless document.

Let us first define a few more variables (see Figure 3.13):

• {ri}L+1
i=1 : 2D rulings.

• {si}Li=1: strips in the original image separated by 2D rulings.

• {H−1
i }Li=1: homography rectification matrices for planar strips.

• {s′i}Li=1: rectified strips in the destination image.
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Figure 3.13: Computing the target grid points for seamless morphing.

• {Cj}Jj=1: a group of curves following major texture flow in the original image.

• {C′j}Jj=1: C ′j = ∪L
i=1C ′ij, rectification of {Cj}Jj=1 in the destination image, where

C ′ij = Hi(Cj ∩ si) is the section in s′i.

• pij: intersection points of Cj and ri.

• q+
ij and q−ij : pij

H−1

i−1−→ q−ij , pij
H−1

i−→ q+
ij .

• y−ij and y+
ij : y-coordinates of q−ij and q+

ij .

• ȳj = (
∑

i(y
−
ij + y+

ij))/(2L): mean value of {q−ij}Li=1 ∪ {q+
ij}Li=1.

Ideally, Cj should be mapped to a straight horizontal line in the destination

image, which means q−ij and q+
ij coincide, and y±ij is constant, ∀i, j. However, due to

imperfections in shape estimation, C ′j usually is not straight, nor horizontal, and is

broken. We correct this problem by dividing each strip into small pieces, and for
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Figure 3.14: Computing the affine transform for triangular patches.

each piece we compute a rectification transformation. This step amounts to local

morphing on top of the planar strip rectification. The control points in the original

image are qij, which lie on Cj. Their corresponding points ({qij}) in the destination

image should satisfy the continuity, straightness and horizontal properties of C ′j.

Therefore, we set qij to the intersections of line y = ȳj and line q−ijq
+
ij .

In the original image, we construct two triangles based on four neighboring

points, i.e., 4(qijqi+1jqij+1) and4(qi+1j+1qi+1jqij+1). The four points have q̄ij, q̄i+1j,

q̄ij+1, q̄i+1j+1 as their target positions. For each triangle, we compute an affine

transformation to map its vertices to the targets (see Figure 3.14). After the triangle

based adjustment, we obtain a seamless document (see Figure 3.15).

Figures 3.16 and 3.17 compare camera-captured images of curved documents

(both synthetic and real) and their rectified counterparts. Overall, the rectified

images are close to the frontal-flat view of the documents, despite some imperfection

near text boundaries.
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(a) (b) (c)

Figure 3.15: Post-processing flattened strips to obtain seamless document image.

(a) 2D rulings found for a document. (b) Piecewise rectification result. Note the

gap and discontinuous text lines. (c) After post-processing, the document image is

seamless.
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Figure 3.16: Comparison of synthetic images of curved documents and rectification

results.
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Figure 3.17: Comparison of images of real curved documents and rectification re-

sults.
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3.4 Evaluation

3.4.1 Evaluation methodology

We evaluate the performance of image rectification using synthetic images. We

benchmark the quality of the rectified image by OCR rates, i.e., we compare the

OCR rates obtained from the original image with the rectified one. Ultimately, our

algorithms are designed for document analysis, thus OCR rates can be viewed as

the most important performance index. We compute both character recognition

score (CRS) and word recognition rate (WRR) using the OCR ground-truthing

tool described in [80]. Both CRS and WRR are percentage numbers, where 100%

means perfect recognition, and 0% means complete failure. CRS is computed using

the shortest editor’s distance measure, which essentially finds the best approximate

match between two text strings. WRR provides the actual percentage of words with

all characters correctly recognized.

With synthetic images, we can also compare the estimated 2D and 3D rulings,

focal length, and surface normals to the ground truth data used or generated by the

synthesis module (see Appendix A). Section 2.4 describes our synthetic data.

Given 2D rulings and surface normals as directional values, we measure their

precisions by the average direction error which is an angle. Such measurements are

independent of image scales. However, the coordinates of vanishing points in the

image plane and focal length are both metric values dependent on the image scale.

If we compare the estimates with ground truth directly, the difference will be scale

dependent, too. A good benchmark should be independent of the image scale.
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First, we notice that the rays from the optical center to the vanishing points

of rulings are parallel to the 3D rulings, so the precision of vanishing points can be

equivalently measured by the corresponding 3D ruling direction. To position the

optical center with respect to the image plane, we assume perfect knowledge of the

focal length. The 3D ruling direction error does not solely originate from the CBPP-

based estimation of vanishing points along 2D rulings; it also derives partially from

the error in 2D ruling estimation.

Second, we benchmark the focal length estimation in a similar way. We take

a reference point in the image and compare two rays from this point to the optical

centers given by the correct focal length and the estimated value, respectively, which

provides an error angle. This measurement is scale independent unless the reference

point is at the principal point (under our assumption, the image center), in which

case the error angle is always zero. In our test, we choose one image corner — all

corner produces equivalent result if the principal point coincides the image center

— so the angle between the ray and the optical axis has the physical interpretation

of being half of the field of view. By this interpretation, the error in field of view

measures the focal length accuracy.

Having argued for scale independent benchmarks, we also acknowledge image

size and resolution have an important impact on the performance of our algorithms.

In particular, high resolution benefits the minor texture flow estimation, which, in

turn, has an impact on shape estimation, which a completely scale independent

benchmark should take into account. One solution is to control the precision of the

texture flow — by adding noise to ground truth, for example.
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In our tests, the sizes and resolutions of synthetic images do not vary exces-

sively. We did not observe large variances in texture flow precision, either. There-

fore, we settle with the semi scale-independent benchmarks, as described above.

3.4.2 Performance of shape estimation

All 60 synthetic images of planar documents are correctly classified as ‘planar’ by

our system. Table 3.1 summarizes the evaluation results in the same format as

Table 2.1, i.e., the first row shows the overall averaged performance and standard

variations, while the other rows illustrate results of controlled groups. We have three

major groups exploring the effects of document content, page pose, and skew angles,

each having several sub-groups. All numbers are in degrees. In average, the field of

view error is 3.30 degrees, while the plane-normal error is 2.40 degrees. Considering

we do not require any camera calibration as input, such shape estimation results

exceeds expectation.

In general, we do not notice significant variation in the precisions of field of

view and plane normal among different sub-groups for each major group, except for

the sub-group Pose no. 1, Pose no. 2 and -15◦ skew. Examination of the test

images reveals the combination of these poses and skew results in images where text

lines are (almost) parallel (for example, see the right-most image in Figure 2.5(c)),

one of the configurations where the focal length cannot be (accurately) estimated.

All the 120 synthetic images of curved documents are correctly classified as

‘curved’ by our system. Table 3.2 and Table 3.3 summarize the performance of
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(mean/std)×1◦ Field-of-view Plane normal

All 3.30/3.63 2.40/3.01

Page 1 2.93/2.75 2.28/1.98

Page 2 2.00/1.25 1.34/0.93

Page 3 2.88/2.43 1.80/1.54

Page 4 4.81/5.84 3.66/5.58

Page 5 3.86/4.07 2.92/2.58

Pose no.1 5.06/3.07 3.69/2.30

Pose no.2 4.39/5.70 3.14/5.00

Pose no.3 2.01/0.88 1.39/0.68

Pose no.4 1.73/1.97 1.38/1.70

0◦ skew 2.22/1.71 1.61/1.36

15◦ skew 2.16/1.55 1.57/0.86

−15◦ skew 5.51/5.28 4.01/4.63

Table 3.1: Evaluation of shape estimation for synthetic planar document images.
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shape estimation, including 2D and 3D rulings, field of view and surface normals.

The data in Table 3.2 show good performance in 2D and 3D ruling direction

estimation and no significant difference within the major groups, except among

three skew angles. As the absolute skew angle increases, we could expect a drop in

2D ruling estimation precision. Consider the extreme case where skew angle is 90◦

so the major texture flow becomes parallel to the rulings (i.e., cylinder generatrix,

in our context). In this case, any 2D major texture flow vectors in the document

converge, so we cannot identify correct 2D rulings using the major texture flow.

Instead, we should use the minor texture flow.

Ideally, the skew angle should be first estimated — locally we can define the

skew angle as the angle between 3D major texture flow and 3D rulings — then, if

it is small, we should use the major texture flow to estimate 2D rulings. Otherwise,

we use the minor texture flow. However, this creates a dead lock since we could not

find 3D rulings unless we have 2D rulings. In practice, usually the skew angle is not

excessive, and because the major texture flow shows higher precision in estimation

(shown in Table 2.1 and 2.2), we choose to use the major texture flow in all cases.

We notice 3D ruling errors are consistently greater than 2D ruling errors.

Because 2D angles are the projection of 3D angles onto the image plane, thus they

are always smaller than their 3D counterparts.

In Table 3.3, we note good overall performance in terms of field of view and

surface normals, which are 3.08 degrees and 2.44 degrees, respectively, in average

after the optimization process. The surface normals receive a larger improvement

compared to the initial estimation than field of view estimations, because the opti-
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(mean/std)×1◦ 2D ruling 3D ruling

All 1.82/1.26 2.91/1.88

Page 1 2.35/1.46 3.22/1.82

Page 2 1.58/1.06 2.17/1.31

Page 3 1.44/0.76 2.80/1.15

Page 4 1.92/1.48 3.33/3.03

Page 5 1.76/1.27 2.99/1.28

Pose no.1 2.11/1.36 2.95/1.71

Pose no.2 0.91/0.60 1.72/1.03

Pose no.3 2.20/1.27 3.71/2.48

Pose no.4 2.09/1.27 3.22/1.41

0◦ skew 0.90/0.47 1.80/0.87

15◦ skew 2.14/1.07 3.49/2.22

−15◦ skew 2.42/1.50 3.41/1.76

Table 3.2: Evaluation of 2D and 3D ruling estimation for synthetic images of curved

document.
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mization constraints can effectively decrease the excessive errors (if any) in planar

strip normals using the good neighboring strip normals. The focal length is opti-

mized in a global sense, so the optimization effect is not as significant.

(mean/std)×1◦ Initial estimation Optimized estimation

Field-of-view Surface normal Field-of-view Surface normal

All 3.21/3.42 3.90/2.68 3.08/3.41 2.44/2.72

Page 1 3.18/3.45 3.97/1.93 3.02/3.52 2.21/1.04

Page 2 3.73/3.69 3.22/1.52 3.40/3.68 2.06/0.85

Page 3 2.52/2.82 3.47/1.20 2.57/2.80 2.18/0.72

Page 4 3.18/3.37 4.02/2.48 3.33/3.35 2.50/1.19

Page 5 3.43/3.88 4.82/4.82 3.09/3.89 3.29/5.98

Pose no.1 5.72/4.32 3.73/1.43 5.65/4.42 2.45/1.17

Pose no.2 3.08/2.43 3.68/1.91 2.93/2.48 2.10/0.73

Pose no.3 2.39/2.50 4.39/2.41 2.02/2.07 1.83/0.78

Pose no.4 2.22/3.45 3.74/4.03 2.32/3.54 3.36/4.97

0◦ skew 2.17/2.15 2.63/1.76 2.18/2.14 1.81/0.54

15◦ skew 3.29/4.33 5.09/3.44 3.15/4.35 2.91/4.40

−15◦ skew 4.20/3.09 3.87/1.78 3.96/3.13 2.56/0.94

Table 3.3: Evaluation of shape estimation for synthetic images of curved documents.

To investigate the relationship between shape properties and the estimation

accuracy, we design two experiments. In the first, we fix the pose, and use seven
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shapes with similar appearance but different curvature (see Figure 3.18). Each shape

is combined with the five document pages, resulting in 35 total images. Table 3.4

summarizes the accuracies of texture flow and ruling estimation, while Table 3.5

shows shape estimation performance. In the second experiment, we fix the shape

and use seven different poses (see Figure 3.19). The results are summarized in

Tables 3.6 and 3.7.

Not surprisingly, both the increases in surface curvature and tilt angle increase

the difficulty of estimating texture flow, ruling, field of view, and surface normal.

Especially with the last two, most curved, and most tilted documents, almost all

benchmarks drop sharply. In practice, however, it is rare to have images containing

documents as curved or tilted as these. The results of our algorithms are reasonable

for practical purposes. We also observe that the precision of surface normal is more

closely related, than the precision of field of view, to the error in texture flow and

rulings. Field of view is a global parameter, thus its dependency on local estimates

of texture flow and rulings are not as direct as surface normals.
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(mean/std)×1◦ Major texture flow Minor texture flow 2D ruling 3D ruling

Shape no.1 0.41/0.02 1.09/0.20 2.06/0.80 2.28/0.72

Shape no.2 0.52/0.03 1.10/0.16 2.15/1.10 2.48/0.79

Shape no.3 0.62/0.04 1.02/0.12 2.09/0.70 2.46/0.60

Shape no.4 0.72/0.03 1.02/0.13 1.83/0.93 2.06/0.72

Shape no.5 0.89/0.12 1.27/0.78 1.79/0.34 2.22/0.67

Shape no.6 1.47/0.74 1.15/0.38 3.59/1.33 4.10/1.20

Shape no.7 1.72/0.28 1.26/0.51 5.04/1.87 10.98/4.82

Table 3.4: Effects of varying surface curvature on texture flow and ruling estimation.

3.4.3 OCR performance on rectified images

Qualitatively, we observe visually satisfactory results in rectified images in Fig-

ures 3.3, 3.4, 3.5, 3.16, and 3.17. Quantitatively, we measure image quality by

the OCR results. That is, we compare the OCR rates on original images to those

obtained from rectified images. We extract the text from the PDF files as ground

truth.

Table 3.8 summarizes the OCR evaluation results on synthetic planar doc-

ument images and rectification output. Overall, they demonstrate significant im-

provements in both character recognition score (CRS) and word recognition rate

(WRR). The average CRS and WRR (97.08% and 95.91%) of rectified images come

close to the state-of-the-art OCR rate on high quality scans (which is usually above
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(mean/std)×1◦ Initial estimation Optimized estimation

Field-of-view Surface normal Field-of-view Surface normal

Shape no.1 1.09/1.18 1.49/0.21 0.98/1.25 1.06/0.14

Shape no.2 1.53/0.64 1.76/0.37 1.40/0.65 1.34/0.31

Shape no.3 1.71/0.76 1.98/0.58 1.33/0.92 1.57/0.22

Shape no.4 1.47/0.64 2.25/0.56 1.23/0.76 1.43/0.20

Shape no.5 1.02/0.40 3.33/0.97 0.61/0.20 1.86/0.62

Shape no.6 1.40/0.60 4.84/2.90 1.43/0.55 2.52/1.33

Shape no.7 1.39/1.66 6.45/4.49 1.10/1.17 4.65/2.61

Table 3.5: Effects of varying surface curvature on shape estimation.

(mean/std)×1◦ Major texture flow Minor texture flow 2D ruling 3D ruling

Pose no.1 0.62/0.04 0.61/0.07 1.48/0.59 3.74/4.39

Pose no.2 0.69/0.04 1.01/0.69 1.64/0.77 2.20/0.78

Pose no.3 0.70/0.03 0.90/0.13 1.91/0.54 2.26/0.58

Pose no.4 0.68/0.03 1.05/0.07 2.63/1.33 2.74/0.99

Pose no.5 0.75/0.05 1.16/0.09 2.73/1.24 2.66/0.89

Pose no.6 1.19/0.86 2.17/1.97 2.77/1.24 3.28/2.11

Pose no.7 4.05/3.25 2.00/0.80 4.79/2.03 4.32/2.06

Table 3.6: Effects of varying tilt angles on texture flow and ruling estimation.
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(mean/std)×1◦ Initial estimation Optimized estimation

Field-of-view Surface normal Field-of-view Surface normal

Pose no.1 0.74/0.82 2.28/0.45 0.67/0.79 1.55/0.18

Pose no.2 1.48/0.72 3.28/1.47 1.62/1.22 2.00/0.65

Pose no.3 1.13/0.75 2.37/0.77 0.87/0.77 1.66/0.26

Pose no.4 1.14/0.92 2.09/0.56 0.92/0.68 1.54/0.10

Pose no.5 1.70/0.49 2.71/1.16 1.73/0.57 1.56/0.38

Pose no.6 4.62/4.88 4.47/2.26 4.15/5.00 3.09/2.85

Pose no.7 7.92/3.91 6.09/2.44 7.66/4.07 3.78/2.53

Table 3.7: Effects of varying tilt angles on shape estimation.

99%). The small gap from 99% can be explained partially by the fact two of the

five pages contain mathematical formulas, and all of them possess mathematical

symbols in the text, which poses difficulties for OCR engines.

Table 3.9 shows the same level of improvement for curved pages. Compared to

Table 3.8, the additional curvature in shape costs the average CRS and WRR scores

approximately 10%. We observe most OCR errors occur near text area boundaries

where the texture flow estimation is prone to errors due to the lower percentage of

text in the neighborhood. For planar pages, this poses less a problem because the

shape computation has only one global surface normal to estimate, thus some local

errors are acceptable. For curved documents, such errors carry into the estimated

local orientation, thus appearing in the rectified image, and affecting OCR.
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(mean/std)×1% Original image Rectified image

CRS WRR CRS WRR

All 26.14/36.14 22.92/34.24 97.08/3.55 95.91/3.80

Page 1 29.14/35.32 23.99/34.21 96.28/6.14 96.70/3.07

Page 2 24.32/39.06 22.41/37.31 98.63/1.22 98.24/1.81

Page 3 24.56/38.85 23.25/37.11 96.31/3.09 94.50/3.09

Page 4 28.57/36.34 24.18/34.74 96.77/2.41 95.19/3.19

Page 5 24.11/37.08 20.79/33.67 97.43/3.00 94.92/5.87

Pose no.1 33.11/45.12 29.90/42.75 95.86/5.79 96.27/2.25

Pose no.2 31.99/46.83 30.74/45.13 97.81/1.33 96.28/2.31

Pose no.3 34.02/23.49 28.17/21.41 98.26/1.15 97.08/1.94

Pose no.4 5.44/10.43 2.89/6.39 96.41/3.53 94.01/6.40

0◦ skew 10.68/17.55 8.39/14.66 99.28/0.65 98.57/1.29

15◦ skew 17.73/25.22 14.51/22.07 95.76/4.86 95.69/2.03

−15◦ skew 50.02/46.75 45.86/45.70 96.21/2.73 93.47/5.01

Table 3.8: OCR evaluation of planar pages using character recognition scores (CRS)

and word recognition rates (WRR).
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(mean/std)×1% Original image Rectified image

CRS WRR CRS WRR

All 23.05/19.52 14.29/16.52 87.64/25.38 83.83/24.75

Page 1 24.18/19.94 15.09/17.06 95.92/2.95 92.59/4.61

Page 2 23.90/20.67 15.24/17.34 88.21/27.40 86.04/27.00

Page 3 21.76/19.18 13.75/16.44 86.60/26.80 81.94/25.67

Page 4 24.75/20.01 15.48/16.74 85.86/26.70 82.34/25.91

Page 5 20.66/19.14 11.87/16.13 81.60/32.04 76.22/30.61

Pose no.1 22.02/14.66 11.82/9.98 82.09/30.39 77.41/29.08

Pose no.2 29.88/27.58 21.83/25.45 92.26/17.66 88.55/17.40

Pose no.3 29.17/17.00 18.52/12.87 95.94/2.76 92.67/4.38

Pose no.4 11.71/12.45 6.00/7.26 91.76/18.08 87.70/18.44

0◦ skew 22.05/13.69 11.20/11.59 89.84/26.07 87.78/25.68

15◦ skew 19.10/16.44 10.27/10.06 93.12/4.35 87.75/6.54

−15◦ skew 28.00/25.75 21.40/22.78 79.95/34.21 75.95/32.74

Table 3.9: OCR evaluation of curved pages using character recognition scores (CRS)

and word recognition rates (WRR)
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3.5 Discussion

Our algorithms for geometric rectification of camera-captured document images

work with both planar and curved documents. The evaluation results in the last

section show satisfactory accuracy in shape estimation. The OCR performance tests

indicate the rectified images are significantly more OCR compatible than the original

images. Our method has potential usage in all camera-oriented OCR applications,

such as text-to-voice input for the visually impaired, outdoor document archiving,

digitizing fragile manuscripts for digital libraries, etc.

Our rectification method does not specify how to determine weighting co-

efficients used in shape optimization. Experiments with different values show no

significant difference in the results. We find the relative order of magnitudes impor-

tant, not the actual coefficient values. Given sufficient training data, it is possible to

optimize these coefficients. However, this dissertation does not cover this subject.
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Chapter 4

Mosaicing of Camera-captured Document Images

4.1 Motivation and related work

Digital image mosaicing has been studied for several decades, starting from the mo-

saicing of aerial and satellite pictures, now expanding into the consumer market for

panoramic picture generation. Its success depends on two key components: image

registration and image blending. The first aims at finding the geometric relation-

ship between the to-be-mosaiced images, while the latter concerns the creation of a

seamless composition.

Many researchers have developed techniques for the special case of document

image mosaicing [31, 46, 50, 61, 72, 76]. Their basic idea involves creating a full view

of a document page, often too large to capture during a single scan or in a single

frame by stitching together many small patches. If the small images are obtained

through flatbed scanners [31, 61], image registration is somewhat easier because

the overlapping part of two images differ only by a 2D Euclidean transformation.

However, if the images are captured by cameras, the overlapping images differ by

a projective transformation. Virtually all reported work of which we are aware on

document mosaicing using cameras imposes some restrictions on the camera position

to avoid perspective distortion. Some simply require the user to point the camera

straight at the document page [46, 72]. Others require hardware support. Nakao
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et al [50] attach a video camera to a mouse, facing down at the document page.

While a user drags the mouse across the page, a sequence of pictures are taken and

registered pairwise with the help of mouse movement. In [76] a overhead camera

is fixed facing down while the document moves on the desktop. Hardware support

reduces projective transformations to Euclidean transformations. However, it also

counters the convenience, flexibility, and portability of cameras.

Our goal is to remove the constraints on camera position and motion such

that users can take pictures of a document from any position without requirement

of special hardware. Figure 4.1 shows two image patches of a document captured by

a camera. Due to unconstrained camera zooming and positions, these two images

differ greatly in perspective, resolution, brightness, contrast, and sharpness. Al-

though many methods have been proposed for image registration ([60, 34], to name

a few), the images in Figure 4.1 still present great challenges because of large dis-

placement, small overlapping area (∼ 10%), significant perspective distortion, and

periodicity of printed text which presents indistinguishable texture patterns every-

where. The Fourier-Mellin registration method [60] does not succeed. We also tried

robust estimators (RANSAC and graduated assignment [23]) with a feature points

detector (PCA-SIFT [34]), which failed because the periodicity of text leads to a

large number of outliers (up to 90%) in feature point matches (see Figure 4.2).

With respect to image blending, Figure 4.3 reveals three possible problems that

have not been well addressed. First, the lighting is inconsistent between two images,

a common result of consumer grade cameras with inaccurate auto-exposure metering

and on-camera flash. Conventional blending computes the weighted average in an
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Figure 4.1: Two examples of image patches for mosaicing.
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Figure 4.2: Matching points found by PCA-SIFT between two image patches.
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overlapped area, i.e., f = a1f1 + a2f2, where f1 and f2 are pixel values from two

images, a1 and a2 are two weights that sum to 1. By varying the weights, one

achieves a gradual transition from one image to another across the overlapping

area. Other more sophisticated methods exist, which are essentially variations of

weighted averaging [6]. Though averaging may work for general images, they are

not optimized for document images.

First, averaging methods treat only the overlapping area. They do not ad-

dress the overall uneven lighting across images. Second, registration may have

errors. In mis-registered areas, weighted averaging would result in double or so-

called ‘ghost’ images. Third, two images may have different sharpness because of

different resolution, noise level, zooming, out-of-focus blur, motion blur, or lighting

change. Weighted averaging essentially reduces the sharpness of the sharper image

by blending a blurred image into it. Figure 4.3(c) through (h) show the shortcomings

of averaging method. For general scenery or portrait images, a certain amount of

lighting variation and blurring is acceptable and ’ghost’ can be softened by blurring.

However, for document images, viewers and OCR packages expect sharp contrast be-

tween text and background and a minimum lighting variation. Therefore, blending

does not present the best way of creating document mosaics.

4.2 System overview

Our proposed registration method for two overlapping views consists of two steps.

First, we remove perspective distortion and rotation of individual views using text
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(a) (b)

(e)

(f)

(c) (g)

(d) (h)

Figure 4.3: Challenges for blending of camera-captured document images. (a,b) Rec-

tified images. (c) Mosaicing using weighted averaging. (d) ‘Ghost’ image due to

mis-registration. (e) Small portion of (a). (f) Small portion of (b). (g) Weighted

averaging result of (e) and (f) extracted from (c). (h) Result of our selective image

blending method.
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lines and vertical character strokes detected in document images. This step removes

perspective foreshortening and rotation and leaves only a translation and a scaling

between the two views. Then, we find feature point matches between views using

PCA-SIFT. Although outliers still dominate, we can filter them out efficiently using

a voting mechanism similar to Hough transform. After refining the transformation

with cross-correlation block matching results we obtain an accurate registration

result.

We treat the inconsistency of lighting by localized histogram normalization,

which balances the brightness and contrast across two images as well as within

each. Then, in the overlapped area, we perform a component level selective image

composition, which preserves the sharpness of the printed markings, and ensures a

smooth transition near the overlapping area border.

Overall, Figure 4.4 illustrates the system work flow.

4.3 Image registration

After rectifying the image patches, they ideally should be free of perspective distor-

tion, and the overlapping portion of a pair of images should differ only by translation

and scale. However, the problems of small overlapping area, large displacement, and

periodicity of texture still prevent common registration methods from succeeding.

For example, the Fourier-Mellin method still fails and PCA-SIFT still generates

many false matches (see Figure 4.5) that defeat graduated assignment and make

RANSAC impractical. Our solution filters out the outliers in matches using a vot-
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Through Image Rectification

Balancing Uneven Lighting
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Figure 4.4: Work flow of document mosaicing
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ing technique in the spirit of Hough transform, and uses the good matches to register

the two images.

First, let us assume the scale is known. Suppose two images (called A and

B) are placed within the same coordinate system after proper scaling, and the true

translation of image B with respect to image A is (x0, y0). Let {pi}Ni=1 be the

feature points in image A, and {qi}Ni=1 be the matched points in image B. If pi and

qi are a correct match, we have qi − pi = (x0, y0), and inequality otherwise. We

compute all the displacements between matched points, i.e., let qi − pi = (xi, yi).

We have (xj, yj) = (xk, yk) (we say that they are compatible), where j and k denote

any two correct matches. In the meantime, the probability of (xs, ys) = (xt, yt),

where either s or t denotes an incorrect match, is extremely low assuming incorrect

matches are randomly distributed across the image. We group the matches with

equal displacement (within a certain quantization bound) into compatible groups.

Ideally, all correct matches are assigned to one group, while each incorrect match

constitutes a group of its own. Hence, the correct matches are the matches in the

largest group, and their displacements represent the correct translation. In practice,

due to the quantization in compatibility test, some incorrect matches that are similar

may be placed in one group. Even so, the sizes of such groups are highly unlikely

to surpass the size of the group of correct matches.

If the scale is imperfect, the compatibility among correct matches will degrade.

A small scale error can be contained by the quantization in compatibility test. As

the error increases, the group of correct matches will eventually split. Given a

completely incorrect scale, the displacement distribution of correct matches will
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Figure 4.5: Matches found by PCA-SIFT on the rectified images are dominated by

outliers.
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be as random as incorrect matches, so the largest compatible group will split into

single-match groups. In summary, the largest compatible group appears when the

scale is correct.

Based on the above analysis, searching for the largest compatible group of

matches can simultaneously solve the problems of finding 1) the correct matches,

2) the correct scale, and 3) the correct translation between two images. The specific

procedure is as follows:

1. For every scale s in a range, construct the compatible groups and let g(s) be

the largest.

2. Select s∗ which maximize |g(s)| and s∗ is the correct scale.

3. Find all matches in g(s∗), compute the mean of their displacements, which is

the correct translation.

For a given scale, we use a 2D histogram of the match displacements to find

the compatible groups. We divide the 2D displacement space into bins, and the

displacement of each match falls in one bin. To address quantization error at bin

boundaries, we smooth the 2D histogram by a 3×3 averaging kernel. Then, the bin

with the most votes is the largest compatible group. The optimal bin size should be

proportional to the average position error of the correctly matched feature points.

In practice, we find it not critical. We use 1/20 of the image diagonal length as the

bin size.

Figure 4.6 shows the sizes of the first and second largest compatible groups

found in 2D histograms for different scales. We use PCA-SIFT to find the matches
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between the two images in Figure 4.3(a)(b). The highest peak in the solid curve

identifies the correct scale. At the correct scale, the second largest group (only

three votes) is much smaller than the largest group (12 votes). This shows good

aggregation of correct matches. After examination, we found the second largest

group resides in a neighboring bin of the largest group, and the three matches are

approximately correct. These two groups would merge if the bin size is increased.

With different bin sizes we obtain curves slightly different from those in Figure 4.6.

The correct scale is always found.

The figure also shows that when the scale rests slightly larger than the best

value, the solid curve drops while the dotted line climbs. This means some matches

in the largest group shift to the second largest group in the neighboring bin. This

confirms the largest group splits when the scale is not perfect. When the scale differs

significantly from the best value, either to the left of right, the solid curve drops

to two and the dotted curve stays at one. The largest group keeps two matches

because PCA-SIFT repeated a pair of matched points in its output.

Given the best scale, we use the corresponding 2D histogram to find the

matches aggregated in the largest group at this scale. Figure 4.7 shows the cor-

rect and incorrect matches.

Using the correct matches, we compute an initial projective transformation

between the two images and map one into the other, as shown in Figure 4.8(a).

Because good matches tend to reside near the overlapped region’s center, the reg-

istration is inaccurate near the border. We further refine the registration using

cross-correlation block matching. This results in a dense and accurate matched
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Figure 4.6: 2D histogram peak values vs. scales

point set covering the whole overlapped area, which generates a refined projective

transformation (see Figure 4.8(b)).

4.4 Seamless composition

As stated in the introduction, three difficulties arise in creating a seamless docu-

ment mosaic. The first occurs because of inconsistent lighting across two images.

Documents are fundamentally binary with black print on white paper, and viewers’

eyes are sensitive to varying shades in documents. Typically, the histogram of a

document image is bimodal. Different lighting conditions cause the two modes to

shift. One way of balancing the lighting across two document images involves bina-

rizing both images. However, binarization introduces artifacts. Instead, we choose
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Figure 4.7: Correct (left) and incorrect (right) matches found by registration in the

PCA-SIFT result.
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(a) (b)

Figure 4.8: Image registration results. (a) Registration by correct PCA-SIFT

matches shows misalignment around border area. Squares and crosses indicate the

matched points. (b) Registration by block matching results is very accurate.
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localized histogram normalization. Essentially, we normalize the histogram of a

small neighborhood so the two modes shift to black and white (or deep dark and

light gray), respectively. Histogram normalization preserves the transition between

background and foreground, resulting in more pleasant text images for viewers (see

Figure 4.9).

The second problem is registration error, and the third is different sharpness

of patch images. We solve both with selective image composition, i.e., each pixel in

the result is chosen from the image with the best sharpness. We measure sharpness

in an image by the local average of gradient magnitudes. The index of the chosen

image of a pixel is called this pixel’s decision.

The pixel-level decisions can be represented by a map in which the same de-

cisions are grouped into regions. The boundaries of decision regions may intersect

characters and words. So, if we apply pixel-level decisions directly, some characters

or words may consist of pieces with different sharpness chosen from different images,

which is not desirable. Furthermore, mis-registration tends to break decision regions

into small pieces, resulting in ‘ghost’ images.

Therefore we aggregate the pixel-level decisions at the word level. More specif-

ically, we compose an averaging image for the overlapped area, binarize it, dilate

the foreground, and find connected components. The dilation has two effects. First,

areas that may contain ‘ghost’ images are merged into the nearest component. Sec-

ond, dilation kernel’s width exceeds its height, so components in a word more likely

merge than components from upper or lower text lines. As a result, most connected

components contain a word. All the pixels inside a connected component vote with
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(a) (b)

(c) (d)

Figure 4.9: Results of localized histogram normalization. (a,c) Before. (b,d) After.
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their pixel-level decision, and the majority vote comprises the component decision.

The entire component is chosen from the corresponding image. This process en-

sures ‘ghost’ images are eliminated and words do not consist various sharpness. For

background areas, the variation of sharpness is not visible, so we use the pixel-level

decisions directly.

Figure 4.10 illustrates the process of selective image composition and the re-

sults. Figure 4.10(a) shows most components consist of a single word. In Fig-

ure 4.10(b), light gray and dark gray represent two component-level decision values.

The straight arrows indicate words that initially cross boundaries of pixel-level de-

cision regions. They are not broken by component-level decision regions.

Words may still be broken, not by the decision regions, but by the boundaries

of the overlapping area. The curve arrows point to two words in this case. It can

be treated by overriding the component-level decision if a connected component is

fully contained in only one image.

In the background area, the pixel-level decisions result in a large light gray

region embedded in dark gray area. This does not create visible difference in the

final image because the variation of sharpness in background is small.

In Figure 4.10, the comparison between (c) and (d) shows our approach pre-

serves the sharpness. In Figure 4.10(e), the overlapping area boundary is visible. It

is eliminated in Figure 4.10(f).

117



(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Selective image composition. (a) Connected component are represented

by white. The overlapping area is represented by light gray. (b) The binary selection

decision map distinguished by dark and light gray. (c,e) Weighted averaging result.

(d,f) Selective image composition result.
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4.5 Experimental results

In the first experiment, we took four pictures of a document. Each picture covers

roughly 1/4 of the page. After geometric rectification, we select one as the base

image, and one by one mosaic the other three onto the base image. Figure 4.11

shows the four original images and the mosaicing result. In the second test, we

produced a full page mosaic from eight images (see Figure 4.12). In both tests, we

experimented with different base images and different orders of adding the remaining

images. Because the geometric rectification is not error free, the rectified images

differ slightly by projective transformations. Therefore, the mosaics using different

base images differ slightly from each other, too. The order for adding images has

no visible effect. Both Figure 4.11 and Figure 4.12 show accurate registration and

seamless composition.

4.6 Discussion

A novel method for mosaicing camera-captured document images is presented in

this chapter. Our method makes use of a geometric rectification algorithm, which

simplifies the image registration problem to the search of an unknown scale and

translation. We find candidate correspondent points in image pairs and apply a

grouping technique in the spirit of Hough transform to remove the outliers, which

typically are over 90%. Our selective image composition approach eliminates double

image defects and blurring in the composite image. Handheld devices are the main

application platform of our algorithms. With our technique, a camera can simulate

119



the function of a scanner or photocopier.

Our experiments show we can obtain accurate mosaicing of full page planar

documents. Compared to planar documents, curved documents are more difficult to

rectify, so we find that the rectified images can not be registered by pure projective

transformations. Local warping or morphing would be required to register them at

pixel accuracy. Nevertheless, our method can serve as a pre-registration step, after

which local projective transformations can be computed for small image blocks.

This step, however, is out of the scope of this dissertation.
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Chapter 5

Recognition of Layout Structure in Document Images

5.1 Motivation and related work

As the number of digitized documents grows, efficient and automatic techniques for

metadata extraction become more important. Unlike electronic documents, which

are compounded with metadata during generation, digitized documents are mostly

stored in image and text format with a few tags about generation time, image prop-

erty, etc. These primitive metadata cannot serve advanced needs. For example, for

technical papers, a very important type of documents used by millions of researchers

every day, an incomplete list of metadata worth extracting includes: genre, book

title or journal title, subject, author(s) and contact information, title, keywords,

abstract, publisher, editor(s), page number, citations, copyright notice, and so on.

Other examples include correspondences such as memorandums, faxes, and letters.

Most email users rely on the convenient search function of their software to find

messages to/from a certain contact, within a date range, about a specific subject,

etc. Such functions would be also highly valuable for digitized correspondences.

While manual tagging presents a possible solution, and in fact is in use in

some commercial projects, its prohibitively high cost makes it unattractive. With

the volume of digitized documents growing increasingly faster, the speed and cost

concerns make automatic metadata extraction a necessity.
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There are two major approaches to the problem of automatic metadata ex-

traction. The first one relies on Natural Language Processing (NLP) techniques to

analyze text content recognized by OCR. NLP can identify semantic elements and

syntactic structures in text strings, such as names, locations, dates, special nouns,

important key words, etc. The frequency of certain types of words, for example,

can help determine the genre of the document. Guided by rules, NLP can extract

sender’s and receiver’s names in the text of a letter. However, except for text,

all other visual information of the document (e.g., font attributes, position of text

blocks, number of columns, page orientation) is lost in the conversion from image

to text. Such non-text features are important in determining the functional and

logical roles of zones in the page. For example, a name appearing in a small and

centered text block in the top half of the page is more likely to be the author of

the document than the same name appearing in a long paragraph at the lower right

corner. Thus, text content alone does not provide all the information needed by

metadata extraction.

The second method approaches metadata extraction from the perspective of

image analysis. In this approach, the physical structure of a document image is

analyzed to identify the functional and logical role of different zones (logical labeling)

as well as the entire document (document classification or similarity comparison).

In the literature, the problem of logical labeling is studied separately from

the problem of document classification (or similarity comparison). Algorithms for

the labeling problem mainly analyze the attributes of zones or their neighbors

[20, 44, 17, 48, 51, 71] and often lack the power to grasp the overall page struc-

124



ture. On the other hand, algorithms for the classification problem typically have a

global representation for the physical layout of a document image [63, 28, 18] and

use pattern recognition techniques to obtain a distance or likelihood score. How-

ever, such global representations usually do not explicitly express local or regional

features.

Because of the large difference between document classes, a feature set that

works for one class may not suit another. Therefore, the ability to expand a system

to include new features is important.

Another important practical issue is that many systems require a fair amount

of training samples to build their models, especially statistical ones. For many tasks,

number of classes may be large and over the time, classes may vary and new classes

may appear. In these cases, it could be impractical if models need to be retrained

from scratch.

Based on the above considerations, we choose 1) a graph-based representation

of the page layout and 2) an adaptive learning approach for model training. Our

graph-based model has the flexibility to incorporate both global structure and low

level features of a document image. Also, it can be easily adapted to new features

in the future. Adaptive learning methods allow the models to be initialized with a

relatively small number of samples and to be adjusted with new samples later on.

We use a graph matching method to perform layout structure recognition, which

achieves document classification and logical labeling simultaneously.
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5.2 System overview

Our system for layout structure recognition mainly uses the results of page seg-

mentation. If zone classification and OCR are available, their results can also be

included. Page segmentation [52, 49, 32] aims to separate a document image contain-

ing heterogeneous content into homogeneous zones. The definition of heterogeneity

or homogeneity is, of course, application dependent. Typically, a document image is

decomposed into text zones and non-text zones, and within the text zones columns

and paragraphs are segmented. Zone classification identifies the type of segmented

zones, such as e.g., figures, tables, handwriting, and noise.

There are three key components in the system. The first extracts features

from the segmented zones, such as font attributes, line spacing, zone position and

size, distances between nearby zones, zone type (if zone classification is performed),

the existence of key words (if OCR is available), and construct a graph-based repre-

sentation of the page layout. The second learns a model for each class of documents

from graph instances and adaptively improves the model given new samples. The

third is in charge of finding the best match from a model to an incoming instance.

When there is only one model in the model base, the system only performs logical

labeling; otherwise, both logical labeling and document classification are conducted.

Figure 5.1 illustrates the system overview, where the learning and recognition

modules are depicted but the graph construction step is not explicitly shown. In the

figure, the verification step, which corrects the errors in the result of automatic

layout structure recognition, is the only one that requires human interaction. It is
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not always in use, though. At the very beginning, when a model is not learned yet

and there is no results from the recognition module, verification provides ground-

truthed samples to train a new model. After a model is set up, if the error rates in

recognition is high, the verified results help the adaptive learning module to improve

the model. When a satisfactory model is obtained, the verification is stopped. If,

over the time, the class changes such that new instances do not conform to the

model and performance degradation is observed, verification and adaptive learning

would be required again.

Page Segmentation
&

OCR

Document
Image

Verification Model
Learning

Model
Base

Layout Structure
Recognition

Database

Conversion

Re-publication

Routing

Figure 5.1: Framework of layout structure recognition system.

The labeling and classification results, together with results from page seg-

mentation, zone classification, and OCR, enable many downstream applications

that require metadata. Figure 5.2, for example, shows a digitized document and

a HTML file generated using both metadata and text.
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Figure 5.2: A digitized document is converted into HTML using meta data obtained

from layout structure recognition and text from OCR.

5.3 Layout structure modeling

We model the physical layout of a structured document image by a layout graph [40].

A layout graph is a fully connected attributed graph in which each node corresponds

to a segmented zone on a page. A node’s attributes describe the properties of

the zone, which could be geometric features, texture features, content features, or

any other features of interest. The attributes associated with an edge between

a pair of nodes reflects the relationship between the corresponding zones in the

page, including spatial relation, distance, font size ratio, common words, etc. A

layout graph summarizes the result of page segmentation and, if available, zone

identification and OCR. Layout graphs provide a flexible representation of layout

structures. With different node and edge attributes, they can describe both local
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and global aspects of the layout structure of a document.

A layout graph instance summarizes the layout structure of a document in-

stance, and a layout graph model summarizes the common layout structure of a

document class. The node and edge attributes in a layout graph model describe the

common features present in the document class. In addition, a layout graph model

associate each attribute with a weight describing the stability of this attribute within

the class. The weights for unstable attributes are low.

For a given document class, a layout graph instance usually has more nodes

than the model. For example, page segmentation may over-segment, resulting in

many small zones. Or, the page contains zones of handwritten text, stamps, or

noise, not common to the document class. A match between a layout graph instance

and a model assigns each node in the instance to a node in the model. A correct

match between a layout graph instance and a model is, in general, a many-to-one

mapping. More than one node in the instance map to one node in the model. In

addition, an instance node may map to none of the model nodes, in which case we

say it maps to null or ∅. Similarly, a model node may map to none of the instance

nodes.

Figure 5.3 shows a layout graph model and an instance. Let GM(A, B, C)

represent the model and GI(a, b, c, d) be the instance. Each of a, b, c, and d can

be mapped to either A, B, C, or ∅. There are 44 = 256 possible mappings. Two

examples are as follows:

(A− a, B − b, C − c, A− d), (A− ∅, B − d, C − a, ∅ − d, ∅ − c)
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Figure 5.3: Concept of layout graph model A,B,C and instance a,b,c,d.

We transform the many-to-one mapping into a one-to-one mapping before

measuring the match quality. If several nodes in a graph instance map to one node

in the model, the corresponding zones in the page are grouped as a new zone, and

the nodes are replaced by a new node. The node and edge attributes are recomputed

accordingly. For example, under the mapping (A−a, B−b, C−c, A−d), GI(a, b, c, d)

transforms into G′
I(a

′, b, c), where a′ comes from a and d, and the mapping becomes

(A− a′, B − b, C − c) which is one-to-one.

We denote a one-to-one mapping from a model to an instance by

h : (GM ∪ ∅)→ (G′
I ∪ ∅).

We define the quality of a match between a layout graph instance and a model

as the quality of the induced one-to-one mapping h, which is measured by the

following cost function:

C(h) =
∑

x∈(GM∪φ)

Cn(x, h(x)) +
∑

x,y∈(GM∪φ)

Ce(xy, h(x)h(y)), (5.1)

where Cn(x, h(x)) is the cost representing the differences between node x and

h(x), and Ce(xy, h(x)h(y)) is the cost measuring differences between edge xy and
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h(x)h(y). We define Cn(x, h(x)) as the weighted sum of attribute-level costs:

Cn(x, h(x)) =
N∑

i=1

ci((x)i, (h(x))i),

where (·)i denotes the i-th attribute of a node, and N is the number of attributes

of a node. Ce(·, ·) is defined similarly. Special costs are defined for the case where

either x, y, h(x) or h(y) is ∅. The best match h∗, between an instance and a model

is simply the one with the lest cost:

h∗ = argmin
∀h:(GM∪φ)→(G′

I∪φ)

C(h) (5.2)

The specific form of an attribute-level cost function depends on the type of

the attribute. In our implementation, we use SSD (sum of squared difference) for

numerical attributes, and look up tables for qualitative attributes.

5.4 Model matching

Graph matching, in general, is NP-hard [23]. Practical solutions either employ

branch-and-bound search with the help of heuristics, or nonlinear optimization tech-

niques. It is more difficult to do many-to-one graph matching.

Our method of finding the match between a layout graph instance and a model

consists of two steps (Figure 5.4). In theory, our method cannot guarantee the best

match with the least cost, but, in practice, it usually finds a near-optimal solution.

In the first step, we find the best one-to-one mapping from the model GM to the

instance GI . The second step groups unmatched nodes in GI to the matched ones

in such a way that the cost of the final match is least. The success of our approach
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Figure 5.4: Two-step matching process

lies in our observation that, in a correct match, usually many nodes in the instance

has an one-to-one mapping with the nodes in the model. The sub-graph consisting

of such nodes can be interpreted as the ‘back bone’ of the graph. Our first step finds

the sub-graph and the best sub-graph match, and the second step groups remaining

nodes to the sub-graph.

The overall cost function is essentially a summation that can be computed

in a incremental way, so we can use an efficient branch-and-bound search strategy

to address the computational expense involved in the first step. In practice, the

search usually finishes in less than one second. For documents with Manhattan

style, we constrain two grouped zones must not overlap in the second step, which

greatly reduces the number of possible grouping schemes. For non-Manhattan style

documents, we drop this requirement. Figure 5.4 illustrates a sample matching
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process. In the first step, three of the four zones are labeled. In the second step, the

unlabeled zone d has four choices: be grouped with a, b, c, or to remain unlabeled.

After comparing the costs of grouping d with a, b, c and ∅, the final decision groups

d with a, and label both of them A.

5.5 Model learning

Given the definition of the layout graph model and cost functions, the values of

attributes and their weights are learned from a set of training samples in a process

called model initialization [40]. Model initialization finds the typical attribute values

in the training set, and set the weights of stable attributes high.

Later on, if user feedback is available, a model is adaptively improved by a

process called adaptive model learning [39]. For example, in a technical paper model,

if a block above “title” is mistakenly labeled as “author”, we increase the weight

associated with the spatial attribute of the edge between node title and author —

the value of this attribute states that title is above author — to increase the cost

of such an incorrect labeling. Figure 5.5 shows an example where d is incorrectly

matched to ∅ instead of A. In the improved model, the position attribute of node A

is modified accordingly. Inspired by error back-propagation methods used in neural

network training, we design the following method for improving model parameters.

Suppose C(h) is the cost of the incorrect mapping h, C(h∗) is the cost of the

correct mapping h∗, both under the original model. Since h is the matching result, it

follows C(h) < C(h∗). Let N represent all incorrectly matched nodes in the model.
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Figure 5.5: Adaptive model learning.

The attributes and weights associated with nodes in N are modified in such a way

that C ′(h∗)−C ′(h) < C(h∗)−C(h), where C ′(·) is the cost using new attributes and

weights. If the problem is persistent and repeats itself, eventually the modification

will lead to C(h) > C(h∗) such that the correct match results in the least cost.

More specifically, suppose vm is a numeric attribute of a node x ∈ N , v∗i is

the corresponding attribute of h∗(x), and vi is the attribute of h(x). If c(vm, vi) <

c(vm, v∗i ), where c(·, ·) is the attribute-level cost function, then, this means vi is closer

to vm than v∗i ; in other words, vm is unreliable. We shift vm toward v∗i and decrease

the weight associated with vm. Otherwise, if c(vm, vi) > c(vm, v∗i ), we increase the

weight for vm. In both cases, we achieve C ′(h∗)− C ′(h) < C(h∗)− C(h).
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5.6 Experiments

5.6.1 Title pages of technical papers

In the first set of experiments, we collected a total of 85 title pages from four technical

journals or proceedings (Figure 5.6). These documents share a common style of two-

column technical paper title pages, and have some slight difference in the font sizes,

positions of headers, footers, page numbers, and so on. Because of the relatively

rigid layout structure of these sample documents, we use mainly geometrical features

as attributes in the layout graph model. In our implementation, the node attributes

include the position and size of the bounding box of the corresponding region in

the image, and the average font size of text in the region (font sizes are classified as

small, normal, and large). The edge attributes express the spatial relation between

two regions. For example, the left boundary of a region can be to-the-left-of, aligned

with, or to-the-right-of the left boundary of another region. Similarly, we quantize

the spatial relationship between two horizontal boundaries as above, aligned, or

below. For each region, we consider its four boundaries plus a central line that

divides it into two equal left and right halves. Between two regions, we use a set of

nine qualitative descriptors (four for the two pairs of horizontal boundaries, four for

the two pairs of vertical boundaries, and one for the two central lines) to describe

their spatial relationship.

For attributes with numerical values (e.g., bounding box sizes) we use the

absolute differences as the cost function, and for qualitative descriptors, we simply

let the cost be 0 if there is no difference and 1 otherwise. In the model initialization
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(a) CHI’95 (b) CHI’96 (c) PAMI (d) UIST’95

Figure 5.6: Sample pages from four publications

step, the numerical attribute values are set to the averages in the training samples,

and their weights are set to the inverse of their variances. For an attribute with a

qualitative descriptor, its weight is set to the inverse of the number of descriptors

that are different from the dominant descriptor in the training set.

We use a leave-one-out strategy to test the title page model learned from these

samples. More precisely, we take out one sample page as the test sample, and use

the remaining pages to initialize the model. We call the initialization round 0. After

that, in each round, we use all the training samples one by one to adaptively modify

the model. The order of applying training samples in each round is not changed.

For each round, the incorrectly labeled regions are counted, and the average error

rate is defined as

ei =

∑J
j=1 n

(j)
i∑J

j=1 N (j)

where N (j) is the number of regions in the jth test sample, n
(j)
i is the number

of incorrectly labeled regions, i is the iteration round number, and J is the number

of title pages. Here J = 85.
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Figure 5.7 shows the average error rate vs. the training cycles. There are a

total of 1347 zones in all sample pages. The declining trend of the error rate with

the increase of training is clear. After every training sample has been used three

times (after round 3), the error rate has dropped about 30%. In Figure 5.8 two title

pages and their labeling results are shown.
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Figure 5.7: Average error rate vs. training cycles for unified model

We also grouped sample pages by the specific publication, build a model for

each of them, and test the model using the group of samples. The results are similar

to the unified model case, but we can have more power in distinguishing fine struc-

tures that are only defined within each publication. For example, PAMI has very

strict layout rules which requires an abstract followed by keywords, and the first

section must be an introduction with a centered section title. Therefore only for the

PAMI model we define “Abstract”, “Keywords”, and “IntroTitle” labels. In Fig-

ure 5.9 the result of labeling using the PAMI model is shown, in which “Abstract”,

“Keywords”, and “IntroTitle” are correctly found. Figure 5.10 shows the average
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(a) (b)

(c) (d)

Figure 5.8: Examples of labeling results of title pages. (a,b) Documents (c,d) La-

beling results
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error rate for each model vs. the iteration count. Two sets of labeling results are

shown in Figure 5.11 and 5.12.

Using the four models, we carried out a document classification test. Each

document is mapped to all four models, and its class is determined by the best

model (i.e., with the least cost). For all 85 pages, we achieved 100% accuracy in

classification.

Figure 5.9: Labeling result for PAMI model

5.6.2 Business letters

In the second set of experiments, we applied our method on business letters. Com-

pared to title pages, business letters have less consistent layout (see Figure 5.13).

Therefore geometric features are not enough to describe the business letter model.
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Figure 5.10: Average error rates vs. training cycles for four models
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(a) (b)

(c) (d)

Figure 5.11: Examples of labeling results for title pages (part one). (a) A PAMI

document. (b) Visualization of PAMI document model. (c) Labeling result of the

first step matching. (d) Final labeling result.
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(a) (b)

(c) (d)

Figure 5.12: Examples of labeling results for title pages (part two). (a) A CHI’95

document. (b) Visualization of CHI’95 document model. (c) Labeling result of the

first step matching. (d) Final labeling result.
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The lack of consistent geometric rules is compensated, on the other hand, by the

consistent language features in business letters. For example, a salutation usually

begins with “Dear Sir,” “Dear Dr.” or “To Whom It May Concern,” and a clos-

ing usually is “Sincerely,”, “Yours,”, or “Truly yours”. In the domain of English

business letters we identify 10 logical components and 11 common content features

that typically appear or do not appear in these components (see Table 5.2). The

examples of the content features are shown in Table 5.1. As Table 5.2 suggests,

the presence or absence of certain content features is strongly related to the logical

component function.

Figure 5.13: Samples of business letters

During the construction of a layout graph instance, each zone in the document

is examined to determine the presence or absence of content features. A value

pc
z ∈ [0, 1] is defined to indicate the confidence of the presence of content feature c in

zone z. In the model, for each node n we define an expectation value ec
n ∈ [0, 1] for

every content feature c, indicating to which degree we expect this logical component

n to contain c. For example, ename
SALUTATION should be high, while edate

SALUTATION

should be very low. We define the cost of labeling zone z as n based on the content

feature c to be:
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Content Feature Example

name Dr., Ms, Mr., David, Joe, Bill

location Street, Ave, PO Box, MD, VA, Apt

organization United Nation, Medical Center

date September, 2002

greeting Dear Sir or Madam,

To Whom It May Concern

closing Sincerely, Sincerely yours,

Yours sincerely, Truly,

Truly yours, Yours truly,

Regards, Best regards,

zipcode MD 20742, 00555-9642

subject RE:, Subject:

ps PS, PS., P.S.

enclosure Enclosure, Encl., Enc.

cc cc:, CC:

Table 5.1: Common indicative content features in English business letters
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Logical component Number of occurrences in logical component

Component frequency name loc. org. date grt. cls. zip. sub. ps encl. cc

RECEIVER 66 54 49 42 3 0 0 52 0 0 0 0

SUBJECT 10 5 0 6 0 0 0 0 7 0 0 0

DATE 85 1 1 0 82 0 0 0 0 0 0 0

SALUTATION 116 75 1 21 2 99 0 0 2 0 0 0

BODY 116 5 3 44 103 55 2 2 2 1 0 0

SIGNATURE 116 109 8 63 1 0 90 0 0 0 0 0

ENCLOSURE 27 3 0 2 2 0 0 0 0 0 24 0

TYPISTINIT 27 0 0 8 0 0 0 0 0 0 0 0

PS 21 2 1 12 4 0 0 0 0 19 0 0

CC 6 6 1 1 0 0 0 0 0 0 0 6

Total — 310 122 270 140 101 92 60 10 19 24 6

Table 5.2: Frequencies of content features in business letter samples

C(z, n, c) = (1− ec
n)pc

z + ec
n(1− pc

z). (5.3)

The cost C as a function of e and p is shown in Figure 5.14. When e < 0.5, C

decreases as p decreases; if e > 0.5, C decreases as p increases; when e = 0.5, C is

independent of p.

Initially, the value of ec
n is computed from the frequency of c appearing in

component n in the training set. During the adaptive learning process, suppose

label n should be assigned to zone z but is assigned to zone z′ incorrectly, then the

expectation value regarding content feature c is adjusted as follows:

• Increase ec
n if pc

z > pc
z′ ;

• Decrease ec
n if pc

z < pc
z′ ;
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Figure 5.14: Cost as a function of expectation and presence confidence

As a result, C(z, n, c) − C(z′, n, c) < C ′(z, n, c) − C ′(z′, n, c), where C ′ is the

cost computed using the modified ec
n value.

We collected 116 business letters, and tested our model using the same strategy

as in the previous experiment. Figure 5.15 shows average error numbers vs. training

cycles, and Figure 5.16 gives an example of labeling result. The total number of

zones in 116 pages is 1389. The number of errors dropped (∼ 60%) from about 500

to below 200 after 100 cycles of training, which shows the effectiveness of adaptive

learning. Table 5.3 breaks down precision and recall for each logical component,

where the components that are under-represented in the sample set (such as “CC,”

“SUBJECT”) have worse numbers. Overall, the average precision and recall are

both 87%, which is encouraging for a document class with very flexible structure.
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Figure 5.15: Average error rates vs. training cycles for business letter class

Figure 5.16: Examples of labeling results for business letters
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Logical Component Number of zones in 116 pages Recall Precision

True Found Correct

RECEIVER 68 66 60 88% 91%

SUBJECT 10 11 6 55% 60%

DATE 85 87 77 89% 91%

SALUTATION 116 116 108 93% 93%

BODY 484 457 438 96% 90%

SIGNATURE 197 198 162 82% 82%

ENCLOSURE 27 22 13 59% 48%

TYPISTINIT 28 27 15 56% 54%

PS 21 17 9 53% 43%

CC 6 5 0 0% 0%

(UNLABELED) 347 383 322 84% 93%

Overall 1389 1389 1210 87% 87%

Table 5.3: Precision and recall of different logical components
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5.7 Discussion

At the beginning of this chapter, we analyzed several issues that a successful layout

analysis system should consider:

1. The integration of local features and global structures.

2. The extensibility to new features.

3. The temporal change of a class.

4. The addition of a new class.

Our layout-structure-recognition approach satisfies all the above conditions.

The graph-based model can integrate both local features (in nodes) and global

structure (in edges) and include new features, if needed, in the future. The weighting

factors associated with attributes give the model flexibility to handle large variation

within a class. The recognition of layout structures achieves document classification

and logical labeling simultaneously.

Furthermore, we provide an automatic model initialization and adaptive learn-

ing method. Our approach requires very few training samples to begin, and can

improve the power of the model with user feedback afterward. Experiments show

satisfactory results on both title pages of technical papers and business letters. In

the literature, these two types of documents are usually processed separately, using

different methods. Our approach provides a unified framework that works on both

types, which demonstrates the power of our graph-based model.
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Document classes can be organized in a hierarchical structure. Similarly, we

could organize a tree-structured model base. For example, suppose we restrict our-

selves to business letters and technical papers. At the top level of the model base,

we would have two models, one for each type. Each top level model is the entry to a

group of sub-models that describe specific classes in the genre. In our experiments

on title pages, these sub-models would be the individual publication models. With

such a model base, we could perform layout structure recognition in a coarse-to-fine,

hierarchical way, which might improve both accuracy and speed.

150



Chapter 6

Summary and Conclusions

6.1 Summary of contributions

The following summarizes the contributions of this dissertation:

1. We developed a novel framework for geometric rectification of camera-captured

document images.

• We presented a planar-strip approximation model for curved document

pages, based on developable surface properties.

• We implemented a method for estimating page shape from a single doc-

ument image, without requiring 3D data, camera calibration, or special

camera pose.

• We developed a unified solution for images of both planar and curved

pages.

2. We designed a novel method for mosaicing camera-captured document images.

• We developed an accurate image registration method for document im-

ages with large displacements, small overlapping areas, and severe pro-

jective distortions, without camera calibration or pose requirement.
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• We implemented a selective image composition method that preserves

text sharpness and eliminates ‘ghost’ images.

3. We developed a model matching approach for document layout analysis.

• We designed a graph-based representation for modeling different layout

styles, which incorporates heterogeneous features, both local and global.

• We presented an model learning method that requires minimum initial

training for a new document class and adapts a model to the changes of

a class over the time.

• We applied our layout structure recognition technique to both document

image classification and logical component labeling.

6.2 Limitations and future work

In the future, we would like to address the following limitations as well as promising

extensions of our work:

• Our text identification module needs improvement. Much research is going

on in this area and we can adopt the successful techniques. In practice, a

convenient GUI may be necessary to let users guide the text identification

process.

• Texture flow estimation can benefit directly from the increase in image reso-

lution, especially for minor texture flow. Although the increase in image size

will have a negative effect on processing speed, we believe that the impact
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can be minimized with rapid advances in hardware. For the same reason, we

believe sufficient resources will be available on mobile platforms to implement

our algorithms that currently run on desktop computers.

• Our document shape estimation method does not require 3D range data, met-

ric data, or camera calibration. In some cases, such data may be available (at

low accuracy, perhaps). For example, cameras equipped with IR sensors could

generate a low resolution, low accuracy depth map along with the image; to-

day’s digital cameras can write the focal length of their auto-focus lens in the

image files. We would like to incorporate such information, when available,

into our framework.

• One of the three basic assumptions we make requires the principal point be at

the image center. For applications running in a camera or in devices equipped

with cameras, this holds generally true. This may not hold true, however, for

processed images, such as those cropped from other images. In such cases, we

need to estimate the principal point offset.

• The precision of geometric rectification for curved documents is relatively low

compared to planar pages. Shape-from-multi-view provides a possible way

to improve the accuracy. The correspondence problem is the key issue for

shape estimation from multiple views. Enlightened by our work on document

mosaicing, we propose to solve the correspondence problem in the following

way: 1) estimate the shape in each view independently, 2) rectify the images,

3) register them using our image registration method, 4) fine-tune matches
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locally, 5) map the matches back to the original images, 6) solve for the 3D

shape using correspondences in multiple views.

• Three interesting questions exist in regard to our model-based layout structure

recognition method. First, we would like to organize the models in a hierarchi-

cal tree structure and perform recognition in a hierarchical way. Second, the

automatic maintenance of a hierarchical model base presents an interesting

issue. This would involve detection of new document classes and insertion,

deletion, modification, merging or splitting of nodes in the model tree. Third,

our current framework aims at layout structures of single pages. The next step

should expand to the processing of multiple pages.

6.3 Conclusion

For many decades, character recognition (OCR) has been the main issue for doc-

ument image analysis. And scanners — especially flat-bed types — have been the

main, if not only, imaging devices. With OCR considered a solved problem for clean

printed text in major languages, new directions of document analysis appear at the

horizon. Our work in this dissertation addresses two issues: 1) extending the imag-

ing devices from scanners to digital cameras, and 2) extending the analysis result

from text to metadata.

With the introduction of inexpensive and high-quality digital cameras, we

predict a new trend of augmenting scanners with cameras. A great variety of new

applications (especially on mobile devices) have been created, and many applications
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once dominated by scanners possess a new life.

Two topics of our work cover the gap between current scanner-oriented OCR

techniques and camera-captured document images. Our geometric rectification

framework removes the distortion caused by non-planar document shape and cam-

era perspective projection. Our document mosaicing technique provides a solution

to uneven lighting, blurring, low resolution, and small field of view. Together, they

provide a method to transform cameras into scanners, in the sense that the output

images can be handled by current scanner-oriented OCR techniques. We expect

them to be useful in all kinds of camera-based OCR applications, especially mobile

devices.

Another topic addressed in this dissertation is related to the layout structure

of a document page, which is lost in OCR text, to the function of the document

and the functions of components in the page. Through the recognition of layout

structures, we accomplish document classification and logical component labeling

simultaneously. This enables us to extract semantic metadata without OCR text

— if available, text can reinforce this capability. Metadata can greatly enhance the

management of digitized documents.
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Appendix A

Synthetic image generation for curved documents

Our synthetic curved document image generator takes a flat document image and

a set of parameters as input and produces an image of a curved document, as well

as ground truth data about the texture flows, surface rulings, and surface normals.

Although there are computer graphics packages that can generate such images, we

find it necessary to build our own generator because of our need for ground truth

data.

In the first step, the input image is placed in the 2D plane with its center at

the origin. Then, the image is rotated around its center by a skew angle ϑ within the

2D plane. After skewing, the parts that are outside the original rectangular frame

are cropped (see Figure A.1).

The second step involves warping the 2D plane to a 3D surface. We use a

cylinder surface model since it is the most usual case for opened books. The y-

axis of the 2D plane is mapped to a generatrix of the cylinder (which is parallel

to the Y -axis), while the x-axis is warped to be a directrix (see Figure A.2). The

directrix is defined by a polynomial curve S = (s0, s1, . . . , sn) on the Z-X plane,

which is Z(X) =
∑n

i=0 siX
i. If S = 0, the directrix is a straight line, and the

cylinder degrades to a plane. A point (x, y) in the 2D plane and its counterpart

point (X, Y, Z) in the 3D world are related by
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Figure A.1: An original image and the skewed image.



y = Y,

x = |
∫X
r=0

√
1 + ( dZ

dX

∣∣∣
X=r

)2dr|

= |
∫X
r=0

√
1 + (

∑n
i=1 isiri−1)2dr|,

Z =
∑n

i=0 siX
i.

Given (x, y), Y is fixed. We solve for X(x) by interpolating a reverse lookup

table computed from x(X). Then, Z is easy to obtain.

In our model, the tangent vector U of the directrix at a surface point (X, Y, Z)

is given by

U = (1, 0,
dZ

dX
)> = (1, 0,

n∑
i=1

isiX
i−1)>.

The generatrix vector V, which is also the 3D ruling vector R, is equal to the

157



X

Y

Z

Directrix

Generatrix
U

V B

T
N

(R)

Figure A.2: Cylinder model for curved documents.

Y -axis vector, i.e.,

V = R = (0, 1, 0)>.

And the surface normal N at this point is simply the cross product of U and

V, i.e.,

N = U×V.

The 3D major texture flow vector T at this point can be computed by rotating

U around N by the skew angle ϑ, i.e,

T = U cos ϑ + V sin ϑ.

The 3D minor texture flow vector B is similarly calculated with a rotation

angle ϑ + π/2, i.e.,
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B = −U sin ϑ + V cos ϑ.

Equations A and A show that the skew ϑ controls the angle between the major

texture flow and cylinder directrix as well the angle between the minor texture flow

vector and cylinder generatrix (or ruling). For typical opened books, ϑ = 0.

A set of three angles define the rotation matrix R, and a 3D vector defines

the translation C. After rotation and translation, the 3D point (X, Y, Z)> becomes

(X ′, Y ′, Z ′)> in the camera coordinate system. Accordingly, the surface normals,

3D texture flows, and 3D ruling directions are also rotated. Finally, the 3D point is

projected onto the image plane through the pin-hole camera described by the focal

length f . That is 
p = fX′

Z′ ,

q = fY ′

Z′ .

where (p, q) is the position on image plane (see Figure A.3).

To compute the 2D major texture flow t at point (p, q), we notice that t and

its 3D counterpart T should be coplanar. This common plane is the cross product

of T and the line-of-sight through the optical center and (X ′, Y ′, Z ′)> or (p, q, f)>.

Also, t lies on the image plane whose normal is (0, 0, 1)>. Thus

t = (0, 0, 1)> × (T× (p, q, f)>). (A.1)

The 2D minor texture flow b and the 2D ruling r can be calculated in the

same way.
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Figure A.3: A point on the curved page is projected onto image plane after rotation

and translation.

The last set of parameters describe the light cast on the page. There could be

any number of light sources, each characterized by a radiance R and a unit 3D vector

D indicating the light direction. Under the Lambertian assumption, the brightness

b′ of a point in the final image is

b′ = b
K∑

k=1

RkD
>
k N,

where K is the number of light sources, b is the BRDF (bidirectional reflectance

distribution function) value at the point in original flat document equal to its pixel

value, and N is the unit surface normal at the point in 3D surface.

Above describes the generative process that maps a point in the original doc-

ument image to the final synthetic image. However, in order not to leave any pixel

in the synthetic image unfilled, we need a reverse process that maps every point in

the synthetic image back to the original image. A precise reverse mapping is more
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difficult to compute than a forward process. In computer graphics, this is usually

solved by triangulating the surface and mapping each triangle as a whole piece. In

our context, because the surface is developable, we can rectangulate the surface by

rulings, i.e., approximate the surface by a group of planar strips (Figure A.4), and

map each strip as a whole piece into the synthetic image. The specific procedure is

as follows:

x

y

Figure A.4: Planar-strip approximation in synthetic image generation.

We divide the skewed image into narrow vertical slices. For each slice, we

use the generative process to compute the 3D position W of its top-left corner

after warping, rotation, and translation. We compute the surface normal N and

two 3D texture flows (T and B) at the 3D point. We also compute the position

of its projection in the image as (x0, y0). Substituting Vh by T and Vv by B

in Equation 3.4, and plugging in W, (x0, y0), and f (for K), we can compute a

homogeneous transformation H that maps every point in the slice to the final image,

and H−1 for the reverse mapping. Furthermore, to take the skew process into
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account, the complete reverse mapping can be written as H̃ = S−1H−1, where

S =



cos ϑ sin ϑ 0

− sin ϑ cos ϑ 0

0 0 1


is the skew matrix. Let H map the four corners of the slice to the four vertices of a

quadrilateral in the synthetic image, then, for every pixel inside this quadrilateral,

we can use H̃ to map it back to the original image. Its color is computed using

bilinear interpolation of four surrounding pixels. If it is mapped to the outside of

the image frame, we set it to a pre-defined background color.

Under the planar-strip approximation, the 3D surface normal for any point

inside the quadrilateral is simply N. The 2D texture flows at point (p, q) can be

computed from T and B, using Equation A.1, since the 3D texture flows are constant

within the quadrilateral.

As a summary, for any pixel in the synthetic image, we can compute its color,

the 3D surface normal, 3D ruling direction, 3D major and minor texture flows, 2D

ruling direction, and 2D major and minor texture flows at this point.
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Appendix B

Selection of reference points for rulings

We first compute the center of mass for the text area. Let it be C. We estimate

the optimal 2D ruling through C as r using major texture flow field. This ruling

may not be very accurate, which is fine as long as the direction remains roughly

correct. Let s be the line through C and perpendicular to r. We select reference

points along s and within the text area. We also select two more reference points

on s just outside the text area, as Figure B.1 shows. In this way, the 2D rulings

through the reference points can cover the entire text area. Ideally, we would like

to have denser 2D rulings in areas where the surface curvature is high and fewer

rulings in low curvature areas. However, in our implementation, we select reference

point at equal distances for the sake of simplicity. We find that this simple scheme

works sufficiently well. The distance controls the number of 2D rulings we need to

estimate, which, in turn, controls the computation speed and shape approximation

accuracy.
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