20,253 research outputs found

    Strategies for Searching Video Content with Text Queries or Video Examples

    Full text link
    The large number of user-generated videos uploaded on to the Internet everyday has led to many commercial video search engines, which mainly rely on text metadata for search. However, metadata is often lacking for user-generated videos, thus these videos are unsearchable by current search engines. Therefore, content-based video retrieval (CBVR) tackles this metadata-scarcity problem by directly analyzing the visual and audio streams of each video. CBVR encompasses multiple research topics, including low-level feature design, feature fusion, semantic detector training and video search/reranking. We present novel strategies in these topics to enhance CBVR in both accuracy and speed under different query inputs, including pure textual queries and query by video examples. Our proposed strategies have been incorporated into our submission for the TRECVID 2014 Multimedia Event Detection evaluation, where our system outperformed other submissions in both text queries and video example queries, thus demonstrating the effectiveness of our proposed approaches

    Using segmented objects in ostensive video shot retrieval

    Get PDF
    This paper presents a system for video shot retrieval in which shots are retrieved based on matching video objects using a combination of colour, shape and texture. Rather than matching on individual objects, our system supports sets of query objects which in total reflect the user’s object-based information need. Our work also adapts to a shifting user information need by initiating the partitioning of a user’s search into two or more distinct search threads, which can be followed by the user in sequence. This is an automatic process which maps neatly to the ostensive model for information retrieval in that it allows a user to place a virtual checkpoint on their search, explore one thread or aspect of their information need and then return to that checkpoint to then explore an alternative thread. Our system is fully functional and operational and in this paper we illustrate several design decisions we have made in building it

    AXES at TRECVID 2012: KIS, INS, and MED

    Get PDF
    The AXES project participated in the interactive instance search task (INS), the known-item search task (KIS), and the multimedia event detection task (MED) for TRECVid 2012. As in our TRECVid 2011 system, we used nearly identical search systems and user interfaces for both INS and KIS. Our interactive INS and KIS systems focused this year on using classifiers trained at query time with positive examples collected from external search engines. Participants in our KIS experiments were media professionals from the BBC; our INS experiments were carried out by students and researchers at Dublin City University. We performed comparatively well in both experiments. Our best KIS run found 13 of the 25 topics, and our best INS runs outperformed all other submitted runs in terms of P@100. For MED, the system presented was based on a minimal number of low-level descriptors, which we chose to be as large as computationally feasible. These descriptors are aggregated to produce high-dimensional video-level signatures, which are used to train a set of linear classifiers. Our MED system achieved the second-best score of all submitted runs in the main track, and best score in the ad-hoc track, suggesting that a simple system based on state-of-the-art low-level descriptors can give relatively high performance. This paper describes in detail our KIS, INS, and MED systems and the results and findings of our experiments

    Can a workspace help to overcome the query formulation problem in image retrieval?

    Get PDF
    We have proposed a novel image retrieval system that incorporates a workspace where users can organise their search results. A task-oriented and user-centred experiment has been devised involving design professionals and several types of realistic search tasks. We study the workspace’s effect on two aspects: task conceptualisation and query formulation. A traditional relevance feedback system serves as baseline. The results of this study show that the workspace is more useful with respect to both of the above aspects. The proposed approach leads to a more effective and enjoyable search experience

    Digital Image Access & Retrieval

    Get PDF
    The 33th Annual Clinic on Library Applications of Data Processing, held at the University of Illinois at Urbana-Champaign in March of 1996, addressed the theme of "Digital Image Access & Retrieval." The papers from this conference cover a wide range of topics concerning digital imaging technology for visual resource collections. Papers covered three general areas: (1) systems, planning, and implementation; (2) automatic and semi-automatic indexing; and (3) preservation with the bulk of the conference focusing on indexing and retrieval.published or submitted for publicatio

    Using video objects and relevance feedback in video retrieval

    Get PDF
    Video retrieval is mostly based on using text from dialogue and this remains the most signi¯cant component, despite progress in other aspects. One problem with this is when a searcher wants to locate video based on what is appearing in the video rather than what is being spoken about. Alternatives such as automatically-detected features and image-based keyframe matching can be used, though these still need further improvement in quality. One other modality for video retrieval is based on segmenting objects from video and allowing end users to use these as part of querying. This uses similarity between query objects and objects from video, and in theory allows retrieval based on what is actually appearing on-screen. The main hurdles to greater use of this are the overhead of object segmentation on large amounts of video and the issue of whether we can actually achieve effective object-based retrieval. We describe a system to support object-based video retrieval where a user selects example video objects as part of the query. During a search a user builds up a set of these which are matched against objects previously segmented from a video library. This match is based on MPEG-7 Dominant Colour, Shape Compaction and Texture Browsing descriptors. We use a user-driven semi-automated segmentation process to segment the video archive which is very accurate and is faster than conventional video annotation

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    TRECVID 2004 experiments in Dublin City University

    Get PDF
    In this paper, we describe our experiments for TRECVID 2004 for the Search task. In the interactive search task, we developed two versions of a video search/browse system based on the Físchlár Digital Video System: one with text- and image-based searching (System A); the other with only image (System B). These two systems produced eight interactive runs. In addition we submitted ten fully automatic supplemental runs and two manual runs. A.1, Submitted Runs: • DCUTREC13a_{1,3,5,7} for System A, four interactive runs based on text and image evidence. • DCUTREC13b_{2,4,6,8} for System B, also four interactive runs based on image evidence alone. • DCUTV2004_9, a manual run based on filtering faces from an underlying text search engine for certain queries. • DCUTV2004_10, a manual run based on manually generated queries processed automatically. • DCU_AUTOLM{1,2,3,4,5,6,7}, seven fully automatic runs based on language models operating over ASR text transcripts and visual features. • DCUauto_{01,02,03}, three fully automatic runs based on exploring the benefits of multiple sources of text evidence and automatic query expansion. A.2, In the interactive experiment it was confirmed that text and image based retrieval outperforms an image-only system. In the fully automatic runs, DCUauto_{01,02,03}, it was found that integrating ASR, CC and OCR text into the text ranking outperforms using ASR text alone. Furthermore, applying automatic query expansion to the initial results of ASR, CC, OCR text further increases performance (MAP), though not at high rank positions. For the language model-based fully automatic runs, DCU_AUTOLM{1,2,3,4,5,6,7}, we found that interpolated language models perform marginally better than other tested language models and that combining image and textual (ASR) evidence was found to marginally increase performance (MAP) over textual models alone. For our two manual runs we found that employing a face filter disimproved MAP when compared to employing textual evidence alone and that manually generated textual queries improved MAP over fully automatic runs, though the improvement was marginal. A.3, Our conclusions from our fully automatic text based runs suggest that integrating ASR, CC and OCR text into the retrieval mechanism boost retrieval performance over ASR alone. In addition, a text-only Language Modelling approach such as DCU_AUTOLM1 will outperform our best conventional text search system. From our interactive runs we conclude that textual evidence is an important lever for locating relevant content quickly, but that image evidence, if used by experienced users can aid retrieval performance. A.4, We learned that incorporating multiple text sources improves over ASR alone and that an LM approach which integrates shot text, neighbouring shots and entire video contents provides even better retrieval performance. These findings will influence how we integrate textual evidence into future Video IR systems. It was also found that a system based on image evidence alone can perform reasonably and given good query images can aid retrieval performance
    corecore