8 research outputs found

    Visual Stabilization of Beating Heart Motion by Model-based Transformation of Image Sequences

    Get PDF
    In order to assist a surgeon by operating on a beating heart, visual stabilization makes the beating heart appear still to a surgeon by providing the current heart view as stationary and non-moving. In this way, the surgeon is not disturbed during an operation by a motion of the heart and can get an impression of performing conventional surgery. In contrast to existing methods for visual stabilization, the proposed approach involves a model-based transformation of image sequences provided by a camera system. This transformation incorporates the knowledge of physical characteristics of the heart in form of a mathematical model of the heart surface. Its main advantage is that the uncertainties of the model and measurements are considered. This occurs by estimating the parameters of the transformation. Furthermore, the quality of the visual stabilization is additionally improved by adapting the parameters of the underlying physical model. A performance of the proposed approach is evaluated in an experiment with a pressure-regulated artificial heart. In comparison to standard approaches, it provides superior results illustrating the high quality of the visual stabilization

    Physics-Based Probabilistic Motion Compensation of Elastically Deformable Objects

    Get PDF
    A predictive tracking approach and a novel method for visual motion compensation are introduced, which accurately reconstruct and compensate the deformation of the elastic object, even in the case of complete measurement information loss. The core of the methods involves a probabilistic physical model of the object, from which all other mathematical models are systematically derived. Due to flexible adaptation of the models, the balance between their complexity and their accuracy is achieved

    Directional Estimation for Robotic Beating Heart Surgery

    Get PDF
    In robotic beating heart surgery, a remote-controlled robot can be used to carry out the operation while automatically canceling out the heart motion. The surgeon controlling the robot is shown a stabilized view of the heart. First, we consider the use of directional statistics for estimation of the phase of the heartbeat. Second, we deal with reconstruction of a moving and deformable surface. Third, we address the question of obtaining a stabilized image of the heart

    Image stabilisation of the beating heart by local linear interpolation

    No full text

    Analyse endoskopischer Bildsequenzen für ein laparoskopisches Assistenzsystem

    Get PDF
    Rechnergestützte Assistenzsysteme zielen auf eine Minimierung der chirurgischen Belastung und Verbesserung der Operationsqualität ab und werden immer häufiger eingesetzt. Im Fokus der vorliegenden Arbeit steht die Analyse endoskopischer Bildsequenzen für eine Unterstützung eines minimalinvasiven Eingriffs. Zentrale Themen hierbei sind die Vorverarbeitung der endoskopischen Bilder, die dreidimensionale Analyse der Szene und die Klassifikation unterschiedlicher Handlungsaspekte

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not
    corecore