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Abstract 

A numerical study of two classes of neural network models is presented. 

The performance of Ising spin neural networks as content-addressable memories 

for the storage of bit patterns is analysed. By studying systems of increasing 

sizes, behaviour consistent with fintite-size scaling, characteristic of a first-order 

phase transition, is shown to be exhibited by the basins of attraction of the 

stored patterns in the Hopfield model. A local iterative learning algorithm is 

then developed for these models which is shown to achieve perfect storage of 

nominated patterns with near-optimal content-addressability. Similar scaling 

behaviour of the associated basins of attraction is observed. For both this learn- 

ing algorithm and the Hopfield model, by extrapolating to the thermodynamic 

limit, estimates are obtained for the critical minimum overlap which an input 

pattern must have with a stored pattern in order to successfully retrieve it. 

The role of a neural network as a tool for optimising cost functions of binary- 

valued variables is also studied. The particular application considered is that of 

restoring binary images which have become corrupted by noise. Image restora- 

tions are achieved by representing the array of pixel intensities as a network 

of analogue neurons. The performance of the network is shown to compare 
favourably with two other deterministic methods-a gradient descent on the 

same cost function and a majority-rule scheme-both in terms of restoring im- 

ages and in terms of minimising the cost function. 

All of the computationally intensive simulations exploit the inherent parallelism 

in the models: both SIMD (the ICL DAP) and MIMD (the Meiko Computing 

Surface) machines are used. 



Nachdem es uns nicht gelungen ist, Spingläser mit Hilfe unseres 
Gehirns zu verstehen, versuchen wir jetzt unser Gehirn mit Hilfe 

von Spingläsern zu verstehen. ;, 

(After not having succeeded in understanding spin glasses with the 

help of our brain, we are now trying to understand our brain with 
the help of spin glasses. ) 

Anon. (Heidelberg 1986) 
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Chapter .1 

Introduction to Neural Networks 

The tasks which the human brain carries out routinely and apparently effort- 

lessly require the processing of massive amounts of information. For example, 

the recognition of patterns (e. g., words or faces) involves a choice from amongst 

an enormous, data-base containing tens or hundreds of thousands of alterna- 

tives. Indeed the recognition of a particular visual object out of a class of 

similar objects firstly requires interpretation of a two-dimensional array of light 

intensities-the retinal images-in terms of the three-dimensional scene which 

is being viewed: a phenomenal information processing feat in itself. On conven- 

tional computers of today, where instructions can be executed in nanoseconds, 

such processing tasks would typically require many thousands, or even millions, 

of instructions-if they can even be achieved at all. Yet these tasks can be 

carried out in the brain in fractions of a second, although the `building block' 

of the brain-the neuron-is a nerve cell which `operates' (changes its state of 

activity) merely in times of the order of milliseconds. 

How is it that a collection of interconnected neurons-'components' which are 

slow on the timescale of present day integrated circuit components-can achieve 

such tremendous processing powers? Through the study of systems of interacting 

processing elements, neural network models attempt to go some way towards 
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providing answers to this question and to come close to emulating at least some 

of the processing capabilities of their real (biological) counterparts. At a more 

ambitious level, they would endeavour to explain the functioning of parts of the 

brain itself. 

It is widely agreed that the emergent processing speed available to the brain 

must depend on a massive degree of parallelism. At any given instant a huge 

number of neurons simultaneously alter their state in response to each other. In 

light of the timescales mentioned above, the way in which information is stored 

and retrieved must also involve parallelism to a large extent: the recognition of 

a pattern from amongst perhaps hundreds of thousands of contenders cannot 

involve purely a sequential search through all the possible alternatives stored 

in memory, but must somehow involve a simultaneous `consideration' of a huge 

number of possibilities. '_ 

Some 1010 neurons are contained in the brain, each of which is a complex entity 

in its own right. A neuron can be roughly described as being composed of a cell 

body which fires electrochemical pulses along its output fibre, the axon. The 

rate at which it does so is largely, if not completely, determined by the elec- 

trical potential of the cell. Connected to the axon are synapses-connections 

to the input fibres (dendrites) into other neurons. When a neuron fires, the the 

electrochemical activity which propagates along its axon induces further electri- 

cal pulses to propagate along these input fibres via the synapses. These then in 

turn modify the electrical potential of the neurons into which they are connected. 

The incoming electrical signal along a synapse can either tend to increase or de- 

crease the cell potential of the neuron: i. e., synapses can be either excitatory or 
inhibitory, respectively. The number of neurons which are connected in this way 

to another neuron can typically be of the order of 104, implying a population of 

some 1014 synapses in the brain. 

Although many-of the- brain's functions have been successfully localised to par- 
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ticular areas within it, the -understanding of the neural circuitry and of the 

`algorithms' which arise remains largely a mystery. The vast number of neurons 

participating, each interacting with hundreds or thousands of others, makes the 

solving of this problem a daunting prospect. 

Nevertheless, the underlying philosophy of most neural network models is that 

it may be possible to account for many of their capabilities in terms of the 

overall structure of the network and that they, could be greatly independent 

of many of the complex details at the level of the individual neuron and its 

interactions. This is somewhat akin to the argument that the possible algorithms 

able to be executed`by a computer would be unlikely to be discovered if one 

merely identified the behaviour of the individual electronic components of which 

it was constructed. This is also -analogous to many phenomena encountered 

in physics-particularly in statistical physics-where the macroscopic, or bulk, 

behaviour of a system comprising a large number of interacting subsytems can 

be to a large extent explained by models in which only the barest details, of the 

subsystems are required. For example, the way in which the net magnetisation 

or susceptibility of a ferromagnet varies with temperature and applied magnetic 

field; and the relationship between the pressure, temperature and density of 

many gases: near the critical point both can be successfully approximated by 

models which pay no great attention to the particular variety of their component 

atoms or molecules. Other examples-include the ferromagnetic-paramagnetic 

critical behaviour of magnetic materials and the gas-liquid phase transition of 

substances: both can be accurately accounted for using models in which the 

component atoms or molecules are described by merely one number (a spin 

being `up'/'down' in the former case and an molecule being present /not present 

in the latter). 

The models which shall be considered in this thesis concern neural networks 

functioning as a memory for storage and fast retrieval of information (chapters 

2,3 and 4) and as an optimisation tool (chapter 5). The memory models attempt 
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to explain how a neural network can function as a content-addressable memory. 
A `fact', or `picture', which is stored in such a memory is retrieved by supplying a 

cue which contains a sufficiently large portion of that fact in order to distinguish 

it from the other entries stored in the memory: recall is based on addressing the 

entries by their content and not, as in conventional computers, by providing 

some address which points to a particular location. 

Both types of model simplify the behaviour of a neuron so that it can be de- 

scribed by one real variable: the rate, Vi, at which it fires (where i denotes 

a particular neuron). The response function which governs this firing rate in 

terms of the cell potential, q;, of the neuron is approximated by a sigmoidal 
form: 

- 
MOO =1+ 

exp{-g(oi - Ui)}' 
(1.1) 

where g is a parameter which determines the steepness of the response function 

and U; is the `threshold' of neuron i-it has the effect of shifting'the response 

curve along the 4; axis. V=0 corresponds to a non-firing (or quiescent) state, 

while V=1 denotes fully-firing. 

The effect of the synapses impinging on a neuron are modelled as follows. A 

synaptic connection from the output (axon) of the jth neuron into the ith neuron 
has some synaptic strength T1 which can be positive (excitatory) or negative 
(inhibitory). If neuron j is firing pulses at a rate V,, then it will increase the 'cell 

potential qi of neuron i by an amount T; jVj. The net potential O; (t) at time t is 

then given by 
ETijvj(t)" ý1.2) 

Thus the very complex behaviour at the microscopic level-that of an individual 

neuron-has now been simplified to 

V(t + 1) = with 0, (t) = T;; V, "(t) (1.3) 1+ exp{-g( o; (t) - U; )} 
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i. e., the state of a neuron is a non-linear function of the sum of its inputs. The 

firing rates L (t) { Vi(t), V2(t),... } of the neurons at time t can be thought 

of as a firing `pattern' of the network. 

Still to be specified are the architecture of the network-which neurons are con- 

nected to which-and the order in which the neurons alter their state (update): 

e. g., all the neurons could update in lockstep parallel; or only one neuron could 
be changing its state at a given time (sequential updating); or neurons could 

update in a random fashion, with possibly many of them changing state at any 

given instant (asynchronous updating). The models which shall be considered 
in chapters 2 

, 
to 4 are in general fully connected, i. e., each neuron can in prin- 

ciple influence and be influenced by any other. Those in chapter 
'5 

can also be 

fully connected, but the particular example which is considered only-has nearest- 

neighbour connections in a two-dimensional lattice. As for the order in which 

the neurons are updated, although the asynchronous method is probably the 

most similar to the situation in a real neural network, one would not expect 

many of the emergent processing capabilities to be dependent on the particular 

choice. The memory models of chapters 2,3 and 4 utilise sequential updating, 

while the optimisation networks in chapter 5 are of a synchronous nature: half 

of the neurons are being updated in parallel. 

It is principally the fully-connected nature and the fact that all of the neurons 

play more or less identical roles in these models which distinguish them from 

another class of models that have also been the subject of a great deal of attention 

in recent years. In multi-layered networks, the neurons are arranged in successive 

layers from an 'input' layer through a number, of `hidden' layers to an `output' 

layer. Connections only exist from one layer to the next and only in the forward 

(input to output) direction. This implies a connectivity matrix of an upper- 

triangular form. All the neurons in one layer are updated in parallel, one layer 

at'a time, starting with the input layer and ending with the output layer. In this 

way a certain firing pattern presented at the input layer will propagate through 
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the network and induce a firing pattern at the output layer. 

Whereas in the multi-layered networks one is concerned that certain input pat- 

terns give rise (associate) to desired output patterns, in the models studied here 

the firing patterns of interest are'the dynamically stable ones: 

Y, "(t') = V, "(2), Vi, Vi' > t. (1.4) 

These are the persistent activity patterns which are identified as being `stored' in 

the memory models or which correspond to solutions (minima) of a cost function 

in the optimisation networks. 

Chapter 2 introduces a class of models in which the behaviour of a neuron is sim- 

plified even further so that it can be represented by one boolean variable: either 
it is firing or it is not. This essentially corresponds to taking the limit of g -+ oo 
in (1.1), i. e., reducing the response function to a step function. The strong anal- 

ogy with an assembly of interacting spin-? Ising variables is described. It is this 

which has allowed the analysis of these models in a thermodynamical framework 

and which has been principally responsible for the upsurge of interest in these 

models amongst the physics community. The functioning of these models as 

distributed content-addressable memories is also explained. 

Chapter 3 deals with a particular model which belongs to this class: the Hopfield 

model. It was in his seminal paper (Hopfield 1982) that Hopfield demonstrated 

the existence of a Hamiltonian, or energy, function for the network. This then 

allowed subsequent analysis of the model using the powerful techniques of sta- 

tistical mechanics. A numerical study of the content-addressability of the model 
is presented and evidence for scaling and critical behaviour is obtained. 

Unlike the Hopfield model in chapter 3, which prescribes the synaptic connection 

strengths according to a specific rule, chapter 4 concerns `learning algorithms'. 
These are iterative improvement techniques for modifying the synapses ('learn- 

ing') until the desired results (proper storage of designated bit patterns) are 
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achieved. Once again the content-addressability of these models is analysed nu- 

merically and similar, but improved, behaviour to that of the Hopfield model is 

found. 

Finally, in chapter 5, the role of a neural network as an optimisation tool is 

considered. Whereas in the memory models the problem is to find an appropriate 

set of synaptic connections such that designated firing patterns are stored, in the 

optimisation network the connections are provided by the cost function under 

consideration and the task is to then find a firing pattern which corresponds to 

an optimal solution for the cost function. The problem to which the technique 

is applied is that of restoring binary images which have been corrupted by noise. 

The simulation of a neural network of a reasonable size demands powerful compu- 

tational resources as each neuron must in general communicate with every other 

one in a given updating sweep and normally many such sweeps are required 

before the whole network reaches stability. The computatiönally intensive de- 

mands of all the simulations throughout this thesis were met by implementing 

the models on parallel processors: the ICL DAP (chapters 3,4 and 5) and a 

Meiko Computing Surface; an array of transputers (chapter 5). A description of 

these powerful resources is provided in chapters 3 (the DAP) and 5 (the Com- 

puting Surface). Details of the particular implementations are provided in the 

appendices. 
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Chapter 2 

Ising Spin Neural Network Models 

2.1 Introduction 

In these models the behaviour of a neuron is simplified to the case where it can 

exist only two possible states of activity: either it can fire electrical pulses along 
its axon at maximum frequency, or it is quiescent and emits no signals. The 

neuron is fully-firing only if its current cell potential exceeds some threshold 

value (which can in principle be different for each neuron). This simplification 

not only has the advantage of making the whole model of the network more 

tractable analytically (or at least less -intractable), but also has the consequence 

that each neuron can be represented by a single boolean variable-an obvious 

convenience for computer simulation of these models and for possible hardware 

implementation. 

Mathematically, the two-state nature of a neuron is achieved by adopting the 

limit whereby the sigmoidal response function becomes infinitely steep as the 

cell potential approaches the neuron's threshold value: i. e., the response V is 

now related to the cell potential ýj through the Heaviside threshold function 9: 

WOO = e(Oi 
- 

Ui), ý`2.1) 
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where U; is the neuron's threshold. 

Each neuron being in only one of two possible states ("on" or "off") is reminiscent 

of a spin-12 Ising variable Si in physics which can be "up" (Si = +1) or "down" 

(Si = -1). The analogy runs deeper than this, however. Changing notation to 

accommodate this by defining Si = 2V, " -1 for the state of each (i'th) neuron, 

one then has 

1 -I -1 if neuron active Si = (2.2) 
-1 if neuron inactive 

and the response function is 

Si = 3gn(¢; - U; ). (2.3) 

Recalling the form of the cell potential 4j, 

ý; _ T;; V; (2.4) 

and by transforming the otherwise arbitrary thresholds to 

Ui -> 2U, + T;,, (2.5) 

(1.3), in the limit of g -* oo, becomes equivalent to 

Si = sgn(ET; 5S3 - U; ). (2.6) 
i 

Thus each neuron can be viewed as an Ising - spin which is "up" or "down" 

(5; _ +1 or -1) according to whether the "local field" 

h; =ETijSj-U; (2.7) 
i 

is positive or negative. Hence, the dynamical law obeyed by each spin (neuron) 

is that it aligns itself with its local field h;. Incorporating time, t, this is then 

S( t+ 1) = sgn(h; (t)) with h; (t) = ET;, S, (t) - U;. (2.8) 

The local field at site i (2.7) is composed of two parts: -U; is like an external 
(and site-dependent) field and E5 T; 5S5 is the contribution to h; from the other 
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spins S� mediated through their connections T; 3 into site i. This is exactly 

analogous to having an effective magnetic field at lattice site i due to the other 

spins Sj which interact with spin Si through bond strengths T,,,. One major 

difference, however, is that in the neural network models considered here each 

neuron can in principle interact with any other (so that the interactions T; 5 are 
long-range), whereas in magnetic lattice models the interactions are typically 

restricted to some neighbourhood of each spin site. 

In this framework an activity (firing) pattern of the network of N neurons at time 

t is represented by the spin configuration l(t) _{ Sl(t), S2(t), ... , SN(t) } and 
those activity patterns which are "stored" in the memory of the network, i. e., 
the dynamically stable ones, correspond to those spin configurations in which 

every spin is already aligned with its local field: 

S{(t)hi(t) > 0, i=1,2,.. 
., 

N. (2.9) 

Such stable configurations are the fixed points of the dynamics (2.8). 

The neuron/spin analogy has resulted in the use of different terminology in the 

studies of these models. From here onwards the following terms shall be used 
interchangeably: 

" neuron - node - spin 

9 synaptic connection strength - bond strength - weight 

" network - system 

" firing pattern - state of the network - spin configuration 

The concept of memory, in the model and the analogy of the collection of inter- 

acting neurons as a system of Ising spins can be made clearer if symmetry is 

imposed on the connection strengths: 

T, j = Tji. (2.10) 
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For, along with the no self-interaction constraint T;; = 0, this implies the exis- 

tence of an energy (or Lyapunov) function 

E[5_ -2 Tijsisj + U; S; (2.11) 

such that under sequential updating (2.8) of the neurons, E[S'] is monotonically 
decreasing. That this is the case can be seen by considering the change in energy 
due to the updating of the k'th neuron: 

LICE = E(t + 1) - E(t) 

=- : ýTkjSj(t) - Uk {Sk(t + 1) - Sk(t)} (2.12) 

= -hk(t) {1- Sk(t + 1)Sk(t)} Sk(t + 1). 

But Sk(t + 1) = 3gn(hk(t)), so hk(t)Sk(t + 1) >0 and 1- Sk(t + 1)Sk(t) =0 

or 2, thus OkE < 0. 

This has the consequence that the stationary ("memorised") states X of the 

network correspond precisely to those which are local minima of the energy 
E[S], as they are the states which are stable to single spin flips (neuron state 

changes). As the network evolves, the state of the system £(t) traverses a 
downhill trajectory on this energy landscape E[S] which is defined over the 

2N corners of the N-dimensional hypercube containing all the possible states 

available to the system. The network will stabilise in a state which is a local 

minimum of E, and so a fixed point of the dynamics (2.8). 

This picture. provides a way of avoiding the need for running the network in 

order to discover the memory states (for a given set of T5): one "only" has to 

find those states which are local minima of E. So finding these states can be 

tackled as a statics problem as opposed to a dynamical one. 

A stored state of the memory is then evoked if the initial state (the "cue" 

or "input") lies within its basin of attraction. The memory is associative as 
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it associates the final (stable) state with the initial state, and it is content- 

addressable because the stored item is recalled only if the initial state resembles 

it enough (contains enough of the stored state's content) to be in its basin of 

attraction. 

The memory is also distributed since the storage of a particular item depends 

on the corresponding firing pattern being a stationary state, and this in turn 

depends in general on the values of all the synaptic connections Ti,. This makes 

for a memory robust to `damage': if a few of the synapses are eliminated (set to 

zero) then the stability of previously stable patterns should not be affected to any 

great extent, i. e, the storage of patterns is not catastrophically disturbed. (This 

seems to be a characteristic of human memory too: memory representations, 

and perhaps other cognitive functions also, are spatially distributed rather than 

being localised neurally. Damage to a group of neurons or their synapses does 

not usually result in the sudden loss from memory of particular entries. ) 

Of course, the central question to be answered is how to choose these connections 

properly. That is, given a set of nominated patterns Sl, , 
V, 

... which one 

wishes to be stored in this neural memory, one must find an appropriate set 

of interactions T1j such that each S' is indeed a stable firing pattern. In other 

words, the problem to be solved is one of assigning the T; 3 such that each spin 

configuration S" is a local minimum of E[] in (2.11). This is an inverse problem 

to the type usually solved in Statistical Physics where the form of the bond 

strengths is usually known and one then wishes to identify the ground and 

metastable states (minima) of the energy. 
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2.2 The Hopfield Model 

One of the best-known models which falls into the category described above, and 

one which has received a great' deal of attention since its appearance (Hopfield 

1982) is the Hopfield model. Although most of the ideas incorporated in the 

model were not really new (some of them can be traced back to McCulloch and 

Pitts (1943) and Hebb (1949)), Hopfield did bring together many important 

ideas into the one model; not the least of which was the demonstration of the 

existence of an energy function for symmetric synapses. This has proved to be 

a powerful tool in the ensuing analysis of the model. 

In this model the Hebbian prescription (based on (Hebb 1949)) for the synapses 
is utilised: 

1p 
T;; 

NES; 
S; (i 0 j) 

*_1 
(T;; = 0), (2.13) 

where Sl, Sa, ... , SP are the patterns to be stored. This obviously satisfies the 

symmetry requirements on T; 3 and has the advantage of being a local `learning' 

rule in that the change to a synapse due to the introduction of a new pattern S 

1 
T, j -, T, J _f- N S. Sj 

only depends on the activity of the two nodes (i and j) that it connects. The 

N-1 factor appears in order to keep the size of the connections finite even for 

the case where an extensive number (O(N)) of patterns are being considered. 
The individual neuron thresholds U; are all taken to be zero. Henceforth this 

will be assumed unless otherwise stated. 

The nominated states S' in this model are chosen to be random, uncorrelated 

bit patterns (i. e., each S; is an independent random variable assuming the value 

1 or -1 with equal probability). Such a choice ensures the existence of both 

positive and negative connections in (2.11) and endows the' model with the key 

ingredient of frustration. This is a phenomenon which occurs when all the bonds 
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T; 5 cannot simultaneously be `satisfied' (make their lowest possible contribution 

to the energy): a negative `antiferromagnetic' (AFM) bond implies that the 

lowest contribution to the energy (2.11) is when the spin variables that it con- 

nects (Si and S; ) have opposite signs, whereas a positive `ferromagnetic' (FM) 

T; q encourages both spins to be the same. When both types exist, it , 
is easy to 

have, e. g., triples of bonds which exhibit frustration. A simple example would 
be T12, T23 >0 and T31 < 0, in which case it is impossible to choose a config- 

uration of the three spins { 51,52,53 } in which all three bonds are satisfied. 
This phenomenon can result in the existence of a huge number of configurations 

which are local minima of the energy. 

If just one pattern Si is stored (p, = 1 in (2.13)), then the model is really just a 
fully-connected uniaxial Ising ferromagnet when the randomness is gauged away 
(as in the Mattis (1976) model): redefining the local definition of `up' and `down' 

by using new spin variables S; = Si S; 
_,: 

the energy becomes 

E(S'] 
2 

S; Sý. (2.14) 
i#i 

This only has the two minima: £' ={1,1, ... , 1} and { -1, -1,.. ., -1}, 
i. e., all spins up or all spins down (hence `ferromagnetic'). These states of course 

correspond respectively to complete alignment with the nominated pattern Sl 

and total misalignment with it. At the other extreme where the number of stored 

patterns becomes very large (p -º oo), each T; j tends to a random Gaussian 

variable of zero mean (as a consequence of the central limit theorem). This 

is very similar to the long-range Sherrington-Kirkpatrick(SK) (1975,1978) spin 

glass model in which the bond strengths are randomly positive or negative and 

typically drawn from a Gaussian distribution. (Of course, in the neural network 

model there" are correlations between each T; 5 as they are composed from a 

common set of random bit patterns. ) So, in a sense, the case of a finite number 

of stored patterns is an interpolation between a ferromagnetic (p = 1) model 

and a spin glass (p -º oo) model. 
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It is known from the analysis of such models as the SK one that spin glasses 

exhibit rich and complex behaviour due to the crucial ingredients of disorder 

and frustration. As a result of the latter characteristic it turns out that in the 

SK model the number of metastable states is exponential in the size of the sys- 

tem (Moore 1984). And due to the prevalent disorder, the system can exist in 

a spin glass phase: a type of ordering which is not found in pure systems. In 

such a phase the magnetic spins are frozen into thermal equilibrium orientations 

but lacking any long-range order: each individual spin on average points mostly 

either up or down, but the correlation between spins dies off rapidly to zero 
for spins that are separated by distances of the order of the size of the system. 
Physical examples of such spin glass systems are typically metallic alloy host 

materials which contain a few per cent of magnetic impurities, e. g., CuMn and 

AuFe. The magnetic impurities are located at random sites on. the host lattice 

and, due to the nature of the RKKY (Ruderman-Kittel-Kasuya-Yosida) interac- 

tion between these these spins (it is long-ranged and alternates between FM and 

AFM with separation), the system can be modelled by a lattice which contains 

a spin at every site but in which the bond strengths are chosen at random. 

2.2.1 External Noise 

The Hopfield model can be generalised to allow the introduction of external 

noise in the system by modifying the deterministic dynamical law (2.8) with a 

stochastic element. Instead of each spin definitely aligning with the current state 

of its local field there is now a chance that it will adopt the opposite alignment. 

This stochastic nature could be included to account for any noise that is present 

in a real neural system due to e. g., thermal processes. The dynamical process is 
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now 

_ Si(t)h; (t) <0=S; (t +'l) 

S; (t)hi(t) >0= Si (t + 1) = 

sgn{h; (t)} 

-sgn(hi(t)) with prob. e-ßs; (t)h; (t) 

sgn(h1(t)) with prob. 1- e-As; (t)F; (t) 

(2.15) 

where ß parameterises the external noise: ß --> oo (no noise) recovers the deter- 

ministic dynamics S; (t + 1) = sgn(hi(t)); ß -+ 0 (maximum noise) is the case 

where every spin continually flips with respect to its previous state, regardless 

of the local field hi. 

This is exactly analogous to a Monte Carlo simulation using the Metropolis 

algorithm (Metropolis et al. 1953) at a temperature T= ß-1. In that case spin 

flips which reduce energy are definitely accepted and those that would produce 

an energy increase of SE are accepted with probability exp{-SE/T}. This is 

also the case here since the chance of a spin flipping against its local field is 

exp{ -Q S; h; } and the resultant increase in energy would be SE = -S; hj. 

Of course, the difference between these two algorithms is that in the Metropolis 

case, the spin flips are proposed with respect to the current alignment of the 

spin, whereas in (2.15) the spin flips are with respect to the local field h;. 

An alternative way of incorporating parameterised external noise is in the Little 

model (Little 1974, Little and Shaw 1978). There the probability that a spin 

adopts the state Sil = S; (t + 1) at time t+1 is 

e-dSºhi(t) 
(Si) 2.16) P" = ps, ý t" 

( 

which also reduces to (2.8) when Q -º oo. 

The motivation behind such Monte Carlo simulations of physical systems is 

that they simulate the thermal fluctuations in a system which is in contact 

(can exchange energy with) its surroundings. It can be shown that after a 

sufficiently large number of updates (2.15) the system will be in equilibrium with 
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its surroundings in that the probability of the system being in a configuration 

S is given by the Boltzmann-Gibbs weight 

Pý, ý" =Z e-QEt5j. (2.17) 

This is the canonical distribution, where the partition function Z is 

Z= Tre'AEM. (2.18) 
s 

The `trace' Tr represents a summation over all (21ý') possible configurations S. 

The beauty of algorithms such as the Metropolis one is that they can generate 

configurations of the system correctly distributed according to the canonical 
distribution (2.17) without needing to expilicitly evaluate every term in the 

partition function (2.18); a task which would involve a prohibitive amount of 

computer time for even a modest system size. 

It is well known from Statistical Mechanics that all of the thermodynamics 

(physical observables) can be obtained through the free energy 

F=-T1nZ. (2.19) 

For the general stochastic model (T > 0) it is the minima of the free energy 
F which are the most probable equilibrium states. So now the energy function 

E[S] plays an even more important role than before. In the no noise case it 

was no more than a mathematical function whose minima were the stable, and 
thus stored, states of the system. But it now also allows the controlled intro- 

duction of external noise and provides the means by which powerful techniques 

of thermodynamics and statistical mechanics can be exploited. 

The disorder in the system (due to the randomness of the nominal bit patterns) 

must be averaged over by quenched averaging. This is done by choosing a given 

realisation of the nominal patterns and then using the corresponding free energy 
(2.19) to calculate any desired physical observables (such as how much the equi- 
librium states resemble the nominal states). Then the average over the choice 
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of nominal patterns must be carried out. This would involve the average of the 

logarithm of Z in (2.19); a requirement which can circumvented by the use of 

the `replica trick' (Edwards and Anderson 1975, Kirkpatrick and Sherrington 

1978, Parisi 1980) 
Z"-1 

lnZ = lim. (2.20) 
n-o n 

The average now to be carried out is over Z" which just represents the partition 

function of a collection of n independent copies (replicas) of the system: a much 

easier task. 

Using these theoretical tools in this pseudo-thermodynamical framework, Amit, 

Gutfreund and Sompolinsky (1985a, b, 1987a1b) were able to extensively analyse 

the Hopfield model, finding how the stable states of the network were related to 

the nominal patterns it was attempting to store. Their analysis was presented for 

all values of temperature (thermal noise), but it will only be the zero temperature 

(determinsitic) limit which shall be required here. Their, results are valid for 

the thermodynamic limit, whereby N -+ oo. In terms of the storage ratio 

a= p/N (the ratio of the number of nominal states to the number of neurons 
in the network), they found that the network behaved as follows as a is increased 

from zero. 

" For p>3 (infinitesimal a) `spurious' minima are created in the energy 

surface. These are `mixture states' which correspond to linear combina- 

tions of nominal states. All of the nominal states are successfully stored, 

albeit with a few errors, as each one lies very close to a minimum of the 

energy. Due to their high correlation with a nominal state, these nearby 

stable states are designated as ferromagnetic (FM). Although the spurious 

states are only metastable in the sense that their energies are an extensive 

amount (O(N)) higher than the FM states, they are just as stable since 

they too lie in basins of attraction surrounded by energy barriers of order 

N. 
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" For finite a (p = 0(N)) another class of spurious states appear: the spin 

glass (SG) states. Unlike the mixture states, these are uncorrelated with 

any of the embedded nominal states. 

Now, it will be convenient to introduce a natural order parameter of the system 

which measures the correlation of the state S of the system with a nominal 

pattern Y. This is the overlap between S and S' and is defined as 
N 

Mr 
1 

Si Sil. (2.21) 
N i-1 

When S and ,' are identical, m' = 1; when S is the complement of ,' then 

mr = -1; if S is randomly chosen with respect to S, then m* = 0(*). The 

latter will be the case if S and S' are uncorrelated. Hence a spin glass state 

is a stable state of the system with 0(*) overlap with all of the embedded 

patterns. 

At this stage on the scale of increasing a the spurious states are still of higher 

energy than the retrieval (FM) states, which still correspond to the nominal 

patterns with a few errors. Nonetheless, the number of SG states is exponential 

in N and their existence signals the danger of `confused recall': if the network 

is initialised in a state which is too highly distorted by noise from a nominal 

pattern, then this initial configuration could easily be one lying in the region of 

attraction of one of the plethora of spurious states. 

" As a is increased beyond a first critical value, al, a phase transition occurs 

in the sense that the energy of the spurious states becomes lower than that 

of the FM states. Thus now the roles are reversed: the FM states have 

been demoted to metastability, while the SG states assume the mantle of 

the ground states of the system. The network still of course performs as 

an associative memory for the nominal states. 

Increasing a further, past a second critical value, az, the system undergoes 

another phase transition which this time has catastrophic consequences for 
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the network's performance in storing the desired patterns. The FM states 

associated with the nominal patterns are wiped out and the only remaining 

stable states are the SG states. 

Amit et al. calculated the two critical storage ratios as 

ai ^_0.05, ai = 0.14 (2.22) 

within a replica-symmetric mean-field approximation. 

The latter value is consistent with the seminal work of Hopfield who reported 

numerical simulations on systems of N= 30 and N= 100 neurons as indicating 

loss of memory capacity around 0.13 - 0.15. More extensive numerical work 
(Amit 1987) supports these theoretical predictions. 

The strong analogy of these models with fully-connected spin glass models has 

generated a great upsurge of interest amongst the physics community (e. g., 
Mezard et al. 1986, Gardner 1986, Bruce et al. 1987, van Hemmen 1986). 

20 



Chapter 3 

Content-addressability of the Hopfield Model 

3.1 Introduction 

A memory is deemed content-addressable if the facts which it stores can each be 

evoked by a cue (i. e., input) which sufficiently resembles the desired fact to be 

retrieved. In other words, an entry in the memory is accessed by supplying an 
input containing a large enough part of the entry: each piece of stored informa- 

tion is addressed on the basis of its content. This is in marked contrast to the 

memory of a conventional computer which stores data in specific locations, each 

designated an address-usually a sequence of bits. It must be supplied with 

the exact bit-address or else, even if only one bit is wrong, a different memory 

location will be accessed and, in principle, a completely unrelated piece of data 

will be evoked. A content-addressable memory, on the other hand, can cope 

with distorted cues. The more distortion it can cope with (i. e., the less the cue 

need resemble the desired data), the greater is the content-addressability of the 

memory. 

The analysis of the Hopfield model described in the preceding chapter was in 

terms of its ability to store random patterns. This involves determining whether 
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the nominal states, or states sufficiently resembling them, correspond to fixed 

points of the. neural update dynamics (2.8). Thus, this is essentially a statics 

problem' and the question of how large the regions of attraction are around the 

fixed points is not directly addressed. This is a central question `which must 

be answered if one is to discover how well the model performs as a content- 

addressable memory. After all, the `naive' choice of the unit matrix as the 

matrix of connection strengths (T; 5 = Sid) would ensure perfect storage of all 

2N possible patterns but, of course, with no content-addressability whatsoever. 

So it is not enough just to be concerned with how many fixed points can be 

successfully created in the dynamics from a given choice of the Tip. 

Given that the nominal patterns are successfully stored in the memory, how 

distorted can an input state be with respect to a nominal state such that the 

desired pattern will still be evoked? The answer is that the network can cope 

with no more distortion than would result in the input state lying just "outside 

the region of attraction of the stored nominal pattern. Hence, to ascertain the 

content-addressability of the memory, one must determine the size of the basins 

of attraction of the stored patterns. 

To tackle this task analytically one would have to calculate the probability that 

the network would stabilise on (or sufficiently close to) a nominal state if it 

were initialised in a state which was obtained by distorting that nominal pat- 

tern with a given amount of noise. Alternatively, one could attempt to calculate 

the mean overlap of the final (stabilised) state with the nominal pattern, given 

that the initial state had a certain overlap with it. If all the neurons are up- 

dated in parallel then calculation of the mean overlap after one updating sweep 

through the network from a given initial state is relatively straightforward. How- 

ever, stabilisation generally takes more than one sweep and to then proceed and 

calculate the state of the network after a second sweep would be much more 

complicated as there are correlations to be taken into account with the previous 

sweep. Namely, the local field at any spin during the second sweep depends 
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on what happened to all of the spins during the first sweep. (Gardner et al. 

(1987`) show how these complications necessitate the introduction of more and 

more order parameters. ) Similarly, there are such troublesome correlations if 

the sweeping is performed sequentially. Indeed, the situation is exacerbated as 

these correlations arise immediately during the first sweep. 

The daunting prospect of an analytical approach to the investigation of the Hop- 

field model's content-addressability is avoided here by attacking the problem by 

numerical simulation. As remarked earlier, this model is of a type particularly 

amenable to computer experiment since the state of each variable requires rep- 

resentation by only one boolean variable. It is the behaviour of the model in 

the thermodynamic limit (N -º oo) which is desired, and, of course, any com- 

puter simulation must deal with a finite system. However, as is usually the case 

when simulating thermodynamical systems, the models simulated here were of 
increasing size N. The trend was then analysed to extrapolate the expected 
behaviour in the thermodynamic limit. 

3.2 DAP Implementation 

A limiting factor on the size of network able to be simulated in a reasonable 

time is the fact that this model is fully connected: every neuron must contact 

all of the others before it can update its state. This limitation was amelio- 

rated by exploiting the parallelism of the ICL DAP (International Computers 

Limited Distributed Array Processor): despite the fact that all the simulations 
involved sequential updating of the neurons, there was algorithmic parallelism 
in calculating the matrix (T1) - vector (S5) multiplies required in (2.8). The 

simulations also exploited task parallelism in that a number of simulations were 
being executed concurrently. 
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3.2.1 The'DAP 

The Distributed Array Processor (DAP) (Reddaway 1979) comprises a 64 x 64 

square array of 4096 processing elements (PEs). Each PE is a bit-serial processor: 

it performs operations on one bit of data at a time. Although this means that 

arithmetical operations must be performed in software, the bit-serial nature 

makes the DAP a very powerful tool for problems involving logical variables, 

included amongst which are, of course, Ising spin neural network models. It 

also allows flexible word length (INTEGER or REAL *1,2,..., 8), a feature not 

common amongst other computers. There are 4 Kbits (4096 bits) of memory 

associated with each PE, and for each bit in PE memory, the square lattice of 

4096 PE's can be visualised as occupying a logical (bit) plane of the DAP. So 

the DAP consists of 4096 of these logical planes and therefore comprises a total 

memory of 2 Megabytes. 

The DAP is an example of a SIMD machine - Single Instruction stream, Multiple 

Data stream machine. This is because all of the processors can perform the 

same operation on their own piece of data at the same time. Hence the DAP is 

performing this same operation (Single Instruction) simultaneously on different 

data (Multiple Data). 

The A (activity) plane of the DAP gives it the" ability to mask out certain 
PEs while a particular operation is being executed: at any site in this plane at 

which there is a . FALSE. (zero) bit, that PE will remain idle during the present 

operation cycle. 

Communication on the DAP is achieved via the four nearest neighbour connec- 

tions (conventionally called North, South, East and West) between the PEs. The 

array can be specified in the software as having either cyclic or fixed (planar) 

boundary conditions. 
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The programming language of the DAP is DAP-FORTRAN, a parallellsed ex- 

tension of FORTRAN-IV which incorporates matrix and vector variables. A ma- 

trix is declared as M(, ), which consists of the 64x 64 matrix elements M; 1, i, j= 

1, ... 64, where Mij resides on the processor at the ith row and jth column of 

the DAP's array. 

If A, B and C are all matrices, then the instruction A=B*C will execute 

Aq = B; 1 * C; j simultaneously on all 4096 PEs. This holds equally well for * 

replaced by +, - or /. 

Masking is achieved by using a logical matrix L(, ): A(L) =B*C will only 

assign Ail = B; 1 * Cij on those processors ij at which L; 5 is . TRUE., while Al 

will remain unchanged if 4 is . FALSE. 

The construct M(, n) represents an array of n matrices. 

3.3 Numerical Results 

To determine the typical sizes of the basins of attraction (and hence the content- 

addressability) of the nominal patterns, ' in the Hopfield model, states 5(r, s)(s = 

1,2 ... n,,,, ) were constructed, each having a given initial overlap mo with the 

pattern S': 

m(S', y") = mo =1E Si s(? ua) (3.1) 

The (1 - mo)/2 sites at which ,' and 1(r'') differed were chosen randomly for 

each s. The network was initialised in' the state S("-') and then iterated to 

stability under the single spin-flip dynamics (2.8). , was was deemed to have been 

successfully recalled if the resultant stable state differed from it in no more 

than N116 spin sites. This margin of recall error allows for the possibility 

of ferromagnetic states highly correlated with the nominal states being stored 
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instead of the nominal states themselves. The analytical work of Amit et al. 

suggests that these FM states differ in no more than 0.015N sites with respect to 

a nominal state, provided a<0.14. The more lenient margin of N/16 0.0675N 

was thought to be sufficient to account for any finite size effects-the analytical 

predictions are, after all, valid for the thermodynamical limit of N --+ oo. 

Results shown in figure 3.1 for the mean fraction f(mo) of states which were 

recalled with less than N/16 errors from various initial overlaps mo were obtained 

by averaging over more than 1000 initial states for each point in the graph. 

(That is, at each value of storage parameter a the number of states iterated 

from, Na n,,,,, was more than 1000. ) In order to investigate the behaviour of 

the system in the thermodynamic limit, simulations were carried out for three 

different system sizes: N= 512,1024 and 2048. Statistical error bars, typically 

of the order of ±3% are suppressed in the interests of clarity. 

It is evident from the graph that as the system size increases, the rate at which 

f (mo) increases from near 0 to near 1 becomes more pronounced for values of 

a<0.13. The trend suggested is that this change may approach a discontinuous 

jump as N -º oo, displaying a critical minimum overlap mo(a) which an initial 

pattern must have with the stored pattern in order to be in its basin of attraction 

(and thus ensure its successful retrieval). 

The nature of this cross-over appears to be sigmoidal with increasing steepness 

as N is increased. The following form for f (mo. ) was fitted: 

f("0) 
1 (3.2) 

1+C exp{aN(mo - m,, )}' 

where C and a are constants independent of N (but possibly dependent on a). 

This is equivalent to expressing the ratio of probability of recall to that of non- 

recall in the following scaling form 

f (mo) 
=C exp{aN(mo - m, )}. (3.3) 

1-f(mo) 
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To test this hypothesis, ln{ f /(1 - f)} was plotted against mo (figure 3.2). If 

(3.2) holds, then 

In 
1ff= aNmo + In C- aNmc, (3.4) 

1l 

so that this should reveal a linear relationship. This was indeed the case, as can 

be seen from figure 3.2. The best-fit straight lines were obtained by linear Gaus- 

sian regression: if each data point of the graph is denoted by (x;, y; ± e; ), where 

ej is the error, then the procedure is as follows. For each data point generate 

the coordinate (x;, y; ), 'where y; is a random Gaussian variable of mean y; and 

standard deviation e; (this simulates the statistical error e; in the measurement 

y; ). For this particular realisation of all the data points, find the least-squares 

straight line y= gx +b through them. Repeat this procedure a large number of 

times, each time finding the best-fit gradients g and y-axis intercepts b. Then 

the mean best-fit line is y'= (g ± bg)x'+ (b ± bb), where g and b are the 

gradient and intercept averaged over all these realisations and bg and bb are 
their associated standard errors. 

In (3.4) y= ln{ f /(1 - f)}, x= mo, g= aN and 6= In C- aNm,,, so that 
the best-fit scaling form (3.3) has C= exp{b + aNm,, }. To obtain C the crit- 
ical overlap m,, is required. This can be obtained in the following manner by 

extrapolating to N -º oo. 

Inverting (3.4), one has 

mo(f)=. In1 
f 

f-InC +mc, (3.5) 
aNj -I 

so that as N --> oo, or, equivalently, N'1 -* 0, 

mý = lim (mo(f )), (3.6) 
N-1-. O 

Thus, for a given recall fraction f, a graph of mo (the initial overlap required 

to produce that recall fraction f) versus N'1 should produce 'a straight line 

intercepting the N-1-axis at mo = m, Figure 3.3 shows this relationship. The 
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initial overlap mo which produced a given recall fraction f was obtained from 

(3.4) by linear interpolation. The extrapolation to N-1 -º oo revealed the 

. 
(a): following estimates for the critical overlaps m. 

m, (0.03) = 0.111(10); m, (0.06) = 0.218(13); mc(0.10) = 0.372(17). 

This then allowed evaluation of the constant C in (3.2) for each of these three 

values of a. The resultant scaling forms are shown in figure 3.1: they are the 

best-fit curves which appear for a=0.03,0.06 and 0.10. 

In contrast to the above behaviour, at-a = 0.15 in figure 3.1, f (mö) decreases as 

N increases. This is consistent with analytical studies of this model: this value 

of 
'a 

lies above the critical value (a; = 0.14) for which no FM states are stable, 

and so f(mo) =0 for 0< mo <1 asN -*oo. 

Another measure of content-addressability is described in figure 3.4: the mean 

final overlap mf with a nominal pattern that a state acquires from an initial 

state having overlap mo. In a similar fashion to the mean recall fraction (f (mo)), 

m f(mo) is seen to increase more sharply with increasing N for a<0.13, while 

it deteriorates for a=0.15. Although, as with f(mo), mf stays close to 1 for 

large enough mo at a<0.13, it does not exhibit the same all-or-none tendencies 

(m f -r 0 or 1) for increasing N. This is because states which are not recalled 
(f = 0) nevertheless retain a non-zero final overlap with the nominal states 

(mf34 0). It is only as mo-º0that mf-->0. 

3.4 Discussion 

, Bruce et al. 1987) and nu- Previous analytical work (Amit et al. 1985aýb, 1987" b 

merical studies (Amit 1987, Bruce et a1.1987) had already demonstrated that 

the Hopfield model exhibits critical behaviour in terms of its success in storing 

nominated patterns in its memory. The numerical work presented in this chapter 
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has provided strong evidence to suggest that the associated basins of attraction 

of these nominal states also display behaviour consistent with a first order phase 

transition, at least for values of a in the retrieval (FM) phase (a <o). In such 

a phase transition there is typically an order parameter of the system which un- 

dergoes a discontinuous jump as a control parameter is continuously altered past 

a critical value. Usually the control parameter is the temperature of a physical 

system and the order parameter could be, e. g., the net magnetisation of a ferro- 

magnet at zero external field, or the difference in the density of gas and liquid of 

a substance undergoing a liquid-gas phase transition. In the case here, the order 

parameter can be considered to be the recall probability of a nominal pattern 

from a distorted state, or, equivalently, the degree to which the final stabilised 

state resembles the nominal state in question: if it resembles it sufficiently then 

the system is "ordered" (with respect to the nominal pattern); if it doesn't re- 

semble it, the system is in a "disordered" state. The control parameter here is 

the initial overlap of the state of the system with the desired nominal pattern. 
This is analogous to the net magnetisation in a uniaxial Ising ferromagnet, but 

where each spin is considered "up" ("down") according to whether it is (is not) 

aligned with the corresponding spin in the nominal configuration. 

This critical behaviour of the basins of attraction would imply that they are 
becoming completely isotropic in the thermodynamic limit: whether or not a 

nominal pattern is retrieved is independent of which particular spins have been 

flipped in the noisy pattern and only depends on their number. Viewing each 

of the N spin variables as defining an axis in N-dimensional space, as N -+ 00 
these basins of attraction approach the shape of an hypersphere: they extend 
for the same distance in every direction of phase space. 

Despite the fact that even for a-< as perfect recall is not guaranteed in this 

model, the results obtained here have shown that it can operate as a good 

content-addressable memory-certainly for a<0.10. (Previous numerical work 
(Amit 1987) suggests good retrieval up to a=0.13. ) For example, the result 
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m, (a = 0.06) = 0.218 indicates that in a large network each of the 0.06N 

patterns could be successfully recalled from up to 78.2% noise (39.1% spins 
flipped). 

Not surprisingly, the critical minimum overlap mc , 
(a) is a decreasing function 

of a. It is not so much the growing number of nominal patterns, but rather 

the exponentially growing number of spuriously created states which reduce the 

region of attraction around the nominal patterns. 

Further work would be required to ascertain the shape of m, as a function of a. 

Estimates have been obtained here for three points of this graph (a = 0.03,0.06 

and 0.10). Another point is m. -+ 0 as a -º 0 since, for the storage of one 

pattern (hence a= 1/N -+ 0 as N -+ oo), perfect recall will be achieved 

from any mo > 0, as the only two stable states are the nominal pattern and 

its complement. Presumably m, --+ 1 as a -º az since a> as implies the 

non-existence of any FM states and, of course, of any region of attraction. 
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Chapter 4 

Learning Algorithms 

4.1 Introduction 

`Learning' in neural networks is the process whereby the synaptic connections 
between the neurons are tuned or adjusted in response to the current neural 

activity in such a way that the activity patterns behave in the desired fashion. 

This can be viewed as a dynamical process that is reciprocal to that of recall. 
In the former process the activity of the neurons determine the dynamics of the 

synapses, while in the latter the fixed synaptic connections govern the dyamical 

activity of the neurons. 

In layered networks learning corresponds to altering the synaptic connections 

(consistent., with the layered architecture) in order that a given set of input 

activity patterns will induce an appropriate set of output patterns. For instance, 

one particular scheme that involves altering the interlayer connections in an 

output-to-input direction is the Error Back Propagation' algorithm (Rumelhart 

et a1.1986, Parker 1985, Le Cun 1985). This has received (and still is receiving) 

much attention in the neural network research community. 

The learning algorithms of this chapter are of the type applied to the content- 
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addressable boolean neural networks dealt with in the previous two chapters. 

Hence, the goal of these algorithms is to modify the synapses until all of the 

nominal firing patterns are dynamically stable (and thus stored) in the neural 

memory. 

In contrast to the Hebbian ansatz used in the Hopfield model, these algorithms 

use an iterative approach to tackle the problem of finding an appropriate set 

of connections. For a fully connected network, even allowing for the continued 

imposition of symmetry (T;; = T1) and non self-interaction (T;; = 0), this is a 

search through a very high (? N(N - 1)) dimensional space of quasi-continuous 

variables. Nevertheless, it will be shown that solutions can be found without 

the need for resorting to (computationally expensive) stochastic searches. These 

algorithms also have the desired property of being local in that any change to a 

connection is only dependent on the states of the two neurons which it connects. 

4.2 Learning Perfect Storage 

The Hebbian prescription for the connection strengths has been shown to be 

rather limited in its capacity to store random uncorrelated patterns: it fails to 

store more than 0.15N of them, and for a general choice of connections it should 

be possible to store up to 2N such patterns (Cover 1965, Venkatesh 1986a, b). 

Even for values of a below 0.15 this storage prescription cannot ensure perfect 

recall of the patterns. 

There exists an iterative learning algorithm (Wallace 1986, Bruce et al. 1986), 

which is essentially an extension of perceptron learning (Minsky and Papert 

1969), that has been shown capable of perfectly storing up to at least N random 

patterns on a network on N neurons. The idea behind the algorithm is con- 

ceptually simple: at each learning iteration every nominal pattern is tested for 
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stability, and for those that are not yet totally stable, the corresponding term 

in the Hebbian storage rule (2.13) is reinforced. 

The algorithm proceeds as follows. An error mask e; is constructed at each site 

i for each nominal pattern r: 

e; = 
2[1 

- sgnSý 
N 
ET, jS? ] (4.1) 
j=1 

so that e; is assigned the value 0 (respectively 1) if the spin at site i is (respec- 

tively is not) aligned with its local field. The connections T21 are then modified 

accordingly 
P 

T, 5--ýT, 1+NDe; +eDS; SS, Tii=O (4.2) 
r=1 

This form was chosen to retain the symmetry of the connections and thus pre- 

serve the existence of the Lyapunov (energy) function (2.11) so that any tra- 

jectory under single spin-flip dynamics v411 terminate at a stable configuration 
(which minimises E). 

An asymmetric rule could equally well be used (i. e., omitting the eJ in (4.2)), 

but of course E would no longer exist. Convergence theorems exist for both the 

symmetric (Wallace 1986) and asymmetric (Gardner et aL1987a) versions. That 

is, it may be shown that if solutions exist for the T, then the learning algorithm 

will converge to one. 

4.3 Numerical Results 

Although the above learning algorithm had already been shown capable of stor- 

ing perfectly up to at least N patterns on a network of N nodes, nothing 

quantitative was known about the resultant content-addressability of the stored 

states. Thus it was decided to simulate a network of N neurons employing the 

above algorithm (4.1,2) to store perfectly Na nominal states. These simulations 

37 



were once again carried out on the ICL DAP. Since the connections now had 

to be stored in the computer's memory-they are continually modified during 

learning-the size of system capable of being simulated was less than that for 

a Hopfield model simulation. In this case the networks contained N= 256 and 

512 neurons. Details of the DAP implementation are provided in Appendix B. 

Starting from the Hebbian storage prescription (2.13), when or if perfect storage 

of all Na states had been achieved, their content-addressability was then tested 

in the same way as before (section 3.3). 

Figure 4.1 (ml versus mo) shows the mean final overlap mf after iteration from 

a state with overlap mo. Although perfect storage is indeed achieved for a=0.5 

and 1.0, the states have very poor content-addressability. In fact, for a=1.0, 
initial states having merely one spin misaligned out of the 512 resulted in over 
65% of the states failing to be recalled-the non-recalled states ended up with 

a final overlap of around 0.6 only. 

Thus it would seem that this learning algorithm instals no appreciable content- 
addressability at these higher values of a (0.5 and 1.0), but instead creates fixed 

points of the dynamics having negligible regions of attraction. Ensuring perfect 

storage of the patterns does not then guarantee good content-addressability. 

Nevertheless, this algorithm does substantially improve upon the Hebbian pre- 

scription for a=0.13,0.15 and 0.2, as is demonstrated in figure 4.2. This 

compares the fraction of states recalled with less than N/16 errors from various 

initial overlaps mo before and after implementation of the algorithm. Simula- 

tions of systems with larger N would be required to determine whether appre- 

ciable content-addressability would be installed as N -º oo. However, one would 

suspect from the shape of the curves that this would be the case. 
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4.4 Learning Content-addressability 
., 

The work of the previous section has shown that merely ensuring that each 

nominal pattern is perfectly stored in the network does not necessarily guarantee 

that they will have large regions of attraction. 

This may have been predicted from the fact that all the algorithm (4.1,2) de- 

mands of the T;; is that in each nominal state all of the spins are aligned with 

their local field: a condition that can be satisfied even if the net alignment h; S, 

is small, though positive. 

Now, suppose the network is in a state T"- which is a noisy version of ,. *, then 

if F denotes the set of spins which are misaligned with respect to S', then an 

aligned spin Ss will experience a local field 
N 

hi(S**) Ti; S; -2E TT; 5; = hi(y) -2ET, 3Sil (4.3) 
1=1 iEF jEF 

and so will also flip if 

2S; E T;; Yj > S; h; (S'). (4.4) 
JEF 

Consequently, if the original alignments Ss h; (5. ) are not strong enough, a small 

number of flipped spins may be sufficient to induce misalignment in some of the 

initially unperturbed spins and project the state of the system on a trajectory 

taking it further from the nominal state Y. 

In light of this fact it seems that the most plausible explanation for the tiny 

basins of attraction created around the nominal states by the algorithm of § 4.2 

for higher values of a is. that the solutions found tend to have small (though 

positive) spin to local field alignment S; h;. 

Learning schemes have been proposed (Gardner 'et al. 1987°, b, Pöppel and Krey 

1987) which try to alleviate this problem. These involve iterating from noisy 

versions of nominal patterns. By sampling a large enough representation of noisy 
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patterns for each nominal one, such schemes attempt to train the network to 

explicitly associate distorted patterns with the appropriate uncorrupted nominal 

ones. 

The approach adopted here (similar to Diederich and Opper 1987, Gardner 1987, 

1988, Krauth and Mezard 1987) attacks the problem of weak alignment between 

spin and local field directly by attempting to find solutions for the T; 3 subject 

to the more stringent condition 

S; h; (ý')>B>0 (4.5) 

on the alignment of each spin S; . 
I 

However, when enforcing this constraint, one must ensure that a simple scaling 

of all the connections is avoided, as the following will demonstrate. 

For a given choice of connections T; 3 and nominal patterns S', r=1,2,... , p, 
define the local fields 

h; (Sr; {Ti; }) >Tj Slj Vi E [1, N]. (4.6) 
I 

Now suppose 3{ tij } with 

5; h; (S'; {t; j}) > B/k (k > 1) bar E [1, p], Vi E [1, N], (4.7) 

then define 

T; i = kt; j Vi, jE [1, NJ (4.8) 

(i. e., simply scale up all the connections by factor k). Then one has that 

S hs(y; {T{j}) = kS; h{(Y; {t+j}). (4.9) 

Thus 

S; h; (S'; {TT5}) > B, Vr E [1, p], Vi E [1, N]. (4.10) 

Hence, finding a set of connections satisfying the constraint (4.5) can be done 

by finding a solution to the simpler problem (4.7) (with the lower bound B/k) 

and then resealing them by a factor k. 
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Note that the dynamics of the network remain invariant under any such scaling, 
for 

S; (t -}-1) = sgn J. >Ftq)Sj(t) sgn - t; j Sj (t) (4.11) 
JýJ 

To prevent rescaling of the connections occurring the bound B in (4.5) must be 

scaled to be of the same order of magnitude as S; h; (S''). 

Now if the connections T; j are 0(T), then hi(y) will consist of N terms, each 
being 0(T) and each randomly positive or negative. Thus h; will be O(TvrN-), 

as will S; ht. To ensure that B was also O(TV) in (4.5), the form employed 

Was 

B=M<ITij >vrN-, (4.12) 

where the angular brackets denote the average with respect to all the bonds in 

the ith row of the T;; matrix: 

<'Tij' >= Ný ýý': jý" (4.13) 
j. i 

This form of B implies that M is 0(1), independent of N and of any rescaling 
of the T; 3s. 

Thus the learning algorithm is as before ' (§ 4.2) but with a modified error mask: 

Ei =2 1- sgn 
{s7 

T; 3 S; -M<I Tii 1> -w77 

p 

Ti? -º T", -! - N ý(Eý -}- e; S's, T;; = 0. (4.14) 

4.5 Numerical Results ` 

In order to determine whether the above algorithm could not only provide perfect 

storage of all Na nominal patterns but also endow the network with appreciable 

content-addressability, systems of N= 256 and N= 512 were simulated. 
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Once again, starting from the Hebbian storage prescription (for a given M and 

a), the T,, were iterated using (4.14) and if the algorithm reached completion 

(all c= 0), the content-addressability of the resultant solution for the T; 5 was 

tested in the same manner as before (§ 3.3 and § 4.3). 

Depicted in figures 4.3 and 4.4, for a=0.25 and 0.5 respectively, is the fraction of 

nominal patterns perfectly recalled from various initial overlaps after completion 

of the learning algorithm. 

In both, graphs the trend from N= 256 to N= 512 indicates that the ordinary 
learning algorithm of § 4.2, corresponding to 'M =0 here, will probably install 

negligible content-addressability as N --+ oo. In contrast, however, the perfect 

recall fraction fp for a given M>0 is seen to exhibit behaviour for increasing N 

reminiscent of the recall fraction of the Hopfield model in § 3.3. As mo increases, 

a similar change from fp near 0 to near 1 is displayed with increasing steepness 
for larger N. This suggests that for these non-zero values of M imposition of 
the algorithm will result in appreciable content-addressability of the nominal 
patterns in the thermodynamic limit. 

To investigate this behaviour for N -+ oo quantitatively, a finite-size scaling 

analysis similar to that of § 3.3 was carried out, fitting a best-fit scaling form 
fp(m0) 

=C exp{aN(m° - m, )} (4.15) 
1- fp(rn0)- 

to the perfect recall fraction fp. These curves appear as solid (N = 512) and 
dashed (N = 256) lines in figures 4.3 and 4.4 for the `non-zero values of M. As 

with figure 3.2, this form was tested directly by looking for a linear relationship 
between 1n{ fp/(1 - fp)} and m0-figures 4.5 and 4.6. 

This scaling form appears to fit reasonably well, although perhaps not so well 

as those in figures 3.1 and 3.2. However, if (4.15) were the appropriate form 

of fp(mo), one would not expect it to fit the numerical results as closely as 

those in figure 3.1 since the system sizes dealt with here are not so large-recall 
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that N= 512,1024 and 2048 were simulated in § 3.3-and so any systematic 

corrections to scaling would be more prominent for N= 256 and 512. 

A similar extrapolation to N'1 -* 0 yielded the following estimates for the 

critical minimum overlaps m0(a, M) in (4.15): 

1 m, (a = 0.25, M=2.0) = 0.44(2); m, (0.5,1.0) = 0.75(3) 

Of course, there were only two system sizes available and so the extrapolation 

was simply achieved by extension of the straight line defined by the two points 

at N'1 = 1/256 and N-1 = 1/512, whereas the extrapolation of § 3.3 used three 

sizes of N-1 and so involved a least-squares best-fit line through the points. 

4.5.1 The Rate of Learning 

This was monitored by noting the fraction of bit errors at each learning cycle. 
A learning cycle was defined as one complete iteration of (4.14) through all of 
the NaN-bit nominal patterns, and the fraction of bit errors was the fraction 

of all the corresponding N2a spins which were incorrectly stored at that stage 
of the learning algorithm. 

The rate at which learning proceeded with respect to reducing this fractional 

error was exponential, as can be seen from figure 4.7. 

As M increases, learning becomes more difficult and this exponential learning 

rate decreses. Presumably it will tend to zero as M approaches the optimal 

value attainable. The gradual change in curvature for M=2 at a. = 0.25 and 
M=1 at a=0.5 in figure 4.7 suggests that at the maximum attainable M, the 

number of errors may still initially decrease but then tail off to a constant value 

as learning proceeds. 

An indication of the total effort needed to learn to completion as M is increased 
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is given in figure 4.8. One `learn' consists of a sweep through a nominal state if 

it has at least one spin wrongly stored. So, during a learning cycle, a nominal 

pattern contributes one to the total number of learns only if it has at least one 

spin wrongly stored at that time. The number of such learns required is seen 

to grow rapidly as M approaches the largest values-M =2 at a=0.25 and 

M=1 at a=0.5- attempted here. These values of M may thus be near the 

optimum values possible (at least for symmetric T; 3). 

4.5.2 The Optimal Value of M 

If the synaptic connections are allowed to assume general asymmetric values, 

then Gardner (1987,1988) has shown that it is possible to calculate the maxi- 

mum possible spin to local field alignment for a general set of connections, whose 

only restriction is that they are normalised to prevent them being arbitrarily 

rescaled a la § 4.4. This is done by enforcing 

EJj=N 
j#i 

(4.16) 

on the connections J;,,. This is an alternative precaution to one such as (4.12). 

The optimal value of the spin to local field alignment K, i. e., 

1 S; EJ;; S; >K (4.17) 
#i 

was then shown to satisfy 

1_1' 
(t + K)2e-3t'dt. (4.18) 

a 2irx 

The formalism of § 4.4 can be cast into a similar form to expose the relationship 
between the bounds K and M. First of all, the connections T1j must be rescaled 

to conform to (4.16). Define new connections 

_ 
T,, 

Au 
zi T21 

(4.19) 
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which then satisfy (4.16). (Recall that the neural update dynamics are invariant 

under any such rescaling. ) 

Then (4.5), which by virtue of (4.12) is 

Si" 
N 

EN TjjSS > MN > IT; aI 
vW (4.20) 

j=1 1=i 
becomes 

N NSA E Rii > MN 3=1 
ITij12 

(4.21) 
=1 N 

ýj=1 T+ý 

Thus the formalism employed in 4.4 is equivalent to (4.16,17) with 

K=MN-E 1'T''I 
, 

(4.22) 
VNE31Tz 

i1 

except, of course, for the added restriction of symmetry on the connections T; 3. 
The relation between K and M becomes even clearer due to the fact that, after 

completion of the learning algorithm (4.14), the distribution of the T; 5 remains 

Gaussian and of zero mean-as is evidenced by the histograms in figures 4.9 and 

4.10, which show the final distribution of the absolute value of the connections 

T;; at a=0.25, M=2.0 and a=0.5, M=1.0. Best-fit Gaussian forms are 

provided on these histograms. 

Note that the width of the final ITjI distribution is narrower by a factor of s 

for N= 512 than for N= 256. This is consistent with the expectation that 

the width of the integer synapse distribution NT; j should be proportional to 

the square root of the number of patterns being learnt, i. e., to Na. This is 

because the number of modifications to a typical T; j should be proportional to 

p= Na and these modifications are approximately random. 

Hence each T; j in (4.22) is a random variable following a Gaussian distribution 

of zero mean, and thus the ratio multiplying M on the right-hand side of (4.22) 

is, for large N, the ratio of the absolute value to the width of a Gaussian variable 

of zero mean, which is 
fö ze-s2/'° 2 dz 

_2 2f. 
zae-: 2/2a'dz ;:. 

53 



8 

M=2.0 
a=0.25 

0--% 

6 

Gaussian Fir: 
---N= 256 

N= 512 cý U 

Q) 
ltý 

2 

0 +L 0.0 0.2 0.4 
lTI 

0.6 0.8 

Figure 4.9: Distribution of connections after learning: a=0.25 

54 



8 

6 
00-% 

t0 lý 
U 

c) 

2 

0 

M-= 1.0 
a=0.5 

Gaussian Fir:. 
---N=256 

N= 512 

0.0 0.2 0.4 

1 T;, I 
0.6 0.8 

Figure 4.10: Distribution of connections after learning: a=0.5 

55 



Thus 

M= K4. (4.23) 

Now, from (4.18), the optimal values of K(a) for a=0.25 and 0.5 are 

K(0.25) L- 1.74, K(0.5) = 1.04, 

so that the corresponding values of M(a) for asymmetric connections are 

M(0.25) = 2.18, -M(0.5) = 1.30. 

These lie above the largest values M(0.25) =2 and M(0.5) =1 which were at- 

tempted in the numerical work of this section for which learning became rapidly 

more difficult (figure 4.8). 

After completion of the learning algorithm (4.14) the alignment of each spin 

with its local field in any nominal pattern satisfies (4.5), i. e, Ss h; > B. In 

fact the majority of the alignments are not much greater than B: figure 4.11 

shows the distribution of these alignments after learning at a=0.5 for different 

values of M. Increasing M does not appear to significantly alter the shape of 

the final distribution, but only has the effect of shifting it further along the S; hi 

axis. The curve for each value of M rises sharply from zero to a maximum 
just after B (which is the lower bound on the alignment) and then tails off 

more slowly along the axis. It may be that as N -º oo the increase of these 

curves at B approaches a discontinuous jump to the maximum. Analysis of 
larger systems would be required to expose any such trend and possible scaling 
behaviour of these distributions. The curve for M=0, corresponding to 

the algorithm (4.1,2), confirms the fears expounded at the beginning of § 4.4, 

i. e., that despite ensuring perfect spin alignments in every nominal pattern, the 

resultant alignments are mostly grouped around a value not much greater than 

zero. It is however interesting to note that while in figure 4.4 the shape of the 

graphs and the trend from N= 256 to 512 indicate that non-zero content- 

addressability will probably be achieved for M=0.5, but not for M=0, the 

56 



001«% 

cý U 

N 

c) 

týl 

12 

10 

8 

6 

4 

2 

M=0 M=0.5 ö M=1.0 
+++ 

++ 

°++ 
4o* 

+o + +ý + + 
0 

0 

+++ 

°+ 
++ 
0+ 

1--10040 

N=256 
ýN=512 

0 0.0 2.0 4.0 
h jSz 

6.0 8.0 

Figure 4.11: Final distribution of alignments of spin and local field 

57 



final distributions in figure 4.11 indicate that the corresponding alignments are 

only slightly greater for M=0.5 than-for M=0. 

4.6 Discussion 

The results presented in § 4.3 have shown that, despite achieving perfect storage 

of all Na nominal patterns for a up to at least 1.0, the `naive' learning algorithm 

(4.1,2) only provides appreciable content-addressability for a<2.0 at N= 512. 

The solution it finds for higher values of a look like being of no use for large N. 

However, if strong stability of the spins in each nominal configuration is enforced 
by generalising (4.1,2) to (4.14) then it has been shown in § 4.5 that good content- 

addressability in addition to perfect storage can be achieved for non-zero values 

of M in (4.14) for a up to at least 0.5. The trend for increasing N suggests 

qualitatively that this will be the case as N -+ oo, albeit that the quantitative 
finite-size scaling analysis of § 4.5 may not be so accurate as that for the Hopfield 

model in § 3.3 due to the smaller system sizes N utilised. 

It has been customary over the past few years to measure the performance of 

a neural memory in terms of the ratio of the number of patterns it can store 
(to within some tolerable accuracy) to the number of neurons in the network; 
i. e., the `storage ratio' a. However, this ignores the typical size of connections 
Tjj required for the storage. A more appropriate measure which takes this into 

account would be the relative storage capacity -the number of bits stored to the 

number of bits of synaptic information used. This would be a much more rele- 

vant measure for hardware implementation since the number of bits needed to 

construct the synaptic connections is directly related to the amount of hardware 

required to build such a network. The number of bits required for the synapses 
T; 3 after completion of the learning algorithm (4.14) is larger than for the Hop- 
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field model since a wider distribution of T; j is produced (and in fact the width 

increases as M increases). However, the distribution remains Gaussian and the 

width of the integer synapse distribution NT;; scales as , 
FN-, as it does for the 

Hopfield model. Hence the number of bits of synaptic information required will 

be O(NZ In VN--) in both cases, as there are 0(N2) connections, each of 0(, vlN--), 

hence each comprising of 0(1092 N) bits =O(ln VN--) bits. Therefore, since they 

both store O(Nsa) bits of information, their relative storage capacities-the 

number of bits of stored information per bit of synaptic information-will both 

be of the same order, namely 0(1/ In ý). Hence this learning algorithm is 

superior even in terms of relative storage capacity since it stores all N2a bits 

exactly and provides a larger region of attraction around each nominal pattern. 

Nonetheless, the Hopfield model has been shown in § 3.3 to exhibit reasonable 

content-addressability at lower values of a, and even at higher values (such as 

a=0.5) it still provides a good starting point for the learning algorithms. 

Comparison by numerical simulation of this type of algorithm with ones which 

involve iteration from noisy versions of nominal patterns would be required in 

order to gauge their relative merits and failings. Algorithms such as (4.14) 

involve only one iteration sweep per nominal state during learning and implicitly 

create content-addressability by enforcing at least a minimum stability on the 

spins in each nominal configuration. The 'learning with noise' algorithms, which 

install content-addressability explicity, test more than one noisy pattern per 

nominal pattern. The number of possible states differing from a nominal state 

in a given amount of sites (i. e., for a given degree of noise) increases exponentially 

in the number of sites which differ, although the number of states required to 

train on to achieve finite content- addressability may not necessarily suffer this 

exponential growth. This type of algorithm can provide the opportunity of 

creating anisotropic basins of attraction by choosing an appropriate set of noisy 

patterns to train on. By its very nature, it also attempts to recover nominal 

patterns from noisy versions in one sweep, although again only direct comparison 
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would reveal which type of algorithm provided fastest recall after the learning 

phases had been completed. 

Simulations of much larger systems than N= 256 or 512 would be necessary to 

determine whether the basins of attraction continue to exhibit scaling behaviour 

for non-zero M, as the trend for increasing N suggests in § 4.5. Nevertheless, 

the numerical work of this chapter has demonstrated that memory with a high 

storage capacity (a up to at least 0.5) and near-optimal content-addressability 

can be achieved by a deterministic, local algorithm such as (4.14), and thus 

that it is unnecessary to resort to more computationally expensive stochastic 

algorithms as a means to this end. It would also be possible to tailor this 

algorithm to deal with more specialised cases which may be of interest, such 

as, e. g., networks with `windowed' connections (Canning and Gardner 1988) 

or `clipped' synapses (Parisi 1986, Sompolinsky 1987). The work presented 

here has dealt solely with random uncorrelated nominal bit patterns, but it has 

been shown (Gardner et al. 19876tb) that learning speed and performance can be 

improved when dealing with the storage of correlated patterns. 
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Chapter 5 

Optimisation with Neural Networks 

5.1 Introduction 

The work presented thus far has concerned models of neural networks function- 

ing as associative content-addressable memories. This, however, is only one of 

the many powerful capabilities of the nervous system. For example, the per- 

ceptual tasks demanded in image and speech recognition, which are constantly 

carried out by the nervous system, involve the processing of massive amounts 

of sensory data in a relatively short time. Indeed the time scale (fractions of a 

second) in which these tasks are completed is very impressive not only in view 

of the huge amount of information that must be processed, but also considering 

the response times (milliseconds) of the biological components (neurons) avail- 

able in the nervous system. This is put even more into perspective when one 

considers the very fast components (of the order of nanoseconds) at the disposal 

of modern electronic hardware technology and the fact that there is as yet no 

computational tool constructed which has come anywhere near emulating such 

processing powers. 

A great deal of the tasks which have to be confronted in such biological per- 
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ception can be formulated (at least partly) as optimisation problems-searching 

for the `best' solution-, as indeed can many problems which arise in science 

and engineering or industry and commerce. One has a set of variables defined 

by the problem and seeks to find the values which minimise a cost function of 

the variables-a function which embodies the criteria of a `good' solution to the 

problem (and which may also incorporate any constraints placed on the vari- 

ables). The lower is the value of the cost function, the better is the solution. 

The solution which globally minimises the cost function is the `best' or optimal 

solution. Indeed, the learning problems dealt with in the previous chapter could 

also be envisaged as optimisation problems: the variables to be chosen are the 

synaptic connection strengths and a cost function could be constructed contain- 
ing terms which are lowest when each nominal state is accurately stored and has 

a large region of attraction. 

Many of the optimisation problems encountered in the real world are very diffi- 

cult to solve not only due to the large number of variables that may be involved 

(as is typically the case in perceptual tasks), but also because there can exist a 

very large number of solutions which are all local minima of the cost function 

but not necessarily deep minima. Thus, even though it may be sufficient to 

merely find a near-optimal solution (one of higher but comparable cost to the 

global minimum), the complexity (many-valleyed nature) of the cost function as 
it varies over the phase-space of variables can prohibit the use of simple deter- 

ministic techniques such as, e. g., gradient methods which search for a solution 
by only accepting changes in the variables which reduce the cost function. The 

variables of the problem do not have to be real-valued for this behaviour to oc- 

cur. On the contrary, this can easily manifest itself in logical problems, where 

each variable can only assume two values, nominally 1 (true) and 0 (false). This 

is akin to the Ising spin-glass: the logical variables are the Ising spins (+1 or 

-1ý and the cost function is the Hamiltonian or energy which, as mentioned 
in § 2.2 is many-valleyed, with the ground states ('near-optimal' solutions) ly- 
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ing amongst a plethora of local minima. This analogy prompted Kirkpatrick 

and co-workers (Kirkpatrick et al. 1983) to propose optimisation by Simulated 

Annealing (SA) as a general method for minimising cost functions of logical 

problems. This will be described in § 5.3.4. Such stochastic techniques as SA 

are powerful tools but they tend to be computationally expensive and slower to 

execute than deterministic methods. 

5.2 The Model of Hopfield and Tank 

The underlying philosophy of the seminal paper of Hopfield and Tank (1985) is 

that, given the computational power and speed of which real biological networks 

of neurons are capable, it should be possible to constuct simplified models of neu- 

ral networks which can emulate their feats as long as the essential ingredients 

responsible for their power are maintained. The model retains two key features 

which manifest themselves in real neural 'networks: they have a high degree of 

parallelism as each neuron simultaneously and continually modifies its state in 

response to the net incoming signal from other neurons; and all the neurons are 

analogue devices. Undoubtedly the former characteristic (massive pars leli3m) 

is largely responsible for the overall speed with which biological information 

processing systems can operate. Hopfield and Tank claim that it is the latter 

feature-the non-linear analogue nature of the neurons-which endows the net- 

work with its computational power, its ability to find good solutions to problems 

with many-valleyed cost funtions. 

The technique is applicable to logical optimisation problems where one attempts 

to globally minimise a cost function that can be expressed in the form 

E(Y) _ -1 ET; JViV,, - V$8;, (5.1) 

with each V=0 or 1 only. The discrete problem is embedded in a continuous 
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space by assigning each logical variable (V E {O, 1} ) to be the analogue firing 

rate of a neuron (V1 E]0,1[). 

Of particular importance for practical considerations is that it is straightforward 

to implement the network using standard electronic components. Each neuron 

is modelled by a voltage amplifier with a non-linear response function: the jth 

amplifier produces an output voltage IT, which depends on its input voltage u1: 

V1 = 9(uj), (5.2) 

where g(u) is typically a sigmoidal function, e. g., 

g(u) =1 (5.3) 
1+ e_Du. 

The parameter g is the `gain' which measures the steepness of the response 

through u=0. 

At its input each amplifier is connected to earth through a resistance p; and 

capacitance C. The synaptic connection from the output of the jth neuron 

into the input of the ith is realised by a conductance jT11 j. If Tit <0 then 

the connection is made between neuron i and j through an inverter at the 

output of neuron j. Otherwise a normal connection is made. (The connection 

architecture-the composition of the matrix {T; 1}-is at this point unspecified 

and is determined by the cost function in question. The only constraint is that 

it be symmetric: T; 1 = T1;. ) Each amplifier also is supplied with an external 
input current O i. It can then be shown that the equation of motion governing 

the time evolution of the circuit is 

du N u` " C' 
dts = ýT'jVj - -I- oil (5.4) 

where 
1=1+N IT+A Vj = 9(u5)" R. Pi 

For the sake of simplicity, although it is not necessary, it is convenient to assign 

the same characteristics to each amplifier: C; = C; pi = p; and so R; = R. Then, 
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redefining T3 = Tq/C and 6s - B; /C, (5.4) becomes 

N dui 
_ 

u; 
dt -T + Tijvj+9� , r=- RC.. 

Now consider the function 

NNNN vi 
L(V)--1 EETijViVj-L6iVii+ Ef 11n1-tldt. 

2 
i=1 j=1 i=1 7 i=1 91tJ 

Its time-derivative is, due to the symmetry Ti, = Tos, 

dL 
_N 

dY N dVi 1N1 r1- V dV 
dt 

F T'' V' 7t E Oi 
dt +! ý In 

V, 
lJ 

dt i=1 i=1 i=1 

_ru; 
l dVi dui 

-- lTi'V' + of 
TJ dt dt i=1 

(dui) 2 dVi 

=1 
dt dui 

(5.5) 

(5.6) 

(5.7) 

But V is a monotonic increasing function of u;, so dV2/du; > 0. Thus dL/dt < 0. 

Hence L is a Lyapunov function for the network: the network will always con- 

verge to a stable state (in which all the outputs of the neurons remain constant) 

which is a local minimum of L(V). But from (5.6) and (5.1), 

N 

L(V) = E(V) -+- 
TEf 91n [1 

t 
t] dt (5.8) 

s_1 

so that L(V) is equivalent to E(V) up to corrections of order g-1. Therefore, 

for large gain g (steep response function (5.2)), the analogue network will evolve 

to a stable state V' which is a local minimum of the cost function E(M) to be 

minimised, and which is a valid solution for the discrete problem (as g»1 

implies that each V -º 0 or 1). 

Of course, at this stage there would appear to be no guarantee that V' will 

correspond to the optimal minimum or even a near-optimal minimum of E: its 

precise value will depend upon the choice of initial state j. ° of the network. 

However, the reasons why deep minima of E should be found by the network 

were outlined by Hopfield and Tank as follows. The state space of this analogue 

circuit is the interior of the N-dimensional hypercube defined by V=0 or 1, and 
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the state space of the problem to be solved are the 2N corners of this hypercube. 

The network will evolve from an initial configuration V° which lies in the interior 

of the hypercube to a configuration at a corner which is a minimum of E. On 

following its trajectory, the state of the system will thus avoid other minima 

of E(L) which are associated with the discrete problem (at the corners of the 

hypercube). The larger the region of attraction around a minimum, the more 

likely that the trajectory will be caught by it. So a deep minimum of E is 

most likely to be found, assuming that the cost function is of the type where 

the deepest minima tend to have the largest regions of attraction. Therein lies 

the mechanism whereby local minima of the discrete problem can be avoided 

by a determinstic search through a continuous space obtained by allowing the 

discrete variables to assume analogue values. 

The problem to which Hopfield and Tank applied this analogue neuron min- 

imisation technique was the Travelling Salesman problem (TSP), a classic case 

of a difficult optimisation. A set of n cities is specified with their geographical 

locations in a plane and it is required to choose the shortest path (tour) which 

visits each city precisely once and returns to the starting city. The only way 

to solve this problem exactly is to compute the lengths of all possible tours, of 

which there are (n - 1)! /2n (the factor of 2n arises due to the degeneracy in 

the n choices of starting city and in the 2 choices of direction). This number 

becomes prohibitively large even for a moderate number of cities (e. g. NN 50). 

It is doubtful whether there exists any algorithm that can provide the exact or 

near-optimal answer in a computer time which does not grow faster than any 

finite power of the number of cities: i. e., this would be an example of an 'NP- 

complete' problem (execution of any algorithm which finds a solution requires a 

computational time that grows faster than any power of the size of the problem: 

a non-polynominal number of steps are involved). 

Hopfield and Tank cast the TSP in a form amenable to the analogue neural 

network method in the following manner. For n cities, a network of N= nz 
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neurons is required, each city being assigned a vector of n neurons, only one of 

which may have a non-zero state. The neuron with the non-zero value (of 1) 

designates the position of that city on the tour. There are n such vectors, thus 

constituting an nxn matrix of neural states. For a valid tour to be encoded 
in this manner, this matrix must be a permutation matrix, i. e., with only one 

non-zero entry in each row (a city can only appear once on the tour) and likewise 

in each column (only one city can be visited at any one instance). To ensure a 

valid solution, the cost function contains terms which are minimised if and only 

if the matrix is of this form. The cost function of course also contains a term 

proportional to the length of the tour so that it attains its global minimum at 

the shortest possible tour. Good performances were reported by Hopfield and 
Tank for n= 10 and 30, although they found that the choice of cost function 

parameters was more sensitive in the n= 30 case. Subsequent work (Wilson and 
Pawley 1987) suggests that Hopfield and Tank were fortunate in their choice of 

parameters even for n= 10 and that the network does not perform well, nor 
does it scale well-simulations of n= 64 were also attempted. 

Nevertheless, it seems that the network does have the capability of producing 

results very quickly: stability was achieved within a few neural time constants 

r, the response time of each neuron in (5.5). 

5.3 Binary Image Restoration using Analogue 

Neurons 

The problems (encountered by Wilson and Pawley) that the network has in 

finding good solutions to the TSP would seem to be largely due to the cum- 
bersome nature of the cost function employed. An already complex problem is 

exacerbated out of the necessity of formulating a cost function of the form (5.1) 

containing logical variables, with the result that solutions can arise which do 
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not correspond to valid tours, in addition to the possibility of obtaining valid 
tour solutions of long path length. Also, as noted by Wilson and Pawley, the 

network has no way of deciding between the 2N-fold degeneracy of solutions. 

The optimisation problem to which the analogue neural network technique is 

applied here is that of restoring binary images which have been corrupted by 

noise-how to choose the image which is most likely to correspond to the original 

uncorrupted image, given the observed image. A binary image is one in which 

each pixel has either one of two intensities: black or white (nominally denoted 

by 0 or 1, respectively). This is a problem which maps more naturally than the 

TSP onto a neural network. The binary variables over which the optimisation 

takes place are simply the pixel intensities of the restored image, each neuron 

being assigned to one pixel. Hence the one-one mapping from pixels to neurons 

obviously preserves the topology of the problem: neighbouring pixels give rise 

to neighbouring (interconnected) neurons. Also, unlike the TSP, any of the 

2N corners of the N-dimensional hypercube (for N pixels) which constitute the 

phase-space are all valid solutions (as they are all binary images). 

Restoration, or enhancement, of noisy images plays a crucial role in the early 

stages of vision perception. In most real-world situations the modules of early 

vision (the set of processes which recover the physical properties of three-di- 

mensional surfaces from two-dimensional images) have to deal with images which 
have become corrupted by some noise processes. Just like many of the problems 

ocurring in the field of computer vision, image restoration can be formulated in 

the framework of optimisation theory. The cost functions involved are invariably 

very complicated and highly non-convex due to the inherent difficulties of dealing 

with the inverse problems which pervade computer vision: those of recovering 

surfaces from images-the direct problem, one of classical optics or computer 

graphics, is to obtain the projected image of three-dimensional objects. These 

inverse mappings from images to surfaces are usually unstable or ill-defined due 

to the information lost in'the projection and/or the noise distortion. Thus to 
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ensure an unambiguous result (unique solution), it is often necessary to regularise 

the problem by using natural constraints (general a priori physical assumptions 

about the physical world) which, within an optimisation framework, corresponds 

to introducing appropriate terms into the cost function (hence adding to, its 

complexity). 

5.3.1 The Algorithm of Geman and Geman 

The method proposed by Geman and Geman (1984) for restoring corrupted grey- 
level images is based upon a Bayesian approach. A cost function of the restored 

pixel intensities is constructed which assumes its global minimum when the 

retored image is the maximum a posteriori (MAP) estimate of the uncorrupted 

image, given the observed noisy image. In other words, given the observed data 

D- {Di, D2,..., DN} (where D; represents the intensity of the ith pixel in an 

image of N pixels), out of all the possible interpretations I= {Il, I2 ..., I�}, the 

MAP estimate is that interpretation which maximises the conditional probability 

P(II D)-it is the image which was most likely to have been corrupted by the 

noise processes to produce the observed image D. However, as mentioned above, 

the inverse mapping from the data to the interpretation is generally unstable 

or ill-defined. This problem can be overcome by the Bayesian approach which 
invokes Baye's rule to express the optimisation problem as 

max 
P(D I L)P(L) 

(5.9) 
1 P(D) 

which is just equivalent to 

max {P(DJI)P(L))} (5.10) 

since the unconditional probability P(D) of observing the data is independent 

of I and so plays no role in the optimisation procedure. 

Now only the direct mapping from interpretation I to data D appears in (5.10). 

It does so through the first factor P(Q! L), the probability of obtaining the 
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observed data given the interpretation. This simply depends upon the noise 

processes responsible for the corruption of the image. As with Geman and Ge- 

man, it will be assumed here that, to a good approximation, the noise processes 

amount to the addition of white Gaussian noise independently at each datum i, 

in which case 
P(DII) = (2av2)_N/2 exp 

(D_ 

_2 
')2 

where the noise has standard deviation a and zero mean. 

The other term appearing in (5.10) is P(L), the a priori probability of the 

interpretation. Its evaluation requires specification of the type of possible clean 

images which could be observed in the absence of noise. Thus P(L) embodies 

the prior model of uncorrupted images, and its presence in (5.10) acts as a 

regulariser for the problem-it is based on a priori knowledge (assumptions of 

the distribution of clean images) and so restricts the class of admissable solutions. 

In the Geman and Geman algorithm the specification of P(L) is achieved through 

the assumption that any clean image can be modelled as the realisation of a dis- 

crete two-dimensional Markov Random Field (MRF). This is a generalisation of 

a Markov chain to two dimensions and simply means that each pixel intensity is 

treated as -a random variable whose value only depends on those pixel intensities 

within some finite neighbourhood: 

P(Ij lI;, j =1,2,..., N) = P(I II; ) jE9; ) (5.12) 

where ! 9j denotes the set of neighbouring pixels of pixel i. 

Through the equivalence between an MRF and a Gibbs distribution (Leman 

and Geman 1984, Besag 1972), the prior probability of the whole image may be 

concisely expressed as 

P(L) =Z (5.13) 

where Z is the normalising partition function and U(L) is the prior potential 

or energy of the image and is dependent on the model chosen. Images which 
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are most likely in the context of a particular model would then be assigned the 

lowest energies. 

Now, noting that In is a monotonic increasing function, (5.10) is equivalent to 

max {In P(D jI) + In P(I)} (5.14) 

and using (5.11) and (5.13), the problem to be solved is then 
N 

min {u(L) + 
2ýZ 

E(D; - I; )' 7 (5.15)- 
.1 

where irrelevant constant terms have been dropped. Thus it is required to min- 
imise a cost function containing a regulariser U(L) and a least squares estimator, 
but which is typically highly non-convex. 

5.3.2 Analogue Neural Network Implementation 

Up until now the description of the Geman and Geman algorithm has been for 

general grey-level images, culminating in the need to minimise a cost function of 

multi-valued variables. For the technique of analogue neural network (henceforth 

ANN) minimisation to be applicable however, the cost function must be one of 
binary variables, as was explained in § 5.2. This will obviously be the case when 
the images to be restored are binary. In that case the noise term P(D1I) needs 

some modification. The Gaussian white noise Ni at site i will still be added to 

the original intensity Is, but D;, the observed intensity, will now be obtained by 

truncating the net intensity to 6(I; + Ni -21), where 6(x) is the usual threshold 

function. Thus 

N 
P(DýI) _ ll P(Di14) with P(D; II; ) = 

p if Di 0 I; 
(5.16) 

1-p if Di=I; 

where p= P(N; > 2) = P(N; < s) = erfc(1/o2'). Hence specifying u is just 

equivalent to specifying the probability p that a pixel intensity will `flip' due to 

the noise. 

71 



Taking the logarithm of (5.16) then implies 

N 
1nP(2jI) _ E1nP(DjlIi) =E lnp+ E ln(l-p). (5.17) 

i=1 i: D; #I{ i: Di=l; 

Since I; and D; E {0,1}, this may be written 
N 

In P(D (I) _ {[(2Di -1)I; - D; + 1] ln(1 - p) + [(1- 2D; )I; + D; ] lnp} , 
(5.18) 

which is of a form consistent with (5.1) since the variables V to be minimised 

over correspond to I here. 

It now remains to consider the form of In P(I) in (5.14). This is determined 

through the particular choice of prior potential U(L) in (5.13). In general, 

U(I) =E VI(I), (5.19) 
cEr 

where I' is the set of `cliques' of the neighbourhood system of the MRF: a clique 

being a set of pixels, each of which is a neighbour of all the other pixels in that 

clique. For simplicity, the clique potentials VI(I) can be restricted to pairwise 

interactions: 
N 

U(L) _E V2(I� I3), (5.20) 
i=1 JEQ: 

where C; is the set of neighbours of pixel i. Then, in order for U(L) to have a 
form consistent with the ANN cost function (5.1), a straightforward Ising-like 

interaction can be used as in (Geman and Geman 1984 and Murray et al. 1986): 

V2(Iti, I') (A > 0), (5.21) 
+A otherwise 

since for binary variables this is just the closed form 

V2(I;, I1) = -A(21; - 1)(2Ij - 1). (5.22) 

Hence this produces 

1nP(I) = -In Z- U(I) 
N 

= -1n Z+E A(2I; -1)(2Ij-1) (5.23) 
11 JE4; 
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and so, incorporating this and (5.18) into (5.14), the cost function to be min- 
imised is 

NN 
E(L) --EF A(2Is -1)(2Ij - 1) - j: (2D; - 1) ln(p-1 - 1) I. (5.24) 

i=1 jEci i=1 

The first term is the prior potential U(L), while the second represents the faith- 

fulness to the data. Up to an additive constant, E(L) is identical to the Hamil- 

tonian of a set of Ising spins Si - 2I; -1 with ferromagnetic coupling constant 

2A and subject to a random field ± ln(p 1-1) at each lattice site (pixel). The 

size of the parameter A determines the granularity of the images in the prior 

distribution (5.13). The larger is A, the larger will be the piecewise constant 

patches (of black or white) in the images. In fact the role of A is analogous to 

an inverse temperature parameter in the Gibbs distribution in (5.13). 

The weight of the second term depends on the amount of noise present (the size 

of p). Two limiting cases should be observed. The limit of no noise (p --> 0) 

has ln(p-1 -1) -+ oo and the data-dependent term in E dominates, so that the 

minimum is achieved when the restored image is identical to the observed data 

In the other limit of maximum noise (p -+ 2), all information is lost as 

the data and original image become totally uncorrelated: ln(p'1 - 1) -+ 0 and 

the data term plays no part in E. 

The cost function (5.24) is now in a form consistent with the ANN cost function 

(5.1) with 

Ts' 
8A iE ! 9j 

. and B; = -4An(g; ) + (2D; -1) ln(p-1 - 1), (5.25) 
0 otherwise 

where n(g; ) denotes the number of pixels in the neighbourhood of pixel i. 

Note that the connections are indeed symmetric since jEO; to iE ! 9j, and they 

are also local (to within 9; ). 

The ANN implementation then consists of assigning a neuron to each pixel. The 

(analogue) firing rate I; of the ith neuron represents the pixel intensity of the 
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ith pixel and is a sigmoidal response function of its input potential u;: 

Ii(ui) =1 (5.26) 

where the equation of motion for u; is, by virtue of (5.5), 

dtt 
-- Tj + 8A E Ij - 4An(CJ; ) + (2D; - 1) ln(p 1- 1). (5.27) 

JEQ; 

5.3.3 Numerical Simulations 

The local nature of the connections T; 3 in (5.25)-each being restricted to lie 

within a neighbourhood Q; of pixel i-means that in a numerical simulation 

of the ANN implementation (5.27) more than one pixel may be updated at a 

given instant. All pixels which are not mutual neighbours with respect to the 

neighbourhood system 9; are independent of each other's state at a given instant 

and so all may be updated concurrently. This opportunity of parallelism was 

exploited by simulating the ANN on the ICL DAP. Images of 64 x 64 pixels 
(i. e., N= 4096) were processed so that one pixel was assigned to one DAP 

processing element. The simple neighbourhood system of Gf being only the 

nearest neighbours of pixel i was used. (Thus in (5.27) n(9j) = 2,3 or 4 for a 

corner, side or interior pixel site respectively). This meant that when a pixel 

was being updated, the p. e. assigned to it needed only to communicate with 

its four nearest-neighbour p. e. 's, which could be accomplished by simple SHIFT 

operations on the DAP. (Details of the DAP code are provided in appendix C. ) 

For this choice of 19; it was possible to update half of the pixels simultaneously. 

Imagining the pixel sites each being coloured black or white in a chequerboard 
fashion, then any white site need only communicate with black sites and vice 

versa. Thus all 12N white sites may be updated in parallel, then all 12N black 

sites. (This was achieved in the DAP code by constructing an appropriate 

chequerboard logical mask-see appendix C. ) 

A good starting point for the network is obviously the observed image itself, D. 
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However, simply initialising I=D would result in unbounded initial potentials 

u; in (5.26) as u; = g-1 In { (1 - I; )/I; } and D; =0 or 1. Instead L was 

initialised at I; Di -51, where b followed a Gaussian distribution of mean 

u and small width. 

In order to simulate the differential equation (5.27) properly, the neural poten- 

tials ui(t) must be updated at small enough time intervals 6t so that it may be 

approximated by a linearisation: 

u; (t +6 t) = Ui(t) + 
dt-5t (5.28) 

where St «T, the characteristic response time of the neurons. In the simulations 

here, as with Hopfield and Tank (1985), without loss of generality, -r was taken 

to be 1. A value of St= 10'3 was then deemed to be small enough-smaller 

values of St did not alter the results significantly, but merely necessitated a larger 

number of iterations to produce a similar outcome. The network was considered 

to have reached stability if the change S II in each neural firing rate satisfied 

IS I; I < 10'6 after a complete updating sweep. This tolerance was considered 

appropriate since 8 Ii = (dII/duj)(du; /dt)S t, i. e., 8 I; oc 8t and 10-6 «8t. 

Figure 5.1 depicts the performance of the network in restoring an original image 

(top) of concentric rings which had been distorted (centre) with 25% noise (p = 
0.25). For this restoration (bottom), as with all the other results which appear 

in this work, g= 10 and A=2. Figure 5.2 similarly depicts an original, (25%) 

distorted and restored image of an $x8 chequerboard pattern. 

It was found that the choice of the parameter it in initialising I had an effect on 

the cost of solutions that were found. Figure 5.3 shows the cost discrepancy of 

the ANN solutions (averaged over 25 runs) applied to the concentric rings and 

chequerboard images under 20% distortion for different values of it. 

It is seen that lower-cost solutions are found as µ is increased. Thus the further 
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the initial configuration I° is (away from the corner D) towards the centre of 

the hypercube of phase-space, the deeper is the minimum that is found. 

Increasing µ also tends to improve the performance of the ANN restoration in 

reducing the number of errors from the (20%) distorted images, as can be seen 

from figure 5.4. An optimal value of it around 0.4 is suggested from this graph. 

The quality of the ANN restoration was compared to that of a simple deter- 

minstic majority-rule (MR) scheme, where each pixel continually adopts the 

intensity of the majority of its neighbours-or remains unchanged if exactly half 

of them have the same intensity-until the image stabilises. Unlike the cost 

function approach, the MR method loses any memory of the observed data and 

only uses it as a starting point. 

A third restoration method was also applied, that of performing a gradient 
descent (GD) on the cost function, where the variables I were restricted to be 

binary (0 or 1) at every iteration. This was achieved by updating each neuron 

according to 

11 ifEjTi. 1. +9; >0 
(5.29) 

0 otherwise 

where T;; and 0, are as in (5.25). This ensures that the cost of each successive 

state of the network decreases until a stable configuration is reached which is 

a (local) minimum of E. This corresponds to moving from corner to comer of 

the N-dimensional hypercube of phase-space until a local minimum of E is en- 

countered. In fact, it is also equivalent to applying Besag's Iterated Conditional 

Modes (ICM) procedure (Besag 1986), which at each iteration chooses the inten- 

sity that has maximum conditional probability given the observed data and the 

current reconstruction elsewhere; that is, it chooses the mode of this conditional 

probability distribution. To demonstrate this equivalence, firstly recall that the 

posterior conditional probability of a restored image I given the data II, can be 
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expressed as 

where 

P(I f D) =Z e-Eý-, (5.30) 

1NNN 
E(L) _-2EE T"jIiIj -> 0j1,, (5.31) 

i=l j=l 

with T; j and 9s as given in (5.25). So the conditional probability that I; assumes 

the value x; given the data D and the current reconstruction elsewhere (II = 

x�j: Ai) is 

1N 
(5.32) P(I; = xil. and Ii = xi ,j0 i) =Z exp x: 

(TxJ 
+ 9: + 

where ý is independent of x;. Thus the choice of x; which maximises this prob- 

ability is 

1 if EiTiiI1 + 9, >0 (5.33) 

10 otherwise 

(since x; =0 or 1 only), which is equivalent to (5.29). 

Figure 5.5 compares the success of the three methods in restoring distorted 

versions of the concentric rings image for various noise levels p by measuring 

the percentage reduction in errors achieved by the restorations. Each result was 

obtained by averaging over 25 simulations. 

The GD method performs slightly better that the MR method, but the ANN 

restoration is significantly superior to both of these. 

The cost discrepancy was also measured from these simulations and it is clear 

from figure 5.6 that the ANN method consistently finds lower-cost solutions that 

the corresponding GD solutions. 

A direct visual comparison of the typical restorations obtained by the three 

methods is provided in figure 5.7. An original image (top left) has undergone 

30% noise distortion (top right). The bottom three images are the restorations: 

ANN (left), GD (centre) and MR (right). 
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Figure 5.7: ANN, GD and MR restorations of a 30% corrupted image 
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5.3.4 Comparison with Simulated Annealing 

Purely in terms of a minimisation tool, the ANN network has been shown in 

§ 5.3.3 to be superior to a gradient descent on the cost function (5.24). To 

further gauge its performance, comparison was made with a renowned power- 
ful stochastic method for minimising combinatorial cost functions: Simulated 

Annealing (SA) (Kirkpatrick et al. 1983). 

Unlike gradient methods, which have no way of escaping from local minima, 
SA allows uphill moves (with respect to the cost function), but in a controlled 

manner. It is based on the algorithm of Metropolis ei al. (1953) for generating 

states of a system in equilibrium at a `temperature' T; that is, it generates 

configurations c of a system distributed with a probability according to Gibb's 

law: 

Prob(c) = Z''e -E(, )IT (5.34) 

where E(c) is the cost (or `energy') of the configuration c. The larger the value 

of T, the more likely that uphill moves are accepted, while T=0 essentially 

corresponds to a gradient descent. The process begins by equilibrating at high 

T where many uphill moves are accepted and a coarse search of phase-space is 

effectively carried out. The temperature is gradually lowered according to some 
`annealing schedule' which ideally should be slow enough in order that thermal 

equilibrium is maintained. As T is lowered, the sizes of energy (cost) barriers 

over which the system is able to climb decreases, until near T=0 the system 

will (hopefully) be in a low-lying state. 
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The SA- procedure can be roughly described as 

1. Choose an inital configuration c and an initial temperature To. 

2. Propose a configuration change c to c' and determine the corresponding 

change in cost it would incur: 8E= E(c') - E(c). 

3. If 8E<0, accept the change. If 8E>0, accept it with probability 

exp(-SE/T). 

4. Repeat 2 and 3 until the average cost at temperature T reaches equilibrium. 

5. Decrease the temperature according to the annealing schedule and repeat 

steps 2 through 4. 

Geman and Geman (1984) have shown that if T is lowered according to 

T= To 
In2 

ln(k + 1)' 

where k denotes the iteration cycle, then the algorithm should converge to the 

minimal energy. Unfortunately, they found that their theoretical value of To 

would necessitate a prohibitive amount of computer time, but however that 

a lower value of To was satisfactory. Kirkpatrick et al. (1983) also achieved 

success using a quicker cooling schedule. In the simulations carried out here the 

temperature was reduced linearly, but by small amounts. 

The initial configuration of step 1 was the observed image itself: I=D. The 

proposed configuration change in step 2 simply consisted of choosing a pixel i 

and considering the change in cost 6 E; if intensity I; were flipped to 1-I;: 

SE; =2E A(211 -1) + (2D; -1)1n(p'1 - 1) (2I; -1). (5.35) 

. 
7EQ; 

Once again, due to the local nature of this change, more than one pixel change 

could be proposed simultaneously. 
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Comparison of the SA and ANN algorithms in minimising the cost function 

(5.24) was determined by applying them to distorted versions of the chequer- 

board image in figure 5.2. 

5.3.5 Numerical Results 

Both algorithms were implemented on a Meiko Computing Surface (see Bowler 

et al. 1987), " the principle component of which is the INMOS transputer-a VLSI 

chip which at present comes in two varieties. The T414 contains a 32-bit integer 

processor which can execute 10 million instructions per second (10MIP). The 

chip contains 2 Kbytes of memory and is capable of communication with other 

transputers via its four hardware links, each of which supports a band-width of 

20 Megabits per second. In addition to these on-chip facilities, each transputer 

can also access up to 4 Gigabytes of of chip memory at a rate of 25 Megabytes 

per second. The second type of transputer is the T800, which has an integrated 

64-bit floating-point unit and 4 Kbytes of on-chip memory as well as all of the 

functionalities of the T414. 

The Computing Surface is a reconfigurable array of transputers: the user can 

specify a particular connection architecture consistent with the maximum of four 

hardware communication links on each transputer. 

The programming language of the transputers is the high-level language Oc- 

cam, which provides for processes that can be executed concurrently (if they 

do not share any variables) and can communicate with each other through uni- 
directional `soft' channels. An Occam program is distributed across the array 

of transputers, processes (one or more) being allocated to transputers and soft 

channels being assigned to `hard' channels (physical links)-each hard link can 

implement two uni-directional soft channels. 
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This array of transputers is an example of a MIMD (Multiple Instruction stream, 

Multiple Data stream) machine: concurrently each transputer can process its 

own data-multiple data stream-but, unlike SIMD machines, where every pro- 

cessor executes identical instructions, every transputer can in principle be exe- 

cuting its own individual process on the data-multiple instruction stream. 

The form of parallelism employed was that of geometric parallelism (i. e., proces- 

sor to data locality was preserved). This was achieved by configuring T `slave' 

transputers plus a 'master' transputer in a ring and assigning a band of n= NIT 

pixel rows to each slave transputer, where the image contained N rows of pixels. 

(Then transputer 0 held rows 0 through n -1, transputer 1 held rows n through 

2n -1, ..., transputer T -1 held rows n(T -1) through nT - 1. ) In this way all 

the pixels needing to be accessed by any processor were either held on that pro- 

cessor or on one of its two neighbouring processors in the ring. Further details 

of the implementation are provided in Appendix D. 

The results presented in figure 5.8 show the cost discrepancy of the solutions 

found by the SA algorithm from various initial temperatures To applied to 20% 

and 25% distorted images. A linear annealing schedule was used, the tempera- 

ture being lowered by To/1000 at each iteration (this being thought slow enough 

to maintain the image near thermal equilibrium). 

Solutions of lower cost are found for higher starting temperatures. Comparison 

with the typical cost of ANN solutions would suggest that the SA algorithm is 

a more powerful minimisation technique, given a high enough To, but that the 

ANN is superior to SA from smaller values of To. Both are seen to be roughly 

equivalent (at least for this problem) around To = 0.3. 

However, the better minimisations of the SA solutions for increasing To does 

not yield correspondingly better image restorations. On the contrary, much 

poorer results are produced-figure 5.9. (A negative value of the percentage 
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error reduction indicates that the restored image contains more errors than the 

noisy image. 

The reason for this is that the deep minima which SA finds for larger values of To 

correspond to images which contain large regions of the same intensity. A typical 

example is shown in figure 5.10, which depicts the (25%) noisy chequerboard 

pattern and the SA restoration from To = 1.0. 

The fact that these minima of lower cost than the original image do not corre- 

spond to good restorations is a fault of the cost function itself. An ideal cost 

function would not have any minima of lower (or even comparable) cost than 

the original image. This is clearly not the case here. 

5.4 Discussion 

In terms of minimising the cost function (5.24), the ANN method has been 

shown to be superior than a gradient descent since it consistently finds solutions 

of significantly lower cost than the corresponding GD solutions. The results 

of § 5.3.4 indicate that the ANN minimisation is roughly as powerful as SA 

from temperatures around To = 0.3. Annealing from higher temperatures found 

deeper minima than the ANN. Hence, although itself only a deterministic pro- 

cedure, by modelling the discrete variables as analogue variables, the ANN can 

avoid minima of higher cost than found by a gradient descent of the discrete 

problem, and instead finds solutions of lower cost. 

As for how good the corresponding restorations will be, depends on how well the 

global minimum (or at least the deepest minima) of the cost function faithfully 

represents the original image. The SA algorithm in § 5.3.4 was able to find 

minima lying deeper than the original image, but which were poor restorations. 
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Figure 5.10: A typical SA image restoration (To = 1) 
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However, the ANN solutions were of comparable cost to the original images and 

relatively good restorations. They were certainly of a higher quality than those 

achieved by a gradient descent on the same cost function and -by 
A he majority- 

rule method. Thus for good restorations it may be unnecessary to resort to 

highly ergodic stochastic'searches such as SA from a high starting temperature, 

which only succeed in finding minima (although deep) which are far removed 

from the original image. As pointed out by Besag (1986), uncovering these really 

low-lying states can make the restorations susceptible to the undesirable large- 

scale effects of the prior distribution P(L) which tend to produce images with 

large granularity. Also, when To is high, many of the proposed pixel flips have 

a better chance of occuring (be they favourable or unfavourable with respect to 

reducing the cost function) and in doing so, the advantage of the good starting 

point-the observed image itself-is effectively lost. 

The problem of the existence of deep minima which do not correspond to good 

interpretations could only be remedied by improvements in the underlying cost 

function. The fact that these `bad' low-cost solutions tend to correspond to 

images containing large continuous patches would suggest that the cost-function 

might benefit from the inclusion of interstitial line processes (Geman and Geman 

1984, Murray et al. 1986) which help favour discontinuities (edges) in the prior 

images. These are unobserved variables which reside between neighbouring pix- 

els and when switched `on' incur a cost, but also eliminate the interaction (5.21) 

between the two pixels. An extra term must be introduced in the cost function 

which is responsible for the interactions amongst these neighbouring line pro- 

cesses in order to encourage formation of the correct type of edges. Inclusion 

of these line processes, although binary variables themselves, would render the 

cost function incompatible with the quadratic form (5.1) required for the ANN 

method to be applicable. The method could be generalised to deal with a non- 

quadratic cost function E(E) by noting that the equation of motion (5.5) for 
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the neural potentials is a special case of 

du; 
_ -ui _ 

OE 
(5.36) 

dt r äY 

and that L(V) in (5.8) is still a Lyapunov function for the system. However, one 

of the potential merits (if not the potential merit) of the ANN is the ability to be 

implemented in hardware form: a requirement to which the original formulation 

(5.1) and (5.5) easily conforms, but this may not be the case for a general E(V) 

in (5.36). 

For restoration of grey-level images via the Geman and Geman algorithm to be 

amenable to an ANN, the cost function must still be one of binary variables. 

This could be accommodated if each grey-level pixel intensity I; were represented 
by L bits I, ß(1 = 0,1, ... ,L- 1) so that 2L grey levels would be allowed for: 

L-1 
E 21I, '. (5.37) 
1=0 

To retain the same form of pairwise interactions (5.21), a product over the L 

bits could be used: 

L-1 -A for I" = I" 
V2(I:, I; ) = -A f {1- (I, ý 

- Iý)} ' (5.38) 
1=0 0 otherwise 

and the data term in the new cost function would be 

1N 
2u-2(2L -1) 

E{D, - I; }2, 

where'the noise is Gaussian of zero mean and variance o 2. 

The cost function would no longer be quadratic in the variables I, I, so the general 

equation of motion (5.36) would have to be used: 
Q 

ui OE 

`v' t_ ät --T -aIý th r; _1. (5.39) 

A network of NL neurons would now be required to process an image of N pixels 

of grey-levels 0,1, ... , 2L - 1. But, as mentioned above, such a network would 
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not have as straightforward a hardware implementation (if at all) as the one for 

binary images. 

Regarding the speed with which the ANN restorations were accomplished, the 

simulations typically required from 1000 to 3000 sweeps to reach stability (i. e., 

5I; < 10-e, Vi). This is certainly slower in computer time than the 10 or so 

sweeps required by the GD and MR methods (although not slow when compared 

to the SA algorithm). However, by virtue of the circuit implementation of the 

ANN that is being simulated here-through the differential equation (5.5)-the 

`real' time to stability should be measured in terms of the characteristic response 

time r of the neurons. Each updating cycle represented a time increment of 

ät= 10-', r in (5.5), as r=1. Thus, the effective time for the ANN restorations 

was 1 to 3 time constants. This is of the same order of magnitude (a few 

time constants) as was found by Hopfield and Tank (1985) in their TSP ANN, 

and could therefore correspond to very rapid image restorations, given that 

the response times of electronic components could perhaps be of the order of 

microseconds or even less. 

In contrast to the TSP network, this network for restoring binary images would 
be particularly straightforward to construct. From (5.25), connections would 

only have to be made between neighbouring amplifiers and these would all have 

the constant value of 8A. (Recall that this would correspond to conductances 

of 8A. ) The TSP network, on the other hand, is fully connected, and some of 
the connections have values which depend upon the particular realisation of the 

problem under consideration-they involve the inter-city distances. However, 

here all the problem-dependent variables, namely the observed pixel intensities 

(D; ) and the estimate of the noise (p), appear only in the externally supplied 
bias currents 0, in (5.25). This is more convenient as bias currents could be more 

readily altered than could conductances of hardware interconnects. 

That this network does not encounter as many problems as its TSP counterpart 
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should not be too surprising. Firstly, the mapping from problem variables to 

neural variables is not as cumbersome: it is simply a one-one mapping from pixel 

intensity to neural activity. Hence the complexity of the problem is not increased, 

unlike in the TSP where each of the N cities is assigned N neurons. Secondly, 

the mapping also preserves the locality of the problem which arises out of the 

local interactions in the prior and from the conditional independence of the noise 

processes. In contrast, the TSP network is a fully connected one. Thirdly, there 

are fewer parameters to deal with in the associated cost function, and they are 
1 of a more intuitive nature: one of them (p) is the estimate of the amount of noise 

present and appears in the term which determines the faithfulness to the data; 

the other (A) determines how much continuity is encouraged across the restored 

image. The larger number of parameters and of terms which appear in the 

TSP network's cost function arises out of the necessity to enforce a permutation 

matrix solution-a valid tour-on the neural firing rates. Such a limitation 

of phase-space does not need to be imposed in the problem here. Fourthly, 

the TSP network suffers from its inability to distinguish amongst a (2N-fold) 

degeneracy in its solutions. Finally, a good starting point is available to the 

image restoration network: namely, the observed data itself. 

The success of this method in achieving good image restorations is undoubt- 

edly helped by the fact that it is not necessary to find the really low-lying 

states of the cost function in order to significantly enhance the corrupted im- 

ages. Nonetheless, the ANN restorations were much better than those found 

by a deterministic search (ICM or GD) in the discrete variables and than those 

achieved by a majority-rule scheme. The ANN minimisation does not seem to 

be as powerful as simulated annealing (from a high enough temperature) but is 

nevertheless more powerful than a gradient descent and indeed was found to per- 

form as well as simulated annealing from lower (but still positive) temperatures, 

despite being a deterministic procedure itself. 

Although applied to a simpler problem than the TSP, the work of this last chap- 
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ter has demonstrated that a network of analogue neurons can be as powerful 

as some stochastic minimisations (simulated annealing from low temperatures- 

admittedly with a conservative cooling schedule). It can provide very rapid 

solutions-the network stabilises in a few neural time constants and this trans- 
lates to a'very fast solution on account of the huge parallelism involved as all 
the neurons update simultaneously. 
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Conclusions 

It already had been shown that, despite involving extremely simplified represen- 

tations of neurons, Ising spin neural network models such as the Hopfield model 

exhibit rich and complex behaviour similar to that of Ising spin glass models. 
The Hopfield model had also been shown to display critical behaviour with re- 

spect to the storage (stability) of patterns. Strong evidence has been provided 
in chapter 3 for critical behaviour and scaling of the basins of attraction in the 

model. Evidence for similar phenomena in the learning algorithm model of chap- 

ter 4 was also obtained (although smaller system sizes were studied there). Such 

scaling behaviour shows the importance of studying systems of increasing size 
in order to predict from any trend the expected behaviour of very large systems 
(the `thermodynamic limit'). This consideration was particularly important in 

chapter 4: contrasting trends of the basins of attraction (and hence the content- 

addressability) for the naive (M = 0) and improved (M > 0) algorithms were 
found. 

The learning algorithm was developed in chapter 4 by identifying the limitations 

of the naive algorithm (based upon reinforcement of unstable spins using the 

Hebbian rule) which, despite the promising results of ensuring perfect storage 

of all patterns at values of storage ratio a much higher than is possible in the 

Hopfield model, fails to install finite basins of attraction at these high values. 
The solutions for the synaptic connections found by the improved algorithm 

were shown to exhibit behaviour indicating that they will endow the network 
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with appreciable regions of attraction in the thermodynamic limit, in addition 

to providing perfect storage of the patterns. This was achieved for storage 

ratios as high as a=0.5-well above the limitation az = 0.14 of the Hopfield 

model. The solutions provided are also superior with respect to the more realistic 

measure of relative storage capacity-the number of bits of information stored 

to the number of bits of synaptic information required-as was detailed in the 

discussion in § 4.6. 

Despite involving a search through a very high-dimensional space, the learning 

achieves its success by using an algorithm that is both deterministic and local- 

changes to a synapse depend only on the states of the two neurons which it 

connects. (Admittedly it also requires the calculation of the average modulus 

of the synaptic connections at each learning cycle, but this is confined to a row 

average of the connection matrix (4.13). ) 

In keeping with the tradition of the Ising spin models of chapters 2 and 3, 

the learning algorithm of chapter 4 maintained the symmetry of the synapses, 

ensuring the existence of a Hamiltonian (energy) function. This symmetry is not 

very plausible from a biological point of view, as the way in which one neuron 
influences another (as described in chapter 1) is very much a uni-directional 

process. Nevertheless, this symmetry constraint does not seem to limit the 

performance of the learning algorithm: the results obtained in § 4.5 were close 

to the optimal solution for general asymmetric connections. 

This type of Ising spin model, then, has been shown capable of performing 

as a content-addressable memory and if implemented in hardware form could 

provide very fast retrieval of large amounts of data since the `neurons' could all 
be changing their states asynchronously. Also, when presented with an input 

which is a distorted form of one of a large number (Na) of stored patterns, 

assuming the distortion. is not large enough that it lies outside the pattern's 
basin of attraction, by the very act of relaxing into the undistorted pattern, the 
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network is simultaneously `considering' all the Nc possibilities while `finding' 

the desired pattern that most resembles the presented pattern, as opposed to 

performing some kind of sequential search through its memory. 

The analogue neural network of chapter 5 has also been shown capable of re- 

covering good interpretations of distorted binary images. While the model in 

chapter 4 could recover distorted images (having at least the critical minimum 

overlap with a stored pattern) without error, it could only do so for patterns 

which are explicitly stored in the `memory'. The ANN technique does not rely 

on storing any patterns in order to restore them, but instead can in principle 

recover equally well any image which can be approximated by the prior distribu- 

tion (Markov random field). In particular it could enhance (to the same degree 

of quality) both an image and a second image that was obtained from a global 

translation of the first image. However, the memory model of chapter 4 could 

only achieve this if both images were explicitly stored in it. 

The ANN involved a neural network functioning as an optimisation tool. The 

results of chapter 5 have shown that, in addition to producing image restorations 

that compare favourably with other determinstic techniques (GD and MR), the 

ANN method is more powerful than a corresponding gradient descent in terms of 

minimising the cost function. In fact, the results of § 5.3.4 tend to suggest that, 

at least for this problem, it is as powerful as simulated annealing-a stochastic 

algorithm-up to starting temperatures around To = 0.3. The solutions found 

could perhaps correspond to better image restorations if a larger neighbourhood 

system or an improved cost function were used (although the latter may inhibit 

possible hardware implementation). 

Undoubtedly the time (a few neural time constants) in which the ANN produced 

its solutions were very fast in view of the possible hardware implementation and 

the fact that a large degree of parallelism would be involved, with all of the 

neurons evolving asynchronously. 
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All of the models considered here have been non-stochastic in nature. The 

inclusion of noise into the neural dynamics may improve performance further: 

if, as with the Hopfield model in the FM phase (a < 4), there are any spurious 

minima near the nominal patterns' regions of attraction, the introduction of 

noise could effect escape from these into the (larger) desired basin; a noise term 

in the ANN could perhaps improve its minimisation ability. 

The work throughout this thesis has involved computationally intensive numer- 

ical simulations: the memory models of chapters 3 and 4 were fully connected 

networks; the one in chapter 5 had local interactions, but the neurons were 

of an analogue nature and required simulation of a differential equation. The 

heavy computational demand of simulating large networks of this type in a fea- 

sible amount of time was alleviated by exploiting the large degree of parallelism 

inherent in these models-a common feature amongst a wide range of neural 

network models. The simulations in chapters 3 and 4 involved both algorithmic 

and task parallelism, with the boolean neurons being particularly amenable to 

the bit-processing capabilities of the DAP. Those in chapter 5 had inherent ge- 

ometric parallelism over a two-dimensional array: suited to both the DAP and 

to the flexible array of transputers constituting the Computing Surface. 

The study of many neural network models and the realisation of their enormous 

potential in, e. g., optical design (Farhat et al. 1986) and silicon implementa- 

tion (Sivilotti et al. 1986) will rely not only on innovation and analysis, but 

also on their simulation, for which parallel computing should continue to be an 
invaluable tool. 
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Appendix A 

DAP Implementation of the Hopfield Model 

Systems of sizes N= 512,1024 and 2048 were simulated. Since when updating 

the ith spin only the ith row of the connection matrix is required, to save memory 

space in the DAP, it was decided to calculate the corresponding row each time it 

was required instead of storing the whole connection matrix. This was possible 

due to the (Hebbian) prescription for the T; j which essentially means that each 

connection is just a sum of p conditional adds of +1 or -1. 

For simplicity, only the case of N= 1024 will be dealt with here. The similar 

way in which the other system sizes were implemented should then become clear. 

The p nominal patterns were stored in logical matrices thus: 

v1 v' 
... 

ý1ýV961 

(1)V2 (1)V88 
... V982 sim. sim. I sim. 

ý1) V84 )V128 
""") 

V1024 III 

where (")V, 
"' denotes the ith spin of the rth nominal pattern in simulation s. 

(The number of simultaneous simulations was 4096/N). (')V, 
"' =1(. TRUE. ) or 

0 (. FALSE. ) denotes (05; =1 or -1 respectively. 

For updating the kth spin, the kth row of synaptic connections was also held in 
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a matrix (temporarily): 

MTk, 1 (1)Tk, 65 ... 
(1)Tk, 961 

(1)Tk, 2 (1)Tk, 66 ... 
(1)Tk, 962 Sim. sim. sim. Tk(, ) _ 

(2) I (3) I (4) 
(1)Tk, 

64 
(1)Tk, 

128 ". " 
(1)Tk, 

1024 
II 

where (')Tj, J represents the (k, j)th element in the . 9th simulation. 

The DAP-FORTRAN code for constructing this matrix was as follows. 

c no. of simulations NSIMS = 4096/N 
c no. of columns needed per simulation NCOLS = N/64 

LOGICAL LTEMPI(, ), LTEMP2(, ), LMASK(, ), V(,, 512) 
DO 1000r=1, p 

LTEMP2(, ) = V(,, r) 
LMASK(, ) - COLS(1, NCOLS) 

c, (a matrix whose first NCOLS columns are TRUE. and 
c the remainder are . FALSE. ) 

M=0 
DO 1001-ISIM = 1, NSIMS 

LTEMPI(LMASK) = MAT(LTEMP2(K+M)) 
M=M +N 

c shift LMASK to the East (cyclically) by NCOLS columns 
1001 ASK = SHEC(LMASK, NCOLS) 
1000 LWORK(,, r) = LTEMP2. LEQ. LTEMPI 

Then LWORK (, , r) contains 

Ali Vý; . LEq. ý1ý V1 (1)Vý 
. LEq. (1) V6 ... 

(1) V,; . LEQ. (1)V981 etc. 
(1) V, y . LEQ. (1) Vs (1) Vk . LEq. (l) V88 

... 
(1) Vk . LEQ. (1) V9's2 ( for 

Sims. 

Vk 
. LEQ. (1) Vr4 (1) Vk . LEQ. (l) Vi'48 ... 

(1) VV 
. LEQ. (1)V1024 (2), (3), (4) 

where LEQ. means "logically equal to". 

At this stage the APAL (DAP machine code) subroutine A03ADDPLANES 

was used: ISÜM(, ) = A03ADDPLANES (LWORK, p) , which executes ISUM(ij) = 
E*_1 LWORK(i, j, r) simultaneously on each processor (ij), where each logical 
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variable LWORK(ij, r) is assigned the integral value 0 (1) if it is FALSE. 

(. TRUE. ). 

Then Tk(, ) =2* IStM(, ) -1 (where the multiplication by 2 was achieved 

by an EQUIVALENCE) produces the desired result since 

P 

2*{. v. LEQ. Ivr} -1 
(2() Vk - 1) (2(') Vk -1) 

r-1 
P 

E (s)Sr, (s)Si 
-(') Tki 

r=1 

However, the diagonal elements of Tj must be set to zero: Tk(TDIAG) = 0, 

where TDIAG is a mask whose TRUE. elements denote the diagonal elements 
Tkk. 

For updating the kth node in the iteration of of the configuration V(, ), the local 

field h,, = Ej TkjSj is required. This was achieved as follows. Firstly TS(, ) _ 

MERGE( Tk, -Tk, V) produces 

(1)Tk, 
1(1)Sl 

(1)Tk, 
ß5(1)S66 ... 

(1)Tk, 
9sl(1)S9ei etc. 

TS(B) 
(1)Tk, 

2(1) S2 (1)Tk, 
66(l)S66 ... 

(1)Tk, 
982(1)5982 I for 

Sims. 

(1)Tk, 
64(1) S64 (1)Tk, 

128(1)S128 ... 
(1)Tk, 

N(1) SN (2), (3), (4) 

where, in V(, ), V= . TRUE. (. FALSE. ) denotes Si =1(-1). 

Then the DAP-vector H() = SUHR(TS(, )) contains 

E (l)Tk, 
j(1)Si 

1E (1)Tk, j(1)Si ... 
E (1)Tk, 

i(1)Si I etc. for (2), (3), (4) 
i=1 i=65 i=961 

The cascading summation 
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J=1 
DO 2000 I=1, LG2NCOLS 

c LG2NCOLS = log2(NCOLS) 
H() = H() + SHLP(H, J) 

2000 J=J+J 

produces 
N 

HO = 
([1Tk1si 

* ... 
i. i 

I etc. for (2), (3), (4) 

where * denotes irrelevant entries. A matrix HMAT (, ) containing the relevant 
local field terms was then produced from this: 

LMASK(, ) = COL1(, ) 

c COL1(, ) is a logical matrix whose TRUE. values denote the first 
c column of each simulation s. 

HMAT(, ) = MATR(H()) 
I=1 
DO 3000 J=1, LG2NCOLS 

HMAT(, ) = MERGE(HMAT, SHEP(HMAT, I), LMASK) 
LMASK(, ) = LMASK(, ). OR. SHEP(LMASK, I) 

3000 1 =I+1 

Each row of HMAT(, ) then contains 

{(1)hk (1)hk 
... 

(1)hk ý Mhk (2)hk 
... 

(2 hk I(3), (4)ý 

Then V(TDIAG) = HMAT(, ). GT. 0 will update the kth node of the iterated pat- 

tern V(, ) (at each simulation in parallel). 

More than 3x 108 conditional adds were achieved per second for N= 2048, a= 
0.10, while the number of single-spin updates per second exceeded 1700 for 

N= 512. 
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Appendix B 

Learning algorithms: DAP Implementation 

Only the case of N= 256 will be described for simplicity (N = 64, N= 128 

and N= 512 were also possible in the program). The synaptic connections were 
held in 64 DAP-matrices: 

T(, > i) _ 
ý(l)eo (l)ei (1)02 (1)83 ýý2)0o 

... 
ýýý93 etc. for (3), (4)]t 

(i = 1,2,..., 64) where the 4x 64 submatrices are 
(')Ti, 

i+64n 
(')T2, 

i+64n .. " 
(')T64, 

i+64n 

(y)en 

(')T193, 
i+64n 

(')T194, 
i+64n """ 

('I)T256, 
i+64n 

Four nominal states were held in each matrix S (, , r) : 

S(, 
f r) = 

[(1) 4r-3 (1) ß+4r-2 (1) ß+4r Ietc. for (2), (3), (4)} t 

with the nominal state 
(')Si (')SZ 

... 
(')S84 

(')Sl93 (')Si9 
... 

(')S258 

with the same notation for (')T; q and (")Si* as in appendix A. 

Then the stability of the kth spin of 16 vectors could be tested simultaneously: 
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c Notation: 
c Number of rows per nominal state NROWS = N/64 
c NROWSQ = NROWS ** 2 

ITESTM(, ) = MERGE(T(�k), -T(�k), S(�r)) 
ITEMP(, ) = ITESTM(, ) 
DO 1000 J=1, NROWS-1 

ITEMP(, ) = MERGE(SHNC(ITEMP, NROWS-1), SHSC(ITEMP, 1), LR1V) 
c where the TRUE. elements of LR1V(, ) denote the first row of 
c each state 
1000 ITESTM(, ) = ITESTM(, ) + ITEMP(, ) 

H() = SUMC(ITESTM) 

Then H() contains 

[(1)hk (1)hk (1)hk (l)hk I (i)hk+gq 

... 
(1)hk+64 I 

(1)hk+128 
... 

(1)hk+12e I (l)hk+1az 
... 

(1)hk+192 

etc. for (2), (3), (4)]t 

This then allowed the 16 error masks (#)Ekr_3 ýa)E4+84, (a)Ek 
}128 and 

(')Ek+lss(s 
= 

1,2,3,4) to be determined synchronously. These error masks were held in a 
logical matrix in a similar fashion to the nominal states S(, , r): 

E(v 
'r) = 

[(I)L4r_3 (1)E4r-2 (1)E4r-1 (1)E4r Ietc. for (2), (3), (4)]t 

The above was repeated over the loop k=1 to 64, which then meant that 

one quarter of all of the error masks for the nominal states 4r -3 to 4r had 

been determined. To obtain the remaining three quarters, the above code was 

executed again, after the nominal states and their associated error masks had 

been `rotated': 

S(� r) = MERGE(SHNC(S(� r), NROWSQ-NROWS), 
SHSC(S(� r), NROWS), RMASK) 

E(, ) = MERGE(SHNC(E, NROWSQ-NROWS), SHSC(E, NROWS), RMASK) 

where RMASK(, ) is a logical matrix with TRUE. entries on the first NROWS rows 
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of each simulation. This then meant that 

S(7 
7 

{(1)4r 
r) _ 

(1)sý. 
1 

ß+4r-3 (1)4r-2 (1)sL ß+4r-1 I 
... 

I t 

and similarly for E(, ). Hence ei? to E84' Ebb 3 to 4 3, etc. could all be deter- 

mined as above. After the `rotating' procedure was repeated twice more, all of 

the error masks for the four nominal states 4r -3 to 4r had all been determined. 

The corresponding changes to the T, "j were accumulated in a matrix DT(, ) until 

all of the nominal vectors had been accounted for, then the T(, , i) matrices 

were modified accordingly. 

Up to 16000 single-spin updates per second were achieved in the simulations. 

S 
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Appendix C 

DAP Implementation of ANN image 

restoration 

As described in §5.3.3, binary images of 64 x 64 pixels were restored, each pixel 

being assigned to one DAP processing element. The neighbourhood pixels of ! 9; 

consisted of the nearest neighbours of pixel i. 

The notation used in the DAP code was as follows. 

c LOGICAL T(, ): target (original) image 

c LOGICAL D(, ): corrupted image (data) 

c REAL U(, ), I(, ): input potentials and firing rates of neurons 
c INTEGER NBHD(, ): NBHD(i) = number of pixels in neighbourhood 
c of pixel i 

c LOGICAL CHEQUER(, ): chequerboard mask; TRUE. values denote 
c those neurons currently being updated 

First of all, the logical mask CHEQUER(, ), the neighbourhood matrix NBHD(, ) 

and the matrix THETA(, ) were initialised: 

CHEQUER(, ) _ (ALTR(1). OR. ALTC(1)). AND. 
* (. NOT. (ALTR(1). AND. ALTC(1))) 

NBHD(, ) =1 
NBHD = NBHD + SHNP(NBHD, 1) + SHSP(NBHD, i) + 

* SHEP(NBHD, 1) + SHWP(NBHD, 1) -i 
THETA(, ) _ -4. *A*FLOAT(NBHD) + MERGE(LOGP, -LCGP, D) 
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where LOGP = ln(p 1- 1). NBHD(i) contained n(! 9; ), the number of pixels in 

the neighbourhood of the ith pixel, so THETA(±) held O= -4An(gs) + (2D; - 
1) ln(p-i - 1). 

The DAP-FORTRAN code for sweeping through the network was 

DO 1 ISWP=1, MAXSWEEPS 
DO 2 IP=1,2 

c determine sum of neighbouring intensities 
SUMM(, ) = 0.0 
SUMM(CHEQUER) = SHSP(I, 1) + SHNP(I, 1) + 

* SHWP(I, 1) + SHEP(I, 1) 
SUMM - 8.0 *A* SUMM 

c increment potentials U (with TAU=1 here) 
DELTAU(, ) = SUMM + THETA 
u(CHEQUER) =U+ (DELTAU * DT) 
POTENTIAL(, ) - -GAIN *U 

c avoid overflow in exponential 
POTENTIAL(POTENTIAL. GT. 173.0) = 173.0 
INEW(, ) = 1. /(1. + EXP(POTENTIAL)) 
STABLE(CHEgUER) = ABS(I-INEW). LT. TOLERANCE 
I(CHEQUER) = INEW 

c flip CHEWER mask to deal with other neurons 
CHEQUER = NOT. CHEQUER 

2 CONTINUE 
IF (ALL(STABLE)) GOTO 3 

1 CONTINUE 
3 NSWEEPS = ISWP 

DT - bt, the time increment of the differential equation. The mask STABLE(i) 

was TRUE. if and only if neuron i was stable to within tolerance TOLERANCE= 

10-6. 

More than 100 sweeps through then network were achieved per second. 
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Appendix D 

ANN image restoration on a Meiko Computing 

Surface 

T+1 transputers were configured in a ring: a 'master' transputer and T `slaves'. 

For the processing of nT xm images, each slave was allocated a band consisting 

of n rows of pixels (neurons), with m pixels in each row: slave 0 held rows 0 to 

n-1; slave 1 held rows n to 2n -1; ... ; slave r held rows rn to (r + 1)n -1; ...; 

and slave T-1 held rows (T - 1)n to nT - 1. The neuron firing rates and 

potentials were then held locally by each slave in the nxm arrays [n] [m] REAL32 

I and [n][m]REAL32 U, while the observed data was split up by the master and 

distributed around the ring to each slave, which similarly held their own n rows 

locally in [n] [m] INT D. 

Two input and two output channels were defined at each slave r: 

CHAN cv. in -- clockwise input channel from slave r-1 
CHAN cu. out -- clockwise output channel to slave r+1 
CHAN cc. in -- counterclockwise input channel from slave r+1 
CHAN cc. out -- counterlockwise output channel to slave r-1 
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The updating sweep by each slave on its own band of neurons was 

PROC Update( CHAN cv. in, cv. out, cc. in, cc. out, DE]REAL32 I, u, 
INT sweeps, BOOL stable, VAL [][]INT D) 

[m]REAL32 top. rov, bottom. row, top. nbrs. row, bottom. nbrs. row: 
SEQ 

stable TRUE 
top. rov := I[0] 
bottom. row := I[n-1] 
SEQ 

PAR 

... evolve internal neurons 

... communicate boundary neuron activites 

... evolve boundary neurons 
sweeps := sweeps +1 

Hence the communication of boundary data from each slave to its two neighbours 

on the ring was overlapped with the updating of the neurons internal to a band 

(those in rows 1 to n- 2). Thus the cost of splitting the image amongst the 

processors was reduced. The transfer of the boundary data between each slave's 
band of neurons was achieved by 

SEQ 
IF 

id <> 0 -- it not slave 0 (top band of pixels) 
PAR 

cc. out ! top. rou 
cv. in ? top. nbrs. row 

TRUE 
SKIP 

IF 
id <> (T-1) -- .f not slave T-1 (bottom band) 

PAR 
cw. out ! bottom. row 
cc. in ? bottom. nbrs. row 

TRUE 
SKIP 

Each slave held a local stability flag stable, which was TRUE only if all the 

neurons in its own band were all stable (to within a specified tolerance). 
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After every out. freq updates (a number which could be specified) the current 

state of all the neurons was passed around the ring to the master along with all 

the local stability flags: this allowed the image to be displayed and its stability 

to be determined. 

The implementation of the simulated annealing algorithm in §5.3.4 involved an 

identical parallelization to the ANN procedure. Only the details of the Update 

procedure needed to be altered. (In addition, of course, only boolean variables 

LI BOOL I were required for the pixel intensities. ) 

113 



References 

[Amit 1987] Amit DJ 1987 Heidelberg Symposium on 
Glassy Dynamics ed I Morgenstern and JL 
van Hemmen (Berlin: Springer) 

[Amit et al. 1985a] Amit D J, Gutfreund H and Sompolinsky 
H 1985 Phys. Rev. Lett. 55 1530 

[Amit et al. 1985b] Amit D J, Gutfreund H and Sompolinsky 
111985 Phys. Rev. A 32 1007 

[Amit et al. 1987a] Amit D J, Gutfreund H and Sompolinsky 
H 1987 Ann. Phys., NY 173 30 

[Am. it et al. 1987b] Amit D J, Gutfreund H and Sompolinsky 
H 1987 Phys. Rev. A in press 

[Besag 1972] Besag JE 1972 J. Roy. Stat. Soc. B 34 75 

[Besag 1986] Besag JE 1986 J. Roy. Stat. Soc. B 48 259 

[Bowler et al. 1987] Bowler K C, Kenway R D, Pawley GS and 
Roweth D 1987 An Introduction to Occam 2 
and the Meiko Computing Surface Physics 
Dept., Univ. of Edinburgh 

[Bruce et al. 1986] Bruce A D, Canning A, Forrest B, Gardner 
E and Wallace DJ 1986 Proc. Conf. on 
Neural Networks for Computing, Snowbird, 
UT (AIP Conf. Proc. 151) ed JS Denker 
(New York: AIP) p65 

[Bruce et at. 1987] Bruce A D, Gardner E and Wallace DJ 
1987 J. Phys. A: Math. Gen. 20 2909 

[Canning and Gardner 1988] Canning A and Gardner E 1988 J. Phys. 
A: Math. Gen. in press 

[Cover 1965] Cover TM 1965 IEEE Trans. Electron. 
Comput. EC-14 326 

114 



[Diederich and Opper 1987] Diederich S and Opper M 1987 Phys. Rev. 
Lett. 58 949 

[Edwards and Anderson 1975] Edwards SF and Anderson PW 1975 J. 
Phys. F5 965 

[Farhat et al. 1986] Farhat N H, Miyahara S and Lee KS 1986 
Proc. Conf. on Neural Networks for Com- 
puting, Snowbird, UT (AIP Conf. Proc. 
151) ed JS Denker (New York: AIP) 

[Gardner 1986] Gardner E 1986 J. Phys. A: Math. Gen. 
19 L1047 

[Gardner 1987] Gardner E 1987 Europhys. Lett. 4 481 

[Gardner 1988] Gardner E 1988 J. Phys. A: Math. Gen. 
21 257 

[Gardner et al. 1987a] Gardner E, Stroud N and Wallace DJ 1987 
Preprint Edinburgh 87/394 

[Gardner et al. 1987b] Gardner E, Stroud N and Wallace DJ 1987 
Preprint Edinburgh 87/410 

[Gardner et al. 1987c] Gardner E, Derrida B and Mottishaw P 
1987 J. Physique 48 741 

[Geman and Geman 1984] Geman S and Geman D 1984 IEEE Trans. 
PAMI 5 721 

[Hebb 1949] Hebb D0 1949 The Organisation of Be- 
haviour (New York: Wiley) 

[Hopfield 1982] Hopfield JJ 1982 Proc. Natl. Acad. Sci. 
USA 79 2554 

[Hopfield and Tank 1985] Hopfield JJ and Tank DW 1985 Biol. 
Cyber. 52 141 

[Kirkpatrick et al. 1983] Kirkpatrick S, Gellat CD and Vecchi MP 
1983 Science 220 671 

[Kirkpatrick and Sherrington 1978] Kirkpatrick S and Sherrington D 1978 
Phys. Rev. Lett. B17 4384 

[Krauth and Mezard 1987] Krauth W and Mezard M 1987 J. Phys. A: 
Math. Gen. 20 L745 

[Le Cun 1985] Le Cun Y 1985 Proc. Cognitiva 85, Paris 

[Little 1974] Little WA 1974 Math. Biosc. 19 101 

115 



[Little and Shaw 19781 Little WA and Shaw GL 1978 Math. 
Biosc. 39 281 

[Mattis 1976] Mattis DC 1976 Phys. Lett. 56A 421 

[McCulloch and Pitts 1943] McCulloch WS and Pitts WA 1943 Bull. 
Math. Biophys. 5 115 

[Metropolis et al. 1953] Metropolis N, Rosenbluth A, Rosenbluth 
M, Teller A and Teller E 1953 J. Chem. 
Phys. 21 1087 

[Mezard et al. 1986] Mezard M, Nadal JP and Tolouse G 1986 
J. Physique 47 1457 

[Minsky and Papert 1969] Minsky ML and Papert S 1969 Percep- 
trons (Cambridge, MA: MIT Press) 

[Moore 1984] Moore MA 1984 Statistical and Parti- 
cle Physics: Common Problems and Tech- 
niques eds KC Bowler and RD Kenway 
(SUSSP Publ.: Univ. of Edinburgh) 

[Murray et al. 1986] Murray D W, Kashko A and Buxton H 
1987 Image and Vision Comp. 4 133 

[Parisi 1980] Parisi G 1980 J. Phys. A: Math. Gen. 13 
1887 

[Parisi 1986] Parisi G 1986 J. Phys. A: Math. Gen. 19 
L617 

[Parker 1985] Parker DB 1985 MIT Sloan School of 
Management Technical Report TR-47 

[P5ppel and Krey 1987] P6ppel and Krey 1987 Preprint Regens- 
burg 

[Reddaway 1979] Reddaway SF 1979 Infotech State of the 
Art Report: Supercomputers, vol. 2 eds CR 
Jesshope and RW Hockney p311 

[Rumelhart et al. 1986] Rumelhart D E, Hinton GE and Williams 
RJ 1986 Nature 323 533 

[Sherrington and Kirkpatrick 1975] Sherrington D and Kirkpatrick S 1975 
Phys. Rev. Lett. 35 1792 

[Sivilotti et al. 1986] Sivilotti M A, Emerling MR and Mead 
CA 1986 Proc. Conf. on Neural Networks 
for Computing, Snowbird, UT (AIP Conf. 
Proc. 151) ed JS Denker (New York: AIP) 

116 



[Sompolinsky 1987] Sompolinsky H 1987 Heidelberg Sympo- 
sium on Glassy Dynamics ed I Morgenstern 
and JL van Hemmen (Berlin: Springer) 

[van Hemmen 1986] van Henunen JL 1986 Phys. Rev. A 34 
3435 

[Venkatesh 1986a] Venkatesh S 1986 Proc. Conf. on Neu- 

ral Networks for Computing, Snowbird, UT 
(AIP Conf. Proc. 151) ed JS Denker (New 
York: AIP) 

[Venkatesh 1986b] Venkatesh S 1986 PhD thesis California 
Institute of Technology 

[Wallace 1986] Wallace DJ 1986 Lattice Gauge Theory- 
A Challenge to Large Scale Computing ed B 
Bunk and KH Mutter (New York: Plenum) 

[Wilson and Pawley 1987] Wilson GV and Pawley GS 1987 Biol. 
Cyber. in press 

117 


