26 research outputs found

    Producing digital stories and photo films: How to make stories with photos and audio recordings

    Get PDF

    Video segmentation with motion smoothness

    Full text link

    AutoSweep: Recovering 3D Editable Objects from a Single Photograph

    Get PDF
    This paper presents a fully automatic framework for extracting editable 3D objects directly from a single photograph. Unlike previous methods which recover either depth maps, point clouds, or mesh surfaces, we aim to recover 3D objects with semantic parts and can be directly edited. We base our work on the assumption that most human-made objects are constituted by parts and these parts can be well represented by generalized primitives. Our work makes an attempt towards recovering two types of primitive-shaped objects, namely, generalized cuboids and generalized cylinders. To this end, we build a novel instance-aware segmentation network for accurate part separation. Our GeoNet outputs a set of smooth part-level masks labeled as profiles and bodies. Then in a key stage, we simultaneously identify profile-body relations and recover 3D parts by sweeping the recognized profile along their body contour and jointly optimize the geometry to align with the recovered masks. Qualitative and quantitative experiments show that our algorithm can recover high quality 3D models and outperforms existing methods in both instance segmentation and 3D reconstruction

    Improving particular components of the audio signal chain: optimising listening in the control room

    Get PDF
    In the field of audio engineering there is a constant need for optimising the listening situation. Listening to, judging and finally optimising the recorded material are essential tasks of audio engineers. The author of this contextual statement has been working in the field of audio engineering since 1993. In addition, various research projects have been undertaken in this field. A selection of three research areas and their published outputs are presented in this contextual statement: Research Area 1: Improving acoustic modules to increase efficiency in the acoustical treatment of control rooms Research Area 2: Measuring time alignment errors, testing their impact on the listening experience and providing solutions for time alignment of loudspeakers Research Area 3: Using equalisation for correcting and shaping a loudspeaker's frequency response These research areas relate to a consistent listening 'defect' that leads to a blurred and broader sound image. Measures to overcome these defects are presented and proven to be effective by built prototypes and/or products. The results of the research are published in articles and books and can be experienced in the form of hardware systems such as acoustic modules or modified loudspeakers

    Extracting Maya Glyphs from Degraded Ancient Documents via Image Segmentation

    Get PDF
    We present a system for automatically extracting hieroglyph strokes from images of degraded ancient Maya codices. Our system adopts a region-based image segmentation framework. Multi-resolution super-pixels are first extracted to represent each image. A Support Vector Machine (SVM) classifier is used to label each super-pixel region with a probability to belong to foreground glyph strokes. Pixelwise probability maps from multiple super-pixel resolution scales are then aggregated to cope with various stroke widths and background noise. A fully connected Conditional Random Field model is then applied to improve the labeling consistency. Segmentation results show that our system preserves delicate local details of the historic Maya glyphs with various stroke widths and also reduces background noise. As an application, we conduct retrieval experiments using the extracted binary images. Experimental results show that our automatically extracted glyph strokes achieve comparable retrieval results to those obtained using glyphs manually segmented by epigraphers in our team

    An investigation into the use of charge-coupled devices for digital mammography

    Get PDF
    This thesis describes the design, optimisation, construction and evaluation of a laboratory based digital mammography system which uses phosphor coated charge-coupled devices (CCDs) for x-ray detection. The size mismatch between the breast and the CCD is overcome by operating the CCD in time delay and integration (TDI) mode and scanning across the breast. Multiparameter optimisations have been carried out for a wide range of digital mammography system configurations and requirements, with the aim of optimising the image quality for a given patient dose. The influence of slot width, exposure time, focal spot size, detector resolution and noise level, dose restrictions, patient thickness and x- ray tube target on the system configuration to give optimum image quality is examined. The system is fully characterised in terms of responsivity, dark current, modulation transfer functions (MTFs), noise power spectra (NPS) and spatial frequency dependent detective quantum efficiency (DQE(f)). Direct interactions of x-rays with the CCD are shown to give a significant increase in the high frequency values of the MTF. These interactions also act as a source of noise and act to significantly reduce the DQE(f) at all frequencies. A subjective comparison of images produced with the optimised prototype system with those produced using a conventional film-screen detector shows that these interactions must be removed if the prototype system is to produce images of equal quality to those currently produced using film-screen combinations. Other improvements to the system are suggested

    Post genomics era for orchid research

    Get PDF
    Among 300,000 species in angiosperms, Orchidaceae containing 30,000 species is one of the largest families. Almost every habitats on earth have orchid plants successfully colonized, and it indicates that orchids are among the plants with significant ecological and evolutionary importance. So far, four orchid genomes have been sequenced, including Phalaenopsis equestris, Dendrobium catenatum, Dendrobium officinale, and Apostaceae shengen. Here, we review the current progress and the direction of orchid research in the post genomics era. These include the orchid genome evolution, genome mapping (genome-wide association analysis, genetic map, physical map), comparative genomics (especially receptor-like kinase and terpene synthase), secondary metabolomics, and genome editing
    corecore