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Abstract 

One of the major difficulties encountered in the development of face image 

processing algorithms, is the possible presence of occlusions that hide part of the face 

images to be processed. Typical examples of facial occlusions include sunglasses, 

beards, hats and scarves. In our work we address the problem of restoring the overall 

shape of faces given only the shape presentation of a small part of the face. In the 

experiments described in this paper the shape of a face is defined by a series of 

landmarks located on the face outline and on the outline of different facial features. 

We describe the use of a number of methods including a method that utilizes a 

Hopfield neural network, a method that uses Multi-Layer Perceptron (MLP) neural 

network, a novel technique which combines Hopfield and MLP together, and a 

method based on associative search. We analyze comparative experiments in order to 

assess the performance of the four methods mentioned above. According to the 

experimental results it is possible to recover with reasonable accuracy the overall 

shape of faces even in the case that a substantial part of the shape of a given face is 

not visible.  The techniques presented could form the basis for developing face image 

processing systems capable of dealing with occluded faces.  
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1. Introduction 

There has been substantial research in the areas of automatic face recognition, face 

detection and face reconstruction in recent years [17]. One common problem for such 

applications is when a face image is occluded by other objects (e.g., sunglasses). This 

results in decreased performance and robustness of systems dealing with face 

recognition, detection or reconstruction tasks.  

This paper addresses the occlusion problem in the case of reconstructing the shape of 

an occluded facial region. The motivation of our work comes from important 

applications relying on robust face recognition and reconstruction, free of restrictions 

such as lighting, expression, pose, size and occlusion. Such applications include 

among others, human-robot-interaction, human-computer-interaction, information 

security, CCTV access control, automated surveillance, suspect tracking and 

investigation (see [17] for a review).   

In our experiments the shape of a face is represented with the co-ordinates of a series 

of landmarks characterizing the shape of the overall face and the shape of individual 

facial features. In our work we assume that the positions of the landmarks on the 

visible facial region are available. More precisely each contour face is represented 

with 68 points given by (x,y) co-ordinates located as shown on Figure 1.  

 

Figure 1:  
Original contour face image defined by 68 landmarks 
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The aim of our work is to reconstruct the shape of an occluded facial region, given a 

shape representation of a visible region. We consider several different cases of 

occlusion, grouped in two settings, examples of which are given in Figures 2 and 3.  

The first setting consists of six sets of occluded face shapes corresponding to 

occlusion of different parts of a face. For example, in Case 1 a small part of the right 

lower part of a face is missing, in Case 2 the right part of a face is missing and in Case 

3 the entire lower part of a face is missing, as shown in Figure 2. Excluding all the 

points that were not excluded in Cases 1 – 3 and including all the points that were 

excluded in Cases 1 – 3, respectively, generates the Cases 4 – 6, as shown in Figure 2. 

The second setting of occluded face shapes consists of five sets which are generated 

by randomly replacing the co-ordinates of 10%, 30%, 50%, 70% and 90% of the 

points in the original face shapes with random numbers in the range between the 

minimum and the maximum of the co-ordinates of the visible points. Typical 

examples of these occlusion cases are shown in Figure 3.  

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

 
  

 
 

  
 

 
 

Figure 2: 
Cases 1 – 6: Occlusion of different parts of the face  

 

Case 7 (10%)  Case 8  (30% ) Case 9  (50%) Case 10 (70% ) Case 11  (90%) 

 
 

 
 

 
 

 
 

Figure 3: 
Cases 7 – 11: Occluded face shapes obtained by replacing an increasing number 

of points in the original face shapes with random numbers 
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Neural network models, including Multi-Layer Perceptron (MLP), Hopfield and 

combination of these, are trained for each occlusion case with the co-ordinates of 

specific facial features to give as outputs the co-ordinates of landmarks corresponding 

to missing facial features. We also investigate the use of a method based on 

associative search for predicting the co-ordinates of the missing facial shape points 

using the co-ordinates of the visible points. The performance of the four methods is 

assessed by comparative experiments run on a publicly available face image database, 

the FG-NET Aging Database [18]. Typical samples from the database are shown in 

Figure 4.  

 
Figure 4: Typical face images from FG-NET Aging Database 

 
The restoration of face shapes presents an ideal test scenario for our work because 

face shapes display significant variation arising by differences in the shapes between 

different individuals. On top of that, face shapes undergo within-individual variations 

caused by changes in the 3D orientation and expression of faces.   

The remainder of the paper is organised as follows: in section 2 we present a brief 

overview of the relevant literature, in section 3 we describe the methods used in our 

 4



experiments, in section 4 we describe the experimental set-up, present the results 

obtained, and finally in section 5 we give our conclusions. 

 

2. Literature review 

A number of researchers have recently made contributions for resolving the problem 

of occlusion in face recognition, face detection, face identification and face 

reconstruction.  

Kurita et al. [11], suggest recursive use of an auto-associative MLP network for 

reconstruction of occluded faces. Subsequently this approach is applied to face 

recognition and face detection. The idea of using an auto-associative neural network 

is based on the observation that auto-associative memory can recall a whole image 

from its partial image [10]. The suggested system is built with the aim of performing 

face recognition and the restoration of occluded face images and is limited only to the 

cases where the occluded face images belong to individuals whose images have been 

used during the learning phase.  

Martinez [12], [13] used a variation of the eigenface approach [16] in order to deal 

effectively with the problem of recognizing occluded face images. They divide the 

facial region into six local regions and use a PCA (Principal Component Analysis) 

based local model for each local part. During recognition, the contribution of each 

part is weighted by the distance of the corresponding PCA coefficients from the 

centroid of the distribution, so that the contribution of the occluded facial regions in 

the recognition process is minimized.  

Park et al. [14], use recursive PCA for removing spectacles from face images. Given a 

face image of a subject wearing spectacles, they code and subsequently reconstruct 

the face. The difference between the reconstructed and original image is processed in 
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order to enhance the occluded regions. The occluded regions detected in the 

difference image are replaced by the corresponding pixels from the mean image 

among the training set. This procedure is repeated until the resulting image converges. 

Hwang and Lee [9] describe a method for restoring the appearance of occluded faces 

in images.  Given an occluded face image and information about the location and size 

of the occlusion, they use least squares analysis for estimating the optimum weights 

required for decomposing the appearance of the non-occluded regions as a weighted 

sum of basis images. The same weights are used in conjunction with basis images of 

the occluded region for restoring the appearance of the occluded facial regions. 

Apart from applications related to face recognition, the general topic of object 

appearance restoration features in other applications. Bhanu and Lin [3] use a 

stochastic approach based on hidden Markov modelling for the recognition of 

occluded objects in synthetic aperture radar images and automatic target recognition.  

Fukushima [4] suggests a neural network model for recognition of partly occluded 

letters based on the hypothesis that it is easier to recognize a letter covered with a 

visible object than when the letter has completely missing parts. His proposed model 

is an extension of the neocognitron model [5] that models the visual system with 

hierarchical multi-layer architecture. Fukushima [6] further develops a hierarchical 

multi-layered neural model that can restore missing portions of partly occluded 

patterns. The suggested model can restore the shape of a partly occluded pattern, if the 

pattern has been used in the learning phase and attempts to complete an unlearned 

pattern by interpolating and extrapolating visible edges. The proposed neocognitron 

based models for recognition and restoration of occluded patterns have been tested 

only on patterns of partly occluded letters and numerals.   
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3. Methods  

3.1 Hopfield Neural Network 

The Hopfield Neural Network [7], [8] is a binary artificial network which is used to 

store patterns in an associative or content-addressable way so that when the network 

is presented with noisy or partial information the full pattern can be recovered. In 

order to apply the Hopfield model to the problem of recovering occluded face shapes 

we need to first convert the facial co-ordinates into a binary form and represent each 

shape as a binary vector. For doing this we use the natural binary encoding which 

provides high resolution and it enables the conversion of the binary co-ordinate 

representations back to a decimal form. An alternative encoding scheme, which has 

been considered, is the so-called thermometer encoding [2]. This encoding has the 

property of preserving the proportionality of the Hamming distances and Euclidean 

distances between vectors, but it was not adopted as it becomes impractical if higher 

resolution is required. The co-ordinates (x, y) corresponding to the facial shape 

landmarks are scaled so that each x and y is in the interval [0, 31] and subsequently 

converted to 5 bit representation using the natural binary encoding. In this way each 

face shape is represented as a binary vector of 680 bits (2 x 68 x 5). For addressing 

the capacity limitation of the Hopfield network we train the model only with 102 face 

representations (15% of 680 neuronodes) from the data set. The natural binary 

encoding is applied to each of the distorted sets of face shapes. The trained Hopfield 

model is presented consequently with the different sets of distorted encoded face 

representations, which correspond to the different occlusion cases (Case 1 – Case 11) 

described in the Introduction (see Figures 2 and 3). The recovered patterns are 

decoded back to present each face shape as 68 decimal (x, y) co-ordinates. A block 

diagram of the method is shown in Figure 5.  
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Figure 5: Block diagram of the method using Hopfield model 

3.2 Multilayer Perceptron (MLP) 

We have investigated the use of Multilayer Perceptrons (MLPs) with the 

backpropagation learning algorithm [15] for reconstructing of occluded face shapes 

by training eleven different models for each occlusion case corresponding to the case 

settings described in the introduction. Input vectors for each MLP model are the 136 

dimensional vectors corresponding to the 68 (x, y) co-ordinates representing the 

respective occluded face shape in the specific occlusion case. The co-ordinates of the 

occluded points are replaced with random numbers in the range of the co-ordinates of 

the visible points. Output vectors contain the 136 elements corresponding to the 68 

(x,y) co-ordinates representing the shapes of the original sample faces. Based on the 

training sets each type of network is evaluated in order to establish the optimal 

architecture and optimal parameters. In each case the generalisation capability of the 

neural network is assessed as a function of the initial parameters of the respective 

network.  

3.3 Hopfield – MLP  

Combining different neural network architectures is a common approach for 

improving generalization performance and efficiency of neural network models. We 

propose a combination of the Hopfield and MLP network models which to the best of 

our knowledge has not been previously employed elsewhere. The Hopfield method 

gives a pattern of 680 bits as a result for each recovered face shape. These patterns are 

decoded to present a face shape as 68 (x,y) co-ordinates, and then one of the already 

trained MLPs described in 3.2 is applied to these results. If we assume that we have 

achieved a certain percentage of correct restoration of the occluded shapes with the 
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Hopfield method, then using, for example, one of the trained MLPs for an occlusion 

case with random missing points, could result in further improvement of these results. 

A block diagram of this method is shown on Figure 6. 

 

 

 

Decoded 
Hopfield 

result  

Trained MLP 
model 

Recovered 
face shape 

Figure 6: Block diagram of the method using Hopfield - MLP models 

3.4 Associative Search  

For this method we find the similarity between the visible part of a given shape and 

the corresponding part of the shape among all faces in the training set. Assuming that 

in the case that two shape segments are similar, the remaining parts of the shapes 

should also be similar, we propose that the hidden shape can be reconstructed as a 

weighted combination of all shapes in the training set. The weights used in our 

framework are proportional to the similarity measure between the given shape 

segment and the corresponding segments from faces in the training set. Equation 1 

shows the formula used for calculating the weights. 





n

j j
i

i

d
d

w

1

1
1

      Equation 1 

where wi is the weight used for the ith training sample and di is the mean Euclidean 

distance between the landmarks in the given shape segment and the corresponding 

shape segment in the ith training face shape.  

The co-ordinates of the occluded of a face shape are calculated as a linear 

combination of weights and co-ordinates of the corresponding points of the training 

set: 
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where xi is the corresponding coordinate of the point to be recovered in the ith training 

face shape from the training set and n is the number of training samples. 

In effect this method compares the similarity between the non-occluded shape given 

and the corresponding shapes of each of the samples in the training set. According to 

the similarity measure, different training samples influence in a different way the 

prediction of the occluded shape. This approach bears similarities to the method 

reported by Hwang and Lee [9], but in our case the method is applied to shape co-

ordinates rather than to the parameters of the morphable model. Also, Hwang and Lee 

use least squares for estimating the weights required. 

 
4 Experimental Evaluation 

4.3 Experimental set up 

In our experiments we use the FG-NET Aging Database [18], which is publicly 

available. The image database in question contains 1002 face images from 82 

different individuals. On average there are 12 images available per subject. For each 

face image in the FG-NET Aging Database, a detailed shape annotation consisting of 

68 landmarks (see figure 1) is also publicly available. In our experiments we use the 

shapes of 102 face images from 8 subjects in the database for training (due to the 

Hopfield network capacity limitation, see Section 3.1) and the remaining 900 face 

shapes of the remaining 74 subjects for testing. Prior to our experiments the shapes of 

all faces were normalized so that all face shapes had the same centre of gravity and 

approximately the same height. It is important to highlight that in our experiments we 

did not use face shapes of the same subjects both in the training and testing sets.  
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We use two error measures to compare the performance of the different methods. The 

first error measure is the mean Euclidean distance between the shape of the original 

faces and the corresponding recovered face shapes, which we call the overall error.  

The second error measure is the mean Euclidean distance between the original points 

from the occluded parts and the corresponding recovered points, which we call 

restricted error.  

The training and testing time for the Hopfield model is in the order of seconds. The 

training time for the MLP method is in the order of minutes (1 – 2 min) and the 

testing time in the order of seconds. The experiments using the MLP method are 

performed with learning rate varying 0.1 and 0.2, momentum between 0.7 and 0.9, 

number of hidden units between 10 and 25, and number of iterations between 1000 to 

1500. According to our experiments the optimal network architecture has one hidden 

layer with 15 hidden neuronodes, learning rate equal to 0.1 and momentum equal to 

0.7.  The combined Hopfield – MLP method additional training since the training for 

the Hopfield and the MLP networks is done separately as described in the previous 

paragraph. The testing time for the combined Hopfield-MLP method is in the order of 

seconds. Associative Search method does not require training and the testing time is 

in the order of seconds.  

4.2 Results 

Tables 1 and 2 display the testing set results of applying the Hopfield, Hopfield - 

MLP, MLP and Associative Search methods to the different occlusion cases 1 – 11 

described in the Introduction. Table 1 shows the overall error obtained by calculating 

the mean Euclidean distance between the face shapes in the testing set and the face 

shapes recovered using each of the methods presented in section 3. The standard 

deviation of the overall error is also quoted for each case.  
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Table 1: Mean and standard deviation of the Euclidean distances between 
recovered face shapes and original face shapes for testing set in Cases 1 - 11 

(overall error) 
 

Case number Method 
1 

mean  st dev 
2 

mean  st.dev. 
3 

mean st. dev. 
4 

mean st. dev. 
5 

mean st. dev. 
6 

mean  st.dev. 

Average 
of 

means 
1-6 

Hopfield 0.89 2.33 3.21 1.68 4.09 1.77 6.11 1.9 2.69 1.72 2.33 1.93 3.22 
Hopfield – 
MLP 

0.55 2.14 2.05 1.67 2.65 1.97 3.91 2.22 1.67 1.74 1.45 2.01 2.05 

MLP 0.41 1.3 2.6 1.93 2.97 1.96 4.42 2.4 1.88 1.45 1.25 1.09 2.26 
Associative 
Search 

0.85 0.54 2.55 1.3 2.86 1.41 3.90 1.91 2.27 1.56 1.99 1.11 2.40 

Case number Method 
7 

mean  st. dev. 
8 

mean       st.dev. 
9 

mean      st. dev. 
10 

mean     st. dev. 
11  

mean       st. dev. 

 
Average 

of 
means 

 
    7-11 

Hopfield 0.48 2.25 1.34 1.77 2.19 1.81 3.19 1.76 3.59 1.85 2.16 
Hopfield – 
MLP 

0.31 1.82 0.87 1.66 1.4 1.79 2.02 1.77 2.32 1.94 1.38 

MLP 0.22 0.91 0.77 0.94 1.17 0.97 2.23 1.57 2.77 1.85 1.43 
Associative 
Search 

0.49 0.27 1.27 0.66 1.92 1.03 2.61 1.35 2.85 1.44 1.82 

 

Figure 7 illustrates graphical comparison of the overall error corresponding to the 

different methods.  
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Figure 7: Comparing methods on overall error 
 
Table 2 shows the restricted error which is the mean Euclidean distance between the 

real and predicted positions of landmark points by taking into account only the 

occluded landmarks and the standard deviation of the restricted error.   

 12



Table 2: Mean and standard deviation of the Euclidean distances between 
recovered occlusion points and original points for testing set in Cases 1 - 11 

(restricted error) 
 

Case number Method 
1 

mean st. dev. 
2 

mean  st.dev. 
3 

mean st. dev. 
4 

mean st. dev. 
5 

mean st. dev. 
6 

mean  st.dev. 

Average 
of 

means 
1-6 

Hopfield 6.03 0.34 5.90 0.91 6.63 1.09 7.16 1.62 5.89 0.78 6.09 0.73 6.28 
Hopfield – 
MLP 

3.71 0.31 3.76 0.91 4.29 1.21 4.58 1.89 3.67 0.79 3.80 0.77 3.97 

MLP 2.88 0.19 4.93 1.02 4.95 1.17 5.33 1.99 4.24 0.64 3.37 0.41 4.28 
Associative 
Search 

5.77 3.65 4.69 2.4 4.63 2.27 4.57 2.24 4.98 2.54 5.2 2.91 4.97 

Case number Method 
7 

mean     st. dev. 
8 

mean       st.dev. 
9 

mean   st. dev. 
10 

mean       st. dev. 
11  

mean       st. dev. 

 
Average 

of 
means 

    7-11 
Hopfield 5.47 0.19 5.06 0.47 5.52 0.72 5.86 0.95 6.10 1.09 5.60 
Hopfield – 
MLP 

3.03 0.16 3.29 0.44 3.54 0.69 3.71 0.96 3.94 1.14 3.50 

MLP 2.52 0.08 2.99 0.24 3.04 0.37 4.22 0.83 4.84 1.05 3.52 
Associative 
Search 

5.5 3.02 4.79 2.49 4.85 2.59 4.81 2.48 4.85 2.45 4.96 

 
 

Figure 8 illustrates graphical comparison of the restricted error corresponding to the 

different methods.  

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11

Case

M
ea

n

Hopfield

Hopfield-MLP

MLP

Associative Search

 

Figure 8: Comparing methods on restricted error 
 

Image representations of a typical recovered face shape from the testing set for some 

of the occlusion cases using the Hopfield, Hopfield-MLP, Hopfield, MLP, and 

statistical methods are shown in Figure 9.  
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Figure 9: Face shapes as seen visually: occluded, original and 
reconstructed by the different methods 

 
4.3 Discussion 

The numerical results in Table 1 show, as expected, that in cases where only a small 

part of the face shape is missing (e.g. Cases 1 and 7) the overall error is small, and it 

gradually increases when larger parts of the face shape are missing (e.g. Cases 2, 5, 6, 

9, 10 and 11).  However, this increase of the overall error remains limited. This is 

also valid for the restricted error as we can see in Table 2 displaying the mean 

Euclidean distance only between the recovered occlusion points and the original 

points. For example, in the Cases 7 – 11 (corresponding to randomly missing 

percentage of points 10%, 30%, 50%, 70% and 90%) the Hopfield-MLP overall error 
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increases from 0.31 to 2.32 and the restricted error remains less than 3.94. Similarly 

for the Associative Search based method the overall error increases form 0.49 to 2.85, 

and the restricted error is below 5.5.  

The so-called overall and restricted errors for the Hopfield method are slightly higher 

than the other three methods in all of the cases, which are illustrated in the graphics in 

Figures 7 and 8. Most probably the results may improve if more than 5 bits are 

utilized to represent the values of the face shape co-ordinates. However, this would 

lead to increasing the size of the Hopfield network which would not be practical. It is 

well known that the Hopfield networks have two main drawbacks: limited capacity 

(15% of the network units) and local energy minima occurrences referred as spurious 

attractors. Theoretically we could overcome these limitations by using Boltzmann 

Machine neural network [1] (an extension of the Hopfield), which is a stochastic 

neural network with hidden neurons. However, in practice the learning process in the 

Boltzmann Machines is extremely slow making it impractical to be used in our 

application. In addition, since we already address one of the problems of the Hopfield 

network, namely the limited capacity (by training the network with patterns of the 

same number as 15% of the network nodes), we decided not to employ the Boltzman 

Machines in this study. As we suggest in section 3.3, by using one of the trained MLP 

networks for the occlusion cases 1-11, and feeding the results from the Hopfield 

network as inputs to the chosen MLP network, we obtain eventually better overall 

results. In our experiments we apply the already trained MLP network for case 7 

(corresponding to the occlusion case of 10% randomly selected missing points) to the 

Hopfield results, and this results in considerable improvement of the overall and the 

restricted errors over the Hopfield method. In addition, the overall and the restricted 

errors improve over the MLP method in six cases, namely cases 2, 3, 4, 5, 10 and 11. 
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The last columns in Tables 1 and 2 show that the averages of all the overall errors 

and of all the restricted errors for the cases 1-6 and 7-11 are smallest for the 

combined Hopfield-MLP method. The visual results in Figure 9 demonstrate that 

when the Hopfield-MLP method is employed, the reconstructed shapes retain both the 

geometrical structure and the 3D orientation of the original face shape. 

The numerical and visual results (Tables 1, 2 and Figure 9) show the feasibility of 

robust recovery of contour face shapes even in very general cases of occlusion such as 

missing large parts of the face shape (Cases  2, 4, 5 and 6) and a high percentage of 

random missing points (Cases 9, 10, and 11). The overall results in terms of the error 

measures achieved with the Hopfield, MLP, Hopfield - MLP and the Associative 

Search methods are similar. In the cases 1, 6, 7, 8, and 9 the overall and restricted 

errors for the MLP method are the smallest, in cases 2, 3, 5, 10 and 11 the overall and 

restricted errors for the combined Hopfield-MLP method are the smallest, and in case 

4 the Associative Search method gives slightly better result than the combined 

Hopfield-MLP method. The standard deviations of the restricted errors in Associative 

Search (see Table 2) are significantly higher than the standard deviations in the other 

methods, indicating that the performance of this method is not uniform as it can be 

either very good in some cases but not satisfactory in other cases. In contrast, for the 

Hopfield, Hopfield-MLP and MLP methods, the lower standard deviations of the 

restricted errors obtained, indicate that there is more uniform performance over the 

testing set. One advantage of the Associative Search based method over the Hopfield 

and MLP methods is that it is simpler and it does not require training time.  

 
5 Conclusions 

We have presented an experimental comparative evaluation of the problem for 

restoration of occluded face shapes where the performance of classical neural network 
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methods, such as Hopfield, MLP, and a combination of these, as well as Associative 

Search based method, were evaluated. The feasibility of such predictions is based on 

the strong correlation between the appearances of individual facial features. 

According to the quantitative and visual results presented, the combination of 

Hopfield and MLP methods, the MLP method and the Associative search method give 

robust ways of reconstructing face shapes for very general cases of occlusion. Both 

the numerical results and the visual results show that the combined Hopfield-MLP, 

which constitutes to the best of our knowledge a novel technique, gives the best 

performance in most of the occlusion cases. The performance of the Hopfield, 

Hopfield-MLP and MLP methods is more uniform compared to the performance of 

the Associative Search method demonstrated with the lower standard deviations of the 

restricted errors. The Associative Search based method has the advantage over the 

other methods as being the simplest and fastest method.  

The results show that it is feasible to develop a system based on classical methods for 

the automatic prediction of the shape of occluded facial features. With the suggested 

approaches, an occluded face shape of an unseen individual can be restored even 

when a large part of the face shape is missing. In practice if the type of an occluded 

shape does not belong to any of the occlusion cases for which we have pre-trained 

networks, a new network could be trained for the particular type of occlusion. 

Alternatively a bank of networks to cover a large number of typical occlusion cases 

can be trained, so that the most appropriate is chosen for a given occlusion type.  

The problem of restoring occluded face shapes in such general forms of occlusion like 

the ones considered in our experiments has not been addressed up to now. This makes 

it impossible to compare directly the results from our approach to previously reported 

methods for restoration of occluded face shapes. Systems reported in [11], [12], [13] 
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and [14] for restoration of partly occluded face images are developed with the aim of 

face recognition and in general are limited to restoration of face images of individuals 

whose images were used in the learning process. The performance of the 

neocognitron based models for recognition [5] and restoration [6] of partly occluded 

patterns, are only investigated so far on alphabetical and numerical symbols.   

The experimental results show that it is possible to recover with reasonable accuracy 

the overall shape of faces even in the case that a large proportion of the shape of a 

given face is not visible.  The feasibility of such predictions is based on the strong 

correlation between the appearances of individual facial features.  
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