175 research outputs found

    Image-Based Lateral Position, Steering Behavior Estimation, and Road Curvature Prediction for Motorcycles

    Get PDF
    International audienceThis letter presents an image-based approach to simultaneously estimate the lateral position of a powered-two-wheeled vehicle on the road, its steering behavior and predict the road curvature ahead of the motorcycle. This letter is based on the inverse perspective mapping technique combined with a road lanes detection algorithm capable of detecting straight and curved lanes. Then, a clothoid model is used to extract pertinent information from the detected road markers. Finally, the performance of the proposed approach is illustrated through simulations carried out with the well-known motorcycle simulator “BikeSim.” The results are very promising since the algorithm is capable of estimating, in real time, the road geometry and the vehicle location with a better accuracy than the one given by the commercial GPS

    Powered Two-Wheeled Vehicles Steering Behavior Study: Vision-Based Approach

    Get PDF
    International audienceThis paper presents a vision-based approach to prevent dangerous steering situations when riding a motorcycle in turn. In other words, the proposed algorithm is capable of detecting under, neutral or over-steering behavior using only a conventional camera and an inertial measurement unit. The inverse perspective mapping technique is used to reconstruct a bird-eye-view of the road image. Then, filters are applied to keep only the road markers which are, afterwards, approximated with the well-known clothoid model. That allows to predict the road geometry such that the curvature ahead of the motorcycle. Finally, from the predicted road curvature, the measures of the Euler angles and the vehicle speed, the proposed algorithm is able to characterize the steering behavior. To that end, we propose to estimate the steering ratio and we introduce new pertinent indicators such that the vehicle relative position dynamics to the road. The method is validated on the advanced simulator BikeSim during a steady turn

    Inverse Perspective Mapping Roll Angle Estimation for Motorcycles

    Get PDF
    International audienceThis paper presents an image-based approach to estimate the motorcycle roll angle. The algorithm estimates directly the absolute roll to the road plane by means of a basic monocular camera. This means that the estimated roll angle is not affected by the road bank which is often a problem for vehicle observation and control purposes. For each captured image, the algorithm uses a numeric roll loop based on some simple knowledge of the road geometry. For each iteration, a bird-eye-view of the road is generated with the inverse perspective mapping technique. Then, a road marker filter associated with the well-known clothoid model are used respectively to track the road separation lanes and approximate them with mathematical functions. Finally, the algorithm computes two distinct areas between the two-road separation lanes. Its performances are tested by means of the motorcycle simulator BikeSim. This approach is very promising since it does not require any vehicle or tire model and is free of restrictive assumptions on the dynamics

    Advances in Mechanical Systems Dynamics 2020

    Get PDF
    The fundamentals of mechanical system dynamics were established before the beginning of the industrial era. The 18th century was a very important time for science and was characterized by the development of classical mechanics. This development progressed in the 19th century, and new, important applications related to industrialization were found and studied. The development of computers in the 20th century revolutionized mechanical system dynamics owing to the development of numerical simulation. We are now in the presence of the fourth industrial revolution. Mechanical systems are increasingly integrated with electrical, fluidic, and electronic systems, and the industrial environment has become characterized by the cyber-physical systems of industry 4.0. Within this framework, the status-of-the-art has become represented by integrated mechanical systems and supported by accurate dynamic models able to predict their dynamic behavior. Therefore, mechanical systems dynamics will play a central role in forthcoming years. This Special Issue aims to disseminate the latest research findings and ideas in the field of mechanical systems dynamics, with particular emphasis on novel trends and applications

    Vehicle and Traffic Safety

    Get PDF
    The book is devoted to contemporary issues regarding the safety of motor vehicles and road traffic. It presents the achievements of scientists, specialists, and industry representatives in the following selected areas of road transport safety and automotive engineering: active and passive vehicle safety, vehicle dynamics and stability, testing of vehicles (and their assemblies), including electric cars as well as autonomous vehicles. Selected issues from the area of accident analysis and reconstruction are discussed. The impact on road safety of aspects such as traffic control systems, road infrastructure, and human factors is also considered

    MPC-BASED AUTONOMOUS DRIVING CONTROL WITH LOCALIZED PATH PLANNING FOR OBSTACLE AVOIDANCE AND NAVIGATING SIGNALIZED INTERSECTIONS

    Get PDF
    Connected and autonomous vehicles are becoming the major focus of research for the industry and academia in the automotive field. Many companies and research groups have demonstrated the advantages and the requirement of such technology to improve the energy efficiency of vehicles, decrease the number of crash and road accidents, and control emissions. This research delves into improving the autonomy of self-driving vehicles by implementing localized path planning algorithms to introduce motion control for obstacle avoidance during uncertainties. Lateral path planning is implemented using the A* algorithm combined with piecewise Bezier curve generation which provides an optimum trajectory reference to avoid a collision. Model Predictive Control (MPC) is used to implement longitudinal and lateral control of the vehicle. The data from vehicle-to-everything (V2X) communication infrastructure is used to navigate through multiple signalized intersections. Furthermore, a new method of developing Advanced Driver Assistance Systems (ADAS) algorithms and vehicle controllers using Model-In-the-Loop (MIL) testing is explored with the use of PreScan®. With PreScan®, various traffic scenarios are modeled and the sensor data are simulated by using physics-based sensor models, which are fed to the controller for data processing and motion planning. Obstacle detection and collision avoidance are demonstrated using the presented MPC controller. The results of the proposed controller and the scope of the future work conclude the research

    Trajectory planning based on adaptive model predictive control: Study of the performance of an autonomous vehicle in critical highway scenarios

    Get PDF
    Increasing automation in automotive industry is an important contribution to overcome many of the major societal challenges. However, testing and validating a highly autonomous vehicle is one of the biggest obstacles to the deployment of such vehicles, since they rely on data-driven and real-time sensors, actuators, complex algorithms, machine learning systems, and powerful processors to execute software, and they must be proven to be reliable and safe. For this reason, the verification, validation and testing (VVT) of autonomous vehicles is gaining interest and attention among the scientific community and there has been a number of significant efforts in this field. VVT helps developers and testers to determine any hidden faults, increasing systems confidence in safety, security, functional analysis, and in the ability to integrate autonomous prototypes into existing road networks. Other stakeholders like higher-management, public authorities and the public are also crucial to complete the VTT process. As autonomous vehicles require hundreds of millions of kilometers of testing driven on public roads before vehicle certification, simulations are playing a key role as they allow the simulation tools to virtually test millions of real-life scenarios, increasing safety and reducing costs, time and the need for physical road tests. In this study, a literature review is conducted to classify approaches for the VVT and an existing simulation tool is used to implement an autonomous driving system. The system will be characterized from the point of view of its performance in some critical highway scenarios.O aumento da automação na indústria automotiva é uma importante contribuição para superar muitos dos principais desafios da sociedade. No entanto, testar e validar um veículo altamente autónomo é um dos maiores obstáculos para a implantação de tais veículos, uma vez que eles contam com sensores, atuadores, algoritmos complexos, sistemas de aprendizagem de máquina e processadores potentes para executar softwares em tempo real, e devem ser comprovadamente confiáveis e seguros. Por esta razão, a verificação, validação e teste (VVT) de veículos autónomos está a ganhar interesse e atenção entre a comunidade científica e tem havido uma série de esforços significativos neste campo. A VVT ajuda os desenvolvedores e testadores a determinar quaisquer falhas ocultas, aumentando a confiança dos sistemas na segurança, proteção, análise funcional e na capacidade de integrar protótipos autónomos em redes rodoviárias existentes. Outras partes interessadas, como a alta administração, autoridades públicas e o público também são cruciais para concluir o processo de VTT. Como os veículos autónomos exigem centenas de milhões de quilómetros de testes conduzidos em vias públicas antes da certificação do veículo, as simulações estão a desempenhar cada vez mais um papel fundamental, pois permitem que as ferramentas de simulação testem virtualmente milhões de cenários da vida real, aumentando a segurança e reduzindo custos, tempo e necessidade de testes físicos em estrada. Neste estudo, é realizada uma revisão da literatura para classificar abordagens para a VVT e uma ferramenta de simulação existente é usada para implementar um sistema de direção autónoma. O sistema é caracterizado do ponto de vista do seu desempenho em alguns cenários críticos de autoestrad
    corecore