273 research outputs found

    Medical imaging analysis with artificial neural networks

    Get PDF
    Given that neural networks have been widely reported in the research community of medical imaging, we provide a focused literature survey on recent neural network developments in computer-aided diagnosis, medical image segmentation and edge detection towards visual content analysis, and medical image registration for its pre-processing and post-processing, with the aims of increasing awareness of how neural networks can be applied to these areas and to provide a foundation for further research and practical development. Representative techniques and algorithms are explained in detail to provide inspiring examples illustrating: (i) how a known neural network with fixed structure and training procedure could be applied to resolve a medical imaging problem; (ii) how medical images could be analysed, processed, and characterised by neural networks; and (iii) how neural networks could be expanded further to resolve problems relevant to medical imaging. In the concluding section, a highlight of comparisons among many neural network applications is included to provide a global view on computational intelligence with neural networks in medical imaging

    A Recurrent Cooperative/Competitive Field for Segmentation of Magnetic Resonance Brain Imagery

    Full text link
    The Grey-White Decision Network is introduced as an application of an on-center, off-surround recurrent cooperative/competitive network for segmentation of magnetic resonance imaging (MRI) brain images. The three layer dynamical system relaxes into a solution where each pixel is labeled as either grey matter, white matter, or "other" matter by considering raw input intensity, edge information, and neighbor interactions. This network is presented as an example of applying a recurrent cooperative/competitive field (RCCF) to a problem with multiple conflicting constraints. Simulations of the network and its phase plane analysis are presented

    Adaptive pattern recognition by mini-max neural networks as a part of an intelligent processor

    Get PDF
    In this decade and progressing into 21st Century, NASA will have missions including Space Station and the Earth related Planet Sciences. To support these missions, a high degree of sophistication in machine automation and an increasing amount of data processing throughput rate are necessary. Meeting these challenges requires intelligent machines, designed to support the necessary automations in a remote space and hazardous environment. There are two approaches to designing these intelligent machines. One of these is the knowledge-based expert system approach, namely AI. The other is a non-rule approach based on parallel and distributed computing for adaptive fault-tolerances, namely Neural or Natural Intelligence (NI). The union of AI and NI is the solution to the problem stated above. The NI segment of this unit extracts features automatically by applying Cauchy simulated annealing to a mini-max cost energy function. The feature discovered by NI can then be passed to the AI system for future processing, and vice versa. This passing increases reliability, for AI can follow the NI formulated algorithm exactly, and can provide the context knowledge base as the constraints of neurocomputing. The mini-max cost function that solves the unknown feature can furthermore give us a top-down architectural design of neural networks by means of Taylor series expansion of the cost function. A typical mini-max cost function consists of the sample variance of each class in the numerator, and separation of the center of each class in the denominator. Thus, when the total cost energy is minimized, the conflicting goals of intraclass clustering and interclass segregation are achieved simultaneously

    From neural-based object recognition toward microelectronic eyes

    Get PDF
    Engineering neural network systems are best known for their abilities to adapt to the changing characteristics of the surrounding environment by adjusting system parameter values during the learning process. Rapid advances in analog current-mode design techniques have made possible the implementation of major neural network functions in custom VLSI chips. An electrically programmable analog synapse cell with large dynamic range can be realized in a compact silicon area. New designs of the synapse cells, neurons, and analog processor are presented. A synapse cell based on Gilbert multiplier structure can perform the linear multiplication for back-propagation networks. A double differential-pair synapse cell can perform the Gaussian function for radial-basis network. The synapse cells can be biased in the strong inversion region for high-speed operation or biased in the subthreshold region for low-power operation. The voltage gain of the sigmoid-function neurons is externally adjustable which greatly facilitates the search of optimal solutions in certain networks. Various building blocks can be intelligently connected to form useful industrial applications. Efficient data communication is a key system-level design issue for large-scale networks. We also present analog neural processors based on perceptron architecture and Hopfield network for communication applications. Biologically inspired neural networks have played an important role towards the creation of powerful intelligent machines. Accuracy, limitations, and prospects of analog current-mode design of the biologically inspired vision processing chips and cellular neural network chips are key design issues

    Memory and optimisation in neural network models.

    Get PDF

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Neural network approach for solving inverse problems

    Get PDF

    Restoration of Partially Occluded Shapes of Faces using Neural Networks

    Get PDF
    One of the major difficulties encountered in the development of face image processing algorithms, is the possible presence of occlusions that hide part of the face images to be processed. Typical examples of facial occlusions include sunglasses, beards, hats and scarves. In our work we address the problem of restoring the overall shape of faces given only the shape presentation of a small part of the face. In the experiments described in this paper the shape of a face is defined by a series of landmarks located on the face outline and on the outline of different facial features. We describe the use of a number of methods including a method that utilizes a Hopfield neural network, a method that uses Multi-Layer Perceptron (MLP) neural network, a novel technique which combines Hopfield and MLP together, and a method based on associative search. We analyze comparative experiments in order to assess the performance of the four methods mentioned above. According to the experimental results it is possible to recover with reasonable accuracy the overall shape of faces even in the case that a substantial part of the shape of a given face is not visible. The techniques presented could form the basis for developing face image processing systems capable of dealing with occluded faces

    Multiresolution neural networks for image edge detection and restoration

    Get PDF
    One of the methods for building an automatic visual system is to borrow the properties of the human visual system (HVS). Artificial neural networks are based on this doctrine and they have been applied to image processing and computer vision. This work focused on the plausibility of using a class of Hopfield neural networks for edge detection and image restoration. To this end, a quadratic energy minimization framework is presented. Central to this framework are relaxation operations, which can be implemented using the class of Hopfield neural networks. The role of the uncertainty principle in vision is described, which imposes a limit on the simultaneous localisation in both class and position space. It is shown how a multiresolution approach allows the trade off between position and class resolution and ensures both robustness in noise and efficiency of computation. As edge detection and image restoration are ill-posed, some a priori knowledge is needed to regularize these problems. A multiresolution network is proposed to tackle the uncertainty problem and the regularization of these ill-posed image processing problems. For edge detection, orientation information is used to construct a compatibility function for the strength of the links of the proposed Hopfield neural network. Edge detection 'results are presented for a number of synthetic and natural images which show that the iterative network gives robust results at low signal-to-noise ratios (0 dB) and is at least as good as many previous methods at capturing complex region shapes. For restoration, mean square error is used as the quadratic energy function of the Hopfield neural network. The results of the edge detection are used for adaptive restoration. Also shown are the results of restoration using the proposed iterative network framework
    • …
    corecore